Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking
There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as ari...
Saved in:
Published in | Frontiers in human neuroscience Vol. 9; p. 639 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
01.12.2015
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
ISSN | 1662-5161 1662-5161 |
DOI | 10.3389/fnhum.2015.00639 |
Cover
Loading…
Abstract | There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking. |
---|---|
AbstractList | There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking. There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking.There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals) with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking. |
Author | Kline, Julia E. Huang, Helen J. Ferris, Daniel P. Snyder, Kristine L. |
AuthorAffiliation | 2 Department of Mathematics and Statistics, University of Minnesota Duluth Duluth, MN, USA 3 Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA 1 School of Kinesiology, University of Michigan Ann Arbor, MI, USA |
AuthorAffiliation_xml | – name: 1 School of Kinesiology, University of Michigan Ann Arbor, MI, USA – name: 3 Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, USA – name: 2 Department of Mathematics and Statistics, University of Minnesota Duluth Duluth, MN, USA |
Author_xml | – sequence: 1 givenname: Kristine L. surname: Snyder fullname: Snyder, Kristine L. – sequence: 2 givenname: Julia E. surname: Kline fullname: Kline, Julia E. – sequence: 3 givenname: Helen J. surname: Huang fullname: Huang, Helen J. – sequence: 4 givenname: Daniel P. surname: Ferris fullname: Ferris, Daniel P. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26648858$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1r3DAQNSWl-WjvPRVDL7nsVpJtyboUwrLdLKQUQkqPYiyPNtrK1layU_LvI-8mJQn0Ig0zb56eZt5pdtT7HrPsIyXzoqjlF9Pfjt2cEVrNCeGFfJOdUM7ZrKKcHj2Lj7PTGLcJwnhF32XHjPOyrqv6JPu77lvcYTr6IV_4bpceSNFFD-4-2ph7k6_ADrNrdDBgm3_3d9jtEWGwBvSQX6P2oU2lMdp-ky-Xq3zpUA_BtxjzdgxT9iYgtJ11Lv8F7nfKvM_eGnARPzzeZ9nPb8ubxeXs6sdqvbi4mulSkmEmJCO6rBvS0AqgFppSTVEbgSkgrEAtuJGVlFWB0lRIhBRaCqBQ8gbqqjjL1gfe1sNW7YLtINwrD1btEz5sFKSfaIdKs0YyXiJrhSmZYSCgZghcsoYy0kLi-nrg2o1Nh61OYwjgXpC-rPT2Vm38nSrTuHk5iTl_JAj-z4hxUJ2NGp2DHv0YFRWl5KSoWZGgn19Bt34MaStRMSZpwWkpJtSn54r-SXnabwLwA0AHH2NAo7QdYLB-EmidokRNRlJ7I6nJSGpvpNRIXjU-cf-35QG3CM1d |
CitedBy_id | crossref_primary_10_3390_s18041073 crossref_primary_10_1109_JSEN_2023_3306311 crossref_primary_10_1152_jn_00079_2018 crossref_primary_10_1016_j_neuroimage_2019_05_038 crossref_primary_10_1038_s41598_022_21307_z crossref_primary_10_1111_ejn_14867 crossref_primary_10_1155_2018_9861350 crossref_primary_10_1007_s00221_024_06932_6 crossref_primary_10_1038_s41597_021_01094_4 crossref_primary_10_3390_mps4030048 crossref_primary_10_1371_journal_pone_0214711 crossref_primary_10_3390_s24051548 crossref_primary_10_1016_j_clinph_2021_09_015 crossref_primary_10_1088_1741_2552_ac4084 crossref_primary_10_1016_j_neuroimage_2019_116192 crossref_primary_10_1109_TNSRE_2020_2965628 crossref_primary_10_3389_fnhum_2019_00401 crossref_primary_10_1016_j_procs_2020_04_170 crossref_primary_10_1038_s41598_019_45396_5 crossref_primary_10_3389_fnhum_2020_00036 crossref_primary_10_3389_fnhum_2023_1251690 crossref_primary_10_1177_15500594221123690 crossref_primary_10_1111_ejn_15190 crossref_primary_10_1093_cercor_bhac066 crossref_primary_10_1016_j_neubiorev_2024_105718 crossref_primary_10_2196_56726 crossref_primary_10_1016_j_neuroimage_2017_07_013 crossref_primary_10_1111_ejn_15004 crossref_primary_10_1016_j_neurobiolaging_2019_02_005 crossref_primary_10_3389_fnins_2020_549524 crossref_primary_10_1002_hbm_25856 crossref_primary_10_3389_fnins_2020_542934 crossref_primary_10_3389_fnins_2023_1051500 crossref_primary_10_1109_TNSRE_2020_3040264 crossref_primary_10_3390_s20247250 crossref_primary_10_1109_TNSRE_2020_2998778 crossref_primary_10_1016_j_cogsys_2018_11_002 crossref_primary_10_3389_fnhum_2019_00172 crossref_primary_10_1088_1741_2552_ab2b61 crossref_primary_10_1109_ACCESS_2018_2890335 crossref_primary_10_1080_00222895_2019_1635983 crossref_primary_10_1016_j_neuroimage_2019_06_018 crossref_primary_10_1111_ejn_14965 crossref_primary_10_1152_jn_00292_2018 crossref_primary_10_3390_brainsci10020090 crossref_primary_10_1088_1741_2552_ac542c crossref_primary_10_1007_s00521_023_08598_7 crossref_primary_10_3389_fnhum_2017_00170 crossref_primary_10_3389_fnhum_2020_561755 crossref_primary_10_3389_fpubh_2018_00039 crossref_primary_10_1016_j_neuroimage_2016_09_021 crossref_primary_10_1109_TNSRE_2023_3294435 crossref_primary_10_1152_jn_00613_2017 crossref_primary_10_1016_j_bspc_2019_101638 crossref_primary_10_1111_ejn_15095 crossref_primary_10_1049_htl2_12016 crossref_primary_10_1111_psyp_13090 crossref_primary_10_1016_j_bbr_2020_112663 crossref_primary_10_1016_j_neulet_2020_135090 crossref_primary_10_1109_TNSRE_2020_3039829 crossref_primary_10_1088_1741_2552_aaf60e crossref_primary_10_3389_fnagi_2021_718648 crossref_primary_10_3389_fnins_2017_00225 crossref_primary_10_1109_TNSRE_2020_3000971 crossref_primary_10_1177_00187208211007707 crossref_primary_10_1088_1741_2552_ab9842 crossref_primary_10_1152_jn_00926_2016 crossref_primary_10_3389_fnhum_2021_749017 crossref_primary_10_3389_fpsyg_2016_00246 crossref_primary_10_1111_ejn_14972 crossref_primary_10_1523_JNEUROSCI_3543_15_2016 crossref_primary_10_1016_j_bspc_2022_103576 crossref_primary_10_1109_TBME_2019_2921766 crossref_primary_10_3389_fnhum_2020_613254 crossref_primary_10_1016_j_neurobiolaging_2022_11_005 crossref_primary_10_1016_j_neurobiolaging_2024_05_004 crossref_primary_10_3389_fnins_2016_00091 crossref_primary_10_1038_s41597_019_0223_2 crossref_primary_10_1016_j_nicl_2018_05_001 crossref_primary_10_1093_cercor_bhab479 crossref_primary_10_1111_ejn_16507 crossref_primary_10_1088_1741_2552_aaa8c0 crossref_primary_10_1088_1741_2552_aad7d7 crossref_primary_10_1109_ACCESS_2019_2945602 crossref_primary_10_3390_brainsci13030384 crossref_primary_10_1016_j_parkreldis_2021_09_011 |
Cites_doi | 10.1109/EMBC.2013.6609968 10.1111/j.1469-8986.2012.01471.x 10.3389/fnhum.2014.00288 10.1016/s1388-2457(99)00141-8 10.1007/s10439-014-1032-6 10.1016/j.neuroimage.2015.05.028 10.1016/s0898-1221(00)00101-2 10.1162/neco.1995.7.6.1129 10.1016/j.ijpsycho.2013.09.003 10.1016/0013-4694(95)00107-a 10.1080/13854040600910018 10.1007/978-1-4612-1260-7_91 10.1016/j.neulet.2013.12.059 10.1016/s0165-0173(98)00056-3 10.1186/1743-0003-11-119 10.1016/s0166-2236(97)01132-6 10.1002/hbm.20750 10.3389/fnhum.2014.00485 10.1186/1743-0003-5-25 10.1016/j.neuroimage.2013.08.070 10.1016/j.neuroimage.2012.08.019 10.1515/RNS.2011.047 10.1109/tbme.2005.855720 10.1152/jn.00744.2012 10.1002/(sici)1097-0193(1997)5:6454::aid-hbm63.3.co;2-1 10.1049/el:20001436 10.1016/j.ijpsycho.2008.11.008 10.1016/S0893-6080(00)00026-5 10.1152/jn.00105.2010 10.1016/j.neuroimage.2008.12.038 10.1016/j.neuroimage.2003.09.051 10.1371/journal.pbio.0020176 10.1152/jn.00104.2011 10.3389/fnhum.2014.00093 10.1016/j.neubiorev.2006.06.007 10.1088/1741-2560/12/4/046022 10.1016/j.neuroimage.2015.03.045 10.1109/tbme.2005.845365 10.1002/hbm.10061 10.1371/journal.pone.0030135 10.1016/j.tics.2004.03.008 10.1016/j.neuroimage.2010.08.066 10.1016/j.neuroimage.2013.04.070 10.1016/j.neuroimage.2006.11.004 10.3389/fnhum.2015.00247 10.1109/78.558475 10.1111/1469-8986.3720163 10.1109/EMBC.2012.6346537 10.1016/j.neuroimage.2007.08.044 10.1113/jphysiol.2012.227397 10.1109/10.686790 10.1111/j.1469-8986.1987.tb00311.x 10.1016/j.neuroimage.2011.08.084 10.1016/j.neulet.2014.06.017 10.3389/fnhum.2010.00202 10.1016/j.cogbrainres.2003.11.016 |
ContentType | Journal Article |
Copyright | 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2015 Snyder, Kline, Huang and Ferris. 2015 Snyder, Kline, Huang and Ferris |
Copyright_xml | – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2015 Snyder, Kline, Huang and Ferris. 2015 Snyder, Kline, Huang and Ferris |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnhum.2015.00639 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central - New (Subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
ExternalDocumentID | oai_doaj_org_article_c2b9264e2d7f42f2a7a82ea692b120da PMC4664645 26648858 10_3389_fnhum_2015_00639 |
Genre | Journal Article |
GeographicLocations | Ann Arbor Michigan United States--US |
GeographicLocations_xml | – name: Ann Arbor Michigan – name: United States--US |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS073649 – fundername: National Institutes of Health grantid: R01-NS073649 – fundername: U.S. Army Research Laboratory grantid: W911NF-09-1-0139; W911NF-10-2-0022 – fundername: National Science Foundation grantid: DBI-1202720 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM PQGLB RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c490t-7920c48b0b15aa87c11c1ecf7e11c023ec76f959953e9f5e0797c97a1a46ba853 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 01:01:17 EDT 2025 Thu Aug 21 18:24:22 EDT 2025 Thu Sep 04 21:25:30 EDT 2025 Fri Jul 25 11:49:30 EDT 2025 Mon Jul 21 05:56:55 EDT 2025 Thu Apr 24 23:02:54 EDT 2025 Tue Jul 01 03:44:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | electroencephalography cortical sources blind source separation walking artifact removal |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution and reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-7920c48b0b15aa87c11c1ecf7e11c023ec76f959953e9f5e0797c97a1a46ba853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: John J. Foxe, University of Rochester Medical Center, USA Reviewed by: Richard B. Reilly, Trinity College Dublin, Ireland; Johanna Wagner, Graz University of Technology, Austria; Thomas C. Bulea, National Institutes of Health, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnhum.2015.00639 |
PMID | 26648858 |
PQID | 2291361473 |
PQPubID | 4424408 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c2b9264e2d7f42f2a7a82ea692b120da pubmedcentral_primary_oai_pubmedcentral_nih_gov_4664645 proquest_miscellaneous_1749603823 proquest_journals_2291361473 pubmed_primary_26648858 crossref_citationtrail_10_3389_fnhum_2015_00639 crossref_primary_10_3389_fnhum_2015_00639 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2015 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Palmer (B64) 2006 Klimesch (B23) 2004; 19 Broccard (B4) 2014; 42 Wagner (B52) 2012; 63 Klimesch (B22) 1999; 29 Schimpf (B44) 2005; 52 Suzuki (B49) 2008; 39 Neuper (B36) 2006 Debener (B7) 2012; 49 Pascual-Marqui (B40) 2002; 24 Severens (B47) 2012; 2012 Oliveira (B37) 2015 Presacco (B43) 2011; 106 Kurz (B27) 2012; 59 Miller (B33) 2014; 85 Groppe (B17) 2009; 45 Makeig (B31) 2009; 73 Gwin (B19) 2011; 54 Kline (B24) 2015; 12 Grech (B16) 2008; 5 Hyvärinen (B20) 2000; 13 Näätänen (B35) 1987; 24 Pascual-Marqui (B39) 1999; 1 Kline (B25) 2014; 8 Gramann (B14) 2011; 22 Makeig (B58) 2004b; 2 Jung (B60) 2000; 37 Makeig (B57) 2004a; 8 Delorme (B8) 2012; 7 Lee (B28) 2000; 39 Wagner (B53) 2014; 8 Baillet (B1) 1998 Grave de Peralta Menendez (B15) 2004; 21 Petersen (B41) 2012; 590 Belouchrani (B3) 2000; 36 Seeber (B45) 2014; 8 Bell (B2) 1995; 7 Castermans (B59) 2014; 561 Pfurtscheller (B42) 1999; 110 Gorodnitsky (B11) 1997; 45 Palmer (B65) 2008 Lin (B29) 2014; 11 Koenraadt (B26) 2014; 85 Gençer (B9) 1998; 45 Delorme (B61) 2007; 34 Irani (B56) 2007; 21 Oostenveld (B62) 2002; 17 Gorodnitsky (B10) 1995; 95 Seeber (B46) 2015; 112 Malcolm (B32) 2015; 117 Gramann (B13) 2010; 4 Villringer (B55) 1997; 20 Varghese (B51) 2014; 578 Gramann (B12) 2014; 91 Grave de Peralta Menendez (B6) 1997; 5 Gwin (B18) 2010; 103 Liu (B30) 2005; 52 Fish (B63) 2003 Onton (B38) 2006; 30 Sipp (B48) 2013; 110 Valdes-Sosa (B50) 2000 Bulea (B5) 2015; 9 Jerbi (B21) 2009; 30 Mullen (B34) 2013; 2013 19162199 - Neuroimage. 2009 May 1;45(4):1199-211 22070621 - Rev Neurosci. 2011;22(6):593-608 8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51 23366498 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2764-7 25071515 - Front Hum Neurosci. 2014 Jul 08;8:485 19343801 - Hum Brain Mapp. 2009 Jun;30(6):1758-71 10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30 21267424 - Front Hum Neurosci. 2010 Oct 29;4:202 24847239 - Front Hum Neurosci. 2014 May 08;8:288 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12 17366276 - Clin Neuropsychol. 2007 Jan;21(1):9-37 15887539 - IEEE Trans Biomed Eng. 2005 May;52(5):901-8 17950626 - Neuroimage. 2008 Jan 15;39(2):600-7 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 15120678 - Trends Cogn Sci. 2004 May;8(5):204-10 22355308 - PLoS One. 2012;7(2):e30135 25818687 - Neuroimage. 2015 May 15;112:318-26 24110155 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2184-7 3615753 - Psychophysiology. 1987 Jul;24(4):375-425 15062867 - Brain Res Cogn Brain Res. 2004 May;19(3):302-16 20410364 - J Neurophysiol. 2010 Jun;103(6):3526-34 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 24018305 - Neuroimage. 2014 Jan 15;85 Pt 2:711-20 10731767 - Psychophysiology. 2000 Mar;37(2):163-78 23631980 - Neuroimage. 2014 Jan 15;85 Pt 1:415-22 19414039 - Int J Psychophysiol. 2009 Aug;73(2):95-100 23926037 - J Neurophysiol. 2013 Nov;110(9):2050-60 24611043 - Front Hum Neurosci. 2014 Feb 25;8:93 24970752 - Neurosci Lett. 2014 Aug 22;578:33-8 22393252 - J Physiol. 2012 May 15;590(10):2443-52 9644891 - IEEE Trans Biomed Eng. 1998 Jul;45(7):827-38 25108604 - J Neuroeng Rehabil. 2014 Aug 09;11:119 22906791 - Neuroimage. 2012 Nov 15;63(3):1203-11 16235654 - IEEE Trans Biomed Eng. 2005 Oct;52(10):1681-91 20832484 - Neuroimage. 2011 Jan 15;54(2):1289-96 24833254 - Ann Biomed Eng. 2014 Aug;42(8):1573-93 12391571 - Hum Brain Mapp. 2002 Nov;17(3):179-92 26029077 - Front Hum Neurosci. 2015 May 12;9:247 21768121 - J Neurophysiol. 2011 Oct;106(4):1875-87 24412128 - Neurosci Lett. 2014 Feb 21;561:166-70 16904745 - Neurosci Biobehav Rev. 2006;30(6):808-22 26083595 - J Neural Eng. 2015 Aug;12(4):046022 10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 14980555 - Neuroimage. 2004 Feb;21(2):527-39 18990257 - J Neuroeng Rehabil. 2008 Nov 07;5:25 15208723 - PLoS Biol. 2004 Jun;2(6):e176 23013047 - Psychophysiology. 2012 Nov;49(11):1617-21 9347608 - Trends Neurosci. 1997 Oct;20(10):435-42 21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7 17188898 - Neuroimage. 2007 Feb 15;34(4):1443-9 20408248 - Hum Brain Mapp. 1997;5(6):454-67 24076470 - Int J Psychophysiol. 2014 Jan;91(1):22-9 25988225 - Neuroimage. 2015 Aug 15;117:230-42 |
References_xml | – volume: 2013 start-page: 2184 year: 2013 ident: B34 article-title: Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. doi: 10.1109/EMBC.2013.6609968 – volume: 24 start-page: 5 year: 2002 ident: B40 article-title: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details publication-title: Methods Find. Exp. Clin. Pharmacol. – volume: 49 start-page: 1617 year: 2012 ident: B7 article-title: How about taking a low-cost, small and wireless EEG for a walk? publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2012.01471.x – volume: 8 start-page: 288 year: 2014 ident: B25 article-title: Your brain on speed: cognitive performance of a spatial working memory task is not affected by walking speed publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00288 – volume: 110 start-page: 1842 year: 1999 ident: B42 article-title: Event-related EEG/MEG synchronization and desynchronization: basic principles publication-title: Clin. Neurophysiol. doi: 10.1016/s1388-2457(99)00141-8 – volume: 42 start-page: 1573 year: 2014 ident: B4 article-title: Closed-loop brain-machine-body interfaces for noninvasive rehabilitation of movement disorders publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-014-1032-6 – volume: 117 start-page: 230 year: 2015 ident: B32 article-title: The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: a mobile brain/body imaging (MoBI) study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.028 – volume: 39 start-page: 1 year: 2000 ident: B28 article-title: Unifying information-theoretic framework for independent component analysis publication-title: Comput. Math. Appl. doi: 10.1016/s0898-1221(00)00101-2 – volume: 7 start-page: 1129 year: 1995 ident: B2 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 91 start-page: 22 year: 2014 ident: B12 article-title: Imaging natural cognition in action publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.09.003 – volume: 95 start-page: 231 year: 1995 ident: B10 article-title: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(95)00107-a – volume: 21 start-page: 9 year: 2007 ident: B56 article-title: Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders publication-title: Clin. Neuropsychol. doi: 10.1080/13854040600910018 – start-page: 373 volume-title: Biomag 96 year: 2000 ident: B50 article-title: Variable resolution electric-magnetic tomography doi: 10.1007/978-1-4612-1260-7_91 – volume: 561 start-page: 166 year: 2014 ident: B59 article-title: About the cortical origin of the low-delta and high-gamma rhythms observed in EEG signals during treadmill walking publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2013.12.059 – volume: 29 start-page: 169 year: 1999 ident: B22 article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis publication-title: Brain Res. Brain Res. Rev. doi: 10.1016/s0165-0173(98)00056-3 – volume: 11 start-page: 119 year: 2014 ident: B29 article-title: Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-11-119 – volume: 20 start-page: 435 year: 1997 ident: B55 article-title: Non-invasive optical spectroscopy and imaging of human brain function publication-title: Trends Neurosci. doi: 10.1016/s0166-2236(97)01132-6 – volume: 30 start-page: 1758 year: 2009 ident: B21 article-title: Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20750 – volume: 8 start-page: 485 year: 2014 ident: B45 article-title: EEG beta suppression and low gamma modulation are different elements of human upright walking publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00485 – volume: 5 start-page: 25 year: 2008 ident: B16 article-title: Review on solving the inverse problem in EEG source analysis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-5-25 – volume: 85 start-page: 711 year: 2014 ident: B33 article-title: Broadband changes in the cortical surface potential track activation of functionally diverse neuronal populations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.070 – volume: 63 start-page: 1203 year: 2012 ident: B52 article-title: Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.08.019 – volume: 22 start-page: 593 year: 2011 ident: B14 article-title: Cognition in action: imaging brain/body dynamics in mobile humans publication-title: Rev. Neurosci. doi: 10.1515/RNS.2011.047 – volume: 52 start-page: 1681 year: 2005 ident: B30 article-title: Standardized shrinking LORETA-FOCUSS (SSLOFO): a new algorithm for spatio-temporal EEG source reconstruction publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/tbme.2005.855720 – volume: 110 start-page: 2050 year: 2013 ident: B48 article-title: Loss of balance during balance beam walking elicits a multi-focal theta band electrocortical response publication-title: J. Neurophysiol. doi: 10.1152/jn.00744.2012 – volume: 5 start-page: 454 year: 1997 ident: B6 article-title: Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography publication-title: Hum. Brain Mapp. doi: 10.1002/(sici)1097-0193(1997)5:6454::aid-hbm63.3.co;2-1 – volume-title: Event-Related Dynamics of Brain Oscillations. year: 2006 ident: B36 – volume: 1 start-page: 75 year: 1999 ident: B39 article-title: Review of methods for solving the EEG inverse problem publication-title: Int. J. Bioelectromagn. – volume: 36 start-page: 2050 year: 2000 ident: B3 article-title: Robust whitening procedure in blind source separation context publication-title: Electron. Lett. doi: 10.1049/el:20001436 – volume: 73 start-page: 95 year: 2009 ident: B31 article-title: Linking brain, mind and behavior publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2008.11.008 – volume: 13 start-page: 411 year: 2000 ident: B20 article-title: Independent component analysis: algorithms and applications publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 103 start-page: 3526 year: 2010 ident: B18 article-title: Removal of movement artifact from high-density EEG recorded during walking and running publication-title: J. Neurophysiol. doi: 10.1152/jn.00105.2010 – volume: 45 start-page: 1199 year: 2009 ident: B17 article-title: Identifying reliable independent components via split-half comparisons publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.12.038 – volume: 21 start-page: 527 year: 2004 ident: B15 article-title: Electrical neuroimaging based on biophysical constraints publication-title: Neuroimage doi: 10.1016/j.neuroimage.2003.09.051 – volume: 2 start-page: e176 year: 2004b ident: B58 article-title: Electroencephalographic brain dynamics following manually responded visual targets publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0020176 – volume: 106 start-page: 1875 year: 2011 ident: B43 article-title: Neural decoding of treadmill walking from noninvasive electroencephalographic signals publication-title: J. Neurophysiol. doi: 10.1152/jn.00104.2011 – volume: 8 start-page: 93 year: 2014 ident: B53 article-title: It’s how you get there: walking down a virtual alley activates premotor and parietal areas publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00093 – volume: 30 start-page: 808 year: 2006 ident: B38 article-title: Imaging human EEG dynamics using independent component analysis publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2006.06.007 – volume: 12 start-page: 046022 year: 2015 ident: B24 article-title: Isolating gait-related movement artifacts in electroencephalography during human walking publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046022 – volume: 112 start-page: 318 year: 2015 ident: B46 article-title: High and low gamma EEG oscillations in central sensorimotor areas are conversely modulated during the human gait cycle publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.03.045 – start-page: 854 volume-title: Lecture Notes in Computer Science, Vol. 3889 year: 2006 ident: B64 article-title: Super-Gaussian mixture source model for ICA – volume: 52 start-page: 901 year: 2005 ident: B44 article-title: Efficient electromagnetic source imaging with adaptive standardized LORETA/FOCUSS publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/tbme.2005.845365 – volume: 17 start-page: 179 year: 2002 ident: B62 article-title: Validating the boundary element method for forward and inverse EEG computations in the presence of a hole in the skull publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10061 – volume: 7 start-page: e30135 year: 2012 ident: B8 article-title: Independent EEG sources are dipolar publication-title: PLoS One doi: 10.1371/journal.pone.0030135 – volume: 8 start-page: 204 year: 2004a ident: B57 article-title: Mining event-related brain dynamics publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2004.03.008 – volume: 54 start-page: 1289 year: 2011 ident: B19 article-title: Electrocortical activity is coupled to gait cycle phase during treadmill walking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.08.066 – volume: 85 start-page: 415 year: 2014 ident: B26 article-title: Cortical control of normal gait and precision stepping: an fNIRS study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.070 – volume: 34 start-page: 1443 year: 2007 ident: B61 article-title: Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.11.004 – volume: 9 start-page: 247 year: 2015 ident: B5 article-title: Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2015.00247 – volume: 45 start-page: 600 year: 1997 ident: B11 article-title: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.558475 – volume: 37 start-page: 163 year: 2000 ident: B60 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – volume: 2012 start-page: 2764 year: 2012 ident: B47 article-title: Feasibility of measuring event related desynchronization with electroencephalography during walking publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. doi: 10.1109/EMBC.2012.6346537 – volume: 39 start-page: 600 year: 2008 ident: B49 article-title: Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.08.044 – volume: 590 start-page: 2443 year: 2012 ident: B41 article-title: The motor cortex drives the muscles during walking in human subjects publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.227397 – volume-title: Toward Functional Imaging of Cortical Electrophysiology Markovian Models for the Source Estimation of Magneto/Electroencephalography and Experimental Assessments. year: 1998 ident: B1 – volume: 45 start-page: 827 year: 1998 ident: B9 article-title: Differential characterization of neural sources with the bimodal truncated SVD pseudo-inverse for EEG and MEG measurements publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.686790 – volume: 24 start-page: 375 year: 1987 ident: B35 article-title: The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure publication-title: Psychophysiology doi: 10.1111/j.1469-8986.1987.tb00311.x – volume: 59 start-page: 1602 year: 2012 ident: B27 article-title: Stride-time variability and sensorimotor cortical activation during walking publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.08.084 – volume: 578 start-page: 33 year: 2014 ident: B51 article-title: Frequency characteristics of cortical activity associated with perturbations to upright stability publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2014.06.017 – volume-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. year: 2015 ident: B37 article-title: Effectiveness of ICA in retrieving EEG target signals during cyclical head movements using a phantom head – volume: 4 start-page: 202 year: 2010 ident: B13 article-title: Visual evoked responses during standing and walking publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00202 – volume: 19 start-page: 302 year: 2004 ident: B23 article-title: Phase-locked alpha and theta oscillations generate the P1–N1 complex and are related to memory performance publication-title: Brain Res. Cogn. Brain Res. doi: 10.1016/j.cogbrainres.2003.11.016 – start-page: 1805 year: 2008 ident: B65 article-title: Newton method for the ICA mixture model publication-title: 33rd IEEE International Conference on Acoustics and Signal Processing – year: 2003 ident: B63 article-title: Medical and Bioengineering Aspects of Electrical Injuries – reference: 26083595 - J Neural Eng. 2015 Aug;12(4):046022 – reference: 18990257 - J Neuroeng Rehabil. 2008 Nov 07;5:25 – reference: 25071515 - Front Hum Neurosci. 2014 Jul 08;8:485 – reference: 21920441 - Neuroimage. 2012 Jan 16;59(2):1602-7 – reference: 20408248 - Hum Brain Mapp. 1997;5(6):454-67 – reference: 12391571 - Hum Brain Mapp. 2002 Nov;17(3):179-92 – reference: 24833254 - Ann Biomed Eng. 2014 Aug;42(8):1573-93 – reference: 17950626 - Neuroimage. 2008 Jan 15;39(2):600-7 – reference: 22355308 - PLoS One. 2012;7(2):e30135 – reference: 16904745 - Neurosci Biobehav Rev. 2006;30(6):808-22 – reference: 24076470 - Int J Psychophysiol. 2014 Jan;91(1):22-9 – reference: 17366276 - Clin Neuropsychol. 2007 Jan;21(1):9-37 – reference: 24018305 - Neuroimage. 2014 Jan 15;85 Pt 2:711-20 – reference: 10209231 - Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 – reference: 14980555 - Neuroimage. 2004 Feb;21(2):527-39 – reference: 22070621 - Rev Neurosci. 2011;22(6):593-608 – reference: 22906791 - Neuroimage. 2012 Nov 15;63(3):1203-11 – reference: 15887539 - IEEE Trans Biomed Eng. 2005 May;52(5):901-8 – reference: 9347608 - Trends Neurosci. 1997 Oct;20(10):435-42 – reference: 8529554 - Electroencephalogr Clin Neurophysiol. 1995 Oct;95(4):231-51 – reference: 23366498 - Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2764-7 – reference: 19343801 - Hum Brain Mapp. 2009 Jun;30(6):1758-71 – reference: 25818687 - Neuroimage. 2015 May 15;112:318-26 – reference: 10731767 - Psychophysiology. 2000 Mar;37(2):163-78 – reference: 12575463 - Methods Find Exp Clin Pharmacol. 2002;24 Suppl D:5-12 – reference: 23631980 - Neuroimage. 2014 Jan 15;85 Pt 1:415-22 – reference: 15062867 - Brain Res Cogn Brain Res. 2004 May;19(3):302-16 – reference: 24412128 - Neurosci Lett. 2014 Feb 21;561:166-70 – reference: 19414039 - Int J Psychophysiol. 2009 Aug;73(2):95-100 – reference: 20410364 - J Neurophysiol. 2010 Jun;103(6):3526-34 – reference: 26029077 - Front Hum Neurosci. 2015 May 12;9:247 – reference: 10576479 - Clin Neurophysiol. 1999 Nov;110(11):1842-57 – reference: 15120678 - Trends Cogn Sci. 2004 May;8(5):204-10 – reference: 17188898 - Neuroimage. 2007 Feb 15;34(4):1443-9 – reference: 20832484 - Neuroimage. 2011 Jan 15;54(2):1289-96 – reference: 21768121 - J Neurophysiol. 2011 Oct;106(4):1875-87 – reference: 24847239 - Front Hum Neurosci. 2014 May 08;8:288 – reference: 25988225 - Neuroimage. 2015 Aug 15;117:230-42 – reference: 23926037 - J Neurophysiol. 2013 Nov;110(9):2050-60 – reference: 15208723 - PLoS Biol. 2004 Jun;2(6):e176 – reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 – reference: 3615753 - Psychophysiology. 1987 Jul;24(4):375-425 – reference: 25108604 - J Neuroeng Rehabil. 2014 Aug 09;11:119 – reference: 24611043 - Front Hum Neurosci. 2014 Feb 25;8:93 – reference: 24110155 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:2184-7 – reference: 23013047 - Psychophysiology. 2012 Nov;49(11):1617-21 – reference: 10946390 - Neural Netw. 2000 May-Jun;13(4-5):411-30 – reference: 9644891 - IEEE Trans Biomed Eng. 1998 Jul;45(7):827-38 – reference: 16235654 - IEEE Trans Biomed Eng. 2005 Oct;52(10):1681-91 – reference: 21267424 - Front Hum Neurosci. 2010 Oct 29;4:202 – reference: 19162199 - Neuroimage. 2009 May 1;45(4):1199-211 – reference: 22393252 - J Physiol. 2012 May 15;590(10):2443-52 – reference: 24970752 - Neurosci Lett. 2014 Aug 22;578:33-8 |
SSID | ssj0062651 |
Score | 2.4404612 |
Snippet | There has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 639 |
SubjectTerms | Algorithms artifact removal blind source separation Brain mapping Cortex cortical sources EEG Electrical properties Electroencephalography Fitness equipment Gait Interfaces Localization Medical imaging Methods Neuroimaging Neuroscience Researchers Silicones Spectrum analysis Tomography Walking |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BgoyEkDhEGzt-xMeCthQkOFGpN8t27LZSm63YrCr-PTN2NtpFCC7cotiJbM_Y8_DMN4S8ja0GvTM0tfFS1EI6Vfu2jXXb9sqBvGVJYKLw12_q9Ex8OZfnO6W-MCaswAOXhVsE7g0I7ch7nQRP3GnX8eiU4Z7xps-qEci8rTFVzmDQ0iUrl5JggplFGi43mHbO0IGisDD4jhDKWP1_UjB_j5PcETwnD8mDSWOkx2Wkj8i9ODwmh8cDWMs3P-k7mmM4s3P8kNx9nqvajhSjxVcDPrkJeYSuEr1wV2OdM1hiT29WGS4cesDfMceBFqcNNGFA_AVdLj_RqVJOH9e0JDVSjE7vsV4RvXPX6Gt_Qs5Olt8_ntZTaYU6CNOMtTa8CaLzjWfSuU4HxgKLIekIDyDGY9AqGQQja6NJMjba6GC0Y04o70DEPyUHA0zhOaECDMqolRJJeuFT8qrrpecySaCWl6oii-1a2zDhjmP5i2sL9gdSx2bqWKSOzdSpyPv5i9uCufGXvh-QfHM_RMvOL4CH7MRD9l88VJGjLfHttIXXlnPDWlBedFuRN3MzbD68UXFDXG3WFsw5sADxKrUizwqvzCMBzQcOR9lVRO9x0d5Q91uGq8sM8I2Q_0rIF_9jbi_JfVytEoFzRA7GH5v4CvSo0b_OW-YXOe0fUg priority: 102 providerName: Directory of Open Access Journals – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA969-KLqPOjOiWCCD6U26b5aJ5kk25T2BDZcG8lSZNtMNu524v433tO-uGuyN5Ck5Y0J-czJ79DyDtfKLA7XZZqK3jKhZGpLQqfFkUjDejbPHC8KHx0LA9P-ZczcTYG3FZjWuUkE6OgbjqHMfIlYzovQJeo4uP1zxSrRuHp6lhC4z7ZAhFcigXZ2quOv36bZDFY6yIfDifBFdPL0F6s8fp5joEUiQXCbymjiNn_P0Pz33zJWwpo_xF5OFqOdHcg9WNyz7dPyPZuC17zj9_0PY25nDFIvk1-fZ6r2_YUWb5rsTUhkNAu0ANz2acxFc439KiLsOF9_DredaCDWwpdmBh_TqvqgFZDxZzGr-hwuZGegMXZYN0i-t1cYcz9KTndr04-HaZjiYXUcZ31qdIsc7y0mc2FMaVyee5y74Ly0AB17p2SQSMoWeF1ED5TWjmtTG64tAZU_TOyaOEXXhDKwbH0SkoehOU2BCvLRlgmgmCBWSETspzWunYj_jiWwbiqwQ9B6tSROjVSp47USciH-Y3rAXvjjrF7SL55HKJmxwfdzXk9MmHtmNVgAHrWqMBhVkaZknkjNbM5yxqTkJ2J-PXIyqv678ZLyNu5G5gQT1ZM67v1qga3DjxBPFJNyPNhr8wzAQsIhKQoE6I2dtHGVDd72suLCPSN0P-Si5d3T-sVeYDrMOTY7JBFf7P2r8FS6u2bkR3-ANpNFo0 priority: 102 providerName: ProQuest |
Title | Independent Component Analysis of Gait-Related Movement Artifact Recorded using EEG Electrodes during Treadmill Walking |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26648858 https://www.proquest.com/docview/2291361473 https://www.proquest.com/docview/1749603823 https://pubmed.ncbi.nlm.nih.gov/PMC4664645 https://doaj.org/article/c2b9264e2d7f42f2a7a82ea692b120da |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZge-EFAeMSGJWREBIPYbHjS_OA0IayDqROCK2ib5Gd2NukkkCbCvbvOcdJA0UV4qWK6lwcn-Oc77PPhZCXLtWAO8skzqwUsZBGxTZNXZymlTJgb5kXGCg8PVdnM_FxLue_w6P7AVztpHZYT2q2XLz5-f3mHUz4t8g4wd4e-fpqjUHlDJdHwOLeJvtglxTq-FQMewqA3EMxRqYU0C8AOt2m5c47bBmpkMt_FwD924_yD8N0eo_c7RElPe5U4D655eoH5OC4Bjb99Ya-osHHMyyeH5AfH4aqty3FT0FT49EmMwltPJ2Y6zYOLnKuotMmpBNvw90xBoJ2dBWa0GH-kub5hOZdJZ3KrWgX9EgvAIlWWM-IfjELXIt_SGan-cX7s7gvvRCXIkvaWGc8KcXYJpZJY8a6ZKxkrvTawQGYeVdq5TNMVpa6zEuX6EyXmTbMCGUNQIBHZK-GV3hCqADC6bRSwksrrPdWjStpufSSe26lisjRZqyLss9LjuUxFgXwE5ROEaRToHSKIJ2IvB6u-Nbl5PjHuScovuE8zKYd_miWl0U_OYuS2wyAoeOV9gJ6ZbQZc2dUxi3jSWUicrgRfrHR0ILzjKUAbnQakRdDM0xO3HExtWvWqwLoHjBE3GqNyONOV4aeADKCj6ccR0RvadFWV7db6uurkAAcSwIoIZ_-x3OfkTs4GJ0DziHZa5dr9xxgVGtHZP8kP__0eRSWIeB3MmejMGN-Aea_IEk |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaq9gAXBJRHoICRAIlDtInjR3xAqIVtd2l3hdBW9BbsxG4rlaR0s6r6p_iNzOSxdBHqrbcoTiLH87Zn5iPkjUsU-J15FGoreMiFkaFNEhcmSSEN2NvYcywUnkzl6JB_ORJHa-R3XwuDaZW9TmwUdVHluEc-YEzHCdgSlXw8_xUiahServYQGi1b7LurSwjZ5h_Gn4G-bxnbHc4-jcIOVSDMuY7qUGkW5Ty1kY2FManK4ziPXe6VgwuwYC5X0mvsw5U47YWLlFa5ViY2XFqTIkoEqPwNcDM0SNHGznD69Vuv-yE6EHF7GAqhnx748mSB5e4xbtxIBCS_ZvwajID_Obb_5mdeM3i798m9zlOl2y1rPSBrrnxINrdLiNJ_XtF3tMkdbTblN8nleImmW1NUMVWJV33HE1p5umdO67BJvXMFnVRNm_K6-TrWVtA2DIYhTMQ_psPhHh22CD2Fm9O2mJLOwMMtECeJfjdnuMf_iBzeyuI_Jusl_MJTQjkEsk5Jyb2w3HpvZVoIy4QXzDMrZEAG_VpnedfvHGE3zjKIe5A6WUOdDKmTNdQJyPvlG-dtr48bnt1B8i2fwy7dzY3q4jjrhD7LmdXgcDpWKM9hVkaZlDkjNbMxiwoTkK2e-FmnOubZX0YPyOvlMAg9nuSY0lWLeQZhJESeeIQbkCctryxnAh4XKGWRBkStcNHKVFdHytOTprE4Qg1ILp7dPK1X5M5oNjnIDsbT_efkLq5Jm9-zRdbri4V7AV5abV92okHJj9uWxj-3WlL8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkK8IGB8BAYYCZB4iJo4_kgeENpYu5WxakKb2FtmO_Y2aSRjTTXtX-Ov4y4fZUVob3uL6rRyfee7-9l39yPknUsUxJ02CjMjeMiFlqFJEhcmSSE1-NvYcywU3pvKnUP-9UgcrZDffS0MplX2NrEx1EVl8Yx8yFgWJ-BLVDL0XVrE_tb488WvEBmk8Ka1p9NoVWTXXV8BfJt9mmyBrN8zNh4dfNkJO4aB0PIsqkOVscjy1EQmFlqnysaxjZ31ysEDeDNnlfQZ9uRKXOaFi1SmbKZ0rLk0OkXGCDD_qwq8Yjogq5uj6f733g8AUhBxezEKMDAb-vJ0jqXvMR7iSCQnv-EIG76A_wW5_-Zq3nB-44fkQRe10o1WzR6RFVc-JmsbJSD2n9f0A23ySJsD-jVyNVkw69YUzU1V4lPf_YRWnm7rszps0vBcQfeqpmV53fw61lnQFhLDECbln9DRaJuOWraews1oW1hJDyDaLZAzif7Q53je_4Qc3sniPyWDEv7Cc0I5gFqnpOReGG68NzIthGHCC-aZETIgw36tc9v1PkcKjvMcMBBKJ2-kk6N08kY6Afm4-MZF2_fjlnc3UXyL97Bjd_NBdXmSdwYgt8xkEHw6VijPYVZa6ZQ5LTNmYhYVOiDrvfDzzozM8r9KH5C3i2EwAHiro0tXzWc5QEpAoXidG5Bnra4sZgLRFxhokQZELWnR0lSXR8qz06bJONIOSC5e3D6tN-Qe7ML822S6-5LcxyVpU33WyaC-nLtXELDV5nW3Myg5vuvN-AcqaFco |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+Component+Analysis+of+Gait-Related+Movement+Artifact+Recorded+using+EEG+Electrodes+during+Treadmill+Walking&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Snyder%2C+Kristine+L&rft.au=Kline%2C+Julia+E&rft.au=Huang%2C+Helen+J&rft.au=Ferris%2C+Daniel+P&rft.date=2015-12-01&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=9&rft.spage=639&rft_id=info:doi/10.3389%2Ffnhum.2015.00639&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |