Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis
Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; how...
Saved in:
Published in | American journal of physiology: Gastrointestinal and liver physiology Vol. 310; no. 9; pp. G726 - G738 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0193-1857 1522-1547 1522-1547 |
DOI | 10.1152/ajpgi.00436.2015 |
Cover
Loading…
Abstract | Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy. |
---|---|
AbstractList | Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy. Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-a, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy. Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N -methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy. Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy. |
Author | Jones, A. Daniel Aljazi, Mohammad B. Olenic, Sandra D. Atshaves, Barbara P. Lydic, Todd A. Senthivinayagam, Subramanian Fader, Kelly A. Brock, Julienne R. L. Najt, Charles P. |
Author_xml | – sequence: 1 givenname: Charles P. surname: Najt fullname: Najt, Charles P. organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan – sequence: 2 givenname: Subramanian surname: Senthivinayagam fullname: Senthivinayagam, Subramanian organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan – sequence: 3 givenname: Mohammad B. surname: Aljazi fullname: Aljazi, Mohammad B. organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan – sequence: 4 givenname: Kelly A. surname: Fader fullname: Fader, Kelly A. organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan – sequence: 5 givenname: Sandra D. surname: Olenic fullname: Olenic, Sandra D. organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan – sequence: 6 givenname: Julienne R. L. surname: Brock fullname: Brock, Julienne R. L. organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan – sequence: 7 givenname: Todd A. surname: Lydic fullname: Lydic, Todd A. organization: Department of Physiology, Michigan State University, East Lansing, Michigan; and – sequence: 8 givenname: A. Daniel surname: Jones fullname: Jones, A. Daniel organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;, Department of Chemistry, Michigan State University, East Lansing, Michigan – sequence: 9 givenname: Barbara P. surname: Atshaves fullname: Atshaves, Barbara P. organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26968211$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUFv1DAQhS1URLeFOydkiQuHZrGdxLEvSKiCgrQSHOBsOc64OyuvHeJkJf493m2LSiVOtma-9zyed0HOYopAyGvO1py34r3djbe4Zqyp5Vow3j4jq1IWFW-b7oysGNd1xVXbnZOLnHeMsVZw_oKcC6mlKtcV2W7wAFOVR3Do0dGQcqbJ0-8wYcARIxXUhgAHtDNkOiDMFcZhcTDQLYx2Lpo8g51TxnxFMfpg9_tSTvGK2jhQj_107L0kz70NGV7dn5fk5-dPP66_VJtvN1-vP24q12g2V7LhSnmr6k4zL7TsaqUVV0KB530P0PeNHDzXjW2Y8I5LkLytPQcnBmE7V1-SD3e-49LvYXAQ58kGM064t9NvkyyafzsRt-Y2HUyjymOiKwbv7g2m9GuBPJs9Zgch2AhpyYZ3qmOayU4X9O0TdJeWKZbvHSndCtY2daHePJ7o7ygPIRRA3gGubCpP4I3D-bTCMiAGw5k5pm1OaZtT2uaYdhGyJ8IH7_9K_gAPqq7b |
CODEN | APGPDF |
CitedBy_id | crossref_primary_10_3389_fendo_2020_577650 crossref_primary_10_1016_j_bbalip_2023_159376 crossref_primary_10_1016_j_livres_2024_06_001 crossref_primary_10_1186_s12944_019_1114_4 crossref_primary_10_4254_wjh_v16_i12_1468 crossref_primary_10_1038_s41598_017_17165_9 crossref_primary_10_1016_j_lfs_2022_120540 crossref_primary_10_3390_nu15214574 crossref_primary_10_1016_j_tem_2016_09_001 crossref_primary_10_1074_jbc_RA118_003541 crossref_primary_10_1097_HEP_0000000000001141 crossref_primary_10_1111_liv_14423 crossref_primary_10_1016_j_molcel_2019_12_003 crossref_primary_10_3390_ijms232415456 crossref_primary_10_1152_ajpendo_00391_2020 crossref_primary_10_1096_fj_201601142R crossref_primary_10_1016_j_molmet_2025_102104 crossref_primary_10_1016_j_jhazmat_2022_130584 crossref_primary_10_1155_2022_4581405 crossref_primary_10_1002_ptr_7454 crossref_primary_10_1186_s12944_020_01425_1 crossref_primary_10_1016_j_cellsig_2023_110750 crossref_primary_10_3390_ijms23147841 crossref_primary_10_1016_j_jnutbio_2017_08_011 crossref_primary_10_3390_ijms21217815 crossref_primary_10_1002_1873_3468_12845 crossref_primary_10_1016_j_jlr_2021_100048 crossref_primary_10_1007_s11626_023_00759_1 crossref_primary_10_1016_j_yexcr_2023_113855 crossref_primary_10_1152_ajpgi_00379_2016 crossref_primary_10_1194_jlr_M086249 crossref_primary_10_1186_s43066_023_00287_3 crossref_primary_10_1111_nyas_14037 crossref_primary_10_1111_nan_12756 crossref_primary_10_1016_j_jbc_2022_102008 crossref_primary_10_1111_febs_14189 crossref_primary_10_1016_j_celrep_2018_11_074 crossref_primary_10_1016_j_freeradbiomed_2023_11_019 crossref_primary_10_1021_acs_jproteome_3c00009 crossref_primary_10_1016_j_cbi_2024_111046 crossref_primary_10_18632_aging_202840 crossref_primary_10_1074_jbc_RA118_005309 crossref_primary_10_2139_ssrn_4052465 crossref_primary_10_1016_j_mce_2020_110818 crossref_primary_10_1111_jbg_12886 crossref_primary_10_3390_biomedicines9091210 crossref_primary_10_3390_cells11050893 crossref_primary_10_1016_j_molmet_2020_101115 crossref_primary_10_1016_j_cbi_2024_111370 crossref_primary_10_1093_jbmr_zjae195 crossref_primary_10_1007_s13577_021_00491_6 crossref_primary_10_1242_dmm_048355 crossref_primary_10_1016_j_devcel_2023_07_001 crossref_primary_10_5501_wjv_v12_i5_296 crossref_primary_10_3389_fphar_2021_594437 crossref_primary_10_1002_advs_202407572 crossref_primary_10_3389_fphar_2020_00216 crossref_primary_10_1002_ar_25138 crossref_primary_10_1111_liv_14492 crossref_primary_10_1002_hep_28912 crossref_primary_10_1002_path_6076 crossref_primary_10_1002_jcb_28889 crossref_primary_10_1016_j_jid_2019_11_032 crossref_primary_10_1016_j_biopha_2021_111491 crossref_primary_10_1016_j_jlr_2023_100461 crossref_primary_10_1016_j_jhepr_2023_100902 crossref_primary_10_1038_s41374_019_0327_5 crossref_primary_10_1038_s12276_023_01036_7 crossref_primary_10_1002_mnfr_202000816 crossref_primary_10_1038_s42255_021_00349_z crossref_primary_10_1136_gutjnl_2022_327498 crossref_primary_10_1186_s12944_022_01654_6 crossref_primary_10_1038_s41598_020_61473_6 crossref_primary_10_3390_ijms23126366 crossref_primary_10_1007_s00216_018_1016_8 crossref_primary_10_3390_metabo13020174 crossref_primary_10_1016_j_bbadis_2025_167666 crossref_primary_10_1016_j_celrep_2023_112435 crossref_primary_10_1038_s41598_023_31315_2 crossref_primary_10_1002_jbt_22751 crossref_primary_10_1007_s00394_024_03326_w crossref_primary_10_1038_s41522_024_00495_8 crossref_primary_10_1139_apnm_2019_0966 crossref_primary_10_3389_fendo_2022_943576 crossref_primary_10_1186_s13020_021_00434_1 crossref_primary_10_1002_jcb_30579 crossref_primary_10_1016_j_bbalip_2020_158637 crossref_primary_10_1152_japplphysiol_00930_2020 crossref_primary_10_1096_fj_202100739RR crossref_primary_10_1038_s41598_019_43335_y crossref_primary_10_3390_cells10051016 crossref_primary_10_1242_jcs_259501 crossref_primary_10_3390_biomedicines10061291 crossref_primary_10_1152_ajpgi_00225_2022 crossref_primary_10_1080_19490976_2020_1737307 crossref_primary_10_1194_jlr_RA119000336 |
Cites_doi | 10.1194/jlr.M900020-JLR200 10.1016/j.cmet.2011.07.013 10.2337/db06-0399 10.5702/massspectrometry.S0015 10.1079/BJN20051635 10.1038/ncb3166 10.1111/j.0959-9673.2006.00465.x 10.1371/journal.pone.0097118 10.1021/bi500918m 10.1016/0003-2697(76)90527-3 10.2337/db07-1383 10.1021/ac302154g 10.1194/jlr.M700181-JLR200 10.1074/jbc.M407462200 10.1046/j.1440-1746.2003.03198.x 10.1006/meth.2001.1262 10.1074/jbc.M205472200 10.1096/fj.06-6711com 10.1124/pr.108.00001 10.1016/j.ab.2010.02.036 10.1194/jlr.M600198-JLR200 10.1084/jem.186.6.909 10.1128/MCB.26.3.1063-1076.2006 10.3892/ijmm.2015.2276 10.1152/ajpgi.90204.2008 10.1038/cdd.2012.74 10.1038/cddis.2015.248 10.1194/jlr.D050302 10.1006/scdb.1998.0275 10.1189/jlb.3RU0214-110R 10.1007/s11745-009-3379-2 10.1002/hep.23094 10.5551/jat.2055 10.1016/j.jhep.2003.09.020 10.1038/nrgastro.2013.41 10.1007/s11010-009-0299-7 10.1021/bi034966+ 10.1111/j.1742-4658.2006.05357.x 10.1194/jlr.M004515 10.1111/j.1572-0241.2003.07659.x 10.1194/jlr.M035063 10.1016/0891-5849(91)90192-6 10.1152/physiolgenomics.00045.2012 10.1152/ajpcell.00448.2011 10.1161/CIRCRESAHA.107.168070 10.1194/jlr.M700359-JLR200 10.1089/ars.2010.3795 10.1002/hep.26399 10.1194/jlr.M900081-JLR200 10.1007/s11626-005-0002-6 10.1172/JCI46069 10.1002/hep.28418 10.1053/j.gastro.2007.02.046 10.1083/jcb.201311051 10.1381/0960892053576820 10.1074/jbc.M209033200 10.1074/jbc.274.24.16825 10.1186/1743-7075-4-4 10.1016/j.jhep.2014.10.019 10.1093/clinchem/17.3.145 10.1074/jbc.M500978200 10.1016/S0022-2275(20)34939-7 10.1017/S002966511500244X 10.1158/0008-5472.CAN-07-1999 10.1073/pnas.1408523111 10.1016/S0016-5085(98)70599-2 10.1074/jbc.M111.234534 10.1016/S1388-1981(99)00179-1 |
ContentType | Journal Article |
Copyright | Copyright © 2016 the American Physiological Society. Copyright American Physiological Society May 1, 2016 Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
Copyright_xml | – notice: Copyright © 2016 the American Physiological Society. – notice: Copyright American Physiological Society May 1, 2016 – notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1152/ajpgi.00436.2015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1547 |
EndPage | G738 |
ExternalDocumentID | PMC4867327 4059310281 26968211 10_1152_ajpgi_00436_2015 |
Genre | Journal Article Research Support, N.I.H., Extramural Feature |
GroupedDBID | --- 23M 2WC 39C 4.4 5GY 5VS 6J9 AAFWJ AAYXX ABJNI ACPRK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP CITATION E3Z EBS EJD EMOBN F5P GX1 H13 ITBOX KQ8 OK1 P2P PQQKQ RAP RHI RPL RPRKH TR2 W8F WOQ XSW YSK CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c490t-64188fa83790f296738981828ef1bbeebb46df194a402fc16e6153f1ec2d2a7c3 |
ISSN | 0193-1857 1522-1547 |
IngestDate | Thu Aug 21 13:57:07 EDT 2025 Fri Jul 11 05:55:23 EDT 2025 Mon Jun 30 08:07:01 EDT 2025 Thu Apr 03 06:59:17 EDT 2025 Thu Apr 24 23:09:16 EDT 2025 Tue Jul 01 00:25:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | nonalcoholic steatohepatitis Perilipin 2 lipid droplets methionine-choline-deficient diet |
Language | English |
License | Copyright © 2016 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c490t-64188fa83790f296738981828ef1bbeebb46df194a402fc16e6153f1ec2d2a7c3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.physiology.org/doi/pdf/10.1152/ajpgi.00436.2015 |
PMID | 26968211 |
PQID | 1789520543 |
PQPubID | 48585 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4867327 proquest_miscellaneous_1787090679 proquest_journals_1789520543 pubmed_primary_26968211 crossref_citationtrail_10_1152_ajpgi_00436_2015 crossref_primary_10_1152_ajpgi_00436_2015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American journal of physiology: Gastrointestinal and liver physiology |
PublicationTitleAlternate | Am J Physiol Gastrointest Liver Physiol |
PublicationYear | 2016 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | B20 B64 B21 B65 B22 B66 B67 B24 B68 B25 B69 B26 B27 B28 B29 Marzo A (B47) 1971; 17 B30 B31 B32 B33 B34 B35 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B48 B49 B50 B51 B52 B53 B10 B54 B11 B55 B56 B13 B57 B14 B58 B15 B59 B16 B17 B18 B19 Fujii H (B23) 2009; 16 Kos C (B36) 2004; 62 Brasaemle DL (B12) 1997; 38 B60 B61 B62 B63 25338003 - Biochemistry. 2014 Nov 18;53(45):7051-66 18669627 - Am J Physiol Gastrointest Liver Physiol. 2008 Sep;295(3):G621-8 18922966 - Pharmacol Rev. 2008 Sep;60(3):311-57 18483409 - Circ Res. 2008 Jun 20;102(12):1492-501 16469142 - Br J Nutr. 2006 Feb;95(2):273-81 21982710 - Cell Metab. 2011 Oct 5;14(4):504-15 15291397 - Nutr Rev. 2004 Jun;62(6 Pt 1):243-6 16829692 - J Lipid Res. 2006 Oct;47(10):2280-90 18339853 - Cancer Res. 2008 Mar 15;68(6):1732-40 16428458 - Mol Cell Biol. 2006 Feb;26(3):1063-76 22744009 - Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C728-42 1937131 - Free Radic Biol Med. 1991;11(1):81-128 20032580 - J Atheroscler Thromb. 2009;16(6):893-901 23012396 - Physiol Genomics. 2012 Nov 15;44(22):1125-31 14535984 - J Gastroenterol Hepatol. 2003 Nov;18(11):1272-82 20206115 - Anal Biochem. 2010 Jun 15;401(2):318-20 16448220 - In Vitro Cell Dev Biol Anim. 2005 Nov-Dec;41(10):321-4 16436109 - Int J Exp Pathol. 2006 Feb;87(1):1-16 19528634 - J Lipid Res. 2009 Dec;50(12):2371-6 5543185 - Clin Chem. 1971 Mar;17(3):145-7 9547102 - Gastroenterology. 1998 Apr;114(4):842-5 17526933 - J Lipid Res. 2007 Aug;48(8):1885-96 25457203 - J Hepatol. 2015 Mar;62(3):673-81 9392423 - J Lipid Res. 1997 Nov;38(11):2249-63 21128703 - Antioxid Redox Signal. 2011 Jul 15;15(2):485-504 23507799 - Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):330-44 19851831 - Mol Cell Biochem. 2010 Apr;337(1-2):193-9 17484887 - Gastroenterology. 2007 May;132(5):1947-54 23505042 - Hepatology. 2013 Oct;58(4):1296-305 17313679 - Nutr Metab (Lond). 2007 Feb 21;4:4 15826462 - Obes Surg. 2005 Mar;15(3):310-5 14499785 - Am J Gastroenterol. 2003 Sep;98(9):2042-7 17130488 - Diabetes. 2006 Dec;55(12):3418-28 25961502 - Nat Cell Biol. 2015 Jun;17(6):759-70 17135363 - FASEB J. 2007 Jan;21(1):167-78 14661971 - Biochemistry. 2003 Dec 16;42(49):14583-98 20424269 - J Lipid Res. 2010 Aug;51(8):2132-42 15292255 - J Biol Chem. 2004 Oct 1;279(40):42062-71 9294145 - J Exp Med. 1997 Sep 15;186(6):909-20 10355028 - Semin Cell Dev Biol. 1999 Feb;10(1):51-8 20035485 - Lipids. 2010 Feb;45(2):97-110 19289417 - J Lipid Res. 2009 Jul;50(7):1429-47 24590170 - J Cell Biol. 2014 Mar 3;204(5):635-46 26282529 - Proc Nutr Soc. 2016 Feb;75(1):1-9 26166692 - Int J Mol Med. 2015 Sep;36(3):839-44 11846609 - Methods. 2001 Dec;25(4):402-8 23402988 - J Lipid Res. 2013 May;54(5):1346-59 12431986 - J Biol Chem. 2003 Jan 24;278(4):2461-8 10634941 - Biochim Biophys Acta. 2000 Jan 17;1483(2):251-62 21454708 - J Biol Chem. 2011 May 13;286(19):17338-50 24889630 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8901-6 942051 - Anal Biochem. 1976 May 7;72:248-54 17872589 - J Lipid Res. 2007 Dec;48(12):2751-61 14672613 - J Hepatol. 2004 Jan;40(1):47-51 26355342 - Cell Death Dis. 2015;6:e1879 21633178 - J Clin Invest. 2011 Jun;121(6):2102-10 23039336 - Anal Chem. 2012 Nov 6;84(21):8917-26 19650159 - Hepatology. 2009 Sep;50(3):772-80 22705852 - Cell Death Differ. 2012 Nov;19(11):1880-91 18487449 - Diabetes. 2008 Aug;57(8):2037-45 10358026 - J Biol Chem. 1999 Jun 11;274(24):16825-30 15731108 - J Biol Chem. 2005 May 13;280(19):19146-55 24349934 - Mass Spectrom (Tokyo). 2013;2(Spec Iss):S0015 24879804 - J Lipid Res. 2014 Aug;55(8):1797-809 24831094 - PLoS One. 2014;9(5):e97118 25210147 - J Leukoc Biol. 2014 Nov;96(5):703-12 12456684 - J Biol Chem. 2003 Feb 21;278(8):6384-403 26699087 - Hepatology. 2016 Apr;63(4):1310-24 16884492 - FEBS J. 2006 Aug;273(15):3498-510 |
References_xml | – ident: B6 doi: 10.1194/jlr.M900020-JLR200 – ident: B37 doi: 10.1016/j.cmet.2011.07.013 – ident: B67 doi: 10.2337/db06-0399 – ident: B22 doi: 10.5702/massspectrometry.S0015 – ident: B27 doi: 10.1079/BJN20051635 – ident: B34 doi: 10.1038/ncb3166 – ident: B3 doi: 10.1111/j.0959-9673.2006.00465.x – ident: B14 doi: 10.1371/journal.pone.0097118 – ident: B53 doi: 10.1021/bi500918m – ident: B11 doi: 10.1016/0003-2697(76)90527-3 – ident: B9 doi: 10.2337/db07-1383 – ident: B21 doi: 10.1021/ac302154g – ident: B40 doi: 10.1194/jlr.M700181-JLR200 – ident: B62 doi: 10.1074/jbc.M407462200 – ident: B35 doi: 10.1046/j.1440-1746.2003.03198.x – ident: B42 doi: 10.1006/meth.2001.1262 – ident: B49 doi: 10.1074/jbc.M205472200 – ident: B65 doi: 10.1096/fj.06-6711com – ident: B2 doi: 10.1124/pr.108.00001 – ident: B60 doi: 10.1016/j.ab.2010.02.036 – ident: B59 doi: 10.1194/jlr.M600198-JLR200 – ident: B10 doi: 10.1084/jem.186.6.909 – ident: B15 doi: 10.1128/MCB.26.3.1063-1076.2006 – ident: B18 doi: 10.3892/ijmm.2015.2276 – ident: B63 doi: 10.1152/ajpgi.90204.2008 – ident: B64 doi: 10.1038/cdd.2012.74 – ident: B39 doi: 10.1038/cddis.2015.248 – ident: B44 doi: 10.1194/jlr.D050302 – ident: B43 doi: 10.1006/scdb.1998.0275 – ident: B51 doi: 10.1189/jlb.3RU0214-110R – volume: 62 start-page: 243 year: 2004 ident: B36 publication-title: Nutr Rev – ident: B7 doi: 10.1007/s11745-009-3379-2 – ident: B24 doi: 10.1002/hep.23094 – volume: 16 start-page: 1893 year: 2009 ident: B23 publication-title: J Atheroscler Thromb doi: 10.5551/jat.2055 – ident: B58 doi: 10.1016/j.jhep.2003.09.020 – ident: B4 doi: 10.1038/nrgastro.2013.41 – ident: B17 doi: 10.1007/s11010-009-0299-7 – ident: B5 doi: 10.1021/bi034966+ – ident: B38 doi: 10.1111/j.1742-4658.2006.05357.x – ident: B16 doi: 10.1194/jlr.M004515 – ident: B29 doi: 10.1111/j.1572-0241.2003.07659.x – ident: B50 doi: 10.1194/jlr.M035063 – ident: B20 doi: 10.1016/0891-5849(91)90192-6 – ident: B31 doi: 10.1152/physiolgenomics.00045.2012 – ident: B48 doi: 10.1152/ajpcell.00448.2011 – ident: B55 doi: 10.1161/CIRCRESAHA.107.168070 – ident: B41 doi: 10.1194/jlr.M700359-JLR200 – ident: B52 doi: 10.1089/ars.2010.3795 – ident: B45 doi: 10.1002/hep.26399 – ident: B66 doi: 10.1194/jlr.M900081-JLR200 – ident: B25 doi: 10.1007/s11626-005-0002-6 – ident: B28 doi: 10.1172/JCI46069 – ident: B8 doi: 10.1002/hep.28418 – ident: B32 doi: 10.1053/j.gastro.2007.02.046 – ident: B57 doi: 10.1083/jcb.201311051 – ident: B54 doi: 10.1381/0960892053576820 – ident: B69 doi: 10.1074/jbc.M209033200 – ident: B26 doi: 10.1074/jbc.274.24.16825 – ident: B61 doi: 10.1186/1743-7075-4-4 – ident: B46 doi: 10.1016/j.jhep.2014.10.019 – volume: 17 start-page: 145 year: 1971 ident: B47 publication-title: Clin Chem doi: 10.1093/clinchem/17.3.145 – ident: B68 doi: 10.1074/jbc.M500978200 – volume: 38 start-page: 2249 year: 1997 ident: B12 publication-title: J Lipid Res doi: 10.1016/S0022-2275(20)34939-7 – ident: B33 doi: 10.1017/S002966511500244X – ident: B1 doi: 10.1158/0008-5472.CAN-07-1999 – ident: B56 doi: 10.1073/pnas.1408523111 – ident: B19 doi: 10.1016/S0016-5085(98)70599-2 – ident: B30 doi: 10.1074/jbc.M111.234534 – ident: B13 doi: 10.1016/S1388-1981(99)00179-1 – reference: 26699087 - Hepatology. 2016 Apr;63(4):1310-24 – reference: 15292255 - J Biol Chem. 2004 Oct 1;279(40):42062-71 – reference: 14672613 - J Hepatol. 2004 Jan;40(1):47-51 – reference: 20424269 - J Lipid Res. 2010 Aug;51(8):2132-42 – reference: 10358026 - J Biol Chem. 1999 Jun 11;274(24):16825-30 – reference: 1937131 - Free Radic Biol Med. 1991;11(1):81-128 – reference: 24831094 - PLoS One. 2014;9(5):e97118 – reference: 23039336 - Anal Chem. 2012 Nov 6;84(21):8917-26 – reference: 21982710 - Cell Metab. 2011 Oct 5;14(4):504-15 – reference: 10634941 - Biochim Biophys Acta. 2000 Jan 17;1483(2):251-62 – reference: 10355028 - Semin Cell Dev Biol. 1999 Feb;10(1):51-8 – reference: 20032580 - J Atheroscler Thromb. 2009;16(6):893-901 – reference: 21454708 - J Biol Chem. 2011 May 13;286(19):17338-50 – reference: 19650159 - Hepatology. 2009 Sep;50(3):772-80 – reference: 14535984 - J Gastroenterol Hepatol. 2003 Nov;18(11):1272-82 – reference: 21633178 - J Clin Invest. 2011 Jun;121(6):2102-10 – reference: 20035485 - Lipids. 2010 Feb;45(2):97-110 – reference: 16448220 - In Vitro Cell Dev Biol Anim. 2005 Nov-Dec;41(10):321-4 – reference: 25210147 - J Leukoc Biol. 2014 Nov;96(5):703-12 – reference: 24590170 - J Cell Biol. 2014 Mar 3;204(5):635-46 – reference: 17526933 - J Lipid Res. 2007 Aug;48(8):1885-96 – reference: 17484887 - Gastroenterology. 2007 May;132(5):1947-54 – reference: 18483409 - Circ Res. 2008 Jun 20;102(12):1492-501 – reference: 17313679 - Nutr Metab (Lond). 2007 Feb 21;4:4 – reference: 20206115 - Anal Biochem. 2010 Jun 15;401(2):318-20 – reference: 25338003 - Biochemistry. 2014 Nov 18;53(45):7051-66 – reference: 17872589 - J Lipid Res. 2007 Dec;48(12):2751-61 – reference: 19851831 - Mol Cell Biochem. 2010 Apr;337(1-2):193-9 – reference: 12431986 - J Biol Chem. 2003 Jan 24;278(4):2461-8 – reference: 24879804 - J Lipid Res. 2014 Aug;55(8):1797-809 – reference: 14499785 - Am J Gastroenterol. 2003 Sep;98(9):2042-7 – reference: 23012396 - Physiol Genomics. 2012 Nov 15;44(22):1125-31 – reference: 17135363 - FASEB J. 2007 Jan;21(1):167-78 – reference: 16428458 - Mol Cell Biol. 2006 Feb;26(3):1063-76 – reference: 25961502 - Nat Cell Biol. 2015 Jun;17(6):759-70 – reference: 24349934 - Mass Spectrom (Tokyo). 2013;2(Spec Iss):S0015 – reference: 18922966 - Pharmacol Rev. 2008 Sep;60(3):311-57 – reference: 23505042 - Hepatology. 2013 Oct;58(4):1296-305 – reference: 26166692 - Int J Mol Med. 2015 Sep;36(3):839-44 – reference: 18669627 - Am J Physiol Gastrointest Liver Physiol. 2008 Sep;295(3):G621-8 – reference: 22705852 - Cell Death Differ. 2012 Nov;19(11):1880-91 – reference: 22744009 - Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C728-42 – reference: 16436109 - Int J Exp Pathol. 2006 Feb;87(1):1-16 – reference: 15826462 - Obes Surg. 2005 Mar;15(3):310-5 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 25457203 - J Hepatol. 2015 Mar;62(3):673-81 – reference: 11846609 - Methods. 2001 Dec;25(4):402-8 – reference: 15291397 - Nutr Rev. 2004 Jun;62(6 Pt 1):243-6 – reference: 18339853 - Cancer Res. 2008 Mar 15;68(6):1732-40 – reference: 19528634 - J Lipid Res. 2009 Dec;50(12):2371-6 – reference: 9547102 - Gastroenterology. 1998 Apr;114(4):842-5 – reference: 18487449 - Diabetes. 2008 Aug;57(8):2037-45 – reference: 26355342 - Cell Death Dis. 2015;6:e1879 – reference: 19289417 - J Lipid Res. 2009 Jul;50(7):1429-47 – reference: 9294145 - J Exp Med. 1997 Sep 15;186(6):909-20 – reference: 23507799 - Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):330-44 – reference: 16829692 - J Lipid Res. 2006 Oct;47(10):2280-90 – reference: 23402988 - J Lipid Res. 2013 May;54(5):1346-59 – reference: 5543185 - Clin Chem. 1971 Mar;17(3):145-7 – reference: 15731108 - J Biol Chem. 2005 May 13;280(19):19146-55 – reference: 14661971 - Biochemistry. 2003 Dec 16;42(49):14583-98 – reference: 26282529 - Proc Nutr Soc. 2016 Feb;75(1):1-9 – reference: 16469142 - Br J Nutr. 2006 Feb;95(2):273-81 – reference: 16884492 - FEBS J. 2006 Aug;273(15):3498-510 – reference: 17130488 - Diabetes. 2006 Dec;55(12):3418-28 – reference: 12456684 - J Biol Chem. 2003 Feb 21;278(8):6384-403 – reference: 24889630 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8901-6 – reference: 9392423 - J Lipid Res. 1997 Nov;38(11):2249-63 – reference: 21128703 - Antioxid Redox Signal. 2011 Jul 15;15(2):485-504 |
SSID | ssj0005211 |
Score | 2.5004017 |
Snippet | Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | G726 |
SubjectTerms | Animals Caspase 1 - genetics Caspase 1 - metabolism CCAAT-Enhancer-Binding Proteins - genetics CCAAT-Enhancer-Binding Proteins - metabolism Choline Deficiency - complications Cytokines - genetics Cytokines - metabolism Diet Hepatitis Inflammation Lipids Lipoproteins, LDL - metabolism Liver - metabolism Liver and Biliary Tract Physiology/Pathophysiology Liver Cirrhosis - etiology Liver Cirrhosis - genetics Liver Cirrhosis - metabolism Liver diseases Methionine - deficiency Mice Mice, Inbred C57BL Non-alcoholic Fatty Liver Disease - etiology Non-alcoholic Fatty Liver Disease - genetics Non-alcoholic Fatty Liver Disease - metabolism Perilipin-2 - genetics Perilipin-2 - metabolism Phosphatidylcholines - metabolism Phosphatidylethanolamine N-Methyltransferase - metabolism Triglycerides - metabolism |
Title | Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26968211 https://www.proquest.com/docview/1789520543 https://www.proquest.com/docview/1787090679 https://pubmed.ncbi.nlm.nih.gov/PMC4867327 |
Volume | 310 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBb9AWMvY2u3NVs3NBiD4TqNZceyHrOypmzL6KCFvhnZlpsU1wmNU0j_-t3JsqO0Y2zNgwm2bMm-T7o76e4TIR8T6Hy5xEVW5TE34FHgiiRV0K8El1kkvEznV4x-hifnwbeL_sXG5rYVtbSokm5698e8ksdIFc6BXDFL9j8k2z4UTsB_kC8cQcJw_CcZ_8CgCheTJTHgxylA4emYNqi7wD2pHebgVim3EzQonWyiKhdc8AUu-Y_VTHO1opCr6bxmGoA2AUDqZMYmrDMHfxqv21Zsu8xj8U7oKZI69cUfOEM5r26myEUBQ0hp-AgKbK5VsJ2IlleVtfTvnHbbeR9QiePJLTxhKS9r6MJIdyORtGMF60FxJe90VMJoOsb2Z86X9hHHMjNxI6ools6ga89zeOEqqtBKLUDF0LRSg9jEttozpMJ3keCqVnBmVAePG2xFbg_7vgmnrfEtrEF8yFloGQRDXvPPPFQ2fSSvlVezy0lXU_ljpGDfLgoffHatwceQhIgZvbJO8H06OkLaQ5_xTbLNwNvBjTi-_4qsSCXPbKtZv1mz2t5nh_crR25rU9O6ofXAe7ofBGxZVWfPyTPjDtFBje0XZEOVO2R3UAImr5f0E23FsNwhT0YmDmSXjNeRTxH5dJrTFvmU0RXyqY18apBPW-QfUBv3BxSgShvUvyTnx1_Pjk5cs2eImwaiV7lh4EVRLiOfi17OBO5pK8AmZZHKvSRRKoHBKcs9Ecigx_LUCxV6PLmnUpYxyVP_Fdkqp6XaIzRIwyyFnxf20MzlImVK-lkgRZLzqCc65LD5wHFqCPVxX5ci1o51n8VaOrGWTozS6ZDP7R2zmkzmL2X3G5nFpjPPY49Hos_Ay_I75EN7GRQCrvLJUk0XugzvCZwf7pDXtYjbyhpsdAhfE35bAMnm16-Uk7EmnTcQffPoO9-Sp6tuvU-2qpuFegcGfZW813D_DUUs_HA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver-specific+loss+of+Perilipin+2+alleviates+diet-induced+hepatic+steatosis%2C+inflammation%2C+and+fibrosis&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Najt%2C+Charles+P.&rft.au=Senthivinayagam%2C+Subramanian&rft.au=Aljazi%2C+Mohammad+B.&rft.au=Fader%2C+Kelly+A.&rft.date=2016-05-01&rft.pub=American+Physiological+Society&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=310&rft.issue=9&rft.spage=G726&rft.epage=G738&rft_id=info:doi/10.1152%2Fajpgi.00436.2015&rft_id=info%3Apmid%2F26968211&rft.externalDocID=PMC4867327 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon |