Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification
Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classifi...
Saved in:
Published in | Brain sciences Vol. 12; no. 1; p. 80 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
05.01.2022
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer’s disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD. |
---|---|
AbstractList | Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD. Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD. |
Author | Chen, Siwei Jiao, Zhuqing Xu, Jia Shi, Haifeng |
AuthorAffiliation | 1 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; jzq@cczu.edu.cn (Z.J.); chensiwei1223@163.com (S.C.) 4 School of Medicine, Ningbo University, Ningbo 315211, China 2 Department of Radiology, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou 213003, China 3 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China |
AuthorAffiliation_xml | – name: 1 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; jzq@cczu.edu.cn (Z.J.); chensiwei1223@163.com (S.C.) – name: 4 School of Medicine, Ningbo University, Ningbo 315211, China – name: 2 Department of Radiology, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou 213003, China – name: 3 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China |
Author_xml | – sequence: 1 givenname: Zhuqing surname: Jiao fullname: Jiao, Zhuqing – sequence: 2 givenname: Siwei surname: Chen fullname: Chen, Siwei – sequence: 3 givenname: Haifeng surname: Shi fullname: Shi, Haifeng – sequence: 4 givenname: Jia surname: Xu fullname: Xu, Jia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35053823$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v3CAQhlGVqPlo7j1VlnrJxQ0fxuBLpcjJtitl1UPbMwIMCSvWJIBb9d-X9SZpslIvMJp55mWYmRNwMIbRAPAewU-EdPBCRenGpB3CEEHI4RtwjCFra9JgevDCPgJnKa0h3DKQUPgWHJWTEo7JMXhYTT67ehUG6auFkXmKpvpuvNHZhbH67fLds7sPMRov54Ach394jpOercWUtkEbYrXqlzN0eVX1XqbkrNNz6jtwaKVP5uzxPgU_F9c_-q_1zbcvy_7yptZNB3PdUtYqiplU0hKuWIdbjm1HOKdKMUmwQVoh3OLGGEwxkgOhBFnNBq07Ti05Bcud7hDkWtxHt5HxjwjSidkR4q2QMTvtjei6FjGI285q21CFO24I5A0zjMvyripan3da95PamEGbMUfpX4m-jozuTtyGX4IzVvrcFIHzR4EYHiaTsti4pI33cjRhSqL8A2NGKeYF_biHrsMUx9KqLYUwQ7ChhfrwsqLnUp4mW4B2B-gYUorGCu3yPIBSoPMCQbHdIrG_RSUR7iU-af835S_vacsZ |
CitedBy_id | crossref_primary_10_1016_j_cmpb_2023_107905 crossref_primary_10_3390_brainsci12030319 crossref_primary_10_1016_j_compbiomed_2022_106418 crossref_primary_10_7717_peerj_17774 crossref_primary_10_1016_j_engappai_2025_110342 crossref_primary_10_3389_fpsyt_2022_861258 crossref_primary_10_3390_brainsci12101348 crossref_primary_10_3934_mbe_2023664 crossref_primary_10_3389_fnagi_2022_911220 crossref_primary_10_1016_j_talanta_2023_125021 crossref_primary_10_1016_j_eswa_2024_124780 crossref_primary_10_3389_fnins_2024_1352129 crossref_primary_10_1088_1361_6560_ad8c94 crossref_primary_10_16984_saufenbilder_1206968 crossref_primary_10_1109_JTEHM_2023_3285723 crossref_primary_10_3390_math12050684 crossref_primary_10_1007_s13755_023_00231_0 crossref_primary_10_1088_2057_1976_ada8af crossref_primary_10_3389_fnins_2022_1036244 crossref_primary_10_3389_fneur_2022_1005650 crossref_primary_10_1007_s42979_024_03486_w crossref_primary_10_3389_fdgth_2024_1265846 crossref_primary_10_3389_fninf_2022_856295 crossref_primary_10_1016_j_jksuci_2023_101618 crossref_primary_10_3389_fpsyt_2022_862958 crossref_primary_10_3390_app13074489 crossref_primary_10_3390_bioengineering10080958 crossref_primary_10_1109_TMI_2024_3464861 crossref_primary_10_1007_s11042_025_20631_6 crossref_primary_10_1109_TNSRE_2025_3549730 |
Cites_doi | 10.1007/s12652-020-02031-w 10.1109/ACCESS.2019.2920978 10.1007/978-3-642-00296-0_5 10.1371/journal.pone.0206547 10.2174/1871527315666161111123024 10.1016/j.jns.2019.116645 10.1016/j.csda.2019.106839 10.1371/journal.pone.0068910 10.3389/fnagi.2021.687456 10.1177/1073858417702621 10.1016/j.bspc.2015.05.014 10.1097/WAD.0000000000000143 10.1016/j.patcog.2018.12.001 10.1111/j.2517-6161.1996.tb02080.x 10.3389/fnins.2021.669345 10.2528/PIER13121310 10.3389/fnagi.2018.00037 10.3389/fnagi.2018.00135 10.1016/j.neucom.2020.03.006 10.1016/j.patcog.2009.05.005 10.1007/978-981-15-1967-3_8 10.1609/aaai.v26i1.8210 10.1371/journal.pcbi.1002987 10.1212/WNL.58.8.1188 10.1007/978-3-642-40811-3_35 10.1016/S0197-4580(03)00084-8 10.1109/JBHI.2018.2868420 10.1155/2015/583931 10.3233/JAD-150848 10.1371/journal.pone.0047905 10.1371/journal.pone.0115573 10.1016/j.compeleceng.2013.11.024 10.1016/j.sigpro.2014.12.012 10.1016/j.compmedimag.2019.101663 10.1016/j.neuroimage.2012.01.024 10.1089/brain.2018.0578 10.1137/110859646 10.1016/S1474-4422(07)70178-3 10.1016/j.patcog.2018.01.012 10.3233/JAD-141947 10.1002/brb3.2076 10.1006/nimg.2001.0978 10.3233/JAD-170069 10.1016/j.media.2020.101652 10.1016/j.neuroimage.2011.09.069 10.3233/JAD-181097 10.1186/s12882-019-1435-6 10.1016/j.nicl.2018.04.037 10.1007/s12021-017-9330-4 10.1016/S1474-4422(08)70169-8 10.1016/j.asoc.2017.11.006 10.3389/fnins.2018.00716 10.3389/fncom.2015.00066 10.1007/s11042-016-4222-4 10.1137/090763184 10.1002/gps.1639 10.1016/j.media.2018.11.006 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/brainsci12010080 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection (subscription) ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Biological Science Collection Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_996170269fcf45b298e30847e78a926b PMC8773824 35053823 10_3390_brainsci12010080 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Jiangsu Provincial Key Research and Development Program grantid: BE2021636 – fundername: Natural Science Foundation of Ningbo City grantid: 202003N4116 – fundername: Fund from the Educational Commission of Zhejiang Province grantid: Y202044047 – fundername: Science and Technology Project of Changzhou City grantid: CE20205056 – fundername: National Natural Science Foundation of China grantid: 51877013, 52007087 |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM PQGLB 3V. 7TK 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-6576b527abaf38b792682f93885bb7a32e1cb12624ee2521ad3531fc7dcc985f3 |
IEDL.DBID | M48 |
ISSN | 2076-3425 |
IngestDate | Wed Aug 27 01:29:04 EDT 2025 Thu Aug 21 13:15:46 EDT 2025 Fri Jul 11 03:09:35 EDT 2025 Fri Jul 25 12:09:18 EDT 2025 Mon Jul 21 06:06:09 EDT 2025 Tue Jul 01 04:03:31 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | classification multi-modal feature correlation feature selection feature structure fusion |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-6576b527abaf38b792682f93885bb7a32e1cb12624ee2521ad3531fc7dcc985f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/brainsci12010080 |
PMID | 35053823 |
PQID | 2621271045 |
PQPubID | 2032423 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_996170269fcf45b298e30847e78a926b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8773824 proquest_miscellaneous_2622275528 proquest_journals_2621271045 pubmed_primary_35053823 crossref_citationtrail_10_3390_brainsci12010080 crossref_primary_10_3390_brainsci12010080 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220105 |
PublicationDateYYYYMMDD | 2022-01-05 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220105 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Brain sciences |
PublicationTitleAlternate | Brain Sci |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Bailly (ref_52) 2015; 2015 Ji (ref_10) 2021; 15 Bi (ref_46) 2018; 12 Vasavada (ref_60) 2015; 45 Wang (ref_13) 2021; 13 Liu (ref_48) 2018; 10 Majdi (ref_9) 2018; 62 Zhang (ref_2) 2012; 59 ref_14 ref_58 Zhang (ref_23) 2021; 1 Killiany (ref_62) 2002; 58 Jiao (ref_33) 2019; 7 ref_55 ref_53 Zhang (ref_39) 2014; 144 Zhang (ref_56) 2019; 88 ref_17 Pong (ref_38) 2010; 20 Jon (ref_45) 2017; 23 Le (ref_50) 2020; 410 Wang (ref_6) 2016; 50 Girish (ref_27) 2014; 40 ref_25 ref_68 Zhang (ref_4) 2015; 9 ref_65 ref_20 Lee (ref_49) 2016; 30 Wang (ref_24) 2016; 120 ref_29 ref_28 ref_26 Andrea (ref_8) 2020; 143 Zhou (ref_42) 2011; 2011 Zhang (ref_35) 2018; 65 Shao (ref_18) 2020; 80 ref_36 Liu (ref_47) 2020; 400 Lei (ref_15) 2020; 61 Li (ref_3) 2019; 52 Wang (ref_11) 2018; 77 ref_30 Salvatore (ref_54) 2018; 10 Zhang (ref_7) 2015; 21 Wang (ref_32) 2017; 16 Dubois (ref_19) 2007; 6 Jiao (ref_41) 2020; 123 Lei (ref_63) 2018; 23 Belkin (ref_34) 2001; 14 Yue (ref_66) 2021; 11 Zhao (ref_31) 2018; 78 Crowe (ref_64) 2006; 21 Anna (ref_59) 2019; 9 Li (ref_51) 2019; 69 Nathalie (ref_21) 2002; 15 ref_44 Bamdev (ref_37) 2013; 23 ref_40 Pennanen (ref_61) 2004; 25 Chen (ref_57) 2017; 15 Robert (ref_12) 1996; 58 Qiao (ref_43) 2009; 43 ref_5 Ma (ref_16) 2018; 19 Lu (ref_67) 2019; 20 Kalaria (ref_1) 2008; 7 Alan (ref_22) 2012; 62 |
References_xml | – ident: ref_40 doi: 10.1007/s12652-020-02031-w – volume: 7 start-page: 74263 year: 2019 ident: ref_33 article-title: Multi-scale feature combination of brain functional network for eMCI classification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2920978 – ident: ref_29 doi: 10.1007/978-3-642-00296-0_5 – ident: ref_55 doi: 10.1371/journal.pone.0206547 – ident: ref_65 – volume: 16 start-page: 11 year: 2017 ident: ref_32 article-title: Alzheimer’s Disease Detection by Pseudo Zernike Moment and Linear Regression Classification publication-title: CNS Neurol. Disord. Drug Targets doi: 10.2174/1871527315666161111123024 – volume: 410 start-page: 116645 year: 2020 ident: ref_50 article-title: A visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate dementia with Lewy bodies and Alzheimer’s disease publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2019.116645 – volume: 143 start-page: 106839 year: 2020 ident: ref_8 article-title: Benchmark for filter methods for feature selection in high-dimensional classification data publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2019.106839 – ident: ref_44 doi: 10.1371/journal.pone.0068910 – volume: 13 start-page: 687456 year: 2021 ident: ref_13 article-title: ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2021.687456 – volume: 23 start-page: 616 year: 2017 ident: ref_45 article-title: Graph theory and brain connectivity in Alzheimer’s disease publication-title: Neuroscientist doi: 10.1177/1073858417702621 – volume: 21 start-page: 58 year: 2015 ident: ref_7 article-title: Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2015.05.014 – volume: 30 start-page: 289 year: 2016 ident: ref_49 article-title: Default Mode Network Functional Connectivity in Early and Late Mild Cognitive Impairment: Results from the Alzheimer’s Disease Neuroimaging Initiative publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0000000000000143 – volume: 88 start-page: 421 year: 2019 ident: ref_56 article-title: Strength and similarity guided group-level brain functional network construction for MCI diagnosis publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.12.001 – volume: 58 start-page: 267 year: 1996 ident: ref_12 article-title: Regression shrinkage and selection via the lasso publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 15 start-page: 358 year: 2021 ident: ref_10 article-title: Constructing dynamic brain functional networks via hyper-graph manifold regularization for mild cognitive impairment classification publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.669345 – volume: 144 start-page: 185 year: 2014 ident: ref_39 article-title: Classification of Alzheimer Disease Based on Structural Magnetic Resonance Imaging by Kernel Support Vector Machine Decision Tree publication-title: Prog. Electromagn. Res. Pier doi: 10.2528/PIER13121310 – volume: 10 start-page: 37 year: 2018 ident: ref_48 article-title: The Abnormal functional connectivity between the hypothalamus and the temporal gyrus underlying depression in Alzheimer’s disease patients publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00037 – volume: 14 start-page: 585 year: 2001 ident: ref_34 article-title: Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering publication-title: Adv. Neural Inf. Process. Syst. – volume: 10 start-page: 135 year: 2018 ident: ref_54 article-title: MRI characterizes the progressive course of AD and predicts conversion to Alzheimer’s dementia 24 months before probable diagnosis publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00135 – volume: 400 start-page: 322 year: 2020 ident: ref_47 article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.006 – volume: 43 start-page: 331 year: 2009 ident: ref_43 article-title: Sparsity preserving projections with applications to face recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2009.05.005 – ident: ref_68 doi: 10.1007/978-981-15-1967-3_8 – ident: ref_26 doi: 10.1609/aaai.v26i1.8210 – volume: 1 start-page: 1 year: 2021 ident: ref_23 article-title: A survey on multi-task learning publication-title: IEEE Trans. Knowl. Data Eng. – ident: ref_5 doi: 10.1371/journal.pcbi.1002987 – ident: ref_20 – volume: 58 start-page: 1188 year: 2002 ident: ref_62 article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD publication-title: Neurology doi: 10.1212/WNL.58.8.1188 – ident: ref_17 doi: 10.1007/978-3-642-40811-3_35 – volume: 25 start-page: 303 year: 2004 ident: ref_61 article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD publication-title: Neurobiol. Aging doi: 10.1016/S0197-4580(03)00084-8 – ident: ref_28 – volume: 23 start-page: 1437 year: 2018 ident: ref_63 article-title: Parkinson’s disease diagnosis via joint learning from multiple modalities and relations publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2868420 – volume: 2015 start-page: 583931 year: 2015 ident: ref_52 article-title: Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer’s disease and mild cognitive impairment: MRI and 18F-FDG PET quantitative analysis using FreeSurfer publication-title: BioMed Res. Int. doi: 10.1155/2015/583931 – volume: 50 start-page: 233 year: 2016 ident: ref_6 article-title: Detection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imaging publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-150848 – ident: ref_30 – ident: ref_58 doi: 10.1371/journal.pone.0047905 – ident: ref_53 doi: 10.1371/journal.pone.0115573 – volume: 40 start-page: 16 year: 2014 ident: ref_27 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 120 start-page: 746 year: 2016 ident: ref_24 article-title: Multi-task support vector machines for feature selection with shared knowledge discovery publication-title: Signal Process. doi: 10.1016/j.sigpro.2014.12.012 – volume: 80 start-page: 101663 year: 2020 ident: ref_18 article-title: Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease publication-title: Comput. Med Imaging Graph. doi: 10.1016/j.compmedimag.2019.101663 – volume: 62 start-page: 911 year: 2012 ident: ref_22 article-title: Brain templates and atlases publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.024 – volume: 9 start-page: 22 year: 2019 ident: ref_59 article-title: Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis publication-title: Brain Connect. doi: 10.1089/brain.2018.0578 – volume: 23 start-page: 2124 year: 2013 ident: ref_37 article-title: Low-rank optimization with trace norm penalty publication-title: SIAM J. Optim. doi: 10.1137/110859646 – ident: ref_14 – volume: 6 start-page: 734 year: 2007 ident: ref_19 article-title: Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(07)70178-3 – volume: 78 start-page: 154 year: 2018 ident: ref_31 article-title: Multi-view manifold learning with locality alignment publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.01.012 – volume: 45 start-page: 947 year: 2015 ident: ref_60 article-title: Olfactory cortex degeneration in Alzheimer’s disease and mild cognitive impairment publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-141947 – volume: 11 start-page: e02076 year: 2021 ident: ref_66 article-title: Abnormal brain functional networks in end-stage renal disease patients with cognitive impairment publication-title: Brain Behav. doi: 10.1002/brb3.2076 – volume: 15 start-page: 273 year: 2002 ident: ref_21 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: NeuroImage doi: 10.1006/nimg.2001.0978 – volume: 65 start-page: 855 year: 2018 ident: ref_35 article-title: Multivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimization publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-170069 – volume: 61 start-page: 101652 year: 2020 ident: ref_15 article-title: Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer’s disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101652 – volume: 59 start-page: 895 year: 2012 ident: ref_2 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – ident: ref_25 – volume: 69 start-page: 237 year: 2019 ident: ref_51 article-title: Abnormal brain network connectivity in a triple-network model of Alzheimer’s disease publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-181097 – volume: 20 start-page: 1 year: 2019 ident: ref_67 article-title: Alterations of default mode functional connectivity in individuals with end-stage renal disease and mild cognitive impairment publication-title: BMC Nephrol. doi: 10.1186/s12882-019-1435-6 – volume: 19 start-page: 476 year: 2018 ident: ref_16 article-title: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2018.04.037 – volume: 15 start-page: 271 year: 2017 ident: ref_57 article-title: Hierarchical high-order functional connectivity networks and selective feature fusion for MCI classification publication-title: Neuroinformatics doi: 10.1007/s12021-017-9330-4 – volume: 7 start-page: 812 year: 2008 ident: ref_1 article-title: Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(08)70169-8 – volume: 62 start-page: 441 year: 2018 ident: ref_9 article-title: Whale optimization approaches for wrapper feature selection publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.006 – ident: ref_36 – volume: 123 start-page: 845 year: 2020 ident: ref_41 article-title: Extracting sub-networks from brain functional network using graph regularized nonnegative matrix factorization publication-title: Comput. Model. Eng. Sci. – volume: 12 start-page: 716 year: 2018 ident: ref_46 article-title: Analysis of progression toward Alzheimer’s disease based on evolutionary weighted random support vector machine cluster publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00716 – volume: 2011 start-page: 702 year: 2011 ident: ref_42 article-title: Clustered Multi-Task Learning Via Alternating Structure Optimization publication-title: Adv. Neural Inf. Process. Syst. – volume: 9 start-page: 66 year: 2015 ident: ref_4 article-title: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00066 – volume: 77 start-page: 10393 year: 2018 ident: ref_11 article-title: Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-4222-4 – volume: 20 start-page: 3465 year: 2010 ident: ref_38 article-title: Trace norm regularization: Reformulations, algorithms, and multi-task learning publication-title: SIAM J. Optim. doi: 10.1137/090763184 – volume: 21 start-page: 1187 year: 2006 ident: ref_64 article-title: BallK.Subjective cognitive function and decline among older adults with psychometrically defined amnestic MCI publication-title: Int. J. Geriatr. Psychiatry A J. Psychiatry Late Life Allied Sci. doi: 10.1002/gps.1639 – volume: 52 start-page: 80 year: 2019 ident: ref_3 article-title: Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.11.006 |
SSID | ssj0000800350 |
Score | 2.3422484 |
Snippet | Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research.... Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research.... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 80 |
SubjectTerms | Algorithms Alzheimer's disease Brain research Classification Cognitive ability Complementarity feature correlation Feature selection feature structure fusion Graphs Information sharing Magnetic resonance imaging Memory multi-modal Neurodegenerative diseases Nodes Tomography |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLemPe1lAsagbExBQpN4qO6ajyZ5PA5O26TjZUzaW5WkiQBBD8bugf8eO-26uwnBC29Vaktp7NQ_x44N8Dp4FQVXrpwmCjNyEUqrK1XqoCvuvRfR0UXh5Yf67EpeXKvrjVZflBPWlwfuF26CeLzS6CjYFJJUnlsTxRR_qVEbZ3nt6e-LNm_Dmfoy4CChpn1cUqBfP_HUcQGtSkXh31wFcsMO5XL9f8KYD1MlN2zP4hHsD6CRzfrJPoad2D2Bg1mHDvO3X-yU5TTOfD5-AD_yldpyuWqRgwDe-iayy9ztBkXA6Nx1HJ5Ta44-GY65rr0nz0Vl6WmxptM0hsiWLefnmWj2juVOmpRjlFmfwtXi_cf5WTn0VSiDtNNbynapveLaeZeE8RqX0fBkhTHKe-0Ej1XwFa-5jJGjeXetwJ2agm5DsEYlcQi73aqLz4EhU0CM7lMdW5laZZNMiBiTjcbJ2LoCJner3ISh6Dj1vvjaoPNBcmkeyqWANyPH977gxl9o35LgRjoqlZ0HUIGaQYGafylQAcd3Ym-G_fuzwY-vOIIvqQp4Nb7GnUfhFNfF1TrTcK6V4qaAZ72WjDNB3VMUYS1Ab-nP1lS333SfP-Xq3kZr5JQv_se3HcEep-sadGSkjmEXtSe-RBB160_yfvkNHfEbeA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQwcATthQsqlEdKQUZCSByi3dhx7JzQdumqIG2FgEq9RbZjFyRI-toDf8-M4027FeotimckxzOTeXoG4J2z0gsuTT4NlGbkwuW1KmSunCq4tVZ4QxeFl8fV0Un55VSepoDbVSqrXP8T44-67R3FyCe8ol7k6DzIj-cXOU2NouxqGqHxELZxVaPztX1wePz12xhlIXtIyOmQnxTo308sTV5A7VJQGjh2g7ylj2Lb_v_ZmndLJm_poMUOPE7GI5sN1H4CD3z3FHZnHTrOf_6y9yyWc8Y4-S5cxKu1-bJvEYMMvdWlZ9_j1BskBaP46_h6TiM6hqI4Zrr2Bjw2l6WnxYqiagwtXLacf45As08sTtSkWqOI-gxOFoc_5kd5mq-Qu7KeXlPVS2UlV8aaILRVNa80D7XQWlqrjOC-cLbAgy-956jmTStQYoNTrXO1lkE8h62u7_xLYIjk0Fa3ofJtGVpZhzKg5Rhqr03pW5PBZH3KjUvNx2kGxu8GnRCiS3OXLhl8GDHOh8Yb98AeEOFGOGqZHV_0l2dNksAGHbtCocdZBxdKaXmtvZiibvZKG_xym8H-muxNkuOr5obrMng7LqMEUlrFdL5fRRjOlZRcZ_Bi4JJxJ8h7kjKtGagN_tnY6uZK9-tn7PKtlULMcu_-bb2CR5wuZFBQSO7DFvKFf41m0rV9k2ThH3HaFW8 priority: 102 providerName: ProQuest |
Title | Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35053823 https://www.proquest.com/docview/2621271045 https://www.proquest.com/docview/2622275528 https://pubmed.ncbi.nlm.nih.gov/PMC8773824 https://doaj.org/article/996170269fcf45b298e30847e78a926b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgk9BeJmB8FMYpSAiJh7Jr0jTpA0K3Y6eBdBMCTtpblaQJMI0eO3YS---x017HTQdvVWtXTW3LP8eODfDCWekFlyYdBkozcuHSUmUyVU5l3ForvKGDwtOT4niWfziVp9fHo7sf-GtjaEfzpGaL89e_L67eosG_oYgTQ_YDS8MU0GFklNlFBHQbttEvKTLTaQf2zzpsJOLIVo7BeypQW9u85caX7MAdJJaUJltzWbGz_yY4erOq8i83NbkLux2-ZKNWIe7BLd_ch71Rg7H1jyv2ksWKz7iVvgcX8fRtOp3XyEFYcLnw7HMcjIPSYrRF298e0xSPtm6Omaa-Jo_9Z-lqsqSNN4YgmE3H7yPR6B2LQzepHCmyPoDZ5OjL-DjtRjCkLi-Hl1QYU1jJlbEmCG1VyQvNQym0ltYqI7jPnM14wXPvOSIBUws06uBU7VypZRAPYauZN_4xMGRyCOdtKHydh1qWIQ8ILkPptcl9bRI4WP3lynX9yWlMxnmFcQqJqLopogRe9Rw_294c_6E9JMH1dNRVO96YL75WnZFWGPtlCoPSMriQS8tL7cUQ3bdX2uDKbQL7K7FXK02tcPEZR5yWywSe94_RSCnzYho_X0YazpWUXCfwqNWS_ktWWpaAWtOftU9df9J8_xYbgWulkDN_8s93PoUdTsc1aMtI7sMWqoR_hiDq0g5g-_Do5OOnQdyEGERL-QMQyhyO |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEDA-AgOMBEg8RG3suE4eEOq6VS1bKwSbtLfMdmxAgnRfFdo_xd_InZNm64T2trcouWvc3Nm-L98P4K010gkuddzzlGbkwsa5SmSsrEq4MUY4TQeFp7P--CD9fCgP1-Dv8iwMlVUu18SwUJdzSzHyLu9TL3J0HuSn45OYUKMou7qE0KjVYtdd_EGX7ezjZBvl-47z0c7-cBw3qAKxTfPeOdV69I3kShvtRWZUzvsZ97nIMmmM0oK7xJoEX5c6x3Fz06VAPfVWldbmmfQCf_cOrKcCXZkOrG_tzL58baM6ZH8J2avzoULkva4hpAfczRJKO4fuk1f2vwAT8D_b9nqJ5pU9b_QA7jfGKhvU2vUQ1lz1CDYGFTrqvy_YexbKR0NcfgNOwlHeeDovkYMMy8WpY98Cyg6KnlG8t709JEiQugiP6aq8JA_NbOlqtKAoHkOLmk2Hk0A02GYBwZNqmwLrYzi4lS__BDrVvHLPgCGTRd_A-L4rU1_K3KceLVWfu0ynrtQRdJdfubBNs3PC3PhVoNNDcimuyyWCDy3Hcd3o4wbaLRJcS0ctusON-en3opnxBTqSiUIPN_fWp9LwPHOih7aAU5nGf24i2FyKvWjWjbPiUssjeNM-xhlPaRxdufki0HCupORZBE9rLWlHgronKbMbgVrRn5Whrj6pfv4IXcUzpZAzfX7zsF7D3fH-dK_Ym8x2X8A9TodBKCAlN6GDOuJeool2bl4184LB0W1PxX9La1HG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6CfGCgPERGGAkQOIhamLHdfKAUNeuWhmdJmDS3oLt2IAE6b4qtL_Gr-POSbN1QnvbW-TcJU7uzr4v3wG8tkY6waWOE09hRi5sXKhUxsqqlBtjhNN0UHi2N9g5yD4eysM1-Ls8C0Nplcs1MSzU1dySj7zPB1SLHI0H2fdtWsT-ePLh6DimDlIUaV2202hYZNed_0Hz7fT9dIy0fsP5ZPvraCduOwzENiuSM8r7GBjJlTbai9yogg9y7guR59IYpQV3qTUpvjpzjuNGpyuBPOutqqwtcukFPvcWrCu0ipIerG9t7-1_7jw8pIsJmTSxUSGKpG-o6wPubCmFoEMlykt7YWgZ8D8992q65qX9b3IP7raKKxs2nHYf1lz9ADaGNRrtv8_ZWxZSSYOPfgOOw7HeeDavEIOUzMWJY19Cxx1kA0a-3254RO1BmoQ8puvqAjwUtqWryYI8egy1azYbTQPQcMxCN0_KcwqoD-HgRv78I-jV89o9AYZIFu0E4weuynwlC5951Fp94XKduUpH0F_-5dK2hc-p_8avEg0gokt5lS4RvOswjpqiH9fAbhHhOjgq1x0G5iffy1b6SzQqU4XWbuGtz6ThRe5EgnqBU7nGLzcRbC7JXrZryGl5wfERvOpuo_RTSEfXbr4IMJwrKXkeweOGS7qZIO9JivJGoFb4Z2Wqq3fqnz9ChfFcKcTMnl4_rZdwG0Ww_DTd230GdzidCyHflNyEHrKIe47a2pl50YoFg283LYn_ANeoVfs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Feature+Selection+with+Feature+Correlation+and+Feature+Structure+Fusion+for+MCI+and+AD+Classification&rft.jtitle=Brain+sciences&rft.au=Jiao%2C+Zhuqing&rft.au=Chen%2C+Siwei&rft.au=Shi%2C+Haifeng&rft.au=Xu%2C+Jia&rft.date=2022-01-05&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Fbrainsci12010080&rft_id=info%3Apmid%2F35053823&rft.externalDocID=35053823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |