CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr
Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of...
Saved in:
Published in | Pesticide Biochemistry and Physiology Vol. 160; pp. 119 - 126 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.10.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0048-3575 1095-9939 1095-9939 |
DOI | 10.1016/j.pestbp.2019.07.011 |
Cover
Loading…
Abstract | Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent.
[Display omitted]
•CYP plus kdr mediated resistance confers greater than additive pyrethroid resistance.•CYPs alone provide a lower protection against pyrethroid insecticides than kdr.•CYPs confer cross- and negative cross-resistance to organophosphates. |
---|---|
AbstractList | Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent. Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent. [Display omitted] •CYP plus kdr mediated resistance confers greater than additive pyrethroid resistance.•CYPs alone provide a lower protection against pyrethroid insecticides than kdr.•CYPs confer cross- and negative cross-resistance to organophosphates. Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent.Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in endemic areas is of utmost importance. The use of insecticides, mostly pyrethroids and organophosphates (OPs), has long been the primary means of controlling A. aegypti, but widespread insecticide resistance has emerged. The two main mechanisms of pyrethroid resistance in A. aegypti are CYP-mediated detoxification and mutations in the target site, voltage-sensitive sodium channel (Vssc), referred to as knockdown resistance (kdr). Knowledge about the contributions and interactions of these mechanisms to resistance is important for the understanding of the molecular and evolutionary basis of insecticide resistance, and to determine the effectiveness of insecticides. In this study, we address two aims: 1) determine the patterns of CYP-mediated cross-resistance to pyrethroid and OP insecticides, both in the presence and absence of kdr (S989P + V1016G), and 2) determine whether the interaction between the two mechanisms yields a greater than, less than, or additive effect on resistance. We tested seven pyrethroids and four OPs against three congenic strains of A. aegypti: ROCK (susceptible), CYP:ROCK (CR) (resistant due to CYP-mediated detoxification without kdr), and CYP + KDR:ROCK (CKR) (resistant due to both CYPs and kdr), and compared these to the congenic KDR:ROCK strain that was previously reported. We found that resistance ratios (RRs) were variable between pyrethroids and strains, ranging from 6.2- to 42-fold for CR, and 70- to 261-fold for CKR. In general, we found that CYP-mediated resistance alone contributes less to resistance than kdr. The effect of the combined mechanisms on resistance was significantly greater than additive for all pyrethroids except (1R)-trans-fenfluthrin. CYP-mediated pyrethroid resistance conferred cross-resistance to both methyl paraoxon and fenitrothion, and negative cross-resistance to methyl parathion and naled. Based on our results, we recommend that etofenprox and cyfluthrin be avoided for A. aegypti control in areas where these two resistance mechanisms are prevalent. |
Author | Sears, Colin Sun, Haina Scott, Jeffrey G. Smith, Letícia B. Kasai, Shinji Mertz, Robert W. |
Author_xml | – sequence: 1 givenname: Letícia B. surname: Smith fullname: Smith, Letícia B. organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA – sequence: 2 givenname: Colin surname: Sears fullname: Sears, Colin organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA – sequence: 3 givenname: Haina surname: Sun fullname: Sun, Haina organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA – sequence: 4 givenname: Robert W. surname: Mertz fullname: Mertz, Robert W. organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA – sequence: 5 givenname: Shinji surname: Kasai fullname: Kasai, Shinji organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA – sequence: 6 givenname: Jeffrey G. surname: Scott fullname: Scott, Jeffrey G. email: jgs5@cornell.edu organization: Department of Entomology, Comstock Hall, Cornell University, Ithaca, NY, USA |
BackLink | https://cir.nii.ac.jp/crid/1871709542661931392$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/31519246$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFrFDEUxoNU7Lb6H4jMwYOXWV8ySWbjQSiLrUJBD3rwFDLJm27W3cmYZAt79w8302lFPNhL8nj8vi_wfTkjJ0MYkJCXFJYUqHy7XY6YcjcuGVC1hHYJlD4hCwpK1Eo16oQsAPiqbkQrTslZSlsAUBzUM3LaUEEV43JBfq2_f6n36LzJ6KqIyadsBouVGVxlY0ip_muZQzUeI-ZNDN6lOybEGzOEcRPSuCkeqfJDdYGuDAZvjmP20yJvsBqLDz44m26eQ1_9cPE5edqbXcIX9_c5-Xb54ev6Y339-erT-uK6tlxBriUKyiwYgwqEaJiU3LJWuL4TApg0UgnDeW9623Y9SmZpz6wEaaxwkne0OSdvZt8xhp-Hkp7e-2RxtzMDhkPSrAHBWMlr9TjKFKwaQYUs6Kt79NCVJPUY_d7Eo34IuQB8Bu7yjNj_QSjoqUu91XOXeupSQ6tLl0X27h-Z9dlkH4Ycjd89Jn49iwfvi2466aqlbfkdvARHVUMbxQr2fsawxH7rMepk_dSM8xFt1i74_7_zG8IkyB0 |
CitedBy_id | crossref_primary_10_1146_annurev_ento_070621_061328 crossref_primary_10_1371_journal_pntd_0009871 crossref_primary_10_1371_journal_pone_0243992 crossref_primary_10_1002_ps_7252 crossref_primary_10_1016_j_ibmb_2021_103709 crossref_primary_10_1111_mec_15430 crossref_primary_10_1371_journal_pntd_0009271 crossref_primary_10_3390_insects12040276 crossref_primary_10_3390_insects15110863 crossref_primary_10_1371_journal_pone_0309201 crossref_primary_10_1111_1744_7917_13269 crossref_primary_10_1590_0074_02760200313 crossref_primary_10_1186_s13071_021_04997_8 crossref_primary_10_3390_jof10110757 crossref_primary_10_1021_acs_jafc_3c03617 crossref_primary_10_3390_agriculture12010053 crossref_primary_10_1002_ps_8625 crossref_primary_10_1002_ps_6369 crossref_primary_10_1093_g3journal_jkac242 crossref_primary_10_1371_journal_pntd_0009833 crossref_primary_10_1002_biof_1996 crossref_primary_10_1016_j_pestbp_2020_104666 crossref_primary_10_1186_s13071_021_04627_3 crossref_primary_10_1371_journal_pntd_0010355 crossref_primary_10_3389_fphys_2021_802584 crossref_primary_10_1002_ps_8495 crossref_primary_10_1111_eva_13269 crossref_primary_10_1186_s13071_021_04665_x crossref_primary_10_1016_j_aquatox_2021_105980 crossref_primary_10_1093_jee_toad143 crossref_primary_10_3390_genes12060828 crossref_primary_10_1007_s10340_021_01389_w crossref_primary_10_1016_j_arabjc_2022_104365 crossref_primary_10_1016_j_actatropica_2024_107413 crossref_primary_10_1038_s41598_023_36926_3 crossref_primary_10_1093_jme_tjab179 crossref_primary_10_1002_ps_5944 crossref_primary_10_1016_j_neuro_2021_05_011 crossref_primary_10_1016_j_crpvbd_2021_100041 crossref_primary_10_1371_journal_pntd_0009549 crossref_primary_10_1002_ps_5763 crossref_primary_10_1002_ps_8316 crossref_primary_10_1016_j_pestbp_2023_105422 |
Cites_doi | 10.1371/journal.pone.0039439 10.1016/j.ijid.2017.11.026 10.1016/j.pestbp.2014.12.018 10.1371/journal.pntd.0006933 10.1073/pnas.1305118110 10.1371/journal.pntd.0006544 10.1021/jf60222a059 10.1371/journal.pntd.0001595 10.1111/j.1365-2583.2010.01030.x 10.1371/journal.pntd.0003085 10.1186/s41182-018-0134-5 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S 10.1603/ME13237 10.1603/ME10152 10.1038/nature12060 10.1126/science.aar3780 10.1002/ps.4771 10.1126/science.1191864 10.1126/science.350.6264.1012 10.1093/jee/18.2.265a 10.1371/journal.pntd.0005526 10.1016/0006-2952(67)90182-7 10.1016/j.ibmb.2010.09.005 10.1098/rstb.2012.0429 10.1006/pest.1996.0044 10.1371/journal.pntd.0002948 10.1186/1471-2164-10-494 10.1371/journal.pone.0189680 10.1371/journal.pntd.0005799 10.1006/pest.2001.2547 10.1016/j.ygeno.2015.11.004 10.1002/arch.20248 10.1016/j.ibmb.2011.02.003 10.1111/j.1420-9101.2008.01661.x 10.1186/s40249-017-0254-x 10.1186/s13071-015-0933-z 10.1006/pest.1995.1036 10.1016/j.pestbp.2016.03.005 10.1603/ME13228 10.1002/ps.4916 10.1186/s13071-018-3113-0 10.1016/j.pestbp.2007.06.006 10.1056/NEJMoa0805715 10.1016/j.actatropica.2018.07.004 10.1186/s13059-014-0466-3 10.1111/imb.12073 10.1016/j.pestbp.2009.07.010 10.1002/ps.2780170302 10.1371/journal.pntd.0005625 10.1093/jmedent/43.6.1185 10.1186/s13071-017-2408-x 10.1584/jpestics.3.35 10.1186/s40249-017-0316-0 10.1186/s13071-017-2096-6 10.1093/jee/58.3.500 10.1093/jme/tjx143 10.1016/j.ibmb.2007.09.007 10.1016/j.ibmb.2004.03.018 10.1111/imb.12267 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.pestbp.2019.07.011 |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1095-9939 |
EndPage | 126 |
ExternalDocumentID | 31519246 10_1016_j_pestbp_2019_07_011 S0048357519304158 |
Genre | Journal Article |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYJJ ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W KOM LG5 LW8 LX2 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K UHS UNMZH WH7 WUQ XOL XPP ZMT ZU3 ~G- ~KM AAHBH AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP RYH SSH AAYXX ABWVN ACRPL ADNMO AFJKZ AGQPQ AIGII BNPGV CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c490t-6e512c0aae905532664c275dfb55026a695a44fafc7bfe62c1f2c606ac5d64b13 |
IEDL.DBID | .~1 |
ISSN | 0048-3575 1095-9939 |
IngestDate | Fri Jul 11 09:22:18 EDT 2025 Fri Jul 11 01:58:06 EDT 2025 Wed Feb 19 02:31:32 EST 2025 Thu Apr 24 23:12:27 EDT 2025 Tue Jul 01 00:49:29 EDT 2025 Thu Jun 26 23:10:29 EDT 2025 Fri Feb 23 02:31:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pyrethroid Aedes aegypti Insecticide resistance Organophosphate Cross-resistance Cytochrome P450 monooxygenase |
Language | English |
License | Copyright © 2019 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-6e512c0aae905532664c275dfb55026a695a44fafc7bfe62c1f2c606ac5d64b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31519246 |
PQID | 2290835156 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2305225758 proquest_miscellaneous_2290835156 pubmed_primary_31519246 crossref_primary_10_1016_j_pestbp_2019_07_011 crossref_citationtrail_10_1016_j_pestbp_2019_07_011 nii_cinii_1871709542661931392 elsevier_sciencedirect_doi_10_1016_j_pestbp_2019_07_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-01 2019-10-00 2019-Oct 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Pesticide Biochemistry and Physiology |
PublicationTitleAlternate | Pestic Biochem Physiol |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Estep, Sanscrainte, Waits, Louton, Becnel (bb0070) 2017; 54 Leta, Beyene, De Clercq, Amenu, Revie, Kraemer (bb0175) 2018; 67 Goindin, Delannay, Gelasse, Ramdini, Gaude, Faucon, David, Gustave, Vega-Rua, Fouque (bb0100) 2017; 6 Stevenson, Bibby, Pignatelli, Muangnoicharoen, O'Neill, Lian, Müller, Nikou, Steven, Hemingway, Sutcliffe, Paine (bb0305) 2011; 41 Faucon, Gaude, Dusfour, Navratil, Corbel, Juntarajumnong, Girod, Poupardin, Boyer, Reynaud, David (bb0080) 2017; 11 WHO (bb0330) 2014; vol. 1 Estep, Sanscrainte, Waits, Bernard, Lloyd, Lucas, Buckner, Vaidyanathan, Morreale, Conti (bb0075) 2018; 12 Moyes, Vontas, Martins, Ng, Koou, Dusfour, Raghavendra, Pinto, Corbel, David, Weetman (bb0220) 2017; 11 Miyamoto, Mikami, Mihara, Takimoto, Kohda, Suzuki (bb0215) 1978; 3 WHO (bb0325) 2011; 2018 Nakatsugawa, Dahm (bb0225) 1965; 58 Nakatsugawa, Dahm (bb0230) 1967; 16 Hu, Du, Nomura, Dong (bb0145) 2011; 41 Francis, Saavedra-Rodriguez, Perera, Paine, Black, Delgoda (bb0095) 2017; 12 Scott, Warren, Beukeboom, Bopp, Clark, Giers, Hediger, Jones, Kasai, Leichter, Li, Meisel, Minx, Murphy, Nelson, Reid, Rinkevich, Robertson, Sackton, Sattelle, Thibaud-Nissen, Tomlinson, van de Zande, Walden, Wilson, Liu (bb0260) 2014; 15 Smith, Kasai, Scott (bb0280) 2016; 133 Liu, Scott (bb0185) 1995; 52 Li, Kaufman, Xue, Zhao, Wang, Yan, Guo, Zhang, Dong, Xing, Zhang, Zhao (bb0180) 2015; 8 Paiva, Lovin, Mori, Melo-Santos, Severson, Ayres (bb0235) 2016; 107 Hamid, Prastowo, Ghiffari, Taubert, Hermosilla (bb0110) 2017; 12 Gould, Brown, Kuzma (bb0105) 2018; 360 Zhang, Scott (bb0335) 1996; 55 Hardstone, Scott (bb0115) 2010; 97 Lopez-Monroy, Gutierrez-Rodriguez, Villanueva-Segura, Ponce-Garcia, Morales-Forcada, Alvarez, Flores (bb0195) 2018; 74 Marcombe, Poupardin, Darriet, Reynaud, Bonnet, Strode, Brengues, Yébakima, Ranson, Corbel, David (bb0200) 2009; 10 Kamgang, Yougang, Tchoupo, Riveron, Wondji (bb0150) 2017; 10 David, Ismail, Chandor-Proust, Paine (bb0050) 2013; 368 Fernando, Hapugoda, Perera, Saavedra-Rodriguez, Black, De Silva (bb0085) 2018; 11 Hirata, Komagata, Itokawa, Yamamoto, Tomita, Kasai (bb0140) 2014; 8 Saavedra-Rodriguez, Strode, Flores, Garcia-Luna, Reyes-Solis, Ranson, Hemingway, Black (bb0250) 2014; 23 Arensburger, Megy, Waterhouse, Abrudan, Amedeo, Antelo, Bartholomay, Bidwell, Caler, Camara, Campbell, Campbell, Casola, Castro, Chandramouliswaran, Chapman, Christley, Costas, Eisenstadt, Feschotte, Fraser-Liggett, Guigo, Haas, Hammond, Hansson, Hemingway, Hill, Howarth, Ignell, Kennedy, Kodira, Lobo, Mao, Mayhew, Michel, Mori, Liu, Naveira, Nene, Nguyen, Pearson, Pritham, Puiu, Qi, Ranson, Ribeiro, Roberston, Severson, Shumway, Stanke, Strausberg, Sun, Sutton, Tu, Tubio, Unger, Vanlandingham, Vilella, White, White, Wondji, Wortman, Zdobnov, Birren, Christensen, Collins, Cornel, Dimopoulos, Hannick, Higgs, Lanzaro, Lawson, Lee, Muskavitch, Raikhel, Atkinson (bb0020) 2010; 330 Finney (bb0090) 1971 Angelini, Finarelli, Angelini, Po, Petropulacos, Macini, Fiorentini, Fortuna, Venturi, Romi, Majori, Nicoletti, Rezza, Cassone (bb0015) 2007; 12 Bisset, Rodriguez, Fernandez (bb0040) 2006; 43 Kasai, Sun, Scott (bb0165) 2017; 26 Kuno (bb0170) 2010; 47 Du, Nomura, Satar, Hu, Nauen, He, Zhorov, Dong (bb0055) 2013; 110 Hardstone, Leichter, Harrington, Kasai, Tomita, Scott (bb0120) 2007; 89 Hardstone, Komagata, Kasai, Tomita, Scott (bb0130) 2010; 19 Kasai, Komagata, Itokawa, Shono, Ng, Kobayashi, Tomita (bb0160) 2014; 8 Enserink (bb0065) 2015; 350 Seixas, Grigoraki, Weetman, Vicente, Silva, Pinto, Vontas, Sousa (bb0270) 2017; 11 Rodriguez, Hurtado, Severson, Bisset (bb0245) 2014; 51 Matsumura (bb0210) 1985 Liu, Yue (bb0190) 2001; 70 Mathias, Baraka, Philbert, Innocent, Francis, Nkwengulila, Kweka (bb0205) 2017; 6 Shono, Ohsawa, Casida (bb0275) 1979; 27 Stevenson, Pignatelli, Nikou, Paine (bb0310) 2012; 6 Smith, Kasai, Scott (bb0285) 2017; 74 Strode, Wondji, David, Hawkes, Lumjuan, Nelson, Drane, Karunaratne, Hemingway, Black, Ranson (bb0315) 2008; 38 Duffy, Chen, Hancock, Powers, Kool, Lanciotti, Pretrick, Marfel, Holzbauer, Dubray, Guillaumot, Griggs, Bel, Lambert, Laven, Kosoy, Panella, Biggerstaff, Fischer, Hayes (bb0060) 2009; 360 Strode, de Melo-Santos, Magalhaes, Araujo, Ayres (bb0320) 2012; 7 Bharati, Saha (bb0030) 2018; 187 Abbott (bb0005) 1925; 18 Boonsuepsakul, Luepromchai, Rongnoparut (bb0045) 2008; 69 Hardstone, Leichter, Scott (bb0125) 2008; 22 Sombié, Saiki, Yaméogo, Sakurai, Shirozu, Fukumoto, Sanon, Weetman, McCall, Kanuka, Badolo (bb0300) 2019; 47 Scott, Georghiou (bb0255) 1986; 17 Kasai, Weerashinghe, Shono (bb0155) 1998; 37 Bariami, Jones, Poupardin, Vontas, Ranson (bb0025) 2012; 69 Reid, Thornton, Pridgeon, Becnel, Tang, Estep, Clark, Allan, Liu (bb0240) 2014; 51 Bhatt, Gething, Brady, Messina, Farlow, Moyes, Drake, Brownstein, Hoen, Sankoh, Myers, George, Jaenisch, Wint, Simmons, Scott, Farrar, Hay (bb0035) 2013; 496 Smith, Tyagi, Kasai, Scott (bb0290) 2018; 12 Soderlund, Sanborn, Lee (bb0295) 1983; 3 Scott, Yoshimizu, Kasai (bb0265) 2015; 120 Al Nazawi, Aqili, Alzahrani, McCall, Weetman (bb0010) 2017; 10 Hemingway, Hawkes, McCarroll, Ranson (bb0135) 2004; 34 Goindin (10.1016/j.pestbp.2019.07.011_bb0100) 2017; 6 Bisset (10.1016/j.pestbp.2019.07.011_bb0040) 2006; 43 Kasai (10.1016/j.pestbp.2019.07.011_bb0160) 2014; 8 Leta (10.1016/j.pestbp.2019.07.011_bb0175) 2018; 67 Paiva (10.1016/j.pestbp.2019.07.011_bb0235) 2016; 107 Bariami (10.1016/j.pestbp.2019.07.011_bb0025) 2012; 69 Rodriguez (10.1016/j.pestbp.2019.07.011_bb0245) 2014; 51 Abbott (10.1016/j.pestbp.2019.07.011_bb0005) 1925; 18 Li (10.1016/j.pestbp.2019.07.011_bb0180) 2015; 8 Francis (10.1016/j.pestbp.2019.07.011_bb0095) 2017; 12 Gould (10.1016/j.pestbp.2019.07.011_bb0105) 2018; 360 Sombié (10.1016/j.pestbp.2019.07.011_bb0300) 2019; 47 David (10.1016/j.pestbp.2019.07.011_bb0050) 2013; 368 Nakatsugawa (10.1016/j.pestbp.2019.07.011_bb0225) 1965; 58 Enserink (10.1016/j.pestbp.2019.07.011_bb0065) 2015; 350 Strode (10.1016/j.pestbp.2019.07.011_bb0320) 2012; 7 Reid (10.1016/j.pestbp.2019.07.011_bb0240) 2014; 51 Saavedra-Rodriguez (10.1016/j.pestbp.2019.07.011_bb0250) 2014; 23 Faucon (10.1016/j.pestbp.2019.07.011_bb0080) 2017; 11 Scott (10.1016/j.pestbp.2019.07.011_bb0260) 2014; 15 Estep (10.1016/j.pestbp.2019.07.011_bb0070) 2017; 54 Duffy (10.1016/j.pestbp.2019.07.011_bb0060) 2009; 360 Al Nazawi (10.1016/j.pestbp.2019.07.011_bb0010) 2017; 10 Fernando (10.1016/j.pestbp.2019.07.011_bb0085) 2018; 11 Hemingway (10.1016/j.pestbp.2019.07.011_bb0135) 2004; 34 Bhatt (10.1016/j.pestbp.2019.07.011_bb0035) 2013; 496 Marcombe (10.1016/j.pestbp.2019.07.011_bb0200) 2009; 10 Smith (10.1016/j.pestbp.2019.07.011_bb0285) 2017; 74 Scott (10.1016/j.pestbp.2019.07.011_bb0255) 1986; 17 Hardstone (10.1016/j.pestbp.2019.07.011_bb0115) 2010; 97 Hardstone (10.1016/j.pestbp.2019.07.011_bb0125) 2008; 22 Stevenson (10.1016/j.pestbp.2019.07.011_bb0310) 2012; 6 Liu (10.1016/j.pestbp.2019.07.011_bb0185) 1995; 52 Strode (10.1016/j.pestbp.2019.07.011_bb0315) 2008; 38 WHO (10.1016/j.pestbp.2019.07.011_bb0330) 2014; vol. 1 Zhang (10.1016/j.pestbp.2019.07.011_bb0335) 1996; 55 Hardstone (10.1016/j.pestbp.2019.07.011_bb0120) 2007; 89 Du (10.1016/j.pestbp.2019.07.011_bb0055) 2013; 110 Kamgang (10.1016/j.pestbp.2019.07.011_bb0150) 2017; 10 Kuno (10.1016/j.pestbp.2019.07.011_bb0170) 2010; 47 Mathias (10.1016/j.pestbp.2019.07.011_bb0205) 2017; 6 Angelini (10.1016/j.pestbp.2019.07.011_bb0015) 2007; 12 Hu (10.1016/j.pestbp.2019.07.011_bb0145) 2011; 41 Nakatsugawa (10.1016/j.pestbp.2019.07.011_bb0230) 1967; 16 Scott (10.1016/j.pestbp.2019.07.011_bb0265) 2015; 120 Kasai (10.1016/j.pestbp.2019.07.011_bb0155) 1998; 37 WHO (10.1016/j.pestbp.2019.07.011_bb0325) 2011; 2018 Seixas (10.1016/j.pestbp.2019.07.011_bb0270) 2017; 11 Boonsuepsakul (10.1016/j.pestbp.2019.07.011_bb0045) 2008; 69 Kasai (10.1016/j.pestbp.2019.07.011_bb0165) 2017; 26 Moyes (10.1016/j.pestbp.2019.07.011_bb0220) 2017; 11 Smith (10.1016/j.pestbp.2019.07.011_bb0280) 2016; 133 Soderlund (10.1016/j.pestbp.2019.07.011_bb0295) 1983; 3 Stevenson (10.1016/j.pestbp.2019.07.011_bb0305) 2011; 41 Estep (10.1016/j.pestbp.2019.07.011_bb0075) 2018; 12 Hardstone (10.1016/j.pestbp.2019.07.011_bb0130) 2010; 19 Liu (10.1016/j.pestbp.2019.07.011_bb0190) 2001; 70 Hamid (10.1016/j.pestbp.2019.07.011_bb0110) 2017; 12 Bharati (10.1016/j.pestbp.2019.07.011_bb0030) 2018; 187 Lopez-Monroy (10.1016/j.pestbp.2019.07.011_bb0195) 2018; 74 Miyamoto (10.1016/j.pestbp.2019.07.011_bb0215) 1978; 3 Arensburger (10.1016/j.pestbp.2019.07.011_bb0020) 2010; 330 Matsumura (10.1016/j.pestbp.2019.07.011_bb0210) 1985 Smith (10.1016/j.pestbp.2019.07.011_bb0290) 2018; 12 Shono (10.1016/j.pestbp.2019.07.011_bb0275) 1979; 27 Hirata (10.1016/j.pestbp.2019.07.011_bb0140) 2014; 8 Finney (10.1016/j.pestbp.2019.07.011_bb0090) 1971 |
References_xml | – volume: 41 start-page: 9 year: 2011 end-page: 13 ident: bb0145 article-title: A sodium channel mutation identified in publication-title: Insect Biochem. Mol. Biol. – volume: 51 start-page: 605 year: 2014 end-page: 615 ident: bb0240 article-title: Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of publication-title: J. Med. Entomol. – volume: 58 start-page: 500 year: 1965 end-page: 509 ident: bb0225 article-title: Parathion activation enzymes in the fat body microsomes of the American cockroach publication-title: J. Econ. Entomol. – volume: 6 year: 2012 ident: bb0310 article-title: Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, publication-title: PLoS Neglect. Trop. D – volume: 69 start-page: 13 year: 2008 end-page: 21 ident: bb0045 article-title: Characterization of publication-title: Arch. Insect Biochem. Physiol. – year: 1971 ident: bb0090 article-title: Probit Analysis – volume: 15 start-page: 466 year: 2014 ident: bb0260 article-title: Genome of the house fly ( publication-title: Genome Biol. – volume: 11 year: 2018 ident: bb0085 article-title: First report of V1016G and S989P knockdown resistant ( publication-title: Parasite Vector – volume: 37 start-page: 47 year: 1998 end-page: 56 ident: bb0155 article-title: P450 monooxygenases are an important mechanism of permethrin resistance in publication-title: Arch. Insect Biochem. Physiol. – volume: 23 start-page: 199 year: 2014 end-page: 215 ident: bb0250 article-title: Differential transcription profiles in publication-title: Insect Mol. Biol. – volume: 330 start-page: 86 year: 2010 end-page: 88 ident: bb0020 article-title: Sequencing of publication-title: Science – volume: 38 start-page: 113 year: 2008 end-page: 123 ident: bb0315 article-title: Genomic analysis of detoxification genes in the mosquito publication-title: Insect Biochem. Mol. Biol. – volume: 12 year: 2017 ident: bb0095 article-title: Insecticide resistance to permethrin and malathion and associated mechanisms in publication-title: PLoS One – volume: 69 year: 2012 ident: bb0025 article-title: Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, publication-title: PLoS Neglect. Trop. Dis. – volume: 54 start-page: 1643 year: 2017 end-page: 1648 ident: bb0070 article-title: Resistance status and resistance mechanisms in a strain of publication-title: J. Med. Entomol. – volume: 47 start-page: 2 year: 2019 ident: bb0300 article-title: High frequencies of F1534C and V1016I publication-title: Trop. Med. Health – volume: 52 start-page: 116 year: 1995 end-page: 124 ident: bb0185 article-title: Genetics of resistance to pyrethroid insecticides in the house fly, publication-title: Pestic. Biochem. Physiol. – volume: 19 start-page: 717 year: 2010 end-page: 726 ident: bb0130 article-title: Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in publication-title: Insect Mol. Biol. – volume: 11 year: 2017 ident: bb0080 article-title: In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito publication-title: PLoS Negl. Trop. Dis. – volume: 51 start-page: 1213 year: 2014 end-page: 1219 ident: bb0245 article-title: Inheritance of resistance to deltamethrin in publication-title: J. Med. Entomol. – volume: 74 start-page: 2176 year: 2018 end-page: 2184 ident: bb0195 article-title: Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of publication-title: Pest Manag. Sci. – volume: 55 start-page: 150 year: 1996 end-page: 156 ident: bb0335 article-title: Cytochrome b publication-title: Pestic. Biochem. Physiol. – volume: vol. 1 year: 2014 ident: bb0330 article-title: A Global Brief on Vector-Borne Diseases, Vol. WHO/DCO/WHD/2014 – volume: 10 year: 2017 ident: bb0150 article-title: Temporal distribution and insecticide resistance profile of two major arbovirus vectors publication-title: Parasite Vector – volume: 107 start-page: 40 year: 2016 end-page: 48 ident: bb0235 article-title: Identification of a major quantitative trait locus determining resistance to the organophosphate temephos in the dengue vector mosquito publication-title: Genomics – volume: 360 start-page: 2536 year: 2009 end-page: 2543 ident: bb0060 article-title: Zika virus outbreak on Yap Island, Federated States of Micronesia publication-title: N. Engl. J. Med. – volume: 3 start-page: 35 year: 1978 end-page: 41 ident: bb0215 article-title: Biological activity of fenitrothion and ists degradation products publication-title: J. Pestic. Sci. – volume: 10 year: 2017 ident: bb0010 article-title: Combined target site ( publication-title: Parasite Vector – volume: 12 year: 2018 ident: bb0075 article-title: Quantification of permethrin resistance and kdr alleles in Florida strains of publication-title: PLoS Neglect. Trop. D – volume: 120 start-page: 68 year: 2015 end-page: 76 ident: bb0265 article-title: Pyrethroid resistance in publication-title: Pestic. Biochem. Physiol. – volume: 360 start-page: 728 year: 2018 end-page: 732 ident: bb0105 article-title: Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? publication-title: Science – volume: 11 year: 2017 ident: bb0220 article-title: Contemporary status of insecticide resistance in the major publication-title: PLoS Neglect. Trop. D – volume: 2018 year: 2011 ident: bb0325 article-title: Global insecticide use for vector-borne disease control: A 10-year assessment [2000-2009] – volume: 47 start-page: 957 year: 2010 end-page: 971 ident: bb0170 article-title: Early history of laboratory breeding of publication-title: J. Med. Entomol. – volume: 12 year: 2017 ident: bb0110 article-title: resistance development to commonly used insecticides in Jakarta, Indonesia publication-title: PLoS One – volume: 6 start-page: 102 year: 2017 ident: bb0205 article-title: Habitat productivity and pyrethroid susceptibility status of publication-title: Infect. Dis. Poverty – volume: 12 year: 2007 ident: bb0015 article-title: An outbreak of chikungunya fever in the province of Ravenna, Italy publication-title: Euro Surveill. – volume: 8 year: 2014 ident: bb0140 article-title: A single crossing-over event in voltage-sensitive Na publication-title: PLoS Negl. Trop. Dis. – volume: 67 start-page: 25 year: 2018 end-page: 35 ident: bb0175 article-title: Global risk mapping for major diseases transmitted by publication-title: Int. J. Infect. Dis. – volume: 16 start-page: 25 year: 1967 end-page: 38 ident: bb0230 article-title: Microsomal metabolism of parathion publication-title: Biochem. Pharmacol. – volume: 3 start-page: 401 year: 1983 end-page: 435 ident: bb0295 article-title: Metabolism of pyrethrins and pyrethroids in insects publication-title: Prog. Pestic. Biochem. Toxicol. – volume: 97 start-page: 123 year: 2010 end-page: 128 ident: bb0115 article-title: A review of the interactions between multiple insecticide resistance loci publication-title: Pestic. Biochem. Physiol. – volume: 18 start-page: 265 year: 1925 end-page: 267 ident: bb0005 article-title: A method of computing the effectiveness of an insecticide publication-title: J. Econ. Entomol. – volume: 187 start-page: 78 year: 2018 end-page: 86 ident: bb0030 article-title: Assessment of insecticide resistance in primary dengue vector, publication-title: Acta Trop. – year: 1985 ident: bb0210 article-title: Toxicology of Insecticides – volume: 133 start-page: 1 year: 2016 end-page: 12 ident: bb0280 article-title: Pyrethroid resistance in publication-title: Pestic. Biochem. Physiol. – volume: 17 start-page: 195 year: 1986 end-page: 206 ident: bb0255 article-title: Mechanisms responsible for high levels of permethrin resistance in the house fly publication-title: Pestic. Sci. – volume: 368 year: 2013 ident: bb0050 article-title: Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth publication-title: Phil. Trans. Royal Soc. London B Biol. Sci. – volume: 10 start-page: 494 year: 2009 ident: bb0200 article-title: Exploring the molecular basis of insecticide resistance in the dengue vector publication-title: BMC Genomics – volume: 27 start-page: 316 year: 1979 end-page: 325 ident: bb0275 article-title: Metabolism of publication-title: J. Agric. Food Chem. – volume: 22 start-page: 416 year: 2008 end-page: 423 ident: bb0125 article-title: Multiplicative interaction between the two major mechanisms of permethrin resistance, cytochrome P450-monooxygenase detoxification and publication-title: J. Evol. Biol. – volume: 43 start-page: 1185 year: 2006 end-page: 1189 ident: bb0040 article-title: Selection of insensitive acetylcholinesterase as a resistance mechanism in publication-title: J. Med. Entomol. – volume: 74 start-page: 737 year: 2017 end-page: 745 ident: bb0285 article-title: Voltage-sensitive sodium channel mutations S989P+V1016G in publication-title: Pest Manag. Sci. – volume: 496 start-page: 504 year: 2013 end-page: 507 ident: bb0035 article-title: The global distribution and burden of dengue publication-title: Nature – volume: 7 year: 2012 ident: bb0320 article-title: Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, publication-title: PLoS One – volume: 89 start-page: 175 year: 2007 end-page: 184 ident: bb0120 article-title: Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, publication-title: Pestic. Biochem. Physiol. – volume: 70 start-page: 151 year: 2001 end-page: 158 ident: bb0190 article-title: Genetics of pyrethroid resistance in a strain (ALHF) of house flies (Diptera: Muscidae) publication-title: Pestic. Biochem. Physiol. – volume: 8 year: 2014 ident: bb0160 article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, publication-title: PLoS Negl. Trop. Dis. – volume: 6 start-page: 38 year: 2017 ident: bb0100 article-title: Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in publication-title: Infect. Dis. Poverty – volume: 34 start-page: 653 year: 2004 end-page: 665 ident: bb0135 article-title: The molecular basis of insecticide resistance in mosquitoes publication-title: Insect Biochem. Mol. Biol. – volume: 11 year: 2017 ident: bb0270 article-title: Insecticide resistance is mediated by multiple mechanisms in recently introduced publication-title: PLOS Neglect Trop. D – volume: 110 start-page: 11785 year: 2013 end-page: 11790 ident: bb0055 article-title: Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 12 year: 2018 ident: bb0290 article-title: CYP-mediated permethrin resistance in publication-title: PLoS Negl. Trop. Dis. – volume: 41 start-page: 492 year: 2011 end-page: 502 ident: bb0305 article-title: Cytochrome P450 6M2 from the malaria vector publication-title: Insect Biochem. Mol. Biol. – volume: 350 start-page: 1012 year: 2015 end-page: 1013 ident: bb0065 article-title: An obscure mosquito-borne disease goes global publication-title: Science – volume: 26 start-page: 13 year: 2017 end-page: 24 ident: bb0165 article-title: Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides publication-title: Insect Mol. Biol. – volume: 8 start-page: 325 year: 2015 ident: bb0180 article-title: Relationship between insecticide resistance and publication-title: Parasit. Vectors – volume: 7 year: 2012 ident: 10.1016/j.pestbp.2019.07.011_bb0320 article-title: Expression profile of genes during resistance reversal in a temephos selected strain of the dengue vector, Aedes aegypti publication-title: PLoS One doi: 10.1371/journal.pone.0039439 – volume: 12 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0095 article-title: Insecticide resistance to permethrin and malathion and associated mechanisms in Aedes aegypti mosquitoes from St. Andrew Jamaica publication-title: PLoS One – volume: 67 start-page: 25 year: 2018 ident: 10.1016/j.pestbp.2019.07.011_bb0175 article-title: Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2017.11.026 – volume: 120 start-page: 68 year: 2015 ident: 10.1016/j.pestbp.2019.07.011_bb0265 article-title: Pyrethroid resistance in Culex pipiens mosquitoes publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2014.12.018 – volume: 12 year: 2018 ident: 10.1016/j.pestbp.2019.07.011_bb0290 article-title: CYP-mediated permethrin resistance in Aedes aegypti and evidence for trans-regulation publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0006933 – volume: 110 start-page: 11785 year: 2013 ident: 10.1016/j.pestbp.2019.07.011_bb0055 article-title: Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1305118110 – volume: 12 year: 2018 ident: 10.1016/j.pestbp.2019.07.011_bb0075 article-title: Quantification of permethrin resistance and kdr alleles in Florida strains of Aedes aegypti (L.) and Aedes albopictus (Skuse) publication-title: PLoS Neglect. Trop. D doi: 10.1371/journal.pntd.0006544 – volume: 27 start-page: 316 year: 1979 ident: 10.1016/j.pestbp.2019.07.011_bb0275 article-title: Metabolism of trans- and cis-permethrin, trans- and cis-cypermethrin, and decamethrin by microsomal enzymes publication-title: J. Agric. Food Chem. doi: 10.1021/jf60222a059 – volume: 6 year: 2012 ident: 10.1016/j.pestbp.2019.07.011_bb0310 article-title: Pinpointing P450s associated with pyrethroid metabolism in the dengue vector, Aedes aegypti: developing new tools to combat insecticide resistance publication-title: PLoS Neglect. Trop. D doi: 10.1371/journal.pntd.0001595 – volume: 19 start-page: 717 year: 2010 ident: 10.1016/j.pestbp.2019.07.011_bb0130 article-title: Use of isogenic strains indicates CYP9M10 is linked to permethrin resistance in Culex pipiens quinquefasciatus publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2010.01030.x – volume: 8 year: 2014 ident: 10.1016/j.pestbp.2019.07.011_bb0140 article-title: A single crossing-over event in voltage-sensitive Na+ channel genes may cause critical failure of dengue mosquito control by insecticides publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0003085 – volume: 3 start-page: 401 year: 1983 ident: 10.1016/j.pestbp.2019.07.011_bb0295 article-title: Metabolism of pyrethrins and pyrethroids in insects publication-title: Prog. Pestic. Biochem. Toxicol. – volume: 47 start-page: 2 year: 2019 ident: 10.1016/j.pestbp.2019.07.011_bb0300 article-title: High frequencies of F1534C and V1016I kdr mutations and association with pyrethroid resistance in Aedes aegypti from Somgandé (Ouagadougou), Burkina Faso publication-title: Trop. Med. Health doi: 10.1186/s41182-018-0134-5 – volume: 37 start-page: 47 year: 1998 ident: 10.1016/j.pestbp.2019.07.011_bb0155 article-title: P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus say larvae publication-title: Arch. Insect Biochem. Physiol. doi: 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S – volume: 51 start-page: 1213 year: 2014 ident: 10.1016/j.pestbp.2019.07.011_bb0245 article-title: Inheritance of resistance to deltamethrin in Aedes aegypti (Diptera: Culicidae) from Cuba publication-title: J. Med. Entomol. doi: 10.1603/ME13237 – volume: 47 start-page: 957 year: 2010 ident: 10.1016/j.pestbp.2019.07.011_bb0170 article-title: Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains publication-title: J. Med. Entomol. doi: 10.1603/ME10152 – year: 1985 ident: 10.1016/j.pestbp.2019.07.011_bb0210 – year: 1971 ident: 10.1016/j.pestbp.2019.07.011_bb0090 – volume: 496 start-page: 504 year: 2013 ident: 10.1016/j.pestbp.2019.07.011_bb0035 article-title: The global distribution and burden of dengue publication-title: Nature doi: 10.1038/nature12060 – volume: 360 start-page: 728 year: 2018 ident: 10.1016/j.pestbp.2019.07.011_bb0105 article-title: Wicked evolution: can we address the sociobiological dilemma of pesticide resistance? publication-title: Science doi: 10.1126/science.aar3780 – volume: 74 start-page: 737 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0285 article-title: Voltage-sensitive sodium channel mutations S989P+V1016G in Aedes aegypti confer variable resistance to pyrethroids, DDT and oxadiazines publication-title: Pest Manag. Sci. doi: 10.1002/ps.4771 – volume: 330 start-page: 86 year: 2010 ident: 10.1016/j.pestbp.2019.07.011_bb0020 article-title: Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics publication-title: Science doi: 10.1126/science.1191864 – volume: 350 start-page: 1012 year: 2015 ident: 10.1016/j.pestbp.2019.07.011_bb0065 article-title: An obscure mosquito-borne disease goes global publication-title: Science doi: 10.1126/science.350.6264.1012 – volume: 18 start-page: 265 year: 1925 ident: 10.1016/j.pestbp.2019.07.011_bb0005 article-title: A method of computing the effectiveness of an insecticide publication-title: J. Econ. Entomol. doi: 10.1093/jee/18.2.265a – volume: 11 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0080 article-title: In the hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito Aedes aegypti: an integrated next-generation sequencing approach publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0005526 – volume: 16 start-page: 25 year: 1967 ident: 10.1016/j.pestbp.2019.07.011_bb0230 article-title: Microsomal metabolism of parathion publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(67)90182-7 – volume: 41 start-page: 9 year: 2011 ident: 10.1016/j.pestbp.2019.07.011_bb0145 article-title: A sodium channel mutation identified in Aedes aegypti selectively reduces cockroach sodium channel sensitivity to type I, but not type II pyrethroids publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2010.09.005 – volume: 368 year: 2013 ident: 10.1016/j.pestbp.2019.07.011_bb0050 article-title: Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on Earth publication-title: Phil. Trans. Royal Soc. London B Biol. Sci. doi: 10.1098/rstb.2012.0429 – volume: 12 year: 2007 ident: 10.1016/j.pestbp.2019.07.011_bb0015 article-title: An outbreak of chikungunya fever in the province of Ravenna, Italy publication-title: Euro Surveill. – volume: 55 start-page: 150 year: 1996 ident: 10.1016/j.pestbp.2019.07.011_bb0335 article-title: Cytochrome b5 is essential for cytochrome P450 6D1-mediated cypermethrin resistance in LPR house flies publication-title: Pestic. Biochem. Physiol. doi: 10.1006/pest.1996.0044 – volume: 8 year: 2014 ident: 10.1016/j.pestbp.2019.07.011_bb0160 article-title: Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002948 – volume: 10 start-page: 494 year: 2009 ident: 10.1016/j.pestbp.2019.07.011_bb0200 article-title: Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies) publication-title: BMC Genomics doi: 10.1186/1471-2164-10-494 – volume: 12 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0110 article-title: Aedes aegypti resistance development to commonly used insecticides in Jakarta, Indonesia publication-title: PLoS One doi: 10.1371/journal.pone.0189680 – volume: 11 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0270 article-title: Insecticide resistance is mediated by multiple mechanisms in recently introduced Aedes aegypti from Madeira Island (Portugal) publication-title: PLOS Neglect Trop. D doi: 10.1371/journal.pntd.0005799 – volume: 70 start-page: 151 year: 2001 ident: 10.1016/j.pestbp.2019.07.011_bb0190 article-title: Genetics of pyrethroid resistance in a strain (ALHF) of house flies (Diptera: Muscidae) publication-title: Pestic. Biochem. Physiol. doi: 10.1006/pest.2001.2547 – volume: 107 start-page: 40 year: 2016 ident: 10.1016/j.pestbp.2019.07.011_bb0235 article-title: Identification of a major quantitative trait locus determining resistance to the organophosphate temephos in the dengue vector mosquito Aedes aegypti publication-title: Genomics doi: 10.1016/j.ygeno.2015.11.004 – volume: 69 start-page: 13 year: 2008 ident: 10.1016/j.pestbp.2019.07.011_bb0045 article-title: Characterization of Anopheles minimus CYP6AA3 expressed in a recombinant baculovirus system publication-title: Arch. Insect Biochem. Physiol. doi: 10.1002/arch.20248 – volume: 41 start-page: 492 year: 2011 ident: 10.1016/j.pestbp.2019.07.011_bb0305 article-title: Cytochrome P450 6M2 from the malaria vector Anopheles gambiae metaboizes pyrethroids: Sequestial metabolism of deltamethrin revealed publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2011.02.003 – volume: 69 year: 2012 ident: 10.1016/j.pestbp.2019.07.011_bb0025 article-title: Gene amplification, ABC transporters and cytochrome P450s: unraveling the molecular basis of pyrethroid resistance in the dengue vector, Aedes aegypti publication-title: PLoS Neglect. Trop. Dis. – volume: 2018 year: 2011 ident: 10.1016/j.pestbp.2019.07.011_bb0325 – volume: 22 start-page: 416 year: 2008 ident: 10.1016/j.pestbp.2019.07.011_bb0125 article-title: Multiplicative interaction between the two major mechanisms of permethrin resistance, cytochrome P450-monooxygenase detoxification and kdr, in mosquitoes publication-title: J. Evol. Biol. doi: 10.1111/j.1420-9101.2008.01661.x – volume: vol. 1 year: 2014 ident: 10.1016/j.pestbp.2019.07.011_bb0330 – volume: 6 start-page: 38 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0100 article-title: Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies) publication-title: Infect. Dis. Poverty doi: 10.1186/s40249-017-0254-x – volume: 8 start-page: 325 year: 2015 ident: 10.1016/j.pestbp.2019.07.011_bb0180 article-title: Relationship between insecticide resistance and kdr mutations in the dengue vector Aedes aegypti in Southern China publication-title: Parasit. Vectors doi: 10.1186/s13071-015-0933-z – volume: 52 start-page: 116 year: 1995 ident: 10.1016/j.pestbp.2019.07.011_bb0185 article-title: Genetics of resistance to pyrethroid insecticides in the house fly, Musca domestica publication-title: Pestic. Biochem. Physiol. doi: 10.1006/pest.1995.1036 – volume: 133 start-page: 1 year: 2016 ident: 10.1016/j.pestbp.2019.07.011_bb0280 article-title: Pyrethroid resistance in Aedes aegypti and Aedes albopictus: important mosquito vectors of human diseases publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2016.03.005 – volume: 51 start-page: 605 year: 2014 ident: 10.1016/j.pestbp.2019.07.011_bb0240 article-title: Transcriptional analysis of four family 4 P450s in a Puerto Rico strain of Aedes aegypti (Diptera: Culicidae) compared with an Orlando strain and their possible functional roles in permethrin resistance publication-title: J. Med. Entomol. doi: 10.1603/ME13228 – volume: 74 start-page: 2176 year: 2018 ident: 10.1016/j.pestbp.2019.07.011_bb0195 article-title: Frequency and intensity of pyrethroid resistance through the CDC bottle bioassay and their association with the frequency of kdr mutations in Aedes aegypti (Diptera: Culicidae) from Mexico publication-title: Pest Manag. Sci. doi: 10.1002/ps.4916 – volume: 11 year: 2018 ident: 10.1016/j.pestbp.2019.07.011_bb0085 article-title: First report of V1016G and S989P knockdown resistant (kdr) mutations in pyrethroid-resistant Sri Lankan Aedes aegypti mosquitoes publication-title: Parasite Vector doi: 10.1186/s13071-018-3113-0 – volume: 89 start-page: 175 year: 2007 ident: 10.1016/j.pestbp.2019.07.011_bb0120 article-title: Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2007.06.006 – volume: 360 start-page: 2536 year: 2009 ident: 10.1016/j.pestbp.2019.07.011_bb0060 article-title: Zika virus outbreak on Yap Island, Federated States of Micronesia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0805715 – volume: 187 start-page: 78 year: 2018 ident: 10.1016/j.pestbp.2019.07.011_bb0030 article-title: Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from northern districts of West Bengal, India publication-title: Acta Trop. doi: 10.1016/j.actatropica.2018.07.004 – volume: 15 start-page: 466 year: 2014 ident: 10.1016/j.pestbp.2019.07.011_bb0260 article-title: Genome of the house fly (Musca domestica L), a global vector of diseases with adaptations to a septic environment publication-title: Genome Biol. doi: 10.1186/s13059-014-0466-3 – volume: 23 start-page: 199 year: 2014 ident: 10.1016/j.pestbp.2019.07.011_bb0250 article-title: Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection publication-title: Insect Mol. Biol. doi: 10.1111/imb.12073 – volume: 97 start-page: 123 year: 2010 ident: 10.1016/j.pestbp.2019.07.011_bb0115 article-title: A review of the interactions between multiple insecticide resistance loci publication-title: Pestic. Biochem. Physiol. doi: 10.1016/j.pestbp.2009.07.010 – volume: 17 start-page: 195 year: 1986 ident: 10.1016/j.pestbp.2019.07.011_bb0255 article-title: Mechanisms responsible for high levels of permethrin resistance in the house fly publication-title: Pestic. Sci. doi: 10.1002/ps.2780170302 – volume: 11 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0220 article-title: Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans publication-title: PLoS Neglect. Trop. D doi: 10.1371/journal.pntd.0005625 – volume: 43 start-page: 1185 year: 2006 ident: 10.1016/j.pestbp.2019.07.011_bb0040 article-title: Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba publication-title: J. Med. Entomol. doi: 10.1093/jmedent/43.6.1185 – volume: 10 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0150 article-title: Temporal distribution and insecticide resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaoundé, the capital city of Cameroon publication-title: Parasite Vector doi: 10.1186/s13071-017-2408-x – volume: 3 start-page: 35 year: 1978 ident: 10.1016/j.pestbp.2019.07.011_bb0215 article-title: Biological activity of fenitrothion and ists degradation products publication-title: J. Pestic. Sci. doi: 10.1584/jpestics.3.35 – volume: 6 start-page: 102 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0205 article-title: Habitat productivity and pyrethroid susceptibility status of Aedes aegypti mosquitoes in Dar Es Salaam, Tanzania publication-title: Infect. Dis. Poverty doi: 10.1186/s40249-017-0316-0 – volume: 10 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0010 article-title: Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia publication-title: Parasite Vector doi: 10.1186/s13071-017-2096-6 – volume: 58 start-page: 500 year: 1965 ident: 10.1016/j.pestbp.2019.07.011_bb0225 article-title: Parathion activation enzymes in the fat body microsomes of the American cockroach publication-title: J. Econ. Entomol. doi: 10.1093/jee/58.3.500 – volume: 54 start-page: 1643 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0070 article-title: Resistance status and resistance mechanisms in a strain of Aedes aegypti (Diptera: Culicidae) from Puerto Rico publication-title: J. Med. Entomol. doi: 10.1093/jme/tjx143 – volume: 38 start-page: 113 year: 2008 ident: 10.1016/j.pestbp.2019.07.011_bb0315 article-title: Genomic analysis of detoxification genes in the mosquito Aedes aegypti publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2007.09.007 – volume: 34 start-page: 653 year: 2004 ident: 10.1016/j.pestbp.2019.07.011_bb0135 article-title: The molecular basis of insecticide resistance in mosquitoes publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2004.03.018 – volume: 26 start-page: 13 year: 2017 ident: 10.1016/j.pestbp.2019.07.011_bb0165 article-title: Diversity of knockdown resistance alleles in a single house fly population facilitates adaptation to pyrethroid insecticides publication-title: Insect Mol. Biol. doi: 10.1111/imb.12267 |
SSID | ssj0009409 ssib006540654 |
Score | 2.4227881 |
Snippet | Aedes aegypti thrives in urban environments and transmits several debilitating human viral diseases. Thus, our ability to control this mosquito species in... |
SourceID | proquest pubmed crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 119 |
SubjectTerms | additive effect Aedes Aedes - drug effects Aedes aegypti Animals Cross-resistance cyfluthrin Cytochrome P-450 Enzyme System Cytochrome P-450 Enzyme System - metabolism Cytochrome P450 monooxygenase etofenprox Female fenitrothion Gene Knockdown Techniques Insecticide Resistance Insecticide Resistance - genetics Male Mutation naled Organophosphate Organophosphates Organophosphates - pharmacology paraoxon parathion-methyl Pyrethrins Pyrethrins - pharmacology Pyrethroid resistance mechanisms sodium channels urban areas viral diseases of animals and humans |
Title | CYP-mediated resistance and cross-resistance to pyrethroids and organophosphates in Aedes aegypti in the presence and absence of kdr |
URI | https://dx.doi.org/10.1016/j.pestbp.2019.07.011 https://cir.nii.ac.jp/crid/1871709542661931392 https://www.ncbi.nlm.nih.gov/pubmed/31519246 https://www.proquest.com/docview/2290835156 https://www.proquest.com/docview/2305225758 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHBOW1QCsjcTVNHMdOjqsV1cKKCiEqysnyK20AJdHu9sCFEz-cGccpcCiVuCSOZUdjz2T8jTIPQl5mla0yowzjDbdMiMIyw0PFvBceM6TBoYPBye-O5fJEvD0tT3fIYoqFQbfKpPtHnR61deo5TLt5OLQtxvgKgA8KIQjGmWPAL2avA5l-9eO3m0ctkpuHqBiOnsLnoo_XAJrXYtbKvI4pPPP8quPpRte2V4PQeBgd3SN3E4qk85HQ-2QndHvkzvxsnTJphD1yazGVcntAfi4-v2cxRgTwJQUDG0EjrJSaztNICPujc9vT4fs6YAGF1m_imFj7qR_O-81wjuCUth2dBw8NE-uYtdgBUJIOMZopvdnYsd039KtfPyQnR68_LpYslV9gTtTZlskAYMBlxoQ6K0uAeVI4rkrfWLBquDSyLo0QjWmcsk2Q3OUNd2APGVd6KWxePCK7Xd-FJ4SCQOQieAmEYfF1VQXe5GAbA7znyvlsRopp17VLucmxRMY3PTmhfdEjrzTySmdKA69mhF3OGsbcHNeMVxND9V8ypuH4uGbmPvAfSMNrDjamAmQasU1dAITmM_JikgwNrMV_LqYL_cVGYzp9kFKwkv8xBnQuqFWw3Gbk8ShWl-spAJGBiSyf_jftz8htfBodEJ-T3e36IuwDkNrag_ilHJCb8zer5THeVx8-rX4BhJ8dKQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2120PpAUH5WqBgJK5WE8eJk-NqRbWl7YpDK5WT5cQOTUFJtLs99M4PZ8ZxChxKJS5R5NjRJDMZv1Fm3gB8jPIyj4wyXNSi5FImJTfC5dxaaYkhDTcdKk4-W2aLC_n5Mr3cgvlYC0NplcH3Dz7de-swchje5mHfNFTjKxE-KIIgVGeeb8MOsVPJCezMjk8Wy9_cuzJkesic04Kxgs6nefXofEsirowLz-IZx_ftUNtt09yPQ_1-dPQEHgcgyWaDrE9hy7X7sDf7tgpkGm4fdudjN7dn8HP-9Qv3ZSIIMRnG2IQb8WGZaS3zgvA_Bjcd629XjnooNHbt5_j2T11_1a37K8KnrGnZzFk8Mb6VWUMDiCZZ7wuawp1NOZx3NftuV8_h4ujT-XzBQwcGXski2vDMIR6oImNcEaUpIr1MVkKlti4xsBGZyYrUSFmbulJl7TJRxbWoMCQyVWozWcbJC5i0XeteAUObiKWzGQpG_ddV7kQdY3iMCF-oykZTSMa3rqtAT05dMn7oMQ_tWg-60qQrHSmNupoCv1vVD_QcD8xXo0L1X2amcQd5YOUB6h9Fo2OMYaZCcOrhTZEgihZT-DBahkbV0m8X07ruZq2JUR8NFQPlf8xBt4ueFYO3KbwczOrueRIEZRglZ6__W_b3sLs4PzvVp8fLkzfwiK4M-YhvYbJZ3bgDxFWb8l34bn4BS5QeNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CYP-mediated+resistance+and+cross-resistance+to+pyrethroids+and+organophosphates+in+Aedes+aegypti+in+the+presence+and+absence+of+kdr&rft.jtitle=Pesticide+biochemistry+and+physiology&rft.au=Smith%2C+Let%C3%ADcia+B&rft.au=Sears%2C+Colin&rft.au=Sun%2C+Haina&rft.au=Mertz%2C+Robert+W&rft.date=2019-10-01&rft.eissn=1095-9939&rft.volume=160&rft.spage=119&rft_id=info:doi/10.1016%2Fj.pestbp.2019.07.011&rft_id=info%3Apmid%2F31519246&rft.externalDocID=31519246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-3575&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-3575&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-3575&client=summon |