Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis

Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; how...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology: Gastrointestinal and liver physiology Vol. 310; no. 9; pp. G726 - G738
Main Authors Najt, Charles P., Senthivinayagam, Subramanian, Aljazi, Mohammad B., Fader, Kelly A., Olenic, Sandra D., Brock, Julienne R. L., Lydic, Todd A., Jones, A. Daniel, Atshaves, Barbara P.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.05.2016
Subjects
Online AccessGet full text
ISSN0193-1857
1522-1547
1522-1547
DOI10.1152/ajpgi.00436.2015

Cover

Loading…
Abstract Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
AbstractList Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-a, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N -methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
Author Jones, A. Daniel
Aljazi, Mohammad B.
Olenic, Sandra D.
Atshaves, Barbara P.
Lydic, Todd A.
Senthivinayagam, Subramanian
Fader, Kelly A.
Brock, Julienne R. L.
Najt, Charles P.
Author_xml – sequence: 1
  givenname: Charles P.
  surname: Najt
  fullname: Najt, Charles P.
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
– sequence: 2
  givenname: Subramanian
  surname: Senthivinayagam
  fullname: Senthivinayagam, Subramanian
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
– sequence: 3
  givenname: Mohammad B.
  surname: Aljazi
  fullname: Aljazi, Mohammad B.
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
– sequence: 4
  givenname: Kelly A.
  surname: Fader
  fullname: Fader, Kelly A.
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
– sequence: 5
  givenname: Sandra D.
  surname: Olenic
  fullname: Olenic, Sandra D.
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
– sequence: 6
  givenname: Julienne R. L.
  surname: Brock
  fullname: Brock, Julienne R. L.
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
– sequence: 7
  givenname: Todd A.
  surname: Lydic
  fullname: Lydic, Todd A.
  organization: Department of Physiology, Michigan State University, East Lansing, Michigan; and
– sequence: 8
  givenname: A. Daniel
  surname: Jones
  fullname: Jones, A. Daniel
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;, Department of Chemistry, Michigan State University, East Lansing, Michigan
– sequence: 9
  givenname: Barbara P.
  surname: Atshaves
  fullname: Atshaves, Barbara P.
  organization: Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26968211$$D View this record in MEDLINE/PubMed
BookMark eNp1kUFv1DAQhS1URLeFOydkiQuHZrGdxLEvSKiCgrQSHOBsOc64OyuvHeJkJf493m2LSiVOtma-9zyed0HOYopAyGvO1py34r3djbe4Zqyp5Vow3j4jq1IWFW-b7oysGNd1xVXbnZOLnHeMsVZw_oKcC6mlKtcV2W7wAFOVR3Do0dGQcqbJ0-8wYcARIxXUhgAHtDNkOiDMFcZhcTDQLYx2Lpo8g51TxnxFMfpg9_tSTvGK2jhQj_107L0kz70NGV7dn5fk5-dPP66_VJtvN1-vP24q12g2V7LhSnmr6k4zL7TsaqUVV0KB530P0PeNHDzXjW2Y8I5LkLytPQcnBmE7V1-SD3e-49LvYXAQ58kGM064t9NvkyyafzsRt-Y2HUyjymOiKwbv7g2m9GuBPJs9Zgch2AhpyYZ3qmOayU4X9O0TdJeWKZbvHSndCtY2daHePJ7o7ygPIRRA3gGubCpP4I3D-bTCMiAGw5k5pm1OaZtT2uaYdhGyJ8IH7_9K_gAPqq7b
CODEN APGPDF
CitedBy_id crossref_primary_10_3389_fendo_2020_577650
crossref_primary_10_1016_j_bbalip_2023_159376
crossref_primary_10_1016_j_livres_2024_06_001
crossref_primary_10_1186_s12944_019_1114_4
crossref_primary_10_4254_wjh_v16_i12_1468
crossref_primary_10_1038_s41598_017_17165_9
crossref_primary_10_1016_j_lfs_2022_120540
crossref_primary_10_3390_nu15214574
crossref_primary_10_1016_j_tem_2016_09_001
crossref_primary_10_1074_jbc_RA118_003541
crossref_primary_10_1097_HEP_0000000000001141
crossref_primary_10_1111_liv_14423
crossref_primary_10_1016_j_molcel_2019_12_003
crossref_primary_10_3390_ijms232415456
crossref_primary_10_1152_ajpendo_00391_2020
crossref_primary_10_1096_fj_201601142R
crossref_primary_10_1016_j_molmet_2025_102104
crossref_primary_10_1016_j_jhazmat_2022_130584
crossref_primary_10_1155_2022_4581405
crossref_primary_10_1002_ptr_7454
crossref_primary_10_1186_s12944_020_01425_1
crossref_primary_10_1016_j_cellsig_2023_110750
crossref_primary_10_3390_ijms23147841
crossref_primary_10_1016_j_jnutbio_2017_08_011
crossref_primary_10_3390_ijms21217815
crossref_primary_10_1002_1873_3468_12845
crossref_primary_10_1016_j_jlr_2021_100048
crossref_primary_10_1007_s11626_023_00759_1
crossref_primary_10_1016_j_yexcr_2023_113855
crossref_primary_10_1152_ajpgi_00379_2016
crossref_primary_10_1194_jlr_M086249
crossref_primary_10_1186_s43066_023_00287_3
crossref_primary_10_1111_nyas_14037
crossref_primary_10_1111_nan_12756
crossref_primary_10_1016_j_jbc_2022_102008
crossref_primary_10_1111_febs_14189
crossref_primary_10_1016_j_celrep_2018_11_074
crossref_primary_10_1016_j_freeradbiomed_2023_11_019
crossref_primary_10_1021_acs_jproteome_3c00009
crossref_primary_10_1016_j_cbi_2024_111046
crossref_primary_10_18632_aging_202840
crossref_primary_10_1074_jbc_RA118_005309
crossref_primary_10_2139_ssrn_4052465
crossref_primary_10_1016_j_mce_2020_110818
crossref_primary_10_1111_jbg_12886
crossref_primary_10_3390_biomedicines9091210
crossref_primary_10_3390_cells11050893
crossref_primary_10_1016_j_molmet_2020_101115
crossref_primary_10_1016_j_cbi_2024_111370
crossref_primary_10_1093_jbmr_zjae195
crossref_primary_10_1007_s13577_021_00491_6
crossref_primary_10_1242_dmm_048355
crossref_primary_10_1016_j_devcel_2023_07_001
crossref_primary_10_5501_wjv_v12_i5_296
crossref_primary_10_3389_fphar_2021_594437
crossref_primary_10_1002_advs_202407572
crossref_primary_10_3389_fphar_2020_00216
crossref_primary_10_1002_ar_25138
crossref_primary_10_1111_liv_14492
crossref_primary_10_1002_hep_28912
crossref_primary_10_1002_path_6076
crossref_primary_10_1002_jcb_28889
crossref_primary_10_1016_j_jid_2019_11_032
crossref_primary_10_1016_j_biopha_2021_111491
crossref_primary_10_1016_j_jlr_2023_100461
crossref_primary_10_1016_j_jhepr_2023_100902
crossref_primary_10_1038_s41374_019_0327_5
crossref_primary_10_1038_s12276_023_01036_7
crossref_primary_10_1002_mnfr_202000816
crossref_primary_10_1038_s42255_021_00349_z
crossref_primary_10_1136_gutjnl_2022_327498
crossref_primary_10_1186_s12944_022_01654_6
crossref_primary_10_1038_s41598_020_61473_6
crossref_primary_10_3390_ijms23126366
crossref_primary_10_1007_s00216_018_1016_8
crossref_primary_10_3390_metabo13020174
crossref_primary_10_1016_j_bbadis_2025_167666
crossref_primary_10_1016_j_celrep_2023_112435
crossref_primary_10_1038_s41598_023_31315_2
crossref_primary_10_1002_jbt_22751
crossref_primary_10_1007_s00394_024_03326_w
crossref_primary_10_1038_s41522_024_00495_8
crossref_primary_10_1139_apnm_2019_0966
crossref_primary_10_3389_fendo_2022_943576
crossref_primary_10_1186_s13020_021_00434_1
crossref_primary_10_1002_jcb_30579
crossref_primary_10_1016_j_bbalip_2020_158637
crossref_primary_10_1152_japplphysiol_00930_2020
crossref_primary_10_1096_fj_202100739RR
crossref_primary_10_1038_s41598_019_43335_y
crossref_primary_10_3390_cells10051016
crossref_primary_10_1242_jcs_259501
crossref_primary_10_3390_biomedicines10061291
crossref_primary_10_1152_ajpgi_00225_2022
crossref_primary_10_1080_19490976_2020_1737307
crossref_primary_10_1194_jlr_RA119000336
Cites_doi 10.1194/jlr.M900020-JLR200
10.1016/j.cmet.2011.07.013
10.2337/db06-0399
10.5702/massspectrometry.S0015
10.1079/BJN20051635
10.1038/ncb3166
10.1111/j.0959-9673.2006.00465.x
10.1371/journal.pone.0097118
10.1021/bi500918m
10.1016/0003-2697(76)90527-3
10.2337/db07-1383
10.1021/ac302154g
10.1194/jlr.M700181-JLR200
10.1074/jbc.M407462200
10.1046/j.1440-1746.2003.03198.x
10.1006/meth.2001.1262
10.1074/jbc.M205472200
10.1096/fj.06-6711com
10.1124/pr.108.00001
10.1016/j.ab.2010.02.036
10.1194/jlr.M600198-JLR200
10.1084/jem.186.6.909
10.1128/MCB.26.3.1063-1076.2006
10.3892/ijmm.2015.2276
10.1152/ajpgi.90204.2008
10.1038/cdd.2012.74
10.1038/cddis.2015.248
10.1194/jlr.D050302
10.1006/scdb.1998.0275
10.1189/jlb.3RU0214-110R
10.1007/s11745-009-3379-2
10.1002/hep.23094
10.5551/jat.2055
10.1016/j.jhep.2003.09.020
10.1038/nrgastro.2013.41
10.1007/s11010-009-0299-7
10.1021/bi034966+
10.1111/j.1742-4658.2006.05357.x
10.1194/jlr.M004515
10.1111/j.1572-0241.2003.07659.x
10.1194/jlr.M035063
10.1016/0891-5849(91)90192-6
10.1152/physiolgenomics.00045.2012
10.1152/ajpcell.00448.2011
10.1161/CIRCRESAHA.107.168070
10.1194/jlr.M700359-JLR200
10.1089/ars.2010.3795
10.1002/hep.26399
10.1194/jlr.M900081-JLR200
10.1007/s11626-005-0002-6
10.1172/JCI46069
10.1002/hep.28418
10.1053/j.gastro.2007.02.046
10.1083/jcb.201311051
10.1381/0960892053576820
10.1074/jbc.M209033200
10.1074/jbc.274.24.16825
10.1186/1743-7075-4-4
10.1016/j.jhep.2014.10.019
10.1093/clinchem/17.3.145
10.1074/jbc.M500978200
10.1016/S0022-2275(20)34939-7
10.1017/S002966511500244X
10.1158/0008-5472.CAN-07-1999
10.1073/pnas.1408523111
10.1016/S0016-5085(98)70599-2
10.1074/jbc.M111.234534
10.1016/S1388-1981(99)00179-1
ContentType Journal Article
Copyright Copyright © 2016 the American Physiological Society.
Copyright American Physiological Society May 1, 2016
Copyright © 2016 the American Physiological Society 2016 American Physiological Society
Copyright_xml – notice: Copyright © 2016 the American Physiological Society.
– notice: Copyright American Physiological Society May 1, 2016
– notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1152/ajpgi.00436.2015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1547
EndPage G738
ExternalDocumentID PMC4867327
4059310281
26968211
10_1152_ajpgi_00436_2015
Genre Journal Article
Research Support, N.I.H., Extramural
Feature
GroupedDBID ---
23M
2WC
39C
4.4
5GY
5VS
6J9
AAFWJ
AAYXX
ABJNI
ACPRK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
CITATION
E3Z
EBS
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
OK1
P2P
PQQKQ
RAP
RHI
RPL
RPRKH
TR2
W8F
WOQ
XSW
YSK
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c490t-64188fa83790f296738981828ef1bbeebb46df194a402fc16e6153f1ec2d2a7c3
ISSN 0193-1857
1522-1547
IngestDate Thu Aug 21 13:57:07 EDT 2025
Fri Jul 11 05:55:23 EDT 2025
Mon Jun 30 08:07:01 EDT 2025
Thu Apr 03 06:59:17 EDT 2025
Thu Apr 24 23:09:16 EDT 2025
Tue Jul 01 00:25:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords nonalcoholic steatohepatitis
Perilipin 2
lipid droplets
methionine-choline-deficient diet
Language English
License Copyright © 2016 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c490t-64188fa83790f296738981828ef1bbeebb46df194a402fc16e6153f1ec2d2a7c3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.physiology.org/doi/pdf/10.1152/ajpgi.00436.2015
PMID 26968211
PQID 1789520543
PQPubID 48585
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4867327
proquest_miscellaneous_1787090679
proquest_journals_1789520543
pubmed_primary_26968211
crossref_citationtrail_10_1152_ajpgi_00436_2015
crossref_primary_10_1152_ajpgi_00436_2015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle American journal of physiology: Gastrointestinal and liver physiology
PublicationTitleAlternate Am J Physiol Gastrointest Liver Physiol
PublicationYear 2016
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References B20
B64
B21
B65
B22
B66
B67
B24
B68
B25
B69
B26
B27
B28
B29
Marzo A (B47) 1971; 17
B30
B31
B32
B33
B34
B35
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B48
B49
B50
B51
B52
B53
B10
B54
B11
B55
B56
B13
B57
B14
B58
B15
B59
B16
B17
B18
B19
Fujii H (B23) 2009; 16
Kos C (B36) 2004; 62
Brasaemle DL (B12) 1997; 38
B60
B61
B62
B63
25338003 - Biochemistry. 2014 Nov 18;53(45):7051-66
18669627 - Am J Physiol Gastrointest Liver Physiol. 2008 Sep;295(3):G621-8
18922966 - Pharmacol Rev. 2008 Sep;60(3):311-57
18483409 - Circ Res. 2008 Jun 20;102(12):1492-501
16469142 - Br J Nutr. 2006 Feb;95(2):273-81
21982710 - Cell Metab. 2011 Oct 5;14(4):504-15
15291397 - Nutr Rev. 2004 Jun;62(6 Pt 1):243-6
16829692 - J Lipid Res. 2006 Oct;47(10):2280-90
18339853 - Cancer Res. 2008 Mar 15;68(6):1732-40
16428458 - Mol Cell Biol. 2006 Feb;26(3):1063-76
22744009 - Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C728-42
1937131 - Free Radic Biol Med. 1991;11(1):81-128
20032580 - J Atheroscler Thromb. 2009;16(6):893-901
23012396 - Physiol Genomics. 2012 Nov 15;44(22):1125-31
14535984 - J Gastroenterol Hepatol. 2003 Nov;18(11):1272-82
20206115 - Anal Biochem. 2010 Jun 15;401(2):318-20
16448220 - In Vitro Cell Dev Biol Anim. 2005 Nov-Dec;41(10):321-4
16436109 - Int J Exp Pathol. 2006 Feb;87(1):1-16
19528634 - J Lipid Res. 2009 Dec;50(12):2371-6
5543185 - Clin Chem. 1971 Mar;17(3):145-7
9547102 - Gastroenterology. 1998 Apr;114(4):842-5
17526933 - J Lipid Res. 2007 Aug;48(8):1885-96
25457203 - J Hepatol. 2015 Mar;62(3):673-81
9392423 - J Lipid Res. 1997 Nov;38(11):2249-63
21128703 - Antioxid Redox Signal. 2011 Jul 15;15(2):485-504
23507799 - Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):330-44
19851831 - Mol Cell Biochem. 2010 Apr;337(1-2):193-9
17484887 - Gastroenterology. 2007 May;132(5):1947-54
23505042 - Hepatology. 2013 Oct;58(4):1296-305
17313679 - Nutr Metab (Lond). 2007 Feb 21;4:4
15826462 - Obes Surg. 2005 Mar;15(3):310-5
14499785 - Am J Gastroenterol. 2003 Sep;98(9):2042-7
17130488 - Diabetes. 2006 Dec;55(12):3418-28
25961502 - Nat Cell Biol. 2015 Jun;17(6):759-70
17135363 - FASEB J. 2007 Jan;21(1):167-78
14661971 - Biochemistry. 2003 Dec 16;42(49):14583-98
20424269 - J Lipid Res. 2010 Aug;51(8):2132-42
15292255 - J Biol Chem. 2004 Oct 1;279(40):42062-71
9294145 - J Exp Med. 1997 Sep 15;186(6):909-20
10355028 - Semin Cell Dev Biol. 1999 Feb;10(1):51-8
20035485 - Lipids. 2010 Feb;45(2):97-110
19289417 - J Lipid Res. 2009 Jul;50(7):1429-47
24590170 - J Cell Biol. 2014 Mar 3;204(5):635-46
26282529 - Proc Nutr Soc. 2016 Feb;75(1):1-9
26166692 - Int J Mol Med. 2015 Sep;36(3):839-44
11846609 - Methods. 2001 Dec;25(4):402-8
23402988 - J Lipid Res. 2013 May;54(5):1346-59
12431986 - J Biol Chem. 2003 Jan 24;278(4):2461-8
10634941 - Biochim Biophys Acta. 2000 Jan 17;1483(2):251-62
21454708 - J Biol Chem. 2011 May 13;286(19):17338-50
24889630 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8901-6
942051 - Anal Biochem. 1976 May 7;72:248-54
17872589 - J Lipid Res. 2007 Dec;48(12):2751-61
14672613 - J Hepatol. 2004 Jan;40(1):47-51
26355342 - Cell Death Dis. 2015;6:e1879
21633178 - J Clin Invest. 2011 Jun;121(6):2102-10
23039336 - Anal Chem. 2012 Nov 6;84(21):8917-26
19650159 - Hepatology. 2009 Sep;50(3):772-80
22705852 - Cell Death Differ. 2012 Nov;19(11):1880-91
18487449 - Diabetes. 2008 Aug;57(8):2037-45
10358026 - J Biol Chem. 1999 Jun 11;274(24):16825-30
15731108 - J Biol Chem. 2005 May 13;280(19):19146-55
24349934 - Mass Spectrom (Tokyo). 2013;2(Spec Iss):S0015
24879804 - J Lipid Res. 2014 Aug;55(8):1797-809
24831094 - PLoS One. 2014;9(5):e97118
25210147 - J Leukoc Biol. 2014 Nov;96(5):703-12
12456684 - J Biol Chem. 2003 Feb 21;278(8):6384-403
26699087 - Hepatology. 2016 Apr;63(4):1310-24
16884492 - FEBS J. 2006 Aug;273(15):3498-510
References_xml – ident: B6
  doi: 10.1194/jlr.M900020-JLR200
– ident: B37
  doi: 10.1016/j.cmet.2011.07.013
– ident: B67
  doi: 10.2337/db06-0399
– ident: B22
  doi: 10.5702/massspectrometry.S0015
– ident: B27
  doi: 10.1079/BJN20051635
– ident: B34
  doi: 10.1038/ncb3166
– ident: B3
  doi: 10.1111/j.0959-9673.2006.00465.x
– ident: B14
  doi: 10.1371/journal.pone.0097118
– ident: B53
  doi: 10.1021/bi500918m
– ident: B11
  doi: 10.1016/0003-2697(76)90527-3
– ident: B9
  doi: 10.2337/db07-1383
– ident: B21
  doi: 10.1021/ac302154g
– ident: B40
  doi: 10.1194/jlr.M700181-JLR200
– ident: B62
  doi: 10.1074/jbc.M407462200
– ident: B35
  doi: 10.1046/j.1440-1746.2003.03198.x
– ident: B42
  doi: 10.1006/meth.2001.1262
– ident: B49
  doi: 10.1074/jbc.M205472200
– ident: B65
  doi: 10.1096/fj.06-6711com
– ident: B2
  doi: 10.1124/pr.108.00001
– ident: B60
  doi: 10.1016/j.ab.2010.02.036
– ident: B59
  doi: 10.1194/jlr.M600198-JLR200
– ident: B10
  doi: 10.1084/jem.186.6.909
– ident: B15
  doi: 10.1128/MCB.26.3.1063-1076.2006
– ident: B18
  doi: 10.3892/ijmm.2015.2276
– ident: B63
  doi: 10.1152/ajpgi.90204.2008
– ident: B64
  doi: 10.1038/cdd.2012.74
– ident: B39
  doi: 10.1038/cddis.2015.248
– ident: B44
  doi: 10.1194/jlr.D050302
– ident: B43
  doi: 10.1006/scdb.1998.0275
– ident: B51
  doi: 10.1189/jlb.3RU0214-110R
– volume: 62
  start-page: 243
  year: 2004
  ident: B36
  publication-title: Nutr Rev
– ident: B7
  doi: 10.1007/s11745-009-3379-2
– ident: B24
  doi: 10.1002/hep.23094
– volume: 16
  start-page: 1893
  year: 2009
  ident: B23
  publication-title: J Atheroscler Thromb
  doi: 10.5551/jat.2055
– ident: B58
  doi: 10.1016/j.jhep.2003.09.020
– ident: B4
  doi: 10.1038/nrgastro.2013.41
– ident: B17
  doi: 10.1007/s11010-009-0299-7
– ident: B5
  doi: 10.1021/bi034966+
– ident: B38
  doi: 10.1111/j.1742-4658.2006.05357.x
– ident: B16
  doi: 10.1194/jlr.M004515
– ident: B29
  doi: 10.1111/j.1572-0241.2003.07659.x
– ident: B50
  doi: 10.1194/jlr.M035063
– ident: B20
  doi: 10.1016/0891-5849(91)90192-6
– ident: B31
  doi: 10.1152/physiolgenomics.00045.2012
– ident: B48
  doi: 10.1152/ajpcell.00448.2011
– ident: B55
  doi: 10.1161/CIRCRESAHA.107.168070
– ident: B41
  doi: 10.1194/jlr.M700359-JLR200
– ident: B52
  doi: 10.1089/ars.2010.3795
– ident: B45
  doi: 10.1002/hep.26399
– ident: B66
  doi: 10.1194/jlr.M900081-JLR200
– ident: B25
  doi: 10.1007/s11626-005-0002-6
– ident: B28
  doi: 10.1172/JCI46069
– ident: B8
  doi: 10.1002/hep.28418
– ident: B32
  doi: 10.1053/j.gastro.2007.02.046
– ident: B57
  doi: 10.1083/jcb.201311051
– ident: B54
  doi: 10.1381/0960892053576820
– ident: B69
  doi: 10.1074/jbc.M209033200
– ident: B26
  doi: 10.1074/jbc.274.24.16825
– ident: B61
  doi: 10.1186/1743-7075-4-4
– ident: B46
  doi: 10.1016/j.jhep.2014.10.019
– volume: 17
  start-page: 145
  year: 1971
  ident: B47
  publication-title: Clin Chem
  doi: 10.1093/clinchem/17.3.145
– ident: B68
  doi: 10.1074/jbc.M500978200
– volume: 38
  start-page: 2249
  year: 1997
  ident: B12
  publication-title: J Lipid Res
  doi: 10.1016/S0022-2275(20)34939-7
– ident: B33
  doi: 10.1017/S002966511500244X
– ident: B1
  doi: 10.1158/0008-5472.CAN-07-1999
– ident: B56
  doi: 10.1073/pnas.1408523111
– ident: B19
  doi: 10.1016/S0016-5085(98)70599-2
– ident: B30
  doi: 10.1074/jbc.M111.234534
– ident: B13
  doi: 10.1016/S1388-1981(99)00179-1
– reference: 26699087 - Hepatology. 2016 Apr;63(4):1310-24
– reference: 15292255 - J Biol Chem. 2004 Oct 1;279(40):42062-71
– reference: 14672613 - J Hepatol. 2004 Jan;40(1):47-51
– reference: 20424269 - J Lipid Res. 2010 Aug;51(8):2132-42
– reference: 10358026 - J Biol Chem. 1999 Jun 11;274(24):16825-30
– reference: 1937131 - Free Radic Biol Med. 1991;11(1):81-128
– reference: 24831094 - PLoS One. 2014;9(5):e97118
– reference: 23039336 - Anal Chem. 2012 Nov 6;84(21):8917-26
– reference: 21982710 - Cell Metab. 2011 Oct 5;14(4):504-15
– reference: 10634941 - Biochim Biophys Acta. 2000 Jan 17;1483(2):251-62
– reference: 10355028 - Semin Cell Dev Biol. 1999 Feb;10(1):51-8
– reference: 20032580 - J Atheroscler Thromb. 2009;16(6):893-901
– reference: 21454708 - J Biol Chem. 2011 May 13;286(19):17338-50
– reference: 19650159 - Hepatology. 2009 Sep;50(3):772-80
– reference: 14535984 - J Gastroenterol Hepatol. 2003 Nov;18(11):1272-82
– reference: 21633178 - J Clin Invest. 2011 Jun;121(6):2102-10
– reference: 20035485 - Lipids. 2010 Feb;45(2):97-110
– reference: 16448220 - In Vitro Cell Dev Biol Anim. 2005 Nov-Dec;41(10):321-4
– reference: 25210147 - J Leukoc Biol. 2014 Nov;96(5):703-12
– reference: 24590170 - J Cell Biol. 2014 Mar 3;204(5):635-46
– reference: 17526933 - J Lipid Res. 2007 Aug;48(8):1885-96
– reference: 17484887 - Gastroenterology. 2007 May;132(5):1947-54
– reference: 18483409 - Circ Res. 2008 Jun 20;102(12):1492-501
– reference: 17313679 - Nutr Metab (Lond). 2007 Feb 21;4:4
– reference: 20206115 - Anal Biochem. 2010 Jun 15;401(2):318-20
– reference: 25338003 - Biochemistry. 2014 Nov 18;53(45):7051-66
– reference: 17872589 - J Lipid Res. 2007 Dec;48(12):2751-61
– reference: 19851831 - Mol Cell Biochem. 2010 Apr;337(1-2):193-9
– reference: 12431986 - J Biol Chem. 2003 Jan 24;278(4):2461-8
– reference: 24879804 - J Lipid Res. 2014 Aug;55(8):1797-809
– reference: 14499785 - Am J Gastroenterol. 2003 Sep;98(9):2042-7
– reference: 23012396 - Physiol Genomics. 2012 Nov 15;44(22):1125-31
– reference: 17135363 - FASEB J. 2007 Jan;21(1):167-78
– reference: 16428458 - Mol Cell Biol. 2006 Feb;26(3):1063-76
– reference: 25961502 - Nat Cell Biol. 2015 Jun;17(6):759-70
– reference: 24349934 - Mass Spectrom (Tokyo). 2013;2(Spec Iss):S0015
– reference: 18922966 - Pharmacol Rev. 2008 Sep;60(3):311-57
– reference: 23505042 - Hepatology. 2013 Oct;58(4):1296-305
– reference: 26166692 - Int J Mol Med. 2015 Sep;36(3):839-44
– reference: 18669627 - Am J Physiol Gastrointest Liver Physiol. 2008 Sep;295(3):G621-8
– reference: 22705852 - Cell Death Differ. 2012 Nov;19(11):1880-91
– reference: 22744009 - Am J Physiol Cell Physiol. 2012 Oct 1;303(7):C728-42
– reference: 16436109 - Int J Exp Pathol. 2006 Feb;87(1):1-16
– reference: 15826462 - Obes Surg. 2005 Mar;15(3):310-5
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 25457203 - J Hepatol. 2015 Mar;62(3):673-81
– reference: 11846609 - Methods. 2001 Dec;25(4):402-8
– reference: 15291397 - Nutr Rev. 2004 Jun;62(6 Pt 1):243-6
– reference: 18339853 - Cancer Res. 2008 Mar 15;68(6):1732-40
– reference: 19528634 - J Lipid Res. 2009 Dec;50(12):2371-6
– reference: 9547102 - Gastroenterology. 1998 Apr;114(4):842-5
– reference: 18487449 - Diabetes. 2008 Aug;57(8):2037-45
– reference: 26355342 - Cell Death Dis. 2015;6:e1879
– reference: 19289417 - J Lipid Res. 2009 Jul;50(7):1429-47
– reference: 9294145 - J Exp Med. 1997 Sep 15;186(6):909-20
– reference: 23507799 - Nat Rev Gastroenterol Hepatol. 2013 Jun;10(6):330-44
– reference: 16829692 - J Lipid Res. 2006 Oct;47(10):2280-90
– reference: 23402988 - J Lipid Res. 2013 May;54(5):1346-59
– reference: 5543185 - Clin Chem. 1971 Mar;17(3):145-7
– reference: 15731108 - J Biol Chem. 2005 May 13;280(19):19146-55
– reference: 14661971 - Biochemistry. 2003 Dec 16;42(49):14583-98
– reference: 26282529 - Proc Nutr Soc. 2016 Feb;75(1):1-9
– reference: 16469142 - Br J Nutr. 2006 Feb;95(2):273-81
– reference: 16884492 - FEBS J. 2006 Aug;273(15):3498-510
– reference: 17130488 - Diabetes. 2006 Dec;55(12):3418-28
– reference: 12456684 - J Biol Chem. 2003 Feb 21;278(8):6384-403
– reference: 24889630 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8901-6
– reference: 9392423 - J Lipid Res. 1997 Nov;38(11):2249-63
– reference: 21128703 - Antioxid Redox Signal. 2011 Jul 15;15(2):485-504
SSID ssj0005211
Score 2.5004017
Snippet Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage G726
SubjectTerms Animals
Caspase 1 - genetics
Caspase 1 - metabolism
CCAAT-Enhancer-Binding Proteins - genetics
CCAAT-Enhancer-Binding Proteins - metabolism
Choline Deficiency - complications
Cytokines - genetics
Cytokines - metabolism
Diet
Hepatitis
Inflammation
Lipids
Lipoproteins, LDL - metabolism
Liver - metabolism
Liver and Biliary Tract Physiology/Pathophysiology
Liver Cirrhosis - etiology
Liver Cirrhosis - genetics
Liver Cirrhosis - metabolism
Liver diseases
Methionine - deficiency
Mice
Mice, Inbred C57BL
Non-alcoholic Fatty Liver Disease - etiology
Non-alcoholic Fatty Liver Disease - genetics
Non-alcoholic Fatty Liver Disease - metabolism
Perilipin-2 - genetics
Perilipin-2 - metabolism
Phosphatidylcholines - metabolism
Phosphatidylethanolamine N-Methyltransferase - metabolism
Triglycerides - metabolism
Title Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis
URI https://www.ncbi.nlm.nih.gov/pubmed/26968211
https://www.proquest.com/docview/1789520543
https://www.proquest.com/docview/1787090679
https://pubmed.ncbi.nlm.nih.gov/PMC4867327
Volume 310
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBb9AWMvY2u3NVs3NBiD4TqNZceyHrOypmzL6KCFvhnZlpsU1wmNU0j_-t3JsqO0Y2zNgwm2bMm-T7o76e4TIR8T6Hy5xEVW5TE34FHgiiRV0K8El1kkvEznV4x-hifnwbeL_sXG5rYVtbSokm5698e8ksdIFc6BXDFL9j8k2z4UTsB_kC8cQcJw_CcZ_8CgCheTJTHgxylA4emYNqi7wD2pHebgVim3EzQonWyiKhdc8AUu-Y_VTHO1opCr6bxmGoA2AUDqZMYmrDMHfxqv21Zsu8xj8U7oKZI69cUfOEM5r26myEUBQ0hp-AgKbK5VsJ2IlleVtfTvnHbbeR9QiePJLTxhKS9r6MJIdyORtGMF60FxJe90VMJoOsb2Z86X9hHHMjNxI6ools6ga89zeOEqqtBKLUDF0LRSg9jEttozpMJ3keCqVnBmVAePG2xFbg_7vgmnrfEtrEF8yFloGQRDXvPPPFQ2fSSvlVezy0lXU_ljpGDfLgoffHatwceQhIgZvbJO8H06OkLaQ5_xTbLNwNvBjTi-_4qsSCXPbKtZv1mz2t5nh_crR25rU9O6ofXAe7ofBGxZVWfPyTPjDtFBje0XZEOVO2R3UAImr5f0E23FsNwhT0YmDmSXjNeRTxH5dJrTFvmU0RXyqY18apBPW-QfUBv3BxSgShvUvyTnx1_Pjk5cs2eImwaiV7lh4EVRLiOfi17OBO5pK8AmZZHKvSRRKoHBKcs9Ecigx_LUCxV6PLmnUpYxyVP_Fdkqp6XaIzRIwyyFnxf20MzlImVK-lkgRZLzqCc65LD5wHFqCPVxX5ci1o51n8VaOrGWTozS6ZDP7R2zmkzmL2X3G5nFpjPPY49Hos_Ay_I75EN7GRQCrvLJUk0XugzvCZwf7pDXtYjbyhpsdAhfE35bAMnm16-Uk7EmnTcQffPoO9-Sp6tuvU-2qpuFegcGfZW813D_DUUs_HA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liver-specific+loss+of+Perilipin+2+alleviates+diet-induced+hepatic+steatosis%2C+inflammation%2C+and+fibrosis&rft.jtitle=American+journal+of+physiology%3A+Gastrointestinal+and+liver+physiology&rft.au=Najt%2C+Charles+P.&rft.au=Senthivinayagam%2C+Subramanian&rft.au=Aljazi%2C+Mohammad+B.&rft.au=Fader%2C+Kelly+A.&rft.date=2016-05-01&rft.pub=American+Physiological+Society&rft.issn=0193-1857&rft.eissn=1522-1547&rft.volume=310&rft.issue=9&rft.spage=G726&rft.epage=G738&rft_id=info:doi/10.1152%2Fajpgi.00436.2015&rft_id=info%3Apmid%2F26968211&rft.externalDocID=PMC4867327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0193-1857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0193-1857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0193-1857&client=summon