Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking

There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as ari...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 9; p. 639
Main Authors Snyder, Kristine L., Kline, Julia E., Huang, Helen J., Ferris, Daniel P.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 01.12.2015
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5161
1662-5161
DOI10.3389/fnhum.2015.00639

Cover

Loading…
Abstract There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking.
AbstractList There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking.
There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking.There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking.
Author Kline, Julia E.
Huang, Helen J.
Ferris, Daniel P.
Snyder, Kristine L.
AuthorAffiliation 2 Department of Mathematics and Statistics, University of Minnesota Duluth Duluth, MN, USA
3 Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
1 School of Kinesiology, University of Michigan Ann Arbor, MI, USA
AuthorAffiliation_xml – name: 1 School of Kinesiology, University of Michigan Ann Arbor, MI, USA
– name: 3 Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA
– name: 2 Department of Mathematics and Statistics, University of Minnesota Duluth Duluth, MN, USA
Author_xml – sequence: 1
  givenname: Kristine L.
  surname: Snyder
  fullname: Snyder, Kristine L.
– sequence: 2
  givenname: Julia E.
  surname: Kline
  fullname: Kline, Julia E.
– sequence: 3
  givenname: Helen J.
  surname: Huang
  fullname: Huang, Helen J.
– sequence: 4
  givenname: Daniel P.
  surname: Ferris
  fullname: Ferris, Daniel P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26648858$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1r3DAQNSWl-WjvPRVDL7nsVpJtyboUwrLdLKQUQkqPYiyPNtrK1layU_LvI-8mJQn0Ig0zb56eZt5pdtT7HrPsIyXzoqjlF9Pfjt2cEVrNCeGFfJOdUM7ZrKKcHj2Lj7PTGLcJwnhF32XHjPOyrqv6JPu77lvcYTr6IV_4bpceSNFFD-4-2ph7k6_ADrNrdDBgm3_3d9jtEWGwBvSQX6P2oU2lMdp-ky-Xq3zpUA_BtxjzdgxT9iYgtJ11Lv8F7nfKvM_eGnARPzzeZ9nPb8ubxeXs6sdqvbi4mulSkmEmJCO6rBvS0AqgFppSTVEbgSkgrEAtuJGVlFWB0lRIhBRaCqBQ8gbqqjjL1gfe1sNW7YLtINwrD1btEz5sFKSfaIdKs0YyXiJrhSmZYSCgZghcsoYy0kLi-nrg2o1Nh61OYwjgXpC-rPT2Vm38nSrTuHk5iTl_JAj-z4hxUJ2NGp2DHv0YFRWl5KSoWZGgn19Bt34MaStRMSZpwWkpJtSn54r-SXnabwLwA0AHH2NAo7QdYLB-EmidokRNRlJ7I6nJSGpvpNRIXjU-cf-35QG3CM1d
CitedBy_id crossref_primary_10_3390_s18041073
crossref_primary_10_1109_JSEN_2023_3306311
crossref_primary_10_1152_jn_00079_2018
crossref_primary_10_1016_j_neuroimage_2019_05_038
crossref_primary_10_1038_s41598_022_21307_z
crossref_primary_10_1111_ejn_14867
crossref_primary_10_1155_2018_9861350
crossref_primary_10_1007_s00221_024_06932_6
crossref_primary_10_1038_s41597_021_01094_4
crossref_primary_10_3390_mps4030048
crossref_primary_10_1371_journal_pone_0214711
crossref_primary_10_3390_s24051548
crossref_primary_10_1016_j_clinph_2021_09_015
crossref_primary_10_1088_1741_2552_ac4084
crossref_primary_10_1016_j_neuroimage_2019_116192
crossref_primary_10_1109_TNSRE_2020_2965628
crossref_primary_10_3389_fnhum_2019_00401
crossref_primary_10_1016_j_procs_2020_04_170
crossref_primary_10_1038_s41598_019_45396_5
crossref_primary_10_3389_fnhum_2020_00036
crossref_primary_10_3389_fnhum_2023_1251690
crossref_primary_10_1177_15500594221123690
crossref_primary_10_1111_ejn_15190
crossref_primary_10_1093_cercor_bhac066
crossref_primary_10_1016_j_neubiorev_2024_105718
crossref_primary_10_2196_56726
crossref_primary_10_1016_j_neuroimage_2017_07_013
crossref_primary_10_1111_ejn_15004
crossref_primary_10_1016_j_neurobiolaging_2019_02_005
crossref_primary_10_3389_fnins_2020_549524
crossref_primary_10_1002_hbm_25856
crossref_primary_10_3389_fnins_2020_542934
crossref_primary_10_3389_fnins_2023_1051500
crossref_primary_10_1109_TNSRE_2020_3040264
crossref_primary_10_3390_s20247250
crossref_primary_10_1109_TNSRE_2020_2998778
crossref_primary_10_1016_j_cogsys_2018_11_002
crossref_primary_10_3389_fnhum_2019_00172
crossref_primary_10_1088_1741_2552_ab2b61
crossref_primary_10_1109_ACCESS_2018_2890335
crossref_primary_10_1080_00222895_2019_1635983
crossref_primary_10_1016_j_neuroimage_2019_06_018
crossref_primary_10_1111_ejn_14965
crossref_primary_10_1152_jn_00292_2018
crossref_primary_10_3390_brainsci10020090
crossref_primary_10_1088_1741_2552_ac542c
crossref_primary_10_1007_s00521_023_08598_7
crossref_primary_10_3389_fnhum_2017_00170
crossref_primary_10_3389_fnhum_2020_561755
crossref_primary_10_3389_fpubh_2018_00039
crossref_primary_10_1016_j_neuroimage_2016_09_021
crossref_primary_10_1109_TNSRE_2023_3294435
crossref_primary_10_1152_jn_00613_2017
crossref_primary_10_1016_j_bspc_2019_101638
crossref_primary_10_1111_ejn_15095
crossref_primary_10_1049_htl2_12016
crossref_primary_10_1111_psyp_13090
crossref_primary_10_1016_j_bbr_2020_112663
crossref_primary_10_1016_j_neulet_2020_135090
crossref_primary_10_1109_TNSRE_2020_3039829
crossref_primary_10_1088_1741_2552_aaf60e
crossref_primary_10_3389_fnagi_2021_718648
crossref_primary_10_3389_fnins_2017_00225
crossref_primary_10_1109_TNSRE_2020_3000971
crossref_primary_10_1177_00187208211007707
crossref_primary_10_1088_1741_2552_ab9842
crossref_primary_10_1152_jn_00926_2016
crossref_primary_10_3389_fnhum_2021_749017
crossref_primary_10_3389_fpsyg_2016_00246
crossref_primary_10_1111_ejn_14972
crossref_primary_10_1523_JNEUROSCI_3543_15_2016
crossref_primary_10_1016_j_bspc_2022_103576
crossref_primary_10_1109_TBME_2019_2921766
crossref_primary_10_3389_fnhum_2020_613254
crossref_primary_10_1016_j_neurobiolaging_2022_11_005
crossref_primary_10_1016_j_neurobiolaging_2024_05_004
crossref_primary_10_3389_fnins_2016_00091
crossref_primary_10_1038_s41597_019_0223_2
crossref_primary_10_1016_j_nicl_2018_05_001
crossref_primary_10_1093_cercor_bhab479
crossref_primary_10_1111_ejn_16507
crossref_primary_10_1088_1741_2552_aaa8c0
crossref_primary_10_1088_1741_2552_aad7d7
crossref_primary_10_1109_ACCESS_2019_2945602
crossref_primary_10_3390_brainsci13030384
crossref_primary_10_1016_j_parkreldis_2021_09_011
Cites_doi 10.1109/EMBC.2013.6609968
10.1111/j.1469-8986.2012.01471.x
10.3389/fnhum.2014.00288
10.1016/s1388-2457(99)00141-8
10.1007/s10439-014-1032-6
10.1016/j.neuroimage.2015.05.028
10.1016/s0898-1221(00)00101-2
10.1162/neco.1995.7.6.1129
10.1016/j.ijpsycho.2013.09.003
10.1016/0013-4694(95)00107-a
10.1080/13854040600910018
10.1007/978-1-4612-1260-7_91
10.1016/j.neulet.2013.12.059
10.1016/s0165-0173(98)00056-3
10.1186/1743-0003-11-119
10.1016/s0166-2236(97)01132-6
10.1002/hbm.20750
10.3389/fnhum.2014.00485
10.1186/1743-0003-5-25
10.1016/j.neuroimage.2013.08.070
10.1016/j.neuroimage.2012.08.019
10.1515/RNS.2011.047
10.1109/tbme.2005.855720
10.1152/jn.00744.2012
10.1002/(sici)1097-0193(1997)5:6454::aid-hbm63.3.co;2-1
10.1049/el:20001436
10.1016/j.ijpsycho.2008.11.008
10.1016/S0893-6080(00)00026-5
10.1152/jn.00105.2010
10.1016/j.neuroimage.2008.12.038
10.1016/j.neuroimage.2003.09.051
10.1371/journal.pbio.0020176
10.1152/jn.00104.2011
10.3389/fnhum.2014.00093
10.1016/j.neubiorev.2006.06.007
10.1088/1741-2560/12/4/046022
10.1016/j.neuroimage.2015.03.045
10.1109/tbme.2005.845365
10.1002/hbm.10061
10.1371/journal.pone.0030135
10.1016/j.tics.2004.03.008
10.1016/j.neuroimage.2010.08.066
10.1016/j.neuroimage.2013.04.070
10.1016/j.neuroimage.2006.11.004
10.3389/fnhum.2015.00247
10.1109/78.558475
10.1111/1469-8986.3720163
10.1109/EMBC.2012.6346537
10.1016/j.neuroimage.2007.08.044
10.1113/jphysiol.2012.227397
10.1109/10.686790
10.1111/j.1469-8986.1987.tb00311.x
10.1016/j.neuroimage.2011.08.084
10.1016/j.neulet.2014.06.017
10.3389/fnhum.2010.00202
10.1016/j.cogbrainres.2003.11.016
ContentType Journal Article
Copyright 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2015 Snyder, Kline, Huang and Ferris. 2015 Snyder, Kline, Huang and Ferris
Copyright_xml – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2015 Snyder, Kline, Huang and Ferris. 2015 Snyder, Kline, Huang and Ferris
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnhum.2015.00639
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central - New (Subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
ExternalDocumentID oai_doaj_org_article_c2b9264e2d7f42f2a7a82ea692b120da
PMC4664645
26648858
10_3389_fnhum_2015_00639
Genre Journal Article
GeographicLocations Ann Arbor Michigan
United States--US
GeographicLocations_xml – name: Ann Arbor Michigan
– name: United States--US
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS073649
– fundername: National Institutes of Health
  grantid: R01-NS073649
– fundername: U.S. Army Research Laboratory
  grantid: W911NF-09-1-0139; W911NF-10-2-0022
– fundername: National Science Foundation
  grantid: DBI-1202720
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-7920c48b0b15aa87c11c1ecf7e11c023ec76f959953e9f5e0797c97a1a46ba853
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 01:01:17 EDT 2025
Thu Aug 21 18:24:22 EDT 2025
Thu Sep 04 21:25:30 EDT 2025
Fri Jul 25 11:49:30 EDT 2025
Mon Jul 21 05:56:55 EDT 2025
Thu Apr 24 23:02:54 EDT 2025
Tue Jul 01 03:44:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords electroencephalography
cortical sources
blind source separation
walking
artifact removal
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-7920c48b0b15aa87c11c1ecf7e11c023ec76f959953e9f5e0797c97a1a46ba853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: John J. Foxe, University of Rochester Medical Center, USA
Reviewed by: Richard B. Reilly, Trinity College Dublin, Ireland; Johanna Wagner, Graz University of Technology, Austria; Thomas C. Bulea, National Institutes of Health, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2015.00639
PMID 26648858
PQID 2291361473
PQPubID 4424408
ParticipantIDs doaj_primary_oai_doaj_org_article_c2b9264e2d7f42f2a7a82ea692b120da
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4664645
proquest_miscellaneous_1749603823
proquest_journals_2291361473
pubmed_primary_26648858
crossref_citationtrail_10_3389_fnhum_2015_00639
crossref_primary_10_3389_fnhum_2015_00639
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2015
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Palmer (B64) 2006
Klimesch (B23) 2004; 19
Broccard (B4) 2014; 42
Wagner (B52) 2012; 63
Klimesch (B22) 1999; 29
Schimpf (B44) 2005; 52
Suzuki (B49) 2008; 39
Neuper (B36) 2006
Debener (B7) 2012; 49
Pascual-Marqui (B40) 2002; 24
Severens (B47) 2012; 2012
Oliveira (B37) 2015
Presacco (B43) 2011; 106
Kurz (B27) 2012; 59
Miller (B33) 2014; 85
Groppe (B17) 2009; 45
Makeig (B31) 2009; 73
Gwin (B19) 2011; 54
Kline (B24) 2015; 12
Grech (B16) 2008; 5
Hyvärinen (B20) 2000; 13
Näätänen (B35) 1987; 24
Pascual-Marqui (B39) 1999; 1
Kline (B25) 2014; 8
Gramann (B14) 2011; 22
Makeig (B58) 2004b; 2
Jung (B60) 2000; 37
Makeig (B57) 2004a; 8
Delorme (B8) 2012; 7
Lee (B28) 2000; 39
Wagner (B53) 2014; 8
Baillet (B1) 1998
Grave de Peralta Menendez (B15) 2004; 21
Petersen (B41) 2012; 590
Belouchrani (B3) 2000; 36
Seeber (B45) 2014; 8
Bell (B2) 1995; 7
Castermans (B59) 2014; 561
Pfurtscheller (B42) 1999; 110
Gorodnitsky (B11) 1997; 45
Palmer (B65) 2008
Lin (B29) 2014; 11
Koenraadt (B26) 2014; 85
Gençer (B9) 1998; 45
Delorme (B61) 2007; 34
Irani (B56) 2007; 21
Oostenveld (B62) 2002; 17
Gorodnitsky (B10) 1995; 95
Seeber (B46) 2015; 112
Malcolm (B32) 2015; 117
Gramann (B13) 2010; 4
Villringer (B55) 1997; 20
Varghese (B51) 2014; 578
Gramann (B12) 2014; 91
Grave de Peralta Menendez (B6) 1997; 5
Gwin (B18) 2010; 103
Liu (B30) 2005; 52
Fish (B63) 2003
Onton (B38) 2006; 30
Sipp (B48) 2013; 110
Valdes-Sosa (B50) 2000
Bulea (B5) 2015; 9
Jerbi (B21) 2009; 30
Mullen (B34) 2013; 2013
19162199 - Neuroimage. 2009 May 1;45(4):1199-211
22070621 - Rev Neurosci. 2011;22(6):593-608
8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51
23366498 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2764-7
25071515 - Front Hum Neurosci. 2014 Jul 08;8:485
19343801 - Hum Brain Mapp. 2009 Jun;30(6):1758-71
10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30
21267424 - Front Hum Neurosci. 2010 Oct 29;4:202
24847239 - Front Hum Neurosci. 2014 May 08;8:288
12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12
17366276 - Clin Neuropsychol. 2007 Jan;21(1):9-37
15887539 - IEEE Trans Biomed Eng. 2005 May;52(5):901-8
17950626 - Neuroimage. 2008 Jan 15;39(2):600-7
7584893 - Neural Comput. 1995 Nov;7(6):1129-59
15120678 - Trends Cogn Sci. 2004 May;8(5):204-10
22355308 - PLoS One. 2012;7(2):e30135
25818687 - Neuroimage. 2015 May 15;112:318-26
24110155 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2184-7
3615753 - Psychophysiology. 1987 Jul;24(4):375-425
15062867 - Brain Res Cogn Brain Res. 2004 May;19(3):302-16
20410364 - J Neurophysiol. 2010 Jun;103(6):3526-34
10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
24018305 - Neuroimage. 2014 Jan 15;85 Pt 2:711-20
10731767 - Psychophysiology. 2000 Mar;37(2):163-78
23631980 - Neuroimage. 2014 Jan 15;85 Pt 1:415-22
19414039 - Int J Psychophysiol. 2009 Aug;73(2):95-100
23926037 - J Neurophysiol. 2013 Nov;110(9):2050-60
24611043 - Front Hum Neurosci. 2014 Feb 25;8:93
24970752 - Neurosci Lett. 2014 Aug 22;578:33-8
22393252 - J Physiol. 2012 May 15;590(10):2443-52
9644891 - IEEE Trans Biomed Eng. 1998 Jul;45(7):827-38
25108604 - J Neuroeng Rehabil. 2014 Aug 09;11:119
22906791 - Neuroimage. 2012 Nov 15;63(3):1203-11
16235654 - IEEE Trans Biomed Eng. 2005 Oct;52(10):1681-91
20832484 - Neuroimage. 2011 Jan 15;54(2):1289-96
24833254 - Ann Biomed Eng. 2014 Aug;42(8):1573-93
12391571 - Hum Brain Mapp. 2002 Nov;17(3):179-92
26029077 - Front Hum Neurosci. 2015 May 12;9:247
21768121 - J Neurophysiol. 2011 Oct;106(4):1875-87
24412128 - Neurosci Lett. 2014 Feb 21;561:166-70
16904745 - Neurosci Biobehav Rev. 2006;30(6):808-22
26083595 - J Neural Eng. 2015 Aug;12(4):046022
10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95
14980555 - Neuroimage. 2004 Feb;21(2):527-39
18990257 - J Neuroeng Rehabil. 2008 Nov 07;5:25
15208723 - PLoS Biol. 2004 Jun;2(6):e176
23013047 - Psychophysiology. 2012 Nov;49(11):1617-21
9347608 - Trends Neurosci. 1997 Oct;20(10):435-42
21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7
17188898 - Neuroimage. 2007 Feb 15;34(4):1443-9
20408248 - Hum Brain Mapp. 1997;5(6):454-67
24076470 - Int J Psychophysiol. 2014 Jan;91(1):22-9
25988225 - Neuroimage. 2015 Aug 15;117:230-42
References_xml – volume: 2013
  start-page: 2184
  year: 2013
  ident: B34
  article-title: Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/EMBC.2013.6609968
– volume: 24
  start-page: 5
  year: 2002
  ident: B40
  article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details
  publication-title: Methods Find. Exp. Clin. Pharmacol.
– volume: 49
  start-page: 1617
  year: 2012
  ident: B7
  article-title: How about taking a low-cost, small and wireless EEG for a walk?
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2012.01471.x
– volume: 8
  start-page: 288
  year: 2014
  ident: B25
  article-title: Your brain on speed: cognitive performance of a spatial working memory task is not affected by walking speed
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00288
– volume: 110
  start-page: 1842
  year: 1999
  ident: B42
  article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/s1388-2457(99)00141-8
– volume: 42
  start-page: 1573
  year: 2014
  ident: B4
  article-title: Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-014-1032-6
– volume: 117
  start-page: 230
  year: 2015
  ident: B32
  article-title: The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: a mobile brain/body imaging (MoBI) study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.028
– volume: 39
  start-page: 1
  year: 2000
  ident: B28
  article-title: Unifying information-theoretic framework for independent component analysis
  publication-title: Comput. Math. Appl.
  doi: 10.1016/s0898-1221(00)00101-2
– volume: 7
  start-page: 1129
  year: 1995
  ident: B2
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 91
  start-page: 22
  year: 2014
  ident: B12
  article-title: Imaging natural cognition in action
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.09.003
– volume: 95
  start-page: 231
  year: 1995
  ident: B10
  article-title: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(95)00107-a
– volume: 21
  start-page: 9
  year: 2007
  ident: B56
  article-title: Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders
  publication-title: Clin. Neuropsychol.
  doi: 10.1080/13854040600910018
– start-page: 373
  volume-title: Biomag 96
  year: 2000
  ident: B50
  article-title: Variable resolution electric-magnetic tomography
  doi: 10.1007/978-1-4612-1260-7_91
– volume: 561
  start-page: 166
  year: 2014
  ident: B59
  article-title: About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.12.059
– volume: 29
  start-page: 169
  year: 1999
  ident: B22
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Brain Res. Rev.
  doi: 10.1016/s0165-0173(98)00056-3
– volume: 11
  start-page: 119
  year: 2014
  ident: B29
  article-title: Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-11-119
– volume: 20
  start-page: 435
  year: 1997
  ident: B55
  article-title: Non-invasive optical spectroscopy and imaging of human brain function
  publication-title: Trends Neurosci.
  doi: 10.1016/s0166-2236(97)01132-6
– volume: 30
  start-page: 1758
  year: 2009
  ident: B21
  article-title: Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20750
– volume: 8
  start-page: 485
  year: 2014
  ident: B45
  article-title: EEG beta suppression and low gamma modulation are different elements of human upright walking
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00485
– volume: 5
  start-page: 25
  year: 2008
  ident: B16
  article-title: Review on solving the inverse problem in EEG source analysis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-5-25
– volume: 85
  start-page: 711
  year: 2014
  ident: B33
  article-title: Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.070
– volume: 63
  start-page: 1203
  year: 2012
  ident: B52
  article-title: Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.08.019
– volume: 22
  start-page: 593
  year: 2011
  ident: B14
  article-title: Cognition in action: imaging brain/body dynamics in mobile humans
  publication-title: Rev. Neurosci.
  doi: 10.1515/RNS.2011.047
– volume: 52
  start-page: 1681
  year: 2005
  ident: B30
  article-title: Standardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for spatio-temporal EEG source reconstruction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2005.855720
– volume: 110
  start-page: 2050
  year: 2013
  ident: B48
  article-title: Loss of balance during balance beam walking elicits a multi-focal theta band electrocortical response
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00744.2012
– volume: 5
  start-page: 454
  year: 1997
  ident: B6
  article-title: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/(sici)1097-0193(1997)5:6454::aid-hbm63.3.co;2-1
– volume-title: Event-Related Dynamics of Brain Oscillations.
  year: 2006
  ident: B36
– volume: 1
  start-page: 75
  year: 1999
  ident: B39
  article-title: Review of methods for solving the EEG inverse problem
  publication-title: Int. J. Bioelectromagn.
– volume: 36
  start-page: 2050
  year: 2000
  ident: B3
  article-title: Robust whitening procedure in blind source separation context
  publication-title: Electron. Lett.
  doi: 10.1049/el:20001436
– volume: 73
  start-page: 95
  year: 2009
  ident: B31
  article-title: Linking brain, mind and behavior
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2008.11.008
– volume: 13
  start-page: 411
  year: 2000
  ident: B20
  article-title: Independent component analysis: algorithms and applications
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 103
  start-page: 3526
  year: 2010
  ident: B18
  article-title: Removal of movement artifact from high-density EEG recorded during walking and running
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00105.2010
– volume: 45
  start-page: 1199
  year: 2009
  ident: B17
  article-title: Identifying reliable independent components via split-half comparisons
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.12.038
– volume: 21
  start-page: 527
  year: 2004
  ident: B15
  article-title: Electrical neuroimaging based on biophysical constraints
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2003.09.051
– volume: 2
  start-page: e176
  year: 2004b
  ident: B58
  article-title: Electroencephalographic brain dynamics following manually responded visual targets
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0020176
– volume: 106
  start-page: 1875
  year: 2011
  ident: B43
  article-title: Neural decoding of treadmill walking from noninvasive electroencephalographic signals
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00104.2011
– volume: 8
  start-page: 93
  year: 2014
  ident: B53
  article-title: It’s how you get there: walking down a virtual alley activates premotor and parietal areas
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00093
– volume: 30
  start-page: 808
  year: 2006
  ident: B38
  article-title: Imaging human EEG dynamics using independent component analysis
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2006.06.007
– volume: 12
  start-page: 046022
  year: 2015
  ident: B24
  article-title: Isolating gait-related movement artifacts in electroencephalography during human walking
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046022
– volume: 112
  start-page: 318
  year: 2015
  ident: B46
  article-title: High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.03.045
– start-page: 854
  volume-title: Lecture Notes in Computer Science, Vol. 3889
  year: 2006
  ident: B64
  article-title: Super-Gaussian mixture source model for ICA
– volume: 52
  start-page: 901
  year: 2005
  ident: B44
  article-title: Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/tbme.2005.845365
– volume: 17
  start-page: 179
  year: 2002
  ident: B62
  article-title: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10061
– volume: 7
  start-page: e30135
  year: 2012
  ident: B8
  article-title: Independent EEG sources are dipolar
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0030135
– volume: 8
  start-page: 204
  year: 2004a
  ident: B57
  article-title: Mining event-related brain dynamics
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2004.03.008
– volume: 54
  start-page: 1289
  year: 2011
  ident: B19
  article-title: Electrocortical activity is coupled to gait cycle phase during treadmill walking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.08.066
– volume: 85
  start-page: 415
  year: 2014
  ident: B26
  article-title: Cortical control of normal gait and precision stepping: an fNIRS study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.070
– volume: 34
  start-page: 1443
  year: 2007
  ident: B61
  article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.11.004
– volume: 9
  start-page: 247
  year: 2015
  ident: B5
  article-title: Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2015.00247
– volume: 45
  start-page: 600
  year: 1997
  ident: B11
  article-title: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.558475
– volume: 37
  start-page: 163
  year: 2000
  ident: B60
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– volume: 2012
  start-page: 2764
  year: 2012
  ident: B47
  article-title: Feasibility of measuring event related desynchronization with electroencephalography during walking
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/EMBC.2012.6346537
– volume: 39
  start-page: 600
  year: 2008
  ident: B49
  article-title: Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.08.044
– volume: 590
  start-page: 2443
  year: 2012
  ident: B41
  article-title: The motor cortex drives the muscles during walking in human subjects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.227397
– volume-title: Toward Functional Imaging of Cortical Electrophysiology Markovian Models for the Source Estimation of Magneto/Electroencephalography and Experimental Assessments.
  year: 1998
  ident: B1
– volume: 45
  start-page: 827
  year: 1998
  ident: B9
  article-title: Differential characterization of neural sources with the bimodal truncated SVD pseudo-inverse for EEG and MEG measurements
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.686790
– volume: 24
  start-page: 375
  year: 1987
  ident: B35
  article-title: The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.1987.tb00311.x
– volume: 59
  start-page: 1602
  year: 2012
  ident: B27
  article-title: Stride-time variability and sensorimotor cortical activation during walking
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.08.084
– volume: 578
  start-page: 33
  year: 2014
  ident: B51
  article-title: Frequency characteristics of cortical activity associated with perturbations to upright stability
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2014.06.017
– volume-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference.
  year: 2015
  ident: B37
  article-title: Effectiveness of ICA in retrieving EEG target signals during cyclical head movements using a phantom head
– volume: 4
  start-page: 202
  year: 2010
  ident: B13
  article-title: Visual evoked responses during standing and walking
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00202
– volume: 19
  start-page: 302
  year: 2004
  ident: B23
  article-title: Phase-locked alpha and theta oscillations generate the P1–N1 complex and are related to memory performance
  publication-title: Brain Res. Cogn. Brain Res.
  doi: 10.1016/j.cogbrainres.2003.11.016
– start-page: 1805
  year: 2008
  ident: B65
  article-title: Newton method for the ICA mixture model
  publication-title: 33rd IEEE International Conference on Acoustics and Signal Processing
– year: 2003
  ident: B63
  article-title: Medical and Bioengineering Aspects of Electrical Injuries
– reference: 26083595 - J Neural Eng. 2015 Aug;12(4):046022
– reference: 18990257 - J Neuroeng Rehabil. 2008 Nov 07;5:25
– reference: 25071515 - Front Hum Neurosci. 2014 Jul 08;8:485
– reference: 21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7
– reference: 20408248 - Hum Brain Mapp. 1997;5(6):454-67
– reference: 12391571 - Hum Brain Mapp. 2002 Nov;17(3):179-92
– reference: 24833254 - Ann Biomed Eng. 2014 Aug;42(8):1573-93
– reference: 17950626 - Neuroimage. 2008 Jan 15;39(2):600-7
– reference: 22355308 - PLoS One. 2012;7(2):e30135
– reference: 16904745 - Neurosci Biobehav Rev. 2006;30(6):808-22
– reference: 24076470 - Int J Psychophysiol. 2014 Jan;91(1):22-9
– reference: 17366276 - Clin Neuropsychol. 2007 Jan;21(1):9-37
– reference: 24018305 - Neuroimage. 2014 Jan 15;85 Pt 2:711-20
– reference: 10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95
– reference: 14980555 - Neuroimage. 2004 Feb;21(2):527-39
– reference: 22070621 - Rev Neurosci. 2011;22(6):593-608
– reference: 22906791 - Neuroimage. 2012 Nov 15;63(3):1203-11
– reference: 15887539 - IEEE Trans Biomed Eng. 2005 May;52(5):901-8
– reference: 9347608 - Trends Neurosci. 1997 Oct;20(10):435-42
– reference: 8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51
– reference: 23366498 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2764-7
– reference: 19343801 - Hum Brain Mapp. 2009 Jun;30(6):1758-71
– reference: 25818687 - Neuroimage. 2015 May 15;112:318-26
– reference: 10731767 - Psychophysiology. 2000 Mar;37(2):163-78
– reference: 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12
– reference: 23631980 - Neuroimage. 2014 Jan 15;85 Pt 1:415-22
– reference: 15062867 - Brain Res Cogn Brain Res. 2004 May;19(3):302-16
– reference: 24412128 - Neurosci Lett. 2014 Feb 21;561:166-70
– reference: 19414039 - Int J Psychophysiol. 2009 Aug;73(2):95-100
– reference: 20410364 - J Neurophysiol. 2010 Jun;103(6):3526-34
– reference: 26029077 - Front Hum Neurosci. 2015 May 12;9:247
– reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57
– reference: 15120678 - Trends Cogn Sci. 2004 May;8(5):204-10
– reference: 17188898 - Neuroimage. 2007 Feb 15;34(4):1443-9
– reference: 20832484 - Neuroimage. 2011 Jan 15;54(2):1289-96
– reference: 21768121 - J Neurophysiol. 2011 Oct;106(4):1875-87
– reference: 24847239 - Front Hum Neurosci. 2014 May 08;8:288
– reference: 25988225 - Neuroimage. 2015 Aug 15;117:230-42
– reference: 23926037 - J Neurophysiol. 2013 Nov;110(9):2050-60
– reference: 15208723 - PLoS Biol. 2004 Jun;2(6):e176
– reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59
– reference: 3615753 - Psychophysiology. 1987 Jul;24(4):375-425
– reference: 25108604 - J Neuroeng Rehabil. 2014 Aug 09;11:119
– reference: 24611043 - Front Hum Neurosci. 2014 Feb 25;8:93
– reference: 24110155 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2184-7
– reference: 23013047 - Psychophysiology. 2012 Nov;49(11):1617-21
– reference: 10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30
– reference: 9644891 - IEEE Trans Biomed Eng. 1998 Jul;45(7):827-38
– reference: 16235654 - IEEE Trans Biomed Eng. 2005 Oct;52(10):1681-91
– reference: 21267424 - Front Hum Neurosci. 2010 Oct 29;4:202
– reference: 19162199 - Neuroimage. 2009 May 1;45(4):1199-211
– reference: 22393252 - J Physiol. 2012 May 15;590(10):2443-52
– reference: 24970752 - Neurosci Lett. 2014 Aug 22;578:33-8
SSID ssj0062651
Score 2.4404612
Snippet There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 639
SubjectTerms Algorithms
artifact removal
blind source separation
Brain mapping
Cortex
cortical sources
EEG
Electrical properties
Electroencephalography
Fitness equipment
Gait
Interfaces
Localization
Medical imaging
Methods
Neuroimaging
Neuroscience
Researchers
Silicones
Spectrum analysis
Tomography
Walking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BgoyEkDhEGzt-xMeCthQkOFGpN8t27LZSm63YrCr-PTN2NtpFCC7cotiJbM_Y8_DMN4S8ja0GvTM0tfFS1EI6Vfu2jXXb9sqBvGVJYKLw12_q9Ex8OZfnO6W-MCaswAOXhVsE7g0I7ch7nQRP3GnX8eiU4Z7xps-qEci8rTFVzmDQ0iUrl5JggplFGi43mHbO0IGisDD4jhDKWP1_UjB_j5PcETwnD8mDSWOkx2Wkj8i9ODwmh8cDWMs3P-k7mmM4s3P8kNx9nqvajhSjxVcDPrkJeYSuEr1wV2OdM1hiT29WGS4cesDfMceBFqcNNGFA_AVdLj_RqVJOH9e0JDVSjE7vsV4RvXPX6Gt_Qs5Olt8_ntZTaYU6CNOMtTa8CaLzjWfSuU4HxgKLIekIDyDGY9AqGQQja6NJMjba6GC0Y04o70DEPyUHA0zhOaECDMqolRJJeuFT8qrrpecySaCWl6oii-1a2zDhjmP5i2sL9gdSx2bqWKSOzdSpyPv5i9uCufGXvh-QfHM_RMvOL4CH7MRD9l88VJGjLfHttIXXlnPDWlBedFuRN3MzbD68UXFDXG3WFsw5sADxKrUizwqvzCMBzQcOR9lVRO9x0d5Q91uGq8sM8I2Q_0rIF_9jbi_JfVytEoFzRA7GH5v4CvSo0b_OW-YXOe0fUg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA969-KLqPOjOiWCCD6U26b5aJ5kk25T2BDZcG8lSZNtMNu524v433tO-uGuyN5Ck5Y0J-czJ79DyDtfKLA7XZZqK3jKhZGpLQqfFkUjDejbPHC8KHx0LA9P-ZczcTYG3FZjWuUkE6OgbjqHMfIlYzovQJeo4uP1zxSrRuHp6lhC4z7ZAhFcigXZ2quOv36bZDFY6yIfDifBFdPL0F6s8fp5joEUiQXCbymjiNn_P0Pz33zJWwpo_xF5OFqOdHcg9WNyz7dPyPZuC17zj9_0PY25nDFIvk1-fZ6r2_YUWb5rsTUhkNAu0ANz2acxFc439KiLsOF9_DredaCDWwpdmBh_TqvqgFZDxZzGr-hwuZGegMXZYN0i-t1cYcz9KTndr04-HaZjiYXUcZ31qdIsc7y0mc2FMaVyee5y74Ly0AB17p2SQSMoWeF1ED5TWjmtTG64tAZU_TOyaOEXXhDKwbH0SkoehOU2BCvLRlgmgmCBWSETspzWunYj_jiWwbiqwQ9B6tSROjVSp47USciH-Y3rAXvjjrF7SL55HKJmxwfdzXk9MmHtmNVgAHrWqMBhVkaZknkjNbM5yxqTkJ2J-PXIyqv678ZLyNu5G5gQT1ZM67v1qga3DjxBPFJNyPNhr8wzAQsIhKQoE6I2dtHGVDd72suLCPSN0P-Si5d3T-sVeYDrMOTY7JBFf7P2r8FS6u2bkR3-ANpNFo0
  priority: 102
  providerName: ProQuest
Title Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking
URI https://www.ncbi.nlm.nih.gov/pubmed/26648858
https://www.proquest.com/docview/2291361473
https://www.proquest.com/docview/1749603823
https://pubmed.ncbi.nlm.nih.gov/PMC4664645
https://doaj.org/article/c2b9264e2d7f42f2a7a82ea692b120da
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZge-EFAeMSGJWREBIPYbHjS_OA0IayDqROCK2ib5Gd2NukkkCbCvbvOcdJA0UV4qWK6lwcn-Oc77PPhZCXLtWAO8skzqwUsZBGxTZNXZymlTJgb5kXGCg8PVdnM_FxLue_w6P7AVztpHZYT2q2XLz5-f3mHUz4t8g4wd4e-fpqjUHlDJdHwOLeJvtglxTq-FQMewqA3EMxRqYU0C8AOt2m5c47bBmpkMt_FwD924_yD8N0eo_c7RElPe5U4D655eoH5OC4Bjb99Ya-osHHMyyeH5AfH4aqty3FT0FT49EmMwltPJ2Y6zYOLnKuotMmpBNvw90xBoJ2dBWa0GH-kub5hOZdJZ3KrWgX9EgvAIlWWM-IfjELXIt_SGan-cX7s7gvvRCXIkvaWGc8KcXYJpZJY8a6ZKxkrvTawQGYeVdq5TNMVpa6zEuX6EyXmTbMCGUNQIBHZK-GV3hCqADC6bRSwksrrPdWjStpufSSe26lisjRZqyLss9LjuUxFgXwE5ROEaRToHSKIJ2IvB6u-Nbl5PjHuScovuE8zKYd_miWl0U_OYuS2wyAoeOV9gJ6ZbQZc2dUxi3jSWUicrgRfrHR0ILzjKUAbnQakRdDM0xO3HExtWvWqwLoHjBE3GqNyONOV4aeADKCj6ccR0RvadFWV7db6uurkAAcSwIoIZ_-x3OfkTs4GJ0DziHZa5dr9xxgVGtHZP8kP__0eRSWIeB3MmejMGN-Aea_IEk
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAXBJRHoICRAIlDtInjR3xAqIVtd2l3hdBW9BbsxG4rlaR0s6r6p_iNzOSxdBHqrbcoTiLH87Zn5iPkjUsU-J15FGoreMiFkaFNEhcmSSEN2NvYcywUnkzl6JB_ORJHa-R3XwuDaZW9TmwUdVHluEc-YEzHCdgSlXw8_xUiahServYQGi1b7LurSwjZ5h_Gn4G-bxnbHc4-jcIOVSDMuY7qUGkW5Ty1kY2FManK4ziPXe6VgwuwYC5X0mvsw5U47YWLlFa5ViY2XFqTIkoEqPwNcDM0SNHGznD69Vuv-yE6EHF7GAqhnx748mSB5e4xbtxIBCS_ZvwajID_Obb_5mdeM3i798m9zlOl2y1rPSBrrnxINrdLiNJ_XtF3tMkdbTblN8nleImmW1NUMVWJV33HE1p5umdO67BJvXMFnVRNm_K6-TrWVtA2DIYhTMQ_psPhHh22CD2Fm9O2mJLOwMMtECeJfjdnuMf_iBzeyuI_Jusl_MJTQjkEsk5Jyb2w3HpvZVoIy4QXzDMrZEAG_VpnedfvHGE3zjKIe5A6WUOdDKmTNdQJyPvlG-dtr48bnt1B8i2fwy7dzY3q4jjrhD7LmdXgcDpWKM9hVkaZlDkjNbMxiwoTkK2e-FmnOubZX0YPyOvlMAg9nuSY0lWLeQZhJESeeIQbkCctryxnAh4XKGWRBkStcNHKVFdHytOTprE4Qg1ILp7dPK1X5M5oNjnIDsbT_efkLq5Jm9-zRdbri4V7AV5abV92okHJj9uWxj-3WlL8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkK8IGB8BAYYCZB4iJo4_kgeENpYu5WxakKb2FtmO_Y2aSRjTTXtX-Ov4y4fZUVob3uL6rRyfee7-9l39yPknUsUxJ02CjMjeMiFlqFJEhcmSSE1-NvYcywU3pvKnUP-9UgcrZDffS0MplX2NrEx1EVl8Yx8yFgWJ-BLVDL0XVrE_tb488WvEBmk8Ka1p9NoVWTXXV8BfJt9mmyBrN8zNh4dfNkJO4aB0PIsqkOVscjy1EQmFlqnysaxjZ31ysEDeDNnlfQZ9uRKXOaFi1SmbKZ0rLk0OkXGCDD_qwq8Yjogq5uj6f733g8AUhBxezEKMDAb-vJ0jqXvMR7iSCQnv-EIG76A_wW5_-Zq3nB-44fkQRe10o1WzR6RFVc-JmsbJSD2n9f0A23ySJsD-jVyNVkw69YUzU1V4lPf_YRWnm7rszps0vBcQfeqpmV53fw61lnQFhLDECbln9DRaJuOWraews1oW1hJDyDaLZAzif7Q53je_4Qc3sniPyWDEv7Cc0I5gFqnpOReGG68NzIthGHCC-aZETIgw36tc9v1PkcKjvMcMBBKJ2-kk6N08kY6Afm4-MZF2_fjlnc3UXyL97Bjd_NBdXmSdwYgt8xkEHw6VijPYVZa6ZQ5LTNmYhYVOiDrvfDzzozM8r9KH5C3i2EwAHiro0tXzWc5QEpAoXidG5Bnra4sZgLRFxhokQZELWnR0lSXR8qz06bJONIOSC5e3D6tN-Qe7ML822S6-5LcxyVpU33WyaC-nLtXELDV5nW3Myg5vuvN-AcqaFco
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+Component+Analysis+of+Gait-Related+Movement+Artifact+Recorded+using+EEG+Electrodes+during+Treadmill+Walking&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Snyder%2C+Kristine+L&rft.au=Kline%2C+Julia+E&rft.au=Huang%2C+Helen+J&rft.au=Ferris%2C+Daniel+P&rft.date=2015-12-01&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=9&rft.spage=639&rft_id=info:doi/10.3389%2Ffnhum.2015.00639&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon