Bombyx mori Midgut Membrane Protein P252, Which Binds to Bacillus thuringiensis Cry1A, Is a Chlorophyllide-Binding Protein, and the Resulting Complex Has Antimicrobial Activity

The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent p...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 74; no. 5; pp. 1324 - 1331
Main Authors Pandian, Ganesh N, Ishikawa, Toshiki, Togashi, Makoto, Shitomi, Yasuyuki, Haginoya, Kohsuke, Yamamoto, Shuhei, Nishiumi, Tadayuki, Hori, Hidetaka
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.03.2008
American Society for Microbiology (ASM)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.
AbstractList Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 microM is shown to bind with about 50 microM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37 degrees C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a beta-structure (39.8% +/- 2.2%, based on 5 samples) with negligible contribution of alpha-helix structure. When bound to Chlide, the beta-structure content in the complex is reduced to 21.6% +/- 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 microM, and 21.6 microM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 mu M is shown to bind with about 50 mu M Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37 degree C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a beta -structure (39.8% plus or minus 2.2%, based on 5 samples) with negligible contribution of alpha -helix structure. When bound to Chlide, the beta -structure content in the complex is reduced to 21.6% plus or minus 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 mu M, and 21.6 mu M, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis ( 15 ). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% ( n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli , Serratia marcescens , B. thuringiensis , and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.
ABSTRACT The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 μM is shown to bind with about 50 μM Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37°C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% ( n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli , Serratia marcescens , B. thuringiensis , and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 μM, and 21.6 μM, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity.
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and Cry1Ac toxins of Bacillus thuringiensis (15). In the current paper, P252 was shown to bind with chlorophyllide (Chlide) to form red fluorescent protein (RFP) complex, termed Bm252RFP, with absorbance and fluorescence emission peaks at 600 nm and 620 nm, respectively. P252 at a concentration of 1 ...M is shown to bind with about 50 ...M Chlide in a positively cooperative reaction to form Bm252RFP under aerobic conditions and in the presence of light at 37...C. Various parameters influencing this reaction have been optimized for efficient in vitro chemical synthesis of Bm252RFP. Circular dichroism spectra revealed that P252 is composed of a β-structure (39.8% ± 2.2%, based on 5 samples) with negligible contribution of α-helix structure. When bound to Chlide, the β-structure content in the complex is reduced to 21.6% ± 3.1% (n = 5). Since Chlide had no secondary structure, the observed reduction suggests significant conformational changes of P252 during the formation of Bm252RFP complex. Bm252RFP had antimicrobial activity against Escherichia coli, Serratia marcescens, B. thuringiensis, and Saccharomyces cerevisiae with 50% effective concentrations of 2.82, 2.94, 5.88 ...M, and 21.6 ...M, respectively. This is the first report ever to show clear, concrete binding characteristics of the midgut protein to form an RFP having significant antimicrobial activity. (ProQuest: ... denotes formulae/symbols omitted.)
Author Yamamoto, Shuhei
Ishikawa, Toshiki
Nishiumi, Tadayuki
Hori, Hidetaka
Haginoya, Kohsuke
Pandian, Ganesh N
Togashi, Makoto
Shitomi, Yasuyuki
AuthorAffiliation Laboratories of Applied Biosciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
AuthorAffiliation_xml – name: Laboratories of Applied Biosciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
Author_xml – sequence: 1
  fullname: Pandian, Ganesh N
– sequence: 2
  fullname: Ishikawa, Toshiki
– sequence: 3
  fullname: Togashi, Makoto
– sequence: 4
  fullname: Shitomi, Yasuyuki
– sequence: 5
  fullname: Haginoya, Kohsuke
– sequence: 6
  fullname: Yamamoto, Shuhei
– sequence: 7
  fullname: Nishiumi, Tadayuki
– sequence: 8
  fullname: Hori, Hidetaka
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18192432$$D View this record in MEDLINE/PubMed
BookMark eNpdkk9vEzEQxVeoiLaBG2cwHDhly9je9a4vSElUaKVGVEDF0fJ6nawrrx3s3dJ8Kz4iThP-nmxpfvP0ZuadZkfOO51lzzGcYUzqt7Pz5RlgDjiH6lF2goHXeUkpO8pOADjPCSngODuN8RYACmD1k-wY15iTgpKT7Mfc9832HvU-GLQ07Xoc0FL3TZBOo-vgB20cuiYlmaKvnVEdmhvXRjR4NJfKWDumfzcG49ZGu2giWoQtnk3RZUQSLTrrg990W2tNq_NdawJ_yU6RdG3q1uiTjqMddqWF7zdW36MLGdHMDaY3KvjGSItmajB3Ztg-zR6vpI362eGdZDfvz78sLvKrjx8uF7OrXBUchryqeKmkgqppNFOSUY5r1uCiBaWV5GVNCsIZhSpRVYPbhrKmYZxKWldM1oROsnd73c3Y9LpV2g1BWrEJppdhK7w04t-KM51Y-ztBSFmzEpLAm4NA8N9GHQfRm6i0tWmzfowC8xqKdMEEvv4PvPVjcGk4QaDkdUkf7Ez3UNpHjEGvfjvBIHY5ECkH4iEHAqqEv_jb_R_4cPgEvNoDnVl3303QQsZeSN2LqhClwDRRk-zlnllJL-Q6mChuPhPAFCBNyBimPwGNNMWL
CODEN AEMIDF
CitedBy_id crossref_primary_10_1007_s11033_011_1114_6
crossref_primary_10_3389_fmicb_2023_1123448
crossref_primary_10_1303_aez_2010_477
crossref_primary_10_3390_toxins15040273
crossref_primary_10_1371_journal_pone_0250565
crossref_primary_10_1073_pnas_1120698109
crossref_primary_10_1146_annurev_ento_120220_112317
crossref_primary_10_1016_j_ibmb_2011_02_006
crossref_primary_10_3390_ijms25115898
crossref_primary_10_1016_j_jia_2024_01_024
crossref_primary_10_1039_b904102h
crossref_primary_10_1016_j_ibmb_2008_07_009
crossref_primary_10_1021_pr800383r
crossref_primary_10_1371_journal_pgen_1001248
crossref_primary_10_1007_s10886_015_0636_0
crossref_primary_10_5483_BMBRep_2012_45_11_261
crossref_primary_10_1016_S2095_3119_18_61932_X
crossref_primary_10_3390_molecules26247476
crossref_primary_10_1007_s00232_010_9314_x
crossref_primary_10_1002_arch_21661
crossref_primary_10_1248_bpb_33_1143
crossref_primary_10_1515_znc_2020_0060
crossref_primary_10_3390_biom11081115
crossref_primary_10_1016_j_bbrc_2023_149144
crossref_primary_10_1111_1744_7917_12026
crossref_primary_10_1002_mbo3_360
crossref_primary_10_1021_acs_jafc_1c03156
crossref_primary_10_1016_j_jinsphys_2011_09_009
crossref_primary_10_3389_fimmu_2022_898198
Cites_doi 10.1016/S0305-0491(98)10009-3
10.1104/pp.24.1.1
10.1016/0003-2697(70)90174-0
10.1074/jbc.270.10.5490
10.1016/0003-2697(76)90527-3
10.1303/jjaez.20.37
10.1016/0300-9629(86)90147-7
10.1303/jjaez.25.94
10.1016/S0003-2670(00)80092-6
10.1016/S0021-9258(17)36993-4
10.1073/pnas.0604017103
10.1016/0304-4165(87)90167-X
10.1016/1049-9644(92)90038-F
10.1128/IAI.01043-06
10.1242/jeb.26.1.15
10.1128/JVI.77.19.10725-10729.2003
10.1303/aez.2005.125
10.1631/jzus.2006.AS0350
10.1303/jjaez.20.139
10.1016/S0021-9258(18)67641-0
10.1016/S0378-4347(00)00603-4
10.1016/0300-9629(87)90334-3
10.1093/oxfordjournals.pcp.a074488
10.1034/j.1399-3054.2001.1120103.x
10.1016/j.pestbp.2006.01.011
10.1016/0076-6879(86)30013-2
10.1016/j.virol.2003.12.011
10.1111/j.1365-2958.1994.tb00324.x
10.1080/00021369.1969.10859288
10.1016/0965-1748(95)00050-X
10.1104/pp.35.3.368
10.1093/jb/mvj024
10.1303/aez.33.473
10.1016/j.bbamem.2004.08.013
10.1111/j.1570-7458.1978.tb02777.x
10.1271/bbb.62.727
10.1303/aez.26.485
10.1128/AEM.70.8.4604-4612.2004
10.1016/j.ibmb.2006.05.006
ContentType Journal Article
Copyright Copyright American Society for Microbiology Mar 2008
Copyright © 2008, American Society for Microbiology
Copyright_xml – notice: Copyright American Society for Microbiology Mar 2008
– notice: Copyright © 2008, American Society for Microbiology
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
5PM
DOI 10.1128/AEM.01901-07
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
DatabaseTitleList
MEDLINE
Entomology Abstracts


CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
EndPage 1331
ExternalDocumentID 1437043641
10_1128_AEM_01901_07
18192432
aem_74_5_1324
US201300865661
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
-~X
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAZTW
ABOGM
ABPPZ
ABPTK
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F20
F5P
FBQ
GX1
HYE
HZ~
H~9
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XFK
XJT
YV5
ZA5
ZCG
ZGI
ZXP
ZY4
~02
~KM
ADUKH
AGVNZ
CGR
CUY
CVF
ECM
EIF
H13
NPM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
5PM
ID FETCH-LOGICAL-c490t-7795cac07bbe6ca639186b14d0ceca958242963075ca7b1db36bb693a3876a823
IEDL.DBID RPM
ISSN 0099-2240
IngestDate Tue Sep 17 20:53:43 EDT 2024
Sun Sep 29 07:44:52 EDT 2024
Thu Oct 10 16:06:15 EDT 2024
Thu Sep 12 16:32:24 EDT 2024
Sat Nov 02 12:25:04 EDT 2024
Wed May 18 15:27:53 EDT 2016
Wed Dec 27 19:12:32 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-7795cac07bbe6ca639186b14d0ceca958242963075ca7b1db36bb693a3876a823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: Laboratories of Applied Biosciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan. Phone and fax: 81 25 262 7637. E-mail: hide-hri@gs.niigata-u.ac.jp
OpenAccessLink https://aem.asm.org/content/aem/74/5/1324.full.pdf
PMID 18192432
PQID 205985382
PQPubID 42251
PageCount 8
ParticipantIDs proquest_journals_205985382
crossref_primary_10_1128_AEM_01901_07
pubmed_primary_18192432
proquest_miscellaneous_19804112
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2258650
fao_agris_US201300865661
highwire_asm_aem_74_5_1324
PublicationCentury 2000
PublicationDate 2008-03-01
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 03
  year: 2008
  text: 2008-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2008
Publisher American Society for Microbiology
American Society for Microbiology (ASM)
Publisher_xml – name: American Society for Microbiology
– name: American Society for Microbiology (ASM)
References e_1_3_2_26_2
e_1_3_2_27_2
(e_1_3_2_9_2) 1986; 83
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
(e_1_3_2_14_2) 1910; 40
e_1_3_2_24_2
e_1_3_2_46_2
(e_1_3_2_25_2) 1971; 39
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
(e_1_3_2_30_2) 1993; 32
e_1_3_2_32_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
(e_1_3_2_35_2) 1979
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
(e_1_3_2_3_2) 1962; 4
(e_1_3_2_10_2) 1971; 37
References_xml – ident: e_1_3_2_18_2
  doi: 10.1016/S0305-0491(98)10009-3
– ident: e_1_3_2_5_2
  doi: 10.1104/pp.24.1.1
– ident: e_1_3_2_24_2
  doi: 10.1016/0003-2697(70)90174-0
– ident: e_1_3_2_40_2
  doi: 10.1074/jbc.270.10.5490
– ident: e_1_3_2_7_2
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_3_2_12_2
  doi: 10.1303/jjaez.20.37
– volume: 83
  start-page: 569
  year: 1986
  ident: e_1_3_2_9_2
  publication-title: Comp. Biochem. Physiol.
  doi: 10.1016/0300-9629(86)90147-7
– ident: e_1_3_2_39_2
  doi: 10.1303/jjaez.25.94
– ident: e_1_3_2_26_2
  doi: 10.1016/S0003-2670(00)80092-6
– ident: e_1_3_2_34_2
  doi: 10.1016/S0021-9258(17)36993-4
– ident: e_1_3_2_46_2
  doi: 10.1073/pnas.0604017103
– ident: e_1_3_2_23_2
  doi: 10.1016/0304-4165(87)90167-X
– ident: e_1_3_2_38_2
  doi: 10.1016/1049-9644(92)90038-F
– ident: e_1_3_2_6_2
  doi: 10.1128/IAI.01043-06
– ident: e_1_3_2_36_2
  doi: 10.1242/jeb.26.1.15
– volume: 37
  start-page: 125
  year: 1971
  ident: e_1_3_2_10_2
  publication-title: Am. J. Med. Technol.
– ident: e_1_3_2_33_2
  doi: 10.1128/JVI.77.19.10725-10729.2003
– ident: e_1_3_2_17_2
  doi: 10.1303/aez.2005.125
– start-page: 257
  year: 1979
  ident: e_1_3_2_35_2
  publication-title: The porphyrins
– ident: e_1_3_2_45_2
  doi: 10.1631/jzus.2006.AS0350
– volume: 4
  start-page: 72
  year: 1962
  ident: e_1_3_2_3_2
  publication-title: J. Insect Pathol.
– ident: e_1_3_2_13_2
  doi: 10.1303/jjaez.20.139
– ident: e_1_3_2_32_2
  doi: 10.1016/S0021-9258(18)67641-0
– ident: e_1_3_2_42_2
  doi: 10.1016/S0378-4347(00)00603-4
– ident: e_1_3_2_43_2
  doi: 10.1016/0300-9629(87)90334-3
– ident: e_1_3_2_2_2
  doi: 10.1093/oxfordjournals.pcp.a074488
– volume: 40
  start-page: 4
  year: 1910
  ident: e_1_3_2_14_2
  publication-title: J. Physiol.
– ident: e_1_3_2_21_2
  doi: 10.1034/j.1399-3054.2001.1120103.x
– volume: 32
  start-page: 63
  year: 1993
  ident: e_1_3_2_30_2
  publication-title: Indian J. Sericult.
– ident: e_1_3_2_15_2
  doi: 10.1016/j.pestbp.2006.01.011
– volume: 39
  start-page: 317
  year: 1971
  ident: e_1_3_2_25_2
  publication-title: Comp. Biochem. Physiol.
– ident: e_1_3_2_44_2
  doi: 10.1016/0076-6879(86)30013-2
– ident: e_1_3_2_31_2
  doi: 10.1016/j.virol.2003.12.011
– ident: e_1_3_2_22_2
  doi: 10.1111/j.1365-2958.1994.tb00324.x
– ident: e_1_3_2_28_2
  doi: 10.1080/00021369.1969.10859288
– ident: e_1_3_2_41_2
  doi: 10.1016/0965-1748(95)00050-X
– ident: e_1_3_2_4_2
  doi: 10.1104/pp.35.3.368
– ident: e_1_3_2_37_2
  doi: 10.1093/jb/mvj024
– ident: e_1_3_2_20_2
  doi: 10.1303/aez.33.473
– ident: e_1_3_2_8_2
  doi: 10.1016/j.bbamem.2004.08.013
– ident: e_1_3_2_11_2
  doi: 10.1111/j.1570-7458.1978.tb02777.x
– ident: e_1_3_2_29_2
  doi: 10.1271/bbb.62.727
– ident: e_1_3_2_19_2
  doi: 10.1303/aez.26.485
– ident: e_1_3_2_16_2
  doi: 10.1128/AEM.70.8.4604-4612.2004
– ident: e_1_3_2_27_2
  doi: 10.1016/j.ibmb.2006.05.006
SSID ssj0004068
Score 2.1293933
Snippet The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and...
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
ABSTRACT The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab,...
The epithelial cell membrane 252-kDa protein (P252) isolated in our laboratory from Bombyx mori midgut was shown to bind strongly with Cry1Aa, Cry1Ab, and...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1324
SubjectTerms Amino Acid Sequence
Animals
Anti-Infective Agents - metabolism
Bacillus thuringiensis
Bacillus thuringiensis - chemistry
Bacillus thuringiensis Toxins
Bacteria
Bacterial proteins
Bacterial Proteins - metabolism
Bacterial Toxins - metabolism
Binding sites
Bombyx - chemistry
Bombyx mori
Cells
Chemical synthesis
Chlorophyllides - metabolism
Chromatography, High Pressure Liquid
Circular Dichroism
Electrophoresis, Polyacrylamide Gel
Endotoxins - metabolism
Escherichia coli
Gastric Mucosa - chemistry
Hemolysin Proteins - metabolism
Invertebrate Microbiology
Luminescent Proteins - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
Microbiology
Molecular Sequence Data
Multiprotein Complexes - metabolism
Red Fluorescent Protein
Saccharomyces cerevisiae
Serratia marcescens
Temperature
Title Bombyx mori Midgut Membrane Protein P252, Which Binds to Bacillus thuringiensis Cry1A, Is a Chlorophyllide-Binding Protein, and the Resulting Complex Has Antimicrobial Activity
URI http://aem.asm.org/content/74/5/1324.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18192432
https://www.proquest.com/docview/205985382
https://search.proquest.com/docview/19804112
https://pubmed.ncbi.nlm.nih.gov/PMC2258650
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXWSQh4QFA-lm2AH-CtaRM3SZPHttpUkIIqoGJvlr-6WsrH1KTS-q_4ibtO4tEinnirZDtKde61z1HuPUbok4y4IEko3SRcMzdYrz034Sxxo0hKEkkR8rXpHU6_RYtV8PUmvDlBoe2FaYr2BdfDIsuHhd40tZV3uRjZOrHRMp1DDMbALEY91IMAtRLdNkN6UWytJ815ZavdSTyaXqVD0zsNArq5fM-YgQVjcnQk9dasPDAL_hfx_Lt-8uBAun6JXnRMEk_bN36FTlTRR0_auyX3ffTUthxXffT8wHXwNfo9K3O-v8d5udU41fJ2V-NU5SCbC4WXxrdBF3hJQjLAvzZabPAMdHuF6xLPmNBZtoPfm6a7UZvq9wrPt3t_OsBfKszwfJOV2xKwyzItlWuWwkT72AFmhYTVCn9XlSllhCGzI2XqHi9YhadFrXPdeEOZvybaqy3eoNX11c_5wu0ubnBFkHg1MPYkFEx4E85VJBiQID-OuB9ITyjBkjAGXgCJD2xFsAn3JR9HnEfJmI1hb2YxGb9Fp0VZqDOEDR9KQsUAJxkA2YEHepIxUJkeESAVHfTZYkfvWn8O2ugaElOAmzZwU2_ioDMAlrJb2Drp6gcxH2xBzQGZ9R10btGmrMopUzmdBDSkINQDB11Y_GmX3RUlwEmB5sTEQR8fRyEtzbcWgKrcVdRPjLGTDzPetbHy5-26qHPQ5CiKHicYw-_jEciDxvi7i_vz_155gZ619S6mhu4SndbbnXoPpKrmH5okegB1th9_
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLW2ITR4mKAwlg2YH-CtaRM3SZPHttrUwTJVsIq9Wf7qaikfU5NK67_iJ-7abUaLeOKtku0o1bnXPke59xihLzLigiShdJNwxtxgNvPchLPEjSIpSSRFyGemdzi9icbT4NtdeLeHwqYXxhbtC647RZZ3Cj23tZUPueg2dWLdSTqCGIyBWXT30QvIVy9oRHrTDulFcWM-aU6spt6dxN3BRdox3dMgoe31e8YOLOiRnUNpf8bKLbvgf1HPvysot46kyzfoaMMl8WD9zm_Rnipa6OX6dslVCx02TcdVC73e8h18h34Py5yvHnFeLjROtbxf1jhVOQjnQuGJcW7QBZ6QkLTxr7kWczwE5V7husRDJnSWLeH33PY3alP_XuHRYuUP2viqwgyP5lm5KAG9LNNSuWYpTGwe28askLBa4R-qMsWMMGT2pEw94jGr8KCoda6tO5T5a2J9ucV7NL28uB2N3c3VDa4IEq8Gzp6Eggmvz7mKBAMa5McR9wPpCSVYEsbADCD1ga8I1ue-5L2I8yjpsR7sziwmvWN0UJSFOkHYMKIkVAxwkgHQHXigJxkDnekRAWLRQV8b7OjD2qGDWmVDYgpwUws39foOOgFgKbuHzZNOfxLzyRb0HNBZ30GnDdqUVTllKqf9gIYUpHrgoLMGf7rJ74oSYKVAdGLioPPnUUhM87UFoCqXFfUTY-3kw4wP61j583abqHNQfyeKnicYy-_dEcgEa_29ifzT_155jg7Ht-k1vb66-X6GXtnqF9tZ-REd1Iul-gQUq-afbUI9AbmnItQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF7RIl4HBKFQt0D3ALc4tje2Yx-T0CgFUkVARG-rfblZyY8odqTmX_ETmbXjkiBO3CztQ7ZmZvf75JlvEPogQy5IHEg7DhJm-0ni2jFnsR2GUpJQioAnpnZ4dh1OF_7nm-Bmr9VXnbQvuO7ladbL9bLOrVxlwmnzxJz5bAw-GAGycFYycY7QQ4hZN2yJelsS6YZRK0Bpbq02551EzvBy1jMV1ECj6xZ8RhLM75ODi-koYcWeZPC_4OffWZR719LkBXq-w5N42Lz3S_RA5R30qOkwue2gJ23hcdlBz_a0B1-hX6Mi49s7nBVrjWda3m4qPFMZkOdc4blRb9A5npOAdPHPpRZLPAL2XuKqwCMmdJpu4HlZ1zhqkwNf4vF66w27-KrEDI-XabEuwIJpqqWyzVKY2G7bxSyXsFrhb6o0CY0wZM6lVN3hKSvxMK90pmuFKPNpomlwcYIWk8sf46m9a99gCz92K8DtcSCYcAecq1AwgEJeFHLPl65QgsVBBOgAwh8wi2AD7kneDzkP4z7rwwnNItJ_jY7zIlenCBtUFAeKgZ2kD5AHNnQlY8A1XSKAMFroY2s7umpUOmjNbkhEwdy0Njd1BxY6BcNSdgsHKF18J-a3LXA6gLSehc5aa1NWZpSpjA58GlCg676Fzlv7012Ml5QAMgWwExELXdyPQnCaPy5gqmJTUi828k4ezHjT-Mqft9t5nYUGB150P8HIfh-OQDTU8t877z_775UX6PH804R-vbr-co6eNgkwJqnuLTqu1hv1DlBWxd_X8fQb6Mgj6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bombyx+mori+Midgut+Membrane+Protein+P252%2C+Which+Binds+to+Bacillus+thuringiensis+Cry1A%2C+Is+a+Chlorophyllide-Binding+Protein%2C+and+the+Resulting+Complex+Has+Antimicrobial+Activity&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Pandian%2C+Ganesh+N&rft.au=Ishikawa%2C+Toshiki&rft.au=Togashi%2C+Makoto&rft.au=Shitomi%2C+Yasuyuki&rft.date=2008-03-01&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=74&rft.issue=5&rft.spage=1324&rft.epage=1331&rft_id=info:doi/10.1128%2FAEM.01901-07&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon