CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr

Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of...

Full description

Saved in:
Bibliographic Details
Published inPesticide Biochemistry and Physiology Vol. 160; pp. 119 - 126
Main Authors Smith, Letícia B., Sears, Colin, Sun, Haina, Mertz, Robert W., Kasai, Shinji, Scott, Jeffrey G.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0048-3575
1095-9939
1095-9939
DOI10.1016/j.pestbp.2019.07.011

Cover

Loading…
Abstract Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent. [Display omitted] •CYP plus kdr mediated resistance confers greater than additive pyrethroid resistance.•CYPs alone provide a lower protection against pyrethroid insecticides than kdr.•CYPs confer cross- and negative cross-resistance to organophosphates.
AbstractList Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent.
Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent. [Display omitted] •CYP plus kdr mediated resistance confers greater than additive pyrethroid resistance.•CYPs alone provide a lower protection against pyrethroid insecticides than kdr.•CYPs confer cross- and negative cross-resistance to organophosphates.
Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent.Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent.
Author Sears, Colin
Sun, Haina
Scott, Jeffrey G.
Smith, Letícia B.
Kasai, Shinji
Mertz, Robert W.
Author_xml – sequence: 1
  givenname: Letícia B.
  surname: Smith
  fullname: Smith, Letícia B.
  organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
– sequence: 2
  givenname: Colin
  surname: Sears
  fullname: Sears, Colin
  organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
– sequence: 3
  givenname: Haina
  surname: Sun
  fullname: Sun, Haina
  organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
– sequence: 4
  givenname: Robert W.
  surname: Mertz
  fullname: Mertz, Robert W.
  organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
– sequence: 5
  givenname: Shinji
  surname: Kasai
  fullname: Kasai, Shinji
  organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
– sequence: 6
  givenname: Jeffrey G.
  surname: Scott
  fullname: Scott, Jeffrey G.
  email: jgs5@cornell.edu
  organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA
BackLink https://cir.nii.ac.jp/crid/1871709542661931392$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/31519246$$D View this record in MEDLINE/PubMed
BookMark eNqFksFrFDEUxoNU7Lb6H4jMwYOXWV8ySWbjQSiLrUJBD3rwFDLJm27W3cmYZAt79w8302lFPNhL8nj8vi_wfTkjJ0MYkJCXFJYUqHy7XY6YcjcuGVC1hHYJlD4hCwpK1Eo16oQsAPiqbkQrTslZSlsAUBzUM3LaUEEV43JBfq2_f6n36LzJ6KqIyadsBouVGVxlY0ip_muZQzUeI-ZNDN6lOybEGzOEcRPSuCkeqfJDdYGuDAZvjmP20yJvsBqLDz44m26eQ1_9cPE5edqbXcIX9_c5-Xb54ev6Y339-erT-uK6tlxBriUKyiwYgwqEaJiU3LJWuL4TApg0UgnDeW9623Y9SmZpz6wEaaxwkne0OSdvZt8xhp-Hkp7e-2RxtzMDhkPSrAHBWMlr9TjKFKwaQYUs6Kt79NCVJPUY_d7Eo34IuQB8Bu7yjNj_QSjoqUu91XOXeupSQ6tLl0X27h-Z9dlkH4Ycjd89Jn49iwfvi2466aqlbfkdvARHVUMbxQr2fsawxH7rMepk_dSM8xFt1i74_7_zG8IkyB0
CitedBy_id crossref_primary_10_1146_annurev_ento_070621_061328
crossref_primary_10_1371_journal_pntd_0009871
crossref_primary_10_1371_journal_pone_0243992
crossref_primary_10_1002_ps_7252
crossref_primary_10_1016_j_ibmb_2021_103709
crossref_primary_10_1111_mec_15430
crossref_primary_10_1371_journal_pntd_0009271
crossref_primary_10_3390_insects12040276
crossref_primary_10_3390_insects15110863
crossref_primary_10_1371_journal_pone_0309201
crossref_primary_10_1111_1744_7917_13269
crossref_primary_10_1590_0074_02760200313
crossref_primary_10_1186_s13071_021_04997_8
crossref_primary_10_3390_jof10110757
crossref_primary_10_1021_acs_jafc_3c03617
crossref_primary_10_3390_agriculture12010053
crossref_primary_10_1002_ps_8625
crossref_primary_10_1002_ps_6369
crossref_primary_10_1093_g3journal_jkac242
crossref_primary_10_1371_journal_pntd_0009833
crossref_primary_10_1002_biof_1996
crossref_primary_10_1016_j_pestbp_2020_104666
crossref_primary_10_1186_s13071_021_04627_3
crossref_primary_10_1371_journal_pntd_0010355
crossref_primary_10_3389_fphys_2021_802584
crossref_primary_10_1002_ps_8495
crossref_primary_10_1111_eva_13269
crossref_primary_10_1186_s13071_021_04665_x
crossref_primary_10_1016_j_aquatox_2021_105980
crossref_primary_10_1093_jee_toad143
crossref_primary_10_3390_genes12060828
crossref_primary_10_1007_s10340_021_01389_w
crossref_primary_10_1016_j_arabjc_2022_104365
crossref_primary_10_1016_j_actatropica_2024_107413
crossref_primary_10_1038_s41598_023_36926_3
crossref_primary_10_1093_jme_tjab179
crossref_primary_10_1002_ps_5944
crossref_primary_10_1016_j_neuro_2021_05_011
crossref_primary_10_1016_j_crpvbd_2021_100041
crossref_primary_10_1371_journal_pntd_0009549
crossref_primary_10_1002_ps_5763
crossref_primary_10_1002_ps_8316
crossref_primary_10_1016_j_pestbp_2023_105422
Cites_doi 10.1371/journal.pone.0039439
10.1016/j.ijid.2017.11.026
10.1016/j.pestbp.2014.12.018
10.1371/journal.pntd.0006933
10.1073/pnas.1305118110
10.1371/journal.pntd.0006544
10.1021/jf60222a059
10.1371/journal.pntd.0001595
10.1111/j.1365-2583.2010.01030.x
10.1371/journal.pntd.0003085
10.1186/s41182-018-0134-5
10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S
10.1603/ME13237
10.1603/ME10152
10.1038/nature12060
10.1126/science.aar3780
10.1002/ps.4771
10.1126/science.1191864
10.1126/science.350.6264.1012
10.1093/jee/18.2.265a
10.1371/journal.pntd.0005526
10.1016/0006-2952(67)90182-7
10.1016/j.ibmb.2010.09.005
10.1098/rstb.2012.0429
10.1006/pest.1996.0044
10.1371/journal.pntd.0002948
10.1186/1471-2164-10-494
10.1371/journal.pone.0189680
10.1371/journal.pntd.0005799
10.1006/pest.2001.2547
10.1016/j.ygeno.2015.11.004
10.1002/arch.20248
10.1016/j.ibmb.2011.02.003
10.1111/j.1420-9101.2008.01661.x
10.1186/s40249-017-0254-x
10.1186/s13071-015-0933-z
10.1006/pest.1995.1036
10.1016/j.pestbp.2016.03.005
10.1603/ME13228
10.1002/ps.4916
10.1186/s13071-018-3113-0
10.1016/j.pestbp.2007.06.006
10.1056/NEJMoa0805715
10.1016/j.actatropica.2018.07.004
10.1186/s13059-014-0466-3
10.1111/imb.12073
10.1016/j.pestbp.2009.07.010
10.1002/ps.2780170302
10.1371/journal.pntd.0005625
10.1093/jmedent/43.6.1185
10.1186/s13071-017-2408-x
10.1584/jpestics.3.35
10.1186/s40249-017-0316-0
10.1186/s13071-017-2096-6
10.1093/jee/58.3.500
10.1093/jme/tjx143
10.1016/j.ibmb.2007.09.007
10.1016/j.ibmb.2004.03.018
10.1111/imb.12267
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.pestbp.2019.07.011
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Agriculture
EISSN 1095-9939
EndPage 126
ExternalDocumentID 31519246
10_1016_j_pestbp_2019_07_011
S0048357519304158
Genre Journal Article
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYJJ
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
CBWCG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
KOM
LG5
LW8
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
UHS
UNMZH
WH7
WUQ
XOL
XPP
ZMT
ZU3
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AFJKZ
AGQPQ
AIGII
BNPGV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c490t-6e512c0aae905532664c275dfb55026a695a44fafc7bfe62c1f2c606ac5d64b13
IEDL.DBID .~1
ISSN 0048-3575
1095-9939
IngestDate Fri Jul 11 09:22:18 EDT 2025
Fri Jul 11 01:58:06 EDT 2025
Wed Feb 19 02:31:32 EST 2025
Thu Apr 24 23:12:27 EDT 2025
Tue Jul 01 00:49:29 EDT 2025
Thu Jun 26 23:10:29 EDT 2025
Fri Feb 23 02:31:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pyrethroid
Aedes aegypti
Insecticide resistance
Organophosphate
Cross-resistance
Cytochrome P450 monooxygenase
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-6e512c0aae905532664c275dfb55026a695a44fafc7bfe62c1f2c606ac5d64b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31519246
PQID 2290835156
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2305225758
proquest_miscellaneous_2290835156
pubmed_primary_31519246
crossref_primary_10_1016_j_pestbp_2019_07_011
crossref_citationtrail_10_1016_j_pestbp_2019_07_011
nii_cinii_1871709542661931392
elsevier_sciencedirect_doi_10_1016_j_pestbp_2019_07_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-01
2019-10-00
2019-Oct
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Pesticide Biochemistry and Physiology
PublicationTitleAlternate Pestic Biochem Physiol
PublicationYear 2019
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Estep, Sanscrainte, Waits, Louton, Becnel (bb0070) 2017; 54
Leta, Beyene, De Clercq, Amenu, Revie, Kraemer (bb0175) 2018; 67
Goindin, Delannay, Gelasse, Ramdini, Gaude, Faucon, David, Gustave, Vega-Rua, Fouque (bb0100) 2017; 6
Stevenson, Bibby, Pignatelli, Muangnoicharoen, O'Neill, Lian, Müller, Nikou, Steven, Hemingway, Sutcliffe, Paine (bb0305) 2011; 41
Faucon, Gaude, Dusfour, Navratil, Corbel, Juntarajumnong, Girod, Poupardin, Boyer, Reynaud, David (bb0080) 2017; 11
WHO (bb0330) 2014; vol. 1
Estep, Sanscrainte, Waits, Bernard, Lloyd, Lucas, Buckner, Vaidyanathan, Morreale, Conti (bb0075) 2018; 12
Moyes, Vontas, Martins, Ng, Koou, Dusfour, Raghavendra, Pinto, Corbel, David, Weetman (bb0220) 2017; 11
Miyamoto, Mikami, Mihara, Takimoto, Kohda, Suzuki (bb0215) 1978; 3
WHO (bb0325) 2011; 2018
Nakatsugawa, Dahm (bb0225) 1965; 58
Nakatsugawa, Dahm (bb0230) 1967; 16
Hu, Du, Nomura, Dong (bb0145) 2011; 41
Francis, Saavedra-Rodriguez, Perera, Paine, Black, Delgoda (bb0095) 2017; 12
Scott, Warren, Beukeboom, Bopp, Clark, Giers, Hediger, Jones, Kasai, Leichter, Li, Meisel, Minx, Murphy, Nelson, Reid, Rinkevich, Robertson, Sackton, Sattelle, Thibaud-Nissen, Tomlinson, van de Zande, Walden, Wilson, Liu (bb0260) 2014; 15
Smith, Kasai, Scott (bb0280) 2016; 133
Liu, Scott (bb0185) 1995; 52
Li, Kaufman, Xue, Zhao, Wang, Yan, Guo, Zhang, Dong, Xing, Zhang, Zhao (bb0180) 2015; 8
Paiva, Lovin, Mori, Melo-Santos, Severson, Ayres (bb0235) 2016; 107
Hamid, Prastowo, Ghiffari, Taubert, Hermosilla (bb0110) 2017; 12
Gould, Brown, Kuzma (bb0105) 2018; 360
Zhang, Scott (bb0335) 1996; 55
Hardstone, Scott (bb0115) 2010; 97
Lopez-Monroy, Gutierrez-Rodriguez, Villanueva-Segura, Ponce-Garcia, Morales-Forcada, Alvarez, Flores (bb0195) 2018; 74
Marcombe, Poupardin, Darriet, Reynaud, Bonnet, Strode, Brengues, Yébakima, Ranson, Corbel, David (bb0200) 2009; 10
Kamgang, Yougang, Tchoupo, Riveron, Wondji (bb0150) 2017; 10
David, Ismail, Chandor-Proust, Paine (bb0050) 2013; 368
Fernando, Hapugoda, Perera, Saavedra-Rodriguez, Black, De Silva (bb0085) 2018; 11
Hirata, Komagata, Itokawa, Yamamoto, Tomita, Kasai (bb0140) 2014; 8
Saavedra-Rodriguez, Strode, Flores, Garcia-Luna, Reyes-Solis, Ranson, Hemingway, Black (bb0250) 2014; 23
Arensburger, Megy, Waterhouse, Abrudan, Amedeo, Antelo, Bartholomay, Bidwell, Caler, Camara, Campbell, Campbell, Casola, Castro, Chandramouliswaran, Chapman, Christley, Costas, Eisenstadt, Feschotte, Fraser-Liggett, Guigo, Haas, Hammond, Hansson, Hemingway, Hill, Howarth, Ignell, Kennedy, Kodira, Lobo, Mao, Mayhew, Michel, Mori, Liu, Naveira, Nene, Nguyen, Pearson, Pritham, Puiu, Qi, Ranson, Ribeiro, Roberston, Severson, Shumway, Stanke, Strausberg, Sun, Sutton, Tu, Tubio, Unger, Vanlandingham, Vilella, White, White, Wondji, Wortman, Zdobnov, Birren, Christensen, Collins, Cornel, Dimopoulos, Hannick, Higgs, Lanzaro, Lawson, Lee, Muskavitch, Raikhel, Atkinson (bb0020) 2010; 330
Finney (bb0090) 1971
Angelini, Finarelli, Angelini, Po, Petropulacos, Macini, Fiorentini, Fortuna, Venturi, Romi, Majori, Nicoletti, Rezza, Cassone (bb0015) 2007; 12
Bisset, Rodriguez, Fernandez (bb0040) 2006; 43
Kasai, Sun, Scott (bb0165) 2017; 26
Kuno (bb0170) 2010; 47
Du, Nomura, Satar, Hu, Nauen, He, Zhorov, Dong (bb0055) 2013; 110
Hardstone, Leichter, Harrington, Kasai, Tomita, Scott (bb0120) 2007; 89
Hardstone, Komagata, Kasai, Tomita, Scott (bb0130) 2010; 19
Kasai, Komagata, Itokawa, Shono, Ng, Kobayashi, Tomita (bb0160) 2014; 8
Enserink (bb0065) 2015; 350
Seixas, Grigoraki, Weetman, Vicente, Silva, Pinto, Vontas, Sousa (bb0270) 2017; 11
Rodriguez, Hurtado, Severson, Bisset (bb0245) 2014; 51
Matsumura (bb0210) 1985
Liu, Yue (bb0190) 2001; 70
Mathias, Baraka, Philbert, Innocent, Francis, Nkwengulila, Kweka (bb0205) 2017; 6
Shono, Ohsawa, Casida (bb0275) 1979; 27
Stevenson, Pignatelli, Nikou, Paine (bb0310) 2012; 6
Smith, Kasai, Scott (bb0285) 2017; 74
Strode, Wondji, David, Hawkes, Lumjuan, Nelson, Drane, Karunaratne, Hemingway, Black, Ranson (bb0315) 2008; 38
Duffy, Chen, Hancock, Powers, Kool, Lanciotti, Pretrick, Marfel, Holzbauer, Dubray, Guillaumot, Griggs, Bel, Lambert, Laven, Kosoy, Panella, Biggerstaff, Fischer, Hayes (bb0060) 2009; 360
Strode, de Melo-Santos, Magalhaes, Araujo, Ayres (bb0320) 2012; 7
Bharati, Saha (bb0030) 2018; 187
Abbott (bb0005) 1925; 18
Boonsuepsakul, Luepromchai, Rongnoparut (bb0045) 2008; 69
Hardstone, Leichter, Scott (bb0125) 2008; 22
Sombié, Saiki, Yaméogo, Sakurai, Shirozu, Fukumoto, Sanon, Weetman, McCall, Kanuka, Badolo (bb0300) 2019; 47
Scott, Georghiou (bb0255) 1986; 17
Kasai, Weerashinghe, Shono (bb0155) 1998; 37
Bariami, Jones, Poupardin, Vontas, Ranson (bb0025) 2012; 69
Reid, Thornton, Pridgeon, Becnel, Tang, Estep, Clark, Allan, Liu (bb0240) 2014; 51
Bhatt, Gething, Brady, Messina, Farlow, Moyes, Drake, Brownstein, Hoen, Sankoh, Myers, George, Jaenisch, Wint, Simmons, Scott, Farrar, Hay (bb0035) 2013; 496
Smith, Tyagi, Kasai, Scott (bb0290) 2018; 12
Soderlund, Sanborn, Lee (bb0295) 1983; 3
Scott, Yoshimizu, Kasai (bb0265) 2015; 120
Al Nazawi, Aqili, Alzahrani, McCall, Weetman (bb0010) 2017; 10
Hemingway, Hawkes, McCarroll, Ranson (bb0135) 2004; 34
Goindin (10.1016/j.pestbp.2019.07.011_bb0100) 2017; 6
Bisset (10.1016/j.pestbp.2019.07.011_bb0040) 2006; 43
Kasai (10.1016/j.pestbp.2019.07.011_bb0160) 2014; 8
Leta (10.1016/j.pestbp.2019.07.011_bb0175) 2018; 67
Paiva (10.1016/j.pestbp.2019.07.011_bb0235) 2016; 107
Bariami (10.1016/j.pestbp.2019.07.011_bb0025) 2012; 69
Rodriguez (10.1016/j.pestbp.2019.07.011_bb0245) 2014; 51
Abbott (10.1016/j.pestbp.2019.07.011_bb0005) 1925; 18
Li (10.1016/j.pestbp.2019.07.011_bb0180) 2015; 8
Francis (10.1016/j.pestbp.2019.07.011_bb0095) 2017; 12
Gould (10.1016/j.pestbp.2019.07.011_bb0105) 2018; 360
Sombié (10.1016/j.pestbp.2019.07.011_bb0300) 2019; 47
David (10.1016/j.pestbp.2019.07.011_bb0050) 2013; 368
Nakatsugawa (10.1016/j.pestbp.2019.07.011_bb0225) 1965; 58
Enserink (10.1016/j.pestbp.2019.07.011_bb0065) 2015; 350
Strode (10.1016/j.pestbp.2019.07.011_bb0320) 2012; 7
Reid (10.1016/j.pestbp.2019.07.011_bb0240) 2014; 51
Saavedra-Rodriguez (10.1016/j.pestbp.2019.07.011_bb0250) 2014; 23
Faucon (10.1016/j.pestbp.2019.07.011_bb0080) 2017; 11
Scott (10.1016/j.pestbp.2019.07.011_bb0260) 2014; 15
Estep (10.1016/j.pestbp.2019.07.011_bb0070) 2017; 54
Duffy (10.1016/j.pestbp.2019.07.011_bb0060) 2009; 360
Al Nazawi (10.1016/j.pestbp.2019.07.011_bb0010) 2017; 10
Fernando (10.1016/j.pestbp.2019.07.011_bb0085) 2018; 11
Hemingway (10.1016/j.pestbp.2019.07.011_bb0135) 2004; 34
Bhatt (10.1016/j.pestbp.2019.07.011_bb0035) 2013; 496
Marcombe (10.1016/j.pestbp.2019.07.011_bb0200) 2009; 10
Smith (10.1016/j.pestbp.2019.07.011_bb0285) 2017; 74
Scott (10.1016/j.pestbp.2019.07.011_bb0255) 1986; 17
Hardstone (10.1016/j.pestbp.2019.07.011_bb0115) 2010; 97
Hardstone (10.1016/j.pestbp.2019.07.011_bb0125) 2008; 22
Stevenson (10.1016/j.pestbp.2019.07.011_bb0310) 2012; 6
Liu (10.1016/j.pestbp.2019.07.011_bb0185) 1995; 52
Strode (10.1016/j.pestbp.2019.07.011_bb0315) 2008; 38
WHO (10.1016/j.pestbp.2019.07.011_bb0330) 2014; vol. 1
Zhang (10.1016/j.pestbp.2019.07.011_bb0335) 1996; 55
Hardstone (10.1016/j.pestbp.2019.07.011_bb0120) 2007; 89
Du (10.1016/j.pestbp.2019.07.011_bb0055) 2013; 110
Kamgang (10.1016/j.pestbp.2019.07.011_bb0150) 2017; 10
Kuno (10.1016/j.pestbp.2019.07.011_bb0170) 2010; 47
Mathias (10.1016/j.pestbp.2019.07.011_bb0205) 2017; 6
Angelini (10.1016/j.pestbp.2019.07.011_bb0015) 2007; 12
Hu (10.1016/j.pestbp.2019.07.011_bb0145) 2011; 41
Nakatsugawa (10.1016/j.pestbp.2019.07.011_bb0230) 1967; 16
Scott (10.1016/j.pestbp.2019.07.011_bb0265) 2015; 120
Kasai (10.1016/j.pestbp.2019.07.011_bb0155) 1998; 37
WHO (10.1016/j.pestbp.2019.07.011_bb0325) 2011; 2018
Seixas (10.1016/j.pestbp.2019.07.011_bb0270) 2017; 11
Boonsuepsakul (10.1016/j.pestbp.2019.07.011_bb0045) 2008; 69
Kasai (10.1016/j.pestbp.2019.07.011_bb0165) 2017; 26
Moyes (10.1016/j.pestbp.2019.07.011_bb0220) 2017; 11
Smith (10.1016/j.pestbp.2019.07.011_bb0280) 2016; 133
Soderlund (10.1016/j.pestbp.2019.07.011_bb0295) 1983; 3
Stevenson (10.1016/j.pestbp.2019.07.011_bb0305) 2011; 41
Estep (10.1016/j.pestbp.2019.07.011_bb0075) 2018; 12
Hardstone (10.1016/j.pestbp.2019.07.011_bb0130) 2010; 19
Liu (10.1016/j.pestbp.2019.07.011_bb0190) 2001; 70
Hamid (10.1016/j.pestbp.2019.07.011_bb0110) 2017; 12
Bharati (10.1016/j.pestbp.2019.07.011_bb0030) 2018; 187
Lopez-Monroy (10.1016/j.pestbp.2019.07.011_bb0195) 2018; 74
Miyamoto (10.1016/j.pestbp.2019.07.011_bb0215) 1978; 3
Arensburger (10.1016/j.pestbp.2019.07.011_bb0020) 2010; 330
Matsumura (10.1016/j.pestbp.2019.07.011_bb0210) 1985
Smith (10.1016/j.pestbp.2019.07.011_bb0290) 2018; 12
Shono (10.1016/j.pestbp.2019.07.011_bb0275) 1979; 27
Hirata (10.1016/j.pestbp.2019.07.011_bb0140) 2014; 8
Finney (10.1016/j.pestbp.2019.07.011_bb0090) 1971
References_xml – volume: 41
  start-page: 9
  year: 2011
  end-page: 13
  ident: bb0145
  article-title: A sodium channel mutation identified in
  publication-title: Insect Biochem. Mol. Biol.
– volume: 51
  start-page: 605
  year: 2014
  end-page: 615
  ident: bb0240
  article-title: Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of
  publication-title: J. Med. Entomol.
– volume: 58
  start-page: 500
  year: 1965
  end-page: 509
  ident: bb0225
  article-title: Parathion activation enzymes in the fat body microsomes of the American cockroach
  publication-title: J. Econ. Entomol.
– volume: 6
  year: 2012
  ident: bb0310
  article-title: Pinpointing P450s associated with pyrethroid metabolism in the dengue vector,
  publication-title: PLoS Neglect. Trop. D
– volume: 69
  start-page: 13
  year: 2008
  end-page: 21
  ident: bb0045
  article-title: Characterization of
  publication-title: Arch. Insect Biochem. Physiol.
– year: 1971
  ident: bb0090
  article-title: Probit Analysis
– volume: 15
  start-page: 466
  year: 2014
  ident: bb0260
  article-title: Genome of the house fly (
  publication-title: Genome Biol.
– volume: 11
  year: 2018
  ident: bb0085
  article-title: First report of V1016G and S989P knockdown resistant (
  publication-title: Parasite Vector
– volume: 37
  start-page: 47
  year: 1998
  end-page: 56
  ident: bb0155
  article-title: P450 monooxygenases are an important mechanism of permethrin resistance in
  publication-title: Arch. Insect Biochem. Physiol.
– volume: 23
  start-page: 199
  year: 2014
  end-page: 215
  ident: bb0250
  article-title: Differential transcription profiles in
  publication-title: Insect Mol. Biol.
– volume: 330
  start-page: 86
  year: 2010
  end-page: 88
  ident: bb0020
  article-title: Sequencing of
  publication-title: Science
– volume: 38
  start-page: 113
  year: 2008
  end-page: 123
  ident: bb0315
  article-title: Genomic analysis of detoxification genes in the mosquito
  publication-title: Insect Biochem. Mol. Biol.
– volume: 12
  year: 2017
  ident: bb0095
  article-title: Insecticide resistance to permethrin and malathion and associated mechanisms in
  publication-title: PLoS One
– volume: 69
  year: 2012
  ident: bb0025
  article-title: Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector,
  publication-title: PLoS Neglect. Trop. Dis.
– volume: 54
  start-page: 1643
  year: 2017
  end-page: 1648
  ident: bb0070
  article-title: Resistance status and resistance mechanisms in a strain of
  publication-title: J. Med. Entomol.
– volume: 47
  start-page: 2
  year: 2019
  ident: bb0300
  article-title: High frequencies of F1534C and V1016I
  publication-title: Trop. Med. Health
– volume: 52
  start-page: 116
  year: 1995
  end-page: 124
  ident: bb0185
  article-title: Genetics of resistance to pyrethroid insecticides in the house fly,
  publication-title: Pestic. Biochem. Physiol.
– volume: 19
  start-page: 717
  year: 2010
  end-page: 726
  ident: bb0130
  article-title: Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in
  publication-title: Insect Mol. Biol.
– volume: 11
  year: 2017
  ident: bb0080
  article-title: In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito
  publication-title: PLoS Negl. Trop. Dis.
– volume: 51
  start-page: 1213
  year: 2014
  end-page: 1219
  ident: bb0245
  article-title: Inheritance of resistance to deltamethrin in
  publication-title: J. Med. Entomol.
– volume: 74
  start-page: 2176
  year: 2018
  end-page: 2184
  ident: bb0195
  article-title: Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of
  publication-title: Pest Manag. Sci.
– volume: 55
  start-page: 150
  year: 1996
  end-page: 156
  ident: bb0335
  article-title: Cytochrome b
  publication-title: Pestic. Biochem. Physiol.
– volume: vol. 1
  year: 2014
  ident: bb0330
  article-title: A Global Brief on Vector-Borne Diseases, Vol. WHO/DCO/WHD/2014
– volume: 10
  year: 2017
  ident: bb0150
  article-title: Temporal distribution and insecticide resistance profile of two major arbovirus vectors
  publication-title: Parasite Vector
– volume: 107
  start-page: 40
  year: 2016
  end-page: 48
  ident: bb0235
  article-title: Identification of a major quantitative trait locus determining resistance to the organophosphate temephos in the dengue vector mosquito
  publication-title: Genomics
– volume: 360
  start-page: 2536
  year: 2009
  end-page: 2543
  ident: bb0060
  article-title: Zika virus outbreak on Yap Island, Federated States of Micronesia
  publication-title: N. Engl. J. Med.
– volume: 3
  start-page: 35
  year: 1978
  end-page: 41
  ident: bb0215
  article-title: Biological activity of fenitrothion and ists degradation products
  publication-title: J. Pestic. Sci.
– volume: 10
  year: 2017
  ident: bb0010
  article-title: Combined target site (
  publication-title: Parasite Vector
– volume: 12
  year: 2018
  ident: bb0075
  article-title: Quantification of permethrin resistance and kdr alleles in Florida strains of
  publication-title: PLoS Neglect. Trop. D
– volume: 120
  start-page: 68
  year: 2015
  end-page: 76
  ident: bb0265
  article-title: Pyrethroid resistance in
  publication-title: Pestic. Biochem. Physiol.
– volume: 360
  start-page: 728
  year: 2018
  end-page: 732
  ident: bb0105
  article-title: Wicked evolution: can we address the sociobiological dilemma of pesticide resistance?
  publication-title: Science
– volume: 11
  year: 2017
  ident: bb0220
  article-title: Contemporary status of insecticide resistance in the major
  publication-title: PLoS Neglect. Trop. D
– volume: 2018
  year: 2011
  ident: bb0325
  article-title: Global insecticide use for vector-borne disease control: A 10-year assessment [2000-2009]
– volume: 47
  start-page: 957
  year: 2010
  end-page: 971
  ident: bb0170
  article-title: Early history of laboratory breeding of
  publication-title: J. Med. Entomol.
– volume: 12
  year: 2017
  ident: bb0110
  article-title: resistance development to commonly used insecticides in Jakarta, Indonesia
  publication-title: PLoS One
– volume: 6
  start-page: 102
  year: 2017
  ident: bb0205
  article-title: Habitat productivity and pyrethroid susceptibility status of
  publication-title: Infect. Dis. Poverty
– volume: 12
  year: 2007
  ident: bb0015
  article-title: An outbreak of chikungunya fever in the province of Ravenna, Italy
  publication-title: Euro Surveill.
– volume: 8
  year: 2014
  ident: bb0140
  article-title: A single crossing-over event in voltage-sensitive Na
  publication-title: PLoS Negl. Trop. Dis.
– volume: 67
  start-page: 25
  year: 2018
  end-page: 35
  ident: bb0175
  article-title: Global risk mapping for major diseases transmitted by
  publication-title: Int. J. Infect. Dis.
– volume: 16
  start-page: 25
  year: 1967
  end-page: 38
  ident: bb0230
  article-title: Microsomal metabolism of parathion
  publication-title: Biochem. Pharmacol.
– volume: 3
  start-page: 401
  year: 1983
  end-page: 435
  ident: bb0295
  article-title: Metabolism of pyrethrins and pyrethroids in insects
  publication-title: Prog. Pestic. Biochem. Toxicol.
– volume: 97
  start-page: 123
  year: 2010
  end-page: 128
  ident: bb0115
  article-title: A review of the interactions between multiple insecticide resistance loci
  publication-title: Pestic. Biochem. Physiol.
– volume: 18
  start-page: 265
  year: 1925
  end-page: 267
  ident: bb0005
  article-title: A method of computing the effectiveness of an insecticide
  publication-title: J. Econ. Entomol.
– volume: 187
  start-page: 78
  year: 2018
  end-page: 86
  ident: bb0030
  article-title: Assessment of insecticide resistance in primary dengue vector,
  publication-title: Acta Trop.
– year: 1985
  ident: bb0210
  article-title: Toxicology of Insecticides
– volume: 133
  start-page: 1
  year: 2016
  end-page: 12
  ident: bb0280
  article-title: Pyrethroid resistance in
  publication-title: Pestic. Biochem. Physiol.
– volume: 17
  start-page: 195
  year: 1986
  end-page: 206
  ident: bb0255
  article-title: Mechanisms responsible for high levels of permethrin resistance in the house fly
  publication-title: Pestic. Sci.
– volume: 368
  year: 2013
  ident: bb0050
  article-title: Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth
  publication-title: Phil. Trans. Royal Soc. London B Biol. Sci.
– volume: 10
  start-page: 494
  year: 2009
  ident: bb0200
  article-title: Exploring the molecular basis of insecticide resistance in the dengue vector
  publication-title: BMC Genomics
– volume: 27
  start-page: 316
  year: 1979
  end-page: 325
  ident: bb0275
  article-title: Metabolism of
  publication-title: J. Agric. Food Chem.
– volume: 22
  start-page: 416
  year: 2008
  end-page: 423
  ident: bb0125
  article-title: Multiplicative interaction between the two major mechanisms of permethrin resistance, cytochrome P450-monooxygenase detoxification and
  publication-title: J. Evol. Biol.
– volume: 43
  start-page: 1185
  year: 2006
  end-page: 1189
  ident: bb0040
  article-title: Selection of insensitive acetylcholinesterase as a resistance mechanism in
  publication-title: J. Med. Entomol.
– volume: 74
  start-page: 737
  year: 2017
  end-page: 745
  ident: bb0285
  article-title: Voltage-sensitive sodium channel mutations S989P+V1016G in
  publication-title: Pest Manag. Sci.
– volume: 496
  start-page: 504
  year: 2013
  end-page: 507
  ident: bb0035
  article-title: The global distribution and burden of dengue
  publication-title: Nature
– volume: 7
  year: 2012
  ident: bb0320
  article-title: Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector,
  publication-title: PLoS One
– volume: 89
  start-page: 175
  year: 2007
  end-page: 184
  ident: bb0120
  article-title: Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito,
  publication-title: Pestic. Biochem. Physiol.
– volume: 70
  start-page: 151
  year: 2001
  end-page: 158
  ident: bb0190
  article-title: Genetics of pyrethroid resistance in a strain (ALHF) of house flies (Diptera: Muscidae)
  publication-title: Pestic. Biochem. Physiol.
– volume: 8
  year: 2014
  ident: bb0160
  article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector,
  publication-title: PLoS Negl. Trop. Dis.
– volume: 6
  start-page: 38
  year: 2017
  ident: bb0100
  article-title: Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in
  publication-title: Infect. Dis. Poverty
– volume: 34
  start-page: 653
  year: 2004
  end-page: 665
  ident: bb0135
  article-title: The molecular basis of insecticide resistance in mosquitoes
  publication-title: Insect Biochem. Mol. Biol.
– volume: 11
  year: 2017
  ident: bb0270
  article-title: Insecticide resistance is mediated by multiple mechanisms in recently introduced
  publication-title: PLOS Neglect Trop. D
– volume: 110
  start-page: 11785
  year: 2013
  end-page: 11790
  ident: bb0055
  article-title: Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 12
  year: 2018
  ident: bb0290
  article-title: CYP-mediated permethrin resistance in
  publication-title: PLoS Negl. Trop. Dis.
– volume: 41
  start-page: 492
  year: 2011
  end-page: 502
  ident: bb0305
  article-title: Cytochrome P450 6M2 from the malaria vector
  publication-title: Insect Biochem. Mol. Biol.
– volume: 350
  start-page: 1012
  year: 2015
  end-page: 1013
  ident: bb0065
  article-title: An obscure mosquito-borne disease goes global
  publication-title: Science
– volume: 26
  start-page: 13
  year: 2017
  end-page: 24
  ident: bb0165
  article-title: Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides
  publication-title: Insect Mol. Biol.
– volume: 8
  start-page: 325
  year: 2015
  ident: bb0180
  article-title: Relationship between insecticide resistance and
  publication-title: Parasit. Vectors
– volume: 7
  year: 2012
  ident: 10.1016/j.pestbp.2019.07.011_bb0320
  article-title: Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039439
– volume: 12
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0095
  article-title: Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica
  publication-title: PLoS One
– volume: 67
  start-page: 25
  year: 2018
  ident: 10.1016/j.pestbp.2019.07.011_bb0175
  article-title: Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2017.11.026
– volume: 120
  start-page: 68
  year: 2015
  ident: 10.1016/j.pestbp.2019.07.011_bb0265
  article-title: Pyrethroid resistance in Culex pipiens mosquitoes
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2014.12.018
– volume: 12
  year: 2018
  ident: 10.1016/j.pestbp.2019.07.011_bb0290
  article-title: CYP-mediated permethrin resistance in Aedes aegypti and evidence for trans-regulation
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006933
– volume: 110
  start-page: 11785
  year: 2013
  ident: 10.1016/j.pestbp.2019.07.011_bb0055
  article-title: Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1305118110
– volume: 12
  year: 2018
  ident: 10.1016/j.pestbp.2019.07.011_bb0075
  article-title: Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse)
  publication-title: PLoS Neglect. Trop. D
  doi: 10.1371/journal.pntd.0006544
– volume: 27
  start-page: 316
  year: 1979
  ident: 10.1016/j.pestbp.2019.07.011_bb0275
  article-title: Metabolism of trans- and cis-permethrin, trans- and cis-cypermethrin, and decamethrin by microsomal enzymes
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf60222a059
– volume: 6
  year: 2012
  ident: 10.1016/j.pestbp.2019.07.011_bb0310
  article-title: Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance
  publication-title: PLoS Neglect. Trop. D
  doi: 10.1371/journal.pntd.0001595
– volume: 19
  start-page: 717
  year: 2010
  ident: 10.1016/j.pestbp.2019.07.011_bb0130
  article-title: Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus
  publication-title: Insect Mol. Biol.
  doi: 10.1111/j.1365-2583.2010.01030.x
– volume: 8
  year: 2014
  ident: 10.1016/j.pestbp.2019.07.011_bb0140
  article-title: A single crossing-over event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0003085
– volume: 3
  start-page: 401
  year: 1983
  ident: 10.1016/j.pestbp.2019.07.011_bb0295
  article-title: Metabolism of pyrethrins and pyrethroids in insects
  publication-title: Prog. Pestic. Biochem. Toxicol.
– volume: 47
  start-page: 2
  year: 2019
  ident: 10.1016/j.pestbp.2019.07.011_bb0300
  article-title: High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso
  publication-title: Trop. Med. Health
  doi: 10.1186/s41182-018-0134-5
– volume: 37
  start-page: 47
  year: 1998
  ident: 10.1016/j.pestbp.2019.07.011_bb0155
  article-title: P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus say larvae
  publication-title: Arch. Insect Biochem. Physiol.
  doi: 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S
– volume: 51
  start-page: 1213
  year: 2014
  ident: 10.1016/j.pestbp.2019.07.011_bb0245
  article-title: Inheritance of resistance to deltamethrin in Aedes aegypti (Diptera: Culicidae) from Cuba
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME13237
– volume: 47
  start-page: 957
  year: 2010
  ident: 10.1016/j.pestbp.2019.07.011_bb0170
  article-title: Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME10152
– year: 1985
  ident: 10.1016/j.pestbp.2019.07.011_bb0210
– year: 1971
  ident: 10.1016/j.pestbp.2019.07.011_bb0090
– volume: 496
  start-page: 504
  year: 2013
  ident: 10.1016/j.pestbp.2019.07.011_bb0035
  article-title: The global distribution and burden of dengue
  publication-title: Nature
  doi: 10.1038/nature12060
– volume: 360
  start-page: 728
  year: 2018
  ident: 10.1016/j.pestbp.2019.07.011_bb0105
  article-title: Wicked evolution: can we address the sociobiological dilemma of pesticide resistance?
  publication-title: Science
  doi: 10.1126/science.aar3780
– volume: 74
  start-page: 737
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0285
  article-title: Voltage-sensitive sodium channel mutations S989P+V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4771
– volume: 330
  start-page: 86
  year: 2010
  ident: 10.1016/j.pestbp.2019.07.011_bb0020
  article-title: Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics
  publication-title: Science
  doi: 10.1126/science.1191864
– volume: 350
  start-page: 1012
  year: 2015
  ident: 10.1016/j.pestbp.2019.07.011_bb0065
  article-title: An obscure mosquito-borne disease goes global
  publication-title: Science
  doi: 10.1126/science.350.6264.1012
– volume: 18
  start-page: 265
  year: 1925
  ident: 10.1016/j.pestbp.2019.07.011_bb0005
  article-title: A method of computing the effectiveness of an insecticide
  publication-title: J. Econ. Entomol.
  doi: 10.1093/jee/18.2.265a
– volume: 11
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0080
  article-title: In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: an integrated next-generation sequencing approach
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0005526
– volume: 16
  start-page: 25
  year: 1967
  ident: 10.1016/j.pestbp.2019.07.011_bb0230
  article-title: Microsomal metabolism of parathion
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(67)90182-7
– volume: 41
  start-page: 9
  year: 2011
  ident: 10.1016/j.pestbp.2019.07.011_bb0145
  article-title: A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2010.09.005
– volume: 368
  year: 2013
  ident: 10.1016/j.pestbp.2019.07.011_bb0050
  article-title: Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth
  publication-title: Phil. Trans. Royal Soc. London B Biol. Sci.
  doi: 10.1098/rstb.2012.0429
– volume: 12
  year: 2007
  ident: 10.1016/j.pestbp.2019.07.011_bb0015
  article-title: An outbreak of chikungunya fever in the province of Ravenna, Italy
  publication-title: Euro Surveill.
– volume: 55
  start-page: 150
  year: 1996
  ident: 10.1016/j.pestbp.2019.07.011_bb0335
  article-title: Cytochrome b5 is essential for cytochrome P450 6D1-mediated cypermethrin resistance in LPR house flies
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1006/pest.1996.0044
– volume: 8
  year: 2014
  ident: 10.1016/j.pestbp.2019.07.011_bb0160
  article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002948
– volume: 10
  start-page: 494
  year: 2009
  ident: 10.1016/j.pestbp.2019.07.011_bb0200
  article-title: Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies)
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-494
– volume: 12
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0110
  article-title: Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0189680
– volume: 11
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0270
  article-title: Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal)
  publication-title: PLOS Neglect Trop. D
  doi: 10.1371/journal.pntd.0005799
– volume: 70
  start-page: 151
  year: 2001
  ident: 10.1016/j.pestbp.2019.07.011_bb0190
  article-title: Genetics of pyrethroid resistance in a strain (ALHF) of house flies (Diptera: Muscidae)
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1006/pest.2001.2547
– volume: 107
  start-page: 40
  year: 2016
  ident: 10.1016/j.pestbp.2019.07.011_bb0235
  article-title: Identification of a major quantitative trait locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2015.11.004
– volume: 69
  start-page: 13
  year: 2008
  ident: 10.1016/j.pestbp.2019.07.011_bb0045
  article-title: Characterization of Anopheles minimus CYP6AA3 expressed in a recombinant baculovirus system
  publication-title: Arch. Insect Biochem. Physiol.
  doi: 10.1002/arch.20248
– volume: 41
  start-page: 492
  year: 2011
  ident: 10.1016/j.pestbp.2019.07.011_bb0305
  article-title: Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metaboizes pyrethroids: Sequestial metabolism of deltamethrin revealed
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2011.02.003
– volume: 69
  year: 2012
  ident: 10.1016/j.pestbp.2019.07.011_bb0025
  article-title: Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti
  publication-title: PLoS Neglect. Trop. Dis.
– volume: 2018
  year: 2011
  ident: 10.1016/j.pestbp.2019.07.011_bb0325
– volume: 22
  start-page: 416
  year: 2008
  ident: 10.1016/j.pestbp.2019.07.011_bb0125
  article-title: Multiplicative interaction between the two major mechanisms of permethrin resistance, cytochrome P450-monooxygenase detoxification and kdr, in mosquitoes
  publication-title: J. Evol. Biol.
  doi: 10.1111/j.1420-9101.2008.01661.x
– volume: vol. 1
  year: 2014
  ident: 10.1016/j.pestbp.2019.07.011_bb0330
– volume: 6
  start-page: 38
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0100
  article-title: Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies)
  publication-title: Infect. Dis. Poverty
  doi: 10.1186/s40249-017-0254-x
– volume: 8
  start-page: 325
  year: 2015
  ident: 10.1016/j.pestbp.2019.07.011_bb0180
  article-title: Relationship between insecticide resistance and kdr mutations in the dengue vector Aedes aegypti in Southern China
  publication-title: Parasit. Vectors
  doi: 10.1186/s13071-015-0933-z
– volume: 52
  start-page: 116
  year: 1995
  ident: 10.1016/j.pestbp.2019.07.011_bb0185
  article-title: Genetics of resistance to pyrethroid insecticides in the house fly, Musca domestica
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1006/pest.1995.1036
– volume: 133
  start-page: 1
  year: 2016
  ident: 10.1016/j.pestbp.2019.07.011_bb0280
  article-title: Pyrethroid resistance in Aedes aegypti and Aedes albopictus: important mosquito vectors of human diseases
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2016.03.005
– volume: 51
  start-page: 605
  year: 2014
  ident: 10.1016/j.pestbp.2019.07.011_bb0240
  article-title: Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of Aedes aegypti (Diptera: Culicidae) compared with an Orlando strain and their possible functional roles in permethrin resistance
  publication-title: J. Med. Entomol.
  doi: 10.1603/ME13228
– volume: 74
  start-page: 2176
  year: 2018
  ident: 10.1016/j.pestbp.2019.07.011_bb0195
  article-title: Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.4916
– volume: 11
  year: 2018
  ident: 10.1016/j.pestbp.2019.07.011_bb0085
  article-title: First report of V1016G and S989P knockdown resistant (kdr) mutations in pyrethroid-resistant Sri Lankan Aedes aegypti mosquitoes
  publication-title: Parasite Vector
  doi: 10.1186/s13071-018-3113-0
– volume: 89
  start-page: 175
  year: 2007
  ident: 10.1016/j.pestbp.2019.07.011_bb0120
  article-title: Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2007.06.006
– volume: 360
  start-page: 2536
  year: 2009
  ident: 10.1016/j.pestbp.2019.07.011_bb0060
  article-title: Zika virus outbreak on Yap Island, Federated States of Micronesia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0805715
– volume: 187
  start-page: 78
  year: 2018
  ident: 10.1016/j.pestbp.2019.07.011_bb0030
  article-title: Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from northern districts of West Bengal, India
  publication-title: Acta Trop.
  doi: 10.1016/j.actatropica.2018.07.004
– volume: 15
  start-page: 466
  year: 2014
  ident: 10.1016/j.pestbp.2019.07.011_bb0260
  article-title: Genome of the house fly (Musca domestica L), a global vector of diseases with adaptations to a septic environment
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0466-3
– volume: 23
  start-page: 199
  year: 2014
  ident: 10.1016/j.pestbp.2019.07.011_bb0250
  article-title: Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12073
– volume: 97
  start-page: 123
  year: 2010
  ident: 10.1016/j.pestbp.2019.07.011_bb0115
  article-title: A review of the interactions between multiple insecticide resistance loci
  publication-title: Pestic. Biochem. Physiol.
  doi: 10.1016/j.pestbp.2009.07.010
– volume: 17
  start-page: 195
  year: 1986
  ident: 10.1016/j.pestbp.2019.07.011_bb0255
  article-title: Mechanisms responsible for high levels of permethrin resistance in the house fly
  publication-title: Pestic. Sci.
  doi: 10.1002/ps.2780170302
– volume: 11
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0220
  article-title: Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans
  publication-title: PLoS Neglect. Trop. D
  doi: 10.1371/journal.pntd.0005625
– volume: 43
  start-page: 1185
  year: 2006
  ident: 10.1016/j.pestbp.2019.07.011_bb0040
  article-title: Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba
  publication-title: J. Med. Entomol.
  doi: 10.1093/jmedent/43.6.1185
– volume: 10
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0150
  article-title: Temporal distribution and insecticide resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaoundé, the capital city of Cameroon
  publication-title: Parasite Vector
  doi: 10.1186/s13071-017-2408-x
– volume: 3
  start-page: 35
  year: 1978
  ident: 10.1016/j.pestbp.2019.07.011_bb0215
  article-title: Biological activity of fenitrothion and ists degradation products
  publication-title: J. Pestic. Sci.
  doi: 10.1584/jpestics.3.35
– volume: 6
  start-page: 102
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0205
  article-title: Habitat productivity and pyrethroid susceptibility status of Aedes aegypti mosquitoes in Dar Es Salaam, Tanzania
  publication-title: Infect. Dis. Poverty
  doi: 10.1186/s40249-017-0316-0
– volume: 10
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0010
  article-title: Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia
  publication-title: Parasite Vector
  doi: 10.1186/s13071-017-2096-6
– volume: 58
  start-page: 500
  year: 1965
  ident: 10.1016/j.pestbp.2019.07.011_bb0225
  article-title: Parathion activation enzymes in the fat body microsomes of the American cockroach
  publication-title: J. Econ. Entomol.
  doi: 10.1093/jee/58.3.500
– volume: 54
  start-page: 1643
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0070
  article-title: Resistance status and resistance mechanisms in a strain of Aedes aegypti (Diptera: Culicidae) from Puerto Rico
  publication-title: J. Med. Entomol.
  doi: 10.1093/jme/tjx143
– volume: 38
  start-page: 113
  year: 2008
  ident: 10.1016/j.pestbp.2019.07.011_bb0315
  article-title: Genomic analysis of detoxification genes in the mosquito Aedes aegypti
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2007.09.007
– volume: 34
  start-page: 653
  year: 2004
  ident: 10.1016/j.pestbp.2019.07.011_bb0135
  article-title: The molecular basis of insecticide resistance in mosquitoes
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2004.03.018
– volume: 26
  start-page: 13
  year: 2017
  ident: 10.1016/j.pestbp.2019.07.011_bb0165
  article-title: Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides
  publication-title: Insect Mol. Biol.
  doi: 10.1111/imb.12267
SSID ssj0009409
ssib006540654
Score 2.4227881
Snippet Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119
SubjectTerms additive effect
Aedes
Aedes - drug effects
Aedes aegypti
Animals
Cross-resistance
cyfluthrin
Cytochrome P-450 Enzyme System
Cytochrome P-450 Enzyme System - metabolism
Cytochrome P450 monooxygenase
etofenprox
Female
fenitrothion
Gene Knockdown Techniques
Insecticide Resistance
Insecticide Resistance - genetics
Male
Mutation
naled
Organophosphate
Organophosphates
Organophosphates - pharmacology
paraoxon
parathion-methyl
Pyrethrins
Pyrethrins - pharmacology
Pyrethroid
resistance mechanisms
sodium channels
urban areas
viral diseases of animals and humans
Title CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr
URI https://dx.doi.org/10.1016/j.pestbp.2019.07.011
https://cir.nii.ac.jp/crid/1871709542661931392
https://www.ncbi.nlm.nih.gov/pubmed/31519246
https://www.proquest.com/docview/2290835156
https://www.proquest.com/docview/2305225758
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHBOW1QCsjcTVNHMdOjqsV1cKKCiEqysnyK20AJdHu9sCFEz-cGccpcCiVuCSOZUdjz2T8jTIPQl5mla0yowzjDbdMiMIyw0PFvBceM6TBoYPBye-O5fJEvD0tT3fIYoqFQbfKpPtHnR61deo5TLt5OLQtxvgKgA8KIQjGmWPAL2avA5l-9eO3m0ctkpuHqBiOnsLnoo_XAJrXYtbKvI4pPPP8quPpRte2V4PQeBgd3SN3E4qk85HQ-2QndHvkzvxsnTJphD1yazGVcntAfi4-v2cxRgTwJQUDG0EjrJSaztNICPujc9vT4fs6YAGF1m_imFj7qR_O-81wjuCUth2dBw8NE-uYtdgBUJIOMZopvdnYsd039KtfPyQnR68_LpYslV9gTtTZlskAYMBlxoQ6K0uAeVI4rkrfWLBquDSyLo0QjWmcsk2Q3OUNd2APGVd6KWxePCK7Xd-FJ4SCQOQieAmEYfF1VQXe5GAbA7znyvlsRopp17VLucmxRMY3PTmhfdEjrzTySmdKA69mhF3OGsbcHNeMVxND9V8ypuH4uGbmPvAfSMNrDjamAmQasU1dAITmM_JikgwNrMV_LqYL_cVGYzp9kFKwkv8xBnQuqFWw3Gbk8ShWl-spAJGBiSyf_jftz8htfBodEJ-T3e36IuwDkNrag_ilHJCb8zer5THeVx8-rX4BhJ8dKQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2120PpAUH5WqBgJK5WE8eJk-NqRbWl7YpDK5WT5cQOTUFJtLs99M4PZ8ZxChxKJS5R5NjRJDMZv1Fm3gB8jPIyj4wyXNSi5FImJTfC5dxaaYkhDTcdKk4-W2aLC_n5Mr3cgvlYC0NplcH3Dz7de-swchje5mHfNFTjKxE-KIIgVGeeb8MOsVPJCezMjk8Wy9_cuzJkesic04Kxgs6nefXofEsirowLz-IZx_ftUNtt09yPQ_1-dPQEHgcgyWaDrE9hy7X7sDf7tgpkGm4fdudjN7dn8HP-9Qv3ZSIIMRnG2IQb8WGZaS3zgvA_Bjcd629XjnooNHbt5_j2T11_1a37K8KnrGnZzFk8Mb6VWUMDiCZZ7wuawp1NOZx3NftuV8_h4ujT-XzBQwcGXski2vDMIR6oImNcEaUpIr1MVkKlti4xsBGZyYrUSFmbulJl7TJRxbWoMCQyVWozWcbJC5i0XeteAUObiKWzGQpG_ddV7kQdY3iMCF-oykZTSMa3rqtAT05dMn7oMQ_tWg-60qQrHSmNupoCv1vVD_QcD8xXo0L1X2amcQd5YOUB6h9Fo2OMYaZCcOrhTZEgihZT-DBahkbV0m8X07ruZq2JUR8NFQPlf8xBt4ueFYO3KbwczOrueRIEZRglZ6__W_b3sLs4PzvVp8fLkzfwiK4M-YhvYbJZ3bgDxFWb8l34bn4BS5QeNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CYP-mediated+resistance+and+cross-resistance+to+pyrethroids+and+organophosphates+in+Aedes+aegypti+in+the+presence+and+absence+of+kdr&rft.jtitle=Pesticide+biochemistry+and+physiology&rft.au=Smith%2C+Let%C3%ADcia+B&rft.au=Sears%2C+Colin&rft.au=Sun%2C+Haina&rft.au=Mertz%2C+Robert+W&rft.date=2019-10-01&rft.eissn=1095-9939&rft.volume=160&rft.spage=119&rft_id=info:doi/10.1016%2Fj.pestbp.2019.07.011&rft_id=info%3Apmid%2F31519246&rft.externalDocID=31519246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-3575&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-3575&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-3575&client=summon