Bombyx mori Midgut Membrane Protein P252, Which Binds to Bacillus thuringiensis Cry1A, Is a Chlorophyllide-Binding Protein, and the Resulting Complex Has Antimicrobial Activity
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent p...
Saved in:
Published in | Applied and Environmental Microbiology Vol. 74; no. 5; pp. 1324 - 1331 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.03.2008
American Society for Microbiology (ASM) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. |
---|---|
AbstractList | Classifications
Services
AEM
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
AEM
About
AEM
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
AEM
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0099-2240
Online ISSN:
1098-5336
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
AEM
.asm.org, visit:
AEM
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 microM is shown to bind with about 50 microM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37 degrees C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a beta-structure (39.8% +/- 2.2%, based on 5 samples) with negligible contribution of alpha-helix structure. When bound to Chlide, the beta-structure content in the complex is reduced to 21.6% +/- 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 microM, and 21.6 microM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 mu M is shown to bind with about 50 mu M Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37 degree C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a beta -structure (39.8% plus or minus 2.2%, based on 5 samples) with negligible contribution of alpha -helix structure. When bound to Chlide, the beta -structure content in the complex is reduced to 21.6% plus or minus 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 mu M, and 21.6 mu M, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis ( 15 ). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% ( n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli , Serratia marcescens , B. thuringiensis , and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. ABSTRACT The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% ( n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli , Serratia marcescens , B. thuringiensis , and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 ...M is shown to bind with about 50 ...M Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37...C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 ...M, and 21.6 ...M, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. (ProQuest: ... denotes formulae/symbols omitted.) |
Author | Yamamoto, Shuhei Ishikawa, Toshiki Nishiumi, Tadayuki Hori, Hidetaka Haginoya, Kohsuke Pandian, Ganesh N Togashi, Makoto Shitomi, Yasuyuki |
AuthorAffiliation | Laboratories of Applied Biosciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan |
AuthorAffiliation_xml | – name: Laboratories of Applied Biosciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan |
Author_xml | – sequence: 1 fullname: Pandian, Ganesh N – sequence: 2 fullname: Ishikawa, Toshiki – sequence: 3 fullname: Togashi, Makoto – sequence: 4 fullname: Shitomi, Yasuyuki – sequence: 5 fullname: Haginoya, Kohsuke – sequence: 6 fullname: Yamamoto, Shuhei – sequence: 7 fullname: Nishiumi, Tadayuki – sequence: 8 fullname: Hori, Hidetaka |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18192432$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk9vEzEQxVeoiLaBG2cwHDhly9je9a4vSElUaKVGVEDF0fJ6nawrrx3s3dJ8Kz4iThP-nmxpfvP0ZuadZkfOO51lzzGcYUzqt7Pz5RlgDjiH6lF2goHXeUkpO8pOADjPCSngODuN8RYACmD1k-wY15iTgpKT7Mfc9832HvU-GLQ07Xoc0FL3TZBOo-vgB20cuiYlmaKvnVEdmhvXRjR4NJfKWDumfzcG49ZGu2giWoQtnk3RZUQSLTrrg990W2tNq_NdawJ_yU6RdG3q1uiTjqMddqWF7zdW36MLGdHMDaY3KvjGSItmajB3Ztg-zR6vpI362eGdZDfvz78sLvKrjx8uF7OrXBUchryqeKmkgqppNFOSUY5r1uCiBaWV5GVNCsIZhSpRVYPbhrKmYZxKWldM1oROsnd73c3Y9LpV2g1BWrEJppdhK7w04t-KM51Y-ztBSFmzEpLAm4NA8N9GHQfRm6i0tWmzfowC8xqKdMEEvv4PvPVjcGk4QaDkdUkf7Ez3UNpHjEGvfjvBIHY5ECkH4iEHAqqEv_jb_R_4cPgEvNoDnVl3303QQsZeSN2LqhClwDRRk-zlnllJL-Q6mChuPhPAFCBNyBimPwGNNMWL |
CODEN | AEMIDF |
CitedBy_id | crossref_primary_10_1007_s11033_011_1114_6 crossref_primary_10_3389_fmicb_2023_1123448 crossref_primary_10_1303_aez_2010_477 crossref_primary_10_3390_toxins15040273 crossref_primary_10_1371_journal_pone_0250565 crossref_primary_10_1073_pnas_1120698109 crossref_primary_10_1146_annurev_ento_120220_112317 crossref_primary_10_1016_j_ibmb_2011_02_006 crossref_primary_10_3390_ijms25115898 crossref_primary_10_1016_j_jia_2024_01_024 crossref_primary_10_1039_b904102h crossref_primary_10_1016_j_ibmb_2008_07_009 crossref_primary_10_1021_pr800383r crossref_primary_10_1371_journal_pgen_1001248 crossref_primary_10_1007_s10886_015_0636_0 crossref_primary_10_5483_BMBRep_2012_45_11_261 crossref_primary_10_1016_S2095_3119_18_61932_X crossref_primary_10_3390_molecules26247476 crossref_primary_10_1007_s00232_010_9314_x crossref_primary_10_1002_arch_21661 crossref_primary_10_1248_bpb_33_1143 crossref_primary_10_1515_znc_2020_0060 crossref_primary_10_3390_biom11081115 crossref_primary_10_1016_j_bbrc_2023_149144 crossref_primary_10_1111_1744_7917_12026 crossref_primary_10_1002_mbo3_360 crossref_primary_10_1021_acs_jafc_1c03156 crossref_primary_10_1016_j_jinsphys_2011_09_009 crossref_primary_10_3389_fimmu_2022_898198 |
Cites_doi | 10.1016/S0305-0491(98)10009-3 10.1104/pp.24.1.1 10.1016/0003-2697(70)90174-0 10.1074/jbc.270.10.5490 10.1016/0003-2697(76)90527-3 10.1303/jjaez.20.37 10.1016/0300-9629(86)90147-7 10.1303/jjaez.25.94 10.1016/S0003-2670(00)80092-6 10.1016/S0021-9258(17)36993-4 10.1073/pnas.0604017103 10.1016/0304-4165(87)90167-X 10.1016/1049-9644(92)90038-F 10.1128/IAI.01043-06 10.1242/jeb.26.1.15 10.1128/JVI.77.19.10725-10729.2003 10.1303/aez.2005.125 10.1631/jzus.2006.AS0350 10.1303/jjaez.20.139 10.1016/S0021-9258(18)67641-0 10.1016/S0378-4347(00)00603-4 10.1016/0300-9629(87)90334-3 10.1093/oxfordjournals.pcp.a074488 10.1034/j.1399-3054.2001.1120103.x 10.1016/j.pestbp.2006.01.011 10.1016/0076-6879(86)30013-2 10.1016/j.virol.2003.12.011 10.1111/j.1365-2958.1994.tb00324.x 10.1080/00021369.1969.10859288 10.1016/0965-1748(95)00050-X 10.1104/pp.35.3.368 10.1093/jb/mvj024 10.1303/aez.33.473 10.1016/j.bbamem.2004.08.013 10.1111/j.1570-7458.1978.tb02777.x 10.1271/bbb.62.727 10.1303/aez.26.485 10.1128/AEM.70.8.4604-4612.2004 10.1016/j.ibmb.2006.05.006 |
ContentType | Journal Article |
Copyright | Copyright American Society for Microbiology Mar 2008 Copyright © 2008, American Society for Microbiology |
Copyright_xml | – notice: Copyright American Society for Microbiology Mar 2008 – notice: Copyright © 2008, American Society for Microbiology |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 5PM |
DOI | 10.1128/AEM.01901-07 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts |
DatabaseTitleList | MEDLINE Entomology Abstracts CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Biology |
EISSN | 1098-5336 |
EndPage | 1331 |
ExternalDocumentID | 1437043641 10_1128_AEM_01901_07 18192432 aem_74_5_1324 US201300865661 |
Genre | Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- -~X .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 85S AAZTW ABOGM ABPPZ ABPTK ABTAH ACBTR ACGFO ACIWK ACNCT ACPRK ADBBV AENEX AFFNX AFMIJ AFRAH AGCDD AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW C1A CS3 D0L DIK E.- E3Z EBS EJD F20 F5P FBQ GX1 HYE HZ~ H~9 K-O KQ8 L7B MVM NEJ O9- OHT OK1 P2P PQQKQ RHF RHI RNS RPM RSF RXW TAE TAF TN5 TR2 TWZ UCJ UHB VH1 W8F WH7 WHG WOQ X6Y X7M XFK XJT YV5 ZA5 ZCG ZGI ZXP ZY4 ~02 ~KM ADUKH AGVNZ CGR CUY CVF ECM EIF H13 NPM AAYXX CITATION 7QL 7QO 7SN 7SS 7ST 7T7 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 SOI 5PM |
ID | FETCH-LOGICAL-c490t-7795cac07bbe6ca639186b14d0ceca958242963075ca7b1db36bb693a3876a823 |
IEDL.DBID | RPM |
ISSN | 0099-2240 |
IngestDate | Tue Sep 17 20:53:43 EDT 2024 Sun Sep 29 07:44:52 EDT 2024 Thu Oct 10 16:06:15 EDT 2024 Thu Sep 12 16:32:24 EDT 2024 Sat Nov 02 12:25:04 EDT 2024 Wed May 18 15:27:53 EDT 2016 Wed Dec 27 19:12:32 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-7795cac07bbe6ca639186b14d0ceca958242963075ca7b1db36bb693a3876a823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Corresponding author. Mailing address: Laboratories of Applied Biosciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan. Phone and fax: 81 25 262 7637. E-mail: hide-hri@gs.niigata-u.ac.jp |
OpenAccessLink | https://aem.asm.org/content/aem/74/5/1324.full.pdf |
PMID | 18192432 |
PQID | 205985382 |
PQPubID | 42251 |
PageCount | 8 |
ParticipantIDs | proquest_journals_205985382 crossref_primary_10_1128_AEM_01901_07 pubmed_primary_18192432 proquest_miscellaneous_19804112 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2258650 fao_agris_US201300865661 highwire_asm_aem_74_5_1324 |
PublicationCentury | 2000 |
PublicationDate | 2008-03-01 |
PublicationDateYYYYMMDD | 2008-03-01 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Applied and Environmental Microbiology |
PublicationTitleAlternate | Appl Environ Microbiol |
PublicationYear | 2008 |
Publisher | American Society for Microbiology American Society for Microbiology (ASM) |
Publisher_xml | – name: American Society for Microbiology – name: American Society for Microbiology (ASM) |
References | e_1_3_2_26_2 e_1_3_2_27_2 (e_1_3_2_9_2) 1986; 83 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 (e_1_3_2_14_2) 1910; 40 e_1_3_2_24_2 e_1_3_2_46_2 (e_1_3_2_25_2) 1971; 39 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 (e_1_3_2_30_2) 1993; 32 e_1_3_2_32_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 (e_1_3_2_35_2) 1979 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 (e_1_3_2_3_2) 1962; 4 (e_1_3_2_10_2) 1971; 37 |
References_xml | – ident: e_1_3_2_18_2 doi: 10.1016/S0305-0491(98)10009-3 – ident: e_1_3_2_5_2 doi: 10.1104/pp.24.1.1 – ident: e_1_3_2_24_2 doi: 10.1016/0003-2697(70)90174-0 – ident: e_1_3_2_40_2 doi: 10.1074/jbc.270.10.5490 – ident: e_1_3_2_7_2 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_3_2_12_2 doi: 10.1303/jjaez.20.37 – volume: 83 start-page: 569 year: 1986 ident: e_1_3_2_9_2 publication-title: Comp. Biochem. Physiol. doi: 10.1016/0300-9629(86)90147-7 – ident: e_1_3_2_39_2 doi: 10.1303/jjaez.25.94 – ident: e_1_3_2_26_2 doi: 10.1016/S0003-2670(00)80092-6 – ident: e_1_3_2_34_2 doi: 10.1016/S0021-9258(17)36993-4 – ident: e_1_3_2_46_2 doi: 10.1073/pnas.0604017103 – ident: e_1_3_2_23_2 doi: 10.1016/0304-4165(87)90167-X – ident: e_1_3_2_38_2 doi: 10.1016/1049-9644(92)90038-F – ident: e_1_3_2_6_2 doi: 10.1128/IAI.01043-06 – ident: e_1_3_2_36_2 doi: 10.1242/jeb.26.1.15 – volume: 37 start-page: 125 year: 1971 ident: e_1_3_2_10_2 publication-title: Am. J. Med. Technol. – ident: e_1_3_2_33_2 doi: 10.1128/JVI.77.19.10725-10729.2003 – ident: e_1_3_2_17_2 doi: 10.1303/aez.2005.125 – start-page: 257 year: 1979 ident: e_1_3_2_35_2 publication-title: The porphyrins – ident: e_1_3_2_45_2 doi: 10.1631/jzus.2006.AS0350 – volume: 4 start-page: 72 year: 1962 ident: e_1_3_2_3_2 publication-title: J. Insect Pathol. – ident: e_1_3_2_13_2 doi: 10.1303/jjaez.20.139 – ident: e_1_3_2_32_2 doi: 10.1016/S0021-9258(18)67641-0 – ident: e_1_3_2_42_2 doi: 10.1016/S0378-4347(00)00603-4 – ident: e_1_3_2_43_2 doi: 10.1016/0300-9629(87)90334-3 – ident: e_1_3_2_2_2 doi: 10.1093/oxfordjournals.pcp.a074488 – volume: 40 start-page: 4 year: 1910 ident: e_1_3_2_14_2 publication-title: J. Physiol. – ident: e_1_3_2_21_2 doi: 10.1034/j.1399-3054.2001.1120103.x – volume: 32 start-page: 63 year: 1993 ident: e_1_3_2_30_2 publication-title: Indian J. Sericult. – ident: e_1_3_2_15_2 doi: 10.1016/j.pestbp.2006.01.011 – volume: 39 start-page: 317 year: 1971 ident: e_1_3_2_25_2 publication-title: Comp. Biochem. Physiol. – ident: e_1_3_2_44_2 doi: 10.1016/0076-6879(86)30013-2 – ident: e_1_3_2_31_2 doi: 10.1016/j.virol.2003.12.011 – ident: e_1_3_2_22_2 doi: 10.1111/j.1365-2958.1994.tb00324.x – ident: e_1_3_2_28_2 doi: 10.1080/00021369.1969.10859288 – ident: e_1_3_2_41_2 doi: 10.1016/0965-1748(95)00050-X – ident: e_1_3_2_4_2 doi: 10.1104/pp.35.3.368 – ident: e_1_3_2_37_2 doi: 10.1093/jb/mvj024 – ident: e_1_3_2_20_2 doi: 10.1303/aez.33.473 – ident: e_1_3_2_8_2 doi: 10.1016/j.bbamem.2004.08.013 – ident: e_1_3_2_11_2 doi: 10.1111/j.1570-7458.1978.tb02777.x – ident: e_1_3_2_29_2 doi: 10.1271/bbb.62.727 – ident: e_1_3_2_19_2 doi: 10.1303/aez.26.485 – ident: e_1_3_2_16_2 doi: 10.1128/AEM.70.8.4604-4612.2004 – ident: e_1_3_2_27_2 doi: 10.1016/j.ibmb.2006.05.006 |
SSID | ssj0004068 |
Score | 2.1293933 |
Snippet | The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and... Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit... ABSTRACT The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab,... The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and... |
SourceID | pubmedcentral proquest crossref pubmed highwire fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1324 |
SubjectTerms | Amino Acid Sequence Animals Anti-Infective Agents - metabolism Bacillus thuringiensis Bacillus thuringiensis - chemistry Bacillus thuringiensis Toxins Bacteria Bacterial proteins Bacterial Proteins - metabolism Bacterial Toxins - metabolism Binding sites Bombyx - chemistry Bombyx mori Cells Chemical synthesis Chlorophyllides - metabolism Chromatography, High Pressure Liquid Circular Dichroism Electrophoresis, Polyacrylamide Gel Endotoxins - metabolism Escherichia coli Gastric Mucosa - chemistry Hemolysin Proteins - metabolism Invertebrate Microbiology Luminescent Proteins - metabolism Membrane Proteins - genetics Membrane Proteins - metabolism Microbiology Molecular Sequence Data Multiprotein Complexes - metabolism Red Fluorescent Protein Saccharomyces cerevisiae Serratia marcescens Temperature |
Title | Bombyx mori Midgut Membrane Protein P252, Which Binds to Bacillus thuringiensis Cry1A, Is a Chlorophyllide-Binding Protein, and the Resulting Complex Has Antimicrobial Activity |
URI | http://aem.asm.org/content/74/5/1324.abstract https://www.ncbi.nlm.nih.gov/pubmed/18192432 https://www.proquest.com/docview/205985382 https://search.proquest.com/docview/19804112 https://pubmed.ncbi.nlm.nih.gov/PMC2258650 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXWSQh4QFA-lm2AH-CtaRM3SZPHttpUkIIqoGJvlr-6WsrH1KTS-q_4ibtO4tEinnirZDtKde61z1HuPUbok4y4IEko3SRcMzdYrz034Sxxo0hKEkkR8rXpHU6_RYtV8PUmvDlBoe2FaYr2BdfDIsuHhd40tZV3uRjZOrHRMp1DDMbALEY91IMAtRLdNkN6UWytJ815ZavdSTyaXqVD0zsNArq5fM-YgQVjcnQk9dasPDAL_hfx_Lt-8uBAun6JXnRMEk_bN36FTlTRR0_auyX3ffTUthxXffT8wHXwNfo9K3O-v8d5udU41fJ2V-NU5SCbC4WXxrdBF3hJQjLAvzZabPAMdHuF6xLPmNBZtoPfm6a7UZvq9wrPt3t_OsBfKszwfJOV2xKwyzItlWuWwkT72AFmhYTVCn9XlSllhCGzI2XqHi9YhadFrXPdeEOZvybaqy3eoNX11c_5wu0ubnBFkHg1MPYkFEx4E85VJBiQID-OuB9ITyjBkjAGXgCJD2xFsAn3JR9HnEfJmI1hb2YxGb9Fp0VZqDOEDR9KQsUAJxkA2YEHepIxUJkeESAVHfTZYkfvWn8O2ugaElOAmzZwU2_ioDMAlrJb2Drp6gcxH2xBzQGZ9R10btGmrMopUzmdBDSkINQDB11Y_GmX3RUlwEmB5sTEQR8fRyEtzbcWgKrcVdRPjLGTDzPetbHy5-26qHPQ5CiKHicYw-_jEciDxvi7i_vz_155gZ619S6mhu4SndbbnXoPpKrmH5okegB1th9_ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2ITR4mKAwlg2YH-CtaRM3SZPHttrUwTJVsIq9Wf7qaikfU5NK67_iJ-7abUaLeOKtku0o1bnXPke59xihLzLigiShdJNwxtxgNvPchLPEjSIpSSRFyGemdzi9icbT4NtdeLeHwqYXxhbtC647RZZ3Cj23tZUPueg2dWLdSTqCGIyBWXT30QvIVy9oRHrTDulFcWM-aU6spt6dxN3BRdox3dMgoe31e8YOLOiRnUNpf8bKLbvgf1HPvysot46kyzfoaMMl8WD9zm_Rnipa6OX6dslVCx02TcdVC73e8h18h34Py5yvHnFeLjROtbxf1jhVOQjnQuGJcW7QBZ6QkLTxr7kWczwE5V7husRDJnSWLeH33PY3alP_XuHRYuUP2viqwgyP5lm5KAG9LNNSuWYpTGwe28askLBa4R-qMsWMMGT2pEw94jGr8KCoda6tO5T5a2J9ucV7NL28uB2N3c3VDa4IEq8Gzp6Eggmvz7mKBAMa5McR9wPpCSVYEsbADCD1ga8I1ue-5L2I8yjpsR7sziwmvWN0UJSFOkHYMKIkVAxwkgHQHXigJxkDnekRAWLRQV8b7OjD2qGDWmVDYgpwUws39foOOgFgKbuHzZNOfxLzyRb0HNBZ30GnDdqUVTllKqf9gIYUpHrgoLMGf7rJ74oSYKVAdGLioPPnUUhM87UFoCqXFfUTY-3kw4wP61j583abqHNQfyeKnicYy-_dEcgEa_29ifzT_155jg7Ht-k1vb66-X6GXtnqF9tZ-REd1Iul-gQUq-afbUI9AbmnItQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RIl4HBKFQt0D3ALc4tje2Yx-T0CgFUkVARG-rfblZyY8odqTmX_ETmbXjkiBO3CztQ7ZmZvf75JlvEPogQy5IHEg7DhJm-0ni2jFnsR2GUpJQioAnpnZ4dh1OF_7nm-Bmr9VXnbQvuO7ladbL9bLOrVxlwmnzxJz5bAw-GAGycFYycY7QQ4hZN2yJelsS6YZRK0Bpbq02551EzvBy1jMV1ECj6xZ8RhLM75ODi-koYcWeZPC_4OffWZR719LkBXq-w5N42Lz3S_RA5R30qOkwue2gJ23hcdlBz_a0B1-hX6Mi49s7nBVrjWda3m4qPFMZkOdc4blRb9A5npOAdPHPpRZLPAL2XuKqwCMmdJpu4HlZ1zhqkwNf4vF66w27-KrEDI-XabEuwIJpqqWyzVKY2G7bxSyXsFrhb6o0CY0wZM6lVN3hKSvxMK90pmuFKPNpomlwcYIWk8sf46m9a99gCz92K8DtcSCYcAecq1AwgEJeFHLPl65QgsVBBOgAwh8wi2AD7kneDzkP4z7rwwnNItJ_jY7zIlenCBtUFAeKgZ2kD5AHNnQlY8A1XSKAMFroY2s7umpUOmjNbkhEwdy0Njd1BxY6BcNSdgsHKF18J-a3LXA6gLSehc5aa1NWZpSpjA58GlCg676Fzlv7012Ml5QAMgWwExELXdyPQnCaPy5gqmJTUi828k4ezHjT-Mqft9t5nYUGB150P8HIfh-OQDTU8t877z_775UX6PH804R-vbr-co6eNgkwJqnuLTqu1hv1DlBWxd_X8fQb6Mgj6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bombyx+mori+Midgut+Membrane+Protein+P252%2C+Which+Binds+to+Bacillus+thuringiensis+Cry1A%2C+Is+a+Chlorophyllide-Binding+Protein%2C+and+the+Resulting+Complex+Has+Antimicrobial+Activity&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Pandian%2C+Ganesh+N&rft.au=Ishikawa%2C+Toshiki&rft.au=Togashi%2C+Makoto&rft.au=Shitomi%2C+Yasuyuki&rft.date=2008-03-01&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=74&rft.issue=5&rft.spage=1324&rft.epage=1331&rft_id=info:doi/10.1128%2FAEM.01901-07&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon |