Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification

Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classifi...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 12; no. 1; p. 80
Main Authors Jiao, Zhuqing, Chen, Siwei, Shi, Haifeng, Xu, Jia
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.01.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer’s disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.
AbstractList Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.
Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research. Combining multi-modal data for classification can better realize the complementarity of valuable information. In order to improve the classification performance of feature selection on multi-modal data, we propose a multi-modal feature selection algorithm using feature correlation and feature structure fusion (FC2FS). First, we construct feature correlation regularization by fusing a similarity matrix between multi-modal feature nodes. Then, based on manifold learning, we employ feature matrix fusion to construct feature structure regularization, and learn the local geometric structure of the feature nodes. Finally, the two regularizations are embedded in a multi-task learning model that introduces low-rank constraint, the multi-modal features are selected, and the final features are linearly fused and input into a support vector machine (SVM) for classification. Different controlled experiments were set to verify the validity of the proposed method, which was applied to MCI and AD classification. The accuracy of normal controls versus Alzheimer's disease, normal controls versus late mild cognitive impairment, normal controls versus early mild cognitive impairment, and early mild cognitive impairment versus late mild cognitive impairment achieve 91.85 ± 1.42%, 85.33 ± 2.22%, 78.29 ± 2.20%, and 77.67 ± 1.65%, respectively. This method makes up for the shortcomings of the traditional multi-modal feature selection based on subjects and fully considers the relationship between feature nodes and the local geometric structure of feature space. Our study not only enhances the interpretation of feature selection but also improves the classification performance, which has certain reference values for the identification of MCI and AD.
Author Chen, Siwei
Jiao, Zhuqing
Xu, Jia
Shi, Haifeng
AuthorAffiliation 1 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; jzq@cczu.edu.cn (Z.J.); chensiwei1223@163.com (S.C.)
4 School of Medicine, Ningbo University, Ningbo 315211, China
2 Department of Radiology, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou 213003, China
3 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
AuthorAffiliation_xml – name: 1 School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China; jzq@cczu.edu.cn (Z.J.); chensiwei1223@163.com (S.C.)
– name: 4 School of Medicine, Ningbo University, Ningbo 315211, China
– name: 2 Department of Radiology, Changzhou Second People’s Hospital, Nanjing Medical University, Changzhou 213003, China
– name: 3 School of Microelectronics and Control Engineering, Changzhou University, Changzhou 213164, China
Author_xml – sequence: 1
  givenname: Zhuqing
  surname: Jiao
  fullname: Jiao, Zhuqing
– sequence: 2
  givenname: Siwei
  surname: Chen
  fullname: Chen, Siwei
– sequence: 3
  givenname: Haifeng
  surname: Shi
  fullname: Shi, Haifeng
– sequence: 4
  givenname: Jia
  surname: Xu
  fullname: Xu, Jia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35053823$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v3CAQhlGVqPlo7j1VlnrJxQ0fxuBLpcjJtitl1UPbMwIMCSvWJIBb9d-X9SZpslIvMJp55mWYmRNwMIbRAPAewU-EdPBCRenGpB3CEEHI4RtwjCFra9JgevDCPgJnKa0h3DKQUPgWHJWTEo7JMXhYTT67ehUG6auFkXmKpvpuvNHZhbH67fLds7sPMRov54Ach394jpOercWUtkEbYrXqlzN0eVX1XqbkrNNz6jtwaKVP5uzxPgU_F9c_-q_1zbcvy_7yptZNB3PdUtYqiplU0hKuWIdbjm1HOKdKMUmwQVoh3OLGGEwxkgOhBFnNBq07Ti05Bcud7hDkWtxHt5HxjwjSidkR4q2QMTvtjei6FjGI285q21CFO24I5A0zjMvyripan3da95PamEGbMUfpX4m-jozuTtyGX4IzVvrcFIHzR4EYHiaTsti4pI33cjRhSqL8A2NGKeYF_biHrsMUx9KqLYUwQ7ChhfrwsqLnUp4mW4B2B-gYUorGCu3yPIBSoPMCQbHdIrG_RSUR7iU-af835S_vacsZ
CitedBy_id crossref_primary_10_1016_j_cmpb_2023_107905
crossref_primary_10_3390_brainsci12030319
crossref_primary_10_1016_j_compbiomed_2022_106418
crossref_primary_10_7717_peerj_17774
crossref_primary_10_1016_j_engappai_2025_110342
crossref_primary_10_3389_fpsyt_2022_861258
crossref_primary_10_3390_brainsci12101348
crossref_primary_10_3934_mbe_2023664
crossref_primary_10_3389_fnagi_2022_911220
crossref_primary_10_1016_j_talanta_2023_125021
crossref_primary_10_1016_j_eswa_2024_124780
crossref_primary_10_3389_fnins_2024_1352129
crossref_primary_10_1088_1361_6560_ad8c94
crossref_primary_10_16984_saufenbilder_1206968
crossref_primary_10_1109_JTEHM_2023_3285723
crossref_primary_10_3390_math12050684
crossref_primary_10_1007_s13755_023_00231_0
crossref_primary_10_1088_2057_1976_ada8af
crossref_primary_10_3389_fnins_2022_1036244
crossref_primary_10_3389_fneur_2022_1005650
crossref_primary_10_1007_s42979_024_03486_w
crossref_primary_10_3389_fdgth_2024_1265846
crossref_primary_10_3389_fninf_2022_856295
crossref_primary_10_1016_j_jksuci_2023_101618
crossref_primary_10_3389_fpsyt_2022_862958
crossref_primary_10_3390_app13074489
crossref_primary_10_3390_bioengineering10080958
crossref_primary_10_1109_TMI_2024_3464861
crossref_primary_10_1007_s11042_025_20631_6
crossref_primary_10_1109_TNSRE_2025_3549730
Cites_doi 10.1007/s12652-020-02031-w
10.1109/ACCESS.2019.2920978
10.1007/978-3-642-00296-0_5
10.1371/journal.pone.0206547
10.2174/1871527315666161111123024
10.1016/j.jns.2019.116645
10.1016/j.csda.2019.106839
10.1371/journal.pone.0068910
10.3389/fnagi.2021.687456
10.1177/1073858417702621
10.1016/j.bspc.2015.05.014
10.1097/WAD.0000000000000143
10.1016/j.patcog.2018.12.001
10.1111/j.2517-6161.1996.tb02080.x
10.3389/fnins.2021.669345
10.2528/PIER13121310
10.3389/fnagi.2018.00037
10.3389/fnagi.2018.00135
10.1016/j.neucom.2020.03.006
10.1016/j.patcog.2009.05.005
10.1007/978-981-15-1967-3_8
10.1609/aaai.v26i1.8210
10.1371/journal.pcbi.1002987
10.1212/WNL.58.8.1188
10.1007/978-3-642-40811-3_35
10.1016/S0197-4580(03)00084-8
10.1109/JBHI.2018.2868420
10.1155/2015/583931
10.3233/JAD-150848
10.1371/journal.pone.0047905
10.1371/journal.pone.0115573
10.1016/j.compeleceng.2013.11.024
10.1016/j.sigpro.2014.12.012
10.1016/j.compmedimag.2019.101663
10.1016/j.neuroimage.2012.01.024
10.1089/brain.2018.0578
10.1137/110859646
10.1016/S1474-4422(07)70178-3
10.1016/j.patcog.2018.01.012
10.3233/JAD-141947
10.1002/brb3.2076
10.1006/nimg.2001.0978
10.3233/JAD-170069
10.1016/j.media.2020.101652
10.1016/j.neuroimage.2011.09.069
10.3233/JAD-181097
10.1186/s12882-019-1435-6
10.1016/j.nicl.2018.04.037
10.1007/s12021-017-9330-4
10.1016/S1474-4422(08)70169-8
10.1016/j.asoc.2017.11.006
10.3389/fnins.2018.00716
10.3389/fncom.2015.00066
10.1007/s11042-016-4222-4
10.1137/090763184
10.1002/gps.1639
10.1016/j.media.2018.11.006
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7TK
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/brainsci12010080
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Biological Science Collection
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database
MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_996170269fcf45b298e30847e78a926b
PMC8773824
35053823
10_3390_brainsci12010080
Genre Journal Article
GrantInformation_xml – fundername: Jiangsu Provincial Key Research and Development Program
  grantid: BE2021636
– fundername: Natural Science Foundation of Ningbo City
  grantid: 202003N4116
– fundername: Fund from the Educational Commission of Zhejiang Province
  grantid: Y202044047
– fundername: Science and Technology Project of Changzhou City
  grantid: CE20205056
– fundername: National Natural Science Foundation of China
  grantid: 51877013, 52007087
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
PQGLB
3V.
7TK
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-6576b527abaf38b792682f93885bb7a32e1cb12624ee2521ad3531fc7dcc985f3
IEDL.DBID M48
ISSN 2076-3425
IngestDate Wed Aug 27 01:29:04 EDT 2025
Thu Aug 21 13:15:46 EDT 2025
Fri Jul 11 03:09:35 EDT 2025
Fri Jul 25 12:09:18 EDT 2025
Mon Jul 21 06:06:09 EDT 2025
Tue Jul 01 04:03:31 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords classification
multi-modal
feature correlation
feature selection
feature structure fusion
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-6576b527abaf38b792682f93885bb7a32e1cb12624ee2521ad3531fc7dcc985f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/brainsci12010080
PMID 35053823
PQID 2621271045
PQPubID 2032423
ParticipantIDs doaj_primary_oai_doaj_org_article_996170269fcf45b298e30847e78a926b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8773824
proquest_miscellaneous_2622275528
proquest_journals_2621271045
pubmed_primary_35053823
crossref_citationtrail_10_3390_brainsci12010080
crossref_primary_10_3390_brainsci12010080
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220105
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 1
  year: 2022
  text: 20220105
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Brain sciences
PublicationTitleAlternate Brain Sci
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Bailly (ref_52) 2015; 2015
Ji (ref_10) 2021; 15
Bi (ref_46) 2018; 12
Vasavada (ref_60) 2015; 45
Wang (ref_13) 2021; 13
Liu (ref_48) 2018; 10
Majdi (ref_9) 2018; 62
Zhang (ref_2) 2012; 59
ref_14
ref_58
Zhang (ref_23) 2021; 1
Killiany (ref_62) 2002; 58
Jiao (ref_33) 2019; 7
ref_55
ref_53
Zhang (ref_39) 2014; 144
Zhang (ref_56) 2019; 88
ref_17
Pong (ref_38) 2010; 20
Jon (ref_45) 2017; 23
Le (ref_50) 2020; 410
Wang (ref_6) 2016; 50
Girish (ref_27) 2014; 40
ref_25
ref_68
Zhang (ref_4) 2015; 9
ref_65
ref_20
Lee (ref_49) 2016; 30
Wang (ref_24) 2016; 120
ref_29
ref_28
ref_26
Andrea (ref_8) 2020; 143
Zhou (ref_42) 2011; 2011
Zhang (ref_35) 2018; 65
Shao (ref_18) 2020; 80
ref_36
Liu (ref_47) 2020; 400
Lei (ref_15) 2020; 61
Li (ref_3) 2019; 52
Wang (ref_11) 2018; 77
ref_30
Salvatore (ref_54) 2018; 10
Zhang (ref_7) 2015; 21
Wang (ref_32) 2017; 16
Dubois (ref_19) 2007; 6
Jiao (ref_41) 2020; 123
Lei (ref_63) 2018; 23
Belkin (ref_34) 2001; 14
Yue (ref_66) 2021; 11
Zhao (ref_31) 2018; 78
Crowe (ref_64) 2006; 21
Anna (ref_59) 2019; 9
Li (ref_51) 2019; 69
Nathalie (ref_21) 2002; 15
ref_44
Bamdev (ref_37) 2013; 23
ref_40
Pennanen (ref_61) 2004; 25
Chen (ref_57) 2017; 15
Robert (ref_12) 1996; 58
Qiao (ref_43) 2009; 43
ref_5
Ma (ref_16) 2018; 19
Lu (ref_67) 2019; 20
Kalaria (ref_1) 2008; 7
Alan (ref_22) 2012; 62
References_xml – ident: ref_40
  doi: 10.1007/s12652-020-02031-w
– volume: 7
  start-page: 74263
  year: 2019
  ident: ref_33
  article-title: Multi-scale feature combination of brain functional network for eMCI classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2920978
– ident: ref_29
  doi: 10.1007/978-3-642-00296-0_5
– ident: ref_55
  doi: 10.1371/journal.pone.0206547
– ident: ref_65
– volume: 16
  start-page: 11
  year: 2017
  ident: ref_32
  article-title: Alzheimer’s Disease Detection by Pseudo Zernike Moment and Linear Regression Classification
  publication-title: CNS Neurol. Disord. Drug Targets
  doi: 10.2174/1871527315666161111123024
– volume: 410
  start-page: 116645
  year: 2020
  ident: ref_50
  article-title: A visual rating scale for cingulate island sign on 18F-FDG-PET to differentiate dementia with Lewy bodies and Alzheimer’s disease
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2019.116645
– volume: 143
  start-page: 106839
  year: 2020
  ident: ref_8
  article-title: Benchmark for filter methods for feature selection in high-dimensional classification data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2019.106839
– ident: ref_44
  doi: 10.1371/journal.pone.0068910
– volume: 13
  start-page: 687456
  year: 2021
  ident: ref_13
  article-title: ADVIAN: Alzheimer’s disease VGG-inspired attention network based on convolutional block attention module and multiple way data augmentation
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2021.687456
– volume: 23
  start-page: 616
  year: 2017
  ident: ref_45
  article-title: Graph theory and brain connectivity in Alzheimer’s disease
  publication-title: Neuroscientist
  doi: 10.1177/1073858417702621
– volume: 21
  start-page: 58
  year: 2015
  ident: ref_7
  article-title: Detection of Alzheimer’s disease and mild cognitive impairment based on structural volumetric MR images using 3D-DWT and WTA-KSVM trained by PSOTVAC
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2015.05.014
– volume: 30
  start-page: 289
  year: 2016
  ident: ref_49
  article-title: Default Mode Network Functional Connectivity in Early and Late Mild Cognitive Impairment: Results from the Alzheimer’s Disease Neuroimaging Initiative
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/WAD.0000000000000143
– volume: 88
  start-page: 421
  year: 2019
  ident: ref_56
  article-title: Strength and similarity guided group-level brain functional network construction for MCI diagnosis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.12.001
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_12
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 15
  start-page: 358
  year: 2021
  ident: ref_10
  article-title: Constructing dynamic brain functional networks via hyper-graph manifold regularization for mild cognitive impairment classification
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.669345
– volume: 144
  start-page: 185
  year: 2014
  ident: ref_39
  article-title: Classification of Alzheimer Disease Based on Structural Magnetic Resonance Imaging by Kernel Support Vector Machine Decision Tree
  publication-title: Prog. Electromagn. Res. Pier
  doi: 10.2528/PIER13121310
– volume: 10
  start-page: 37
  year: 2018
  ident: ref_48
  article-title: The Abnormal functional connectivity between the hypothalamus and the temporal gyrus underlying depression in Alzheimer’s disease patients
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00037
– volume: 14
  start-page: 585
  year: 2001
  ident: ref_34
  article-title: Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 10
  start-page: 135
  year: 2018
  ident: ref_54
  article-title: MRI characterizes the progressive course of AD and predicts conversion to Alzheimer’s dementia 24 months before probable diagnosis
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00135
– volume: 400
  start-page: 322
  year: 2020
  ident: ref_47
  article-title: Enhancing the feature representation of multi-modal MRI data by combining multi-view information for MCI classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.006
– volume: 43
  start-page: 331
  year: 2009
  ident: ref_43
  article-title: Sparsity preserving projections with applications to face recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2009.05.005
– ident: ref_68
  doi: 10.1007/978-981-15-1967-3_8
– ident: ref_26
  doi: 10.1609/aaai.v26i1.8210
– volume: 1
  start-page: 1
  year: 2021
  ident: ref_23
  article-title: A survey on multi-task learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: ref_5
  doi: 10.1371/journal.pcbi.1002987
– ident: ref_20
– volume: 58
  start-page: 1188
  year: 2002
  ident: ref_62
  article-title: MRI measures of entorhinal cortex vs hippocampus in preclinical AD
  publication-title: Neurology
  doi: 10.1212/WNL.58.8.1188
– ident: ref_17
  doi: 10.1007/978-3-642-40811-3_35
– volume: 25
  start-page: 303
  year: 2004
  ident: ref_61
  article-title: Hippocampus and entorhinal cortex in mild cognitive impairment and early AD
  publication-title: Neurobiol. Aging
  doi: 10.1016/S0197-4580(03)00084-8
– ident: ref_28
– volume: 23
  start-page: 1437
  year: 2018
  ident: ref_63
  article-title: Parkinson’s disease diagnosis via joint learning from multiple modalities and relations
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2868420
– volume: 2015
  start-page: 583931
  year: 2015
  ident: ref_52
  article-title: Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer’s disease and mild cognitive impairment: MRI and 18F-FDG PET quantitative analysis using FreeSurfer
  publication-title: BioMed Res. Int.
  doi: 10.1155/2015/583931
– volume: 50
  start-page: 233
  year: 2016
  ident: ref_6
  article-title: Detection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imaging
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-150848
– ident: ref_30
– ident: ref_58
  doi: 10.1371/journal.pone.0047905
– ident: ref_53
  doi: 10.1371/journal.pone.0115573
– volume: 40
  start-page: 16
  year: 2014
  ident: ref_27
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 120
  start-page: 746
  year: 2016
  ident: ref_24
  article-title: Multi-task support vector machines for feature selection with shared knowledge discovery
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2014.12.012
– volume: 80
  start-page: 101663
  year: 2020
  ident: ref_18
  article-title: Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease
  publication-title: Comput. Med Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101663
– volume: 62
  start-page: 911
  year: 2012
  ident: ref_22
  article-title: Brain templates and atlases
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.024
– volume: 9
  start-page: 22
  year: 2019
  ident: ref_59
  article-title: Joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis
  publication-title: Brain Connect.
  doi: 10.1089/brain.2018.0578
– volume: 23
  start-page: 2124
  year: 2013
  ident: ref_37
  article-title: Low-rank optimization with trace norm penalty
  publication-title: SIAM J. Optim.
  doi: 10.1137/110859646
– ident: ref_14
– volume: 6
  start-page: 734
  year: 2007
  ident: ref_19
  article-title: Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS–ADRDA criteria
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(07)70178-3
– volume: 78
  start-page: 154
  year: 2018
  ident: ref_31
  article-title: Multi-view manifold learning with locality alignment
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.01.012
– volume: 45
  start-page: 947
  year: 2015
  ident: ref_60
  article-title: Olfactory cortex degeneration in Alzheimer’s disease and mild cognitive impairment
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-141947
– volume: 11
  start-page: e02076
  year: 2021
  ident: ref_66
  article-title: Abnormal brain functional networks in end-stage renal disease patients with cognitive impairment
  publication-title: Brain Behav.
  doi: 10.1002/brb3.2076
– volume: 15
  start-page: 273
  year: 2002
  ident: ref_21
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.0978
– volume: 65
  start-page: 855
  year: 2018
  ident: ref_35
  article-title: Multivariate approach for Alzheimer’s disease detection using stationary wavelet entropy and predator-prey particle swarm optimization
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-170069
– volume: 61
  start-page: 101652
  year: 2020
  ident: ref_15
  article-title: Self-calibrated brain network estimation and joint non-convex multi-task learning for identification of early Alzheimer’s disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101652
– volume: 59
  start-page: 895
  year: 2012
  ident: ref_2
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– ident: ref_25
– volume: 69
  start-page: 237
  year: 2019
  ident: ref_51
  article-title: Abnormal brain network connectivity in a triple-network model of Alzheimer’s disease
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-181097
– volume: 20
  start-page: 1
  year: 2019
  ident: ref_67
  article-title: Alterations of default mode functional connectivity in individuals with end-stage renal disease and mild cognitive impairment
  publication-title: BMC Nephrol.
  doi: 10.1186/s12882-019-1435-6
– volume: 19
  start-page: 476
  year: 2018
  ident: ref_16
  article-title: Classification of multi-site MR images in the presence of heterogeneity using multi-task learning
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2018.04.037
– volume: 15
  start-page: 271
  year: 2017
  ident: ref_57
  article-title: Hierarchical high-order functional connectivity networks and selective feature fusion for MCI classification
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-017-9330-4
– volume: 7
  start-page: 812
  year: 2008
  ident: ref_1
  article-title: Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(08)70169-8
– volume: 62
  start-page: 441
  year: 2018
  ident: ref_9
  article-title: Whale optimization approaches for wrapper feature selection
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.11.006
– ident: ref_36
– volume: 123
  start-page: 845
  year: 2020
  ident: ref_41
  article-title: Extracting sub-networks from brain functional network using graph regularized nonnegative matrix factorization
  publication-title: Comput. Model. Eng. Sci.
– volume: 12
  start-page: 716
  year: 2018
  ident: ref_46
  article-title: Analysis of progression toward Alzheimer’s disease based on evolutionary weighted random support vector machine cluster
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00716
– volume: 2011
  start-page: 702
  year: 2011
  ident: ref_42
  article-title: Clustered Multi-Task Learning Via Alternating Structure Optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9
  start-page: 66
  year: 2015
  ident: ref_4
  article-title: Detection of subjects and brain regions related to Alzheimer’s disease using 3D MRI scans based on eigenbrain and machine learning
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00066
– volume: 77
  start-page: 10393
  year: 2018
  ident: ref_11
  article-title: Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-4222-4
– volume: 20
  start-page: 3465
  year: 2010
  ident: ref_38
  article-title: Trace norm regularization: Reformulations, algorithms, and multi-task learning
  publication-title: SIAM J. Optim.
  doi: 10.1137/090763184
– volume: 21
  start-page: 1187
  year: 2006
  ident: ref_64
  article-title: BallK.Subjective cognitive function and decline among older adults with psychometrically defined amnestic MCI
  publication-title: Int. J. Geriatr. Psychiatry A J. Psychiatry Late Life Allied Sci.
  doi: 10.1002/gps.1639
– volume: 52
  start-page: 80
  year: 2019
  ident: ref_3
  article-title: Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.11.006
SSID ssj0000800350
Score 2.3422484
Snippet Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer’s disease (AD) classification research....
Feature selection for multiple types of data has been widely applied in mild cognitive impairment (MCI) and Alzheimer's disease (AD) classification research....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 80
SubjectTerms Algorithms
Alzheimer's disease
Brain research
Classification
Cognitive ability
Complementarity
feature correlation
Feature selection
feature structure fusion
Graphs
Information sharing
Magnetic resonance imaging
Memory
multi-modal
Neurodegenerative diseases
Nodes
Tomography
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9QwDLemPe1lAsagbExBQpN4qO6ajyZ5PA5O26TjZUzaW5WkiQBBD8bugf8eO-26uwnBC29Vaktp7NQ_x44N8Dp4FQVXrpwmCjNyEUqrK1XqoCvuvRfR0UXh5Yf67EpeXKvrjVZflBPWlwfuF26CeLzS6CjYFJJUnlsTxRR_qVEbZ3nt6e-LNm_Dmfoy4CChpn1cUqBfP_HUcQGtSkXh31wFcsMO5XL9f8KYD1MlN2zP4hHsD6CRzfrJPoad2D2Bg1mHDvO3X-yU5TTOfD5-AD_yldpyuWqRgwDe-iayy9ztBkXA6Nx1HJ5Ta44-GY65rr0nz0Vl6WmxptM0hsiWLefnmWj2juVOmpRjlFmfwtXi_cf5WTn0VSiDtNNbynapveLaeZeE8RqX0fBkhTHKe-0Ej1XwFa-5jJGjeXetwJ2agm5DsEYlcQi73aqLz4EhU0CM7lMdW5laZZNMiBiTjcbJ2LoCJner3ISh6Dj1vvjaoPNBcmkeyqWANyPH977gxl9o35LgRjoqlZ0HUIGaQYGafylQAcd3Ym-G_fuzwY-vOIIvqQp4Nb7GnUfhFNfF1TrTcK6V4qaAZ72WjDNB3VMUYS1Ab-nP1lS333SfP-Xq3kZr5JQv_se3HcEep-sadGSkjmEXtSe-RBB160_yfvkNHfEbeA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQwcATthQsqlEdKQUZCSByi3dhx7JzQdumqIG2FgEq9RbZjFyRI-toDf8-M4027FeotimckxzOTeXoG4J2z0gsuTT4NlGbkwuW1KmSunCq4tVZ4QxeFl8fV0Un55VSepoDbVSqrXP8T44-67R3FyCe8ol7k6DzIj-cXOU2NouxqGqHxELZxVaPztX1wePz12xhlIXtIyOmQnxTo308sTV5A7VJQGjh2g7ylj2Lb_v_ZmndLJm_poMUOPE7GI5sN1H4CD3z3FHZnHTrOf_6y9yyWc8Y4-S5cxKu1-bJvEYMMvdWlZ9_j1BskBaP46_h6TiM6hqI4Zrr2Bjw2l6WnxYqiagwtXLacf45As08sTtSkWqOI-gxOFoc_5kd5mq-Qu7KeXlPVS2UlV8aaILRVNa80D7XQWlqrjOC-cLbAgy-956jmTStQYoNTrXO1lkE8h62u7_xLYIjk0Fa3ofJtGVpZhzKg5Rhqr03pW5PBZH3KjUvNx2kGxu8GnRCiS3OXLhl8GDHOh8Yb98AeEOFGOGqZHV_0l2dNksAGHbtCocdZBxdKaXmtvZiibvZKG_xym8H-muxNkuOr5obrMng7LqMEUlrFdL5fRRjOlZRcZ_Bi4JJxJ8h7kjKtGagN_tnY6uZK9-tn7PKtlULMcu_-bb2CR5wuZFBQSO7DFvKFf41m0rV9k2ThH3HaFW8
  priority: 102
  providerName: ProQuest
Title Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification
URI https://www.ncbi.nlm.nih.gov/pubmed/35053823
https://www.proquest.com/docview/2621271045
https://www.proquest.com/docview/2622275528
https://pubmed.ncbi.nlm.nih.gov/PMC8773824
https://doaj.org/article/996170269fcf45b298e30847e78a926b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgk9BeJmB8FMYpSAiJh7Jr0jTpA0K3Y6eBdBMCTtpblaQJMI0eO3YS---x017HTQdvVWtXTW3LP8eODfDCWekFlyYdBkozcuHSUmUyVU5l3ForvKGDwtOT4niWfziVp9fHo7sf-GtjaEfzpGaL89e_L67eosG_oYgTQ_YDS8MU0GFklNlFBHQbttEvKTLTaQf2zzpsJOLIVo7BeypQW9u85caX7MAdJJaUJltzWbGz_yY4erOq8i83NbkLux2-ZKNWIe7BLd_ch71Rg7H1jyv2ksWKz7iVvgcX8fRtOp3XyEFYcLnw7HMcjIPSYrRF298e0xSPtm6Omaa-Jo_9Z-lqsqSNN4YgmE3H7yPR6B2LQzepHCmyPoDZ5OjL-DjtRjCkLi-Hl1QYU1jJlbEmCG1VyQvNQym0ltYqI7jPnM14wXPvOSIBUws06uBU7VypZRAPYauZN_4xMGRyCOdtKHydh1qWIQ8ILkPptcl9bRI4WP3lynX9yWlMxnmFcQqJqLopogRe9Rw_294c_6E9JMH1dNRVO96YL75WnZFWGPtlCoPSMriQS8tL7cUQ3bdX2uDKbQL7K7FXK02tcPEZR5yWywSe94_RSCnzYho_X0YazpWUXCfwqNWS_ktWWpaAWtOftU9df9J8_xYbgWulkDN_8s93PoUdTsc1aMtI7sMWqoR_hiDq0g5g-_Do5OOnQdyEGERL-QMQyhyO
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEDA-AgOMBEg8RG3suE4eEOq6VS1bKwSbtLfMdmxAgnRfFdo_xd_InZNm64T2trcouWvc3Nm-L98P4K010gkuddzzlGbkwsa5SmSsrEq4MUY4TQeFp7P--CD9fCgP1-Dv8iwMlVUu18SwUJdzSzHyLu9TL3J0HuSn45OYUKMou7qE0KjVYtdd_EGX7ezjZBvl-47z0c7-cBw3qAKxTfPeOdV69I3kShvtRWZUzvsZ97nIMmmM0oK7xJoEX5c6x3Fz06VAPfVWldbmmfQCf_cOrKcCXZkOrG_tzL58baM6ZH8J2avzoULkva4hpAfczRJKO4fuk1f2vwAT8D_b9nqJ5pU9b_QA7jfGKhvU2vUQ1lz1CDYGFTrqvy_YexbKR0NcfgNOwlHeeDovkYMMy8WpY98Cyg6KnlG8t709JEiQugiP6aq8JA_NbOlqtKAoHkOLmk2Hk0A02GYBwZNqmwLrYzi4lS__BDrVvHLPgCGTRd_A-L4rU1_K3KceLVWfu0ynrtQRdJdfubBNs3PC3PhVoNNDcimuyyWCDy3Hcd3o4wbaLRJcS0ctusON-en3opnxBTqSiUIPN_fWp9LwPHOih7aAU5nGf24i2FyKvWjWjbPiUssjeNM-xhlPaRxdufki0HCupORZBE9rLWlHgronKbMbgVrRn5Whrj6pfv4IXcUzpZAzfX7zsF7D3fH-dK_Ym8x2X8A9TodBKCAlN6GDOuJeool2bl4184LB0W1PxX9La1HG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw8DQ6CfGCgPERGGAkQOIhamLHdfKAUNeuWhmdJmDS3oLt2IAE6b4qtL_Gr-POSbN1QnvbW-TcJU7uzr4v3wG8tkY6waWOE09hRi5sXKhUxsqqlBtjhNN0UHi2N9g5yD4eysM1-Ls8C0Nplcs1MSzU1dySj7zPB1SLHI0H2fdtWsT-ePLh6DimDlIUaV2202hYZNed_0Hz7fT9dIy0fsP5ZPvraCduOwzENiuSM8r7GBjJlTbai9yogg9y7guR59IYpQV3qTUpvjpzjuNGpyuBPOutqqwtcukFPvcWrCu0ipIerG9t7-1_7jw8pIsJmTSxUSGKpG-o6wPubCmFoEMlykt7YWgZ8D8992q65qX9b3IP7raKKxs2nHYf1lz9ADaGNRrtv8_ZWxZSSYOPfgOOw7HeeDavEIOUzMWJY19Cxx1kA0a-3254RO1BmoQ8puvqAjwUtqWryYI8egy1azYbTQPQcMxCN0_KcwqoD-HgRv78I-jV89o9AYZIFu0E4weuynwlC5951Fp94XKduUpH0F_-5dK2hc-p_8avEg0gokt5lS4RvOswjpqiH9fAbhHhOjgq1x0G5iffy1b6SzQqU4XWbuGtz6ThRe5EgnqBU7nGLzcRbC7JXrZryGl5wfERvOpuo_RTSEfXbr4IMJwrKXkeweOGS7qZIO9JivJGoFb4Z2Wqq3fqnz9ChfFcKcTMnl4_rZdwG0Ww_DTd230GdzidCyHflNyEHrKIe47a2pl50YoFg283LYn_ANeoVfs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Modal+Feature+Selection+with+Feature+Correlation+and+Feature+Structure+Fusion+for+MCI+and+AD+Classification&rft.jtitle=Brain+sciences&rft.au=Jiao%2C+Zhuqing&rft.au=Chen%2C+Siwei&rft.au=Shi%2C+Haifeng&rft.au=Xu%2C+Jia&rft.date=2022-01-05&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=12&rft.issue=1&rft_id=info:doi/10.3390%2Fbrainsci12010080&rft_id=info%3Apmid%2F35053823&rft.externalDocID=35053823
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon