Numerical simulation of the forbidden Bragg reflection spectra observed in ZnO

Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 22; no. 35; p. 355404
Main Authors Ovchinnikova, E N, Dmitrienko, V E, Oreshko, A P, Beutier, G, Collins, S P
Format Journal Article
LanguageEnglish
Published England IOP Publishing 08.09.2010
IOP Publishing [1989-....]
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation <u(x)(2)(Zn)> and correlation <u(x)(O)u(x)(Zn)> functions.
AbstractList Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation langux2(Zn)rang and correlation langux(O)ux(Zn)rang functions.
Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation <u(x)(2)(Zn)> and correlation <u(x)(O)u(x)(Zn)> functions.
Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation &lt;u(x)(2)(Zn)&gt; and correlation &lt;u(x)(O)u(x)(Zn)&gt; functions.
Author Oreshko, A P
Collins, S P
Dmitrienko, V E
Ovchinnikova, E N
Beutier, G
Author_xml – sequence: 1
  fullname: Ovchinnikova, E N
– sequence: 2
  fullname: Dmitrienko, V E
– sequence: 3
  fullname: Oreshko, A P
– sequence: 4
  fullname: Beutier, G
– sequence: 5
  fullname: Collins, S P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21403290$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00752460$$DView record in HAL
BookMark eNqNkE1rFTEUhoNU7G31L5TsxMV48z2ZZS3aCpd2oyBuQiY5aSMzkzG5U_Dfm9upd6MLIZAPnvc95DlDJ1OaAKELSt5TovWWdJI3utNiy9iWy7qkIOIF2lCuaKOE_naCNkfoFJ2V8oMQIjQXr9Apo4Jw1pENur1dRsjR2QGXOC6D3cc04RTw_gFwSLmP3sOEP2R7f48zhAHcE1HmesgWp75AfgSP44S_T3ev0ctghwJvnvdz9PXTxy9XN83u7vrz1eWucaIj-0ZxZx3XvQwgGfHBSqFs3yulO5BtvVlNOdDWCu1bFrx2pAVOlWM8OOY7fo7erb0PdjBzjqPNv0yy0dxc7szhjZBWMqHII63s25Wdc_q5QNmbMRYHw2AnSEsxWrZVRSdFJdVKupxKqb89VlNiDtrNwag5GDWMGS7Nqr0GL55HLP0I_hj747kCdAVimv-_tPk782_WzD7w33p9mvc
CitedBy_id crossref_primary_10_31857_S0023476123700029
crossref_primary_10_1134_S1063774523700013
crossref_primary_10_1103_PhysRevB_89_094110
crossref_primary_10_1134_S1027451019050239
crossref_primary_10_1140_epjst_e2012_01605_4
crossref_primary_10_1140_epjst_e2012_01606_3
crossref_primary_10_1140_epjst_e2012_01609_0
crossref_primary_10_1103_PhysRevB_92_214116
crossref_primary_10_1134_S1063774511040146
crossref_primary_10_1107_S1600577520014344
Cites_doi 10.1070/PU2001v044n08ABEH000965
10.1134/S1063774507040062
10.1063/1.2918105
10.1016/j.physrep.2005.01.003
10.1002/pssc.200405396
10.1103/PhysRevLett.69.1612
10.1134/1.568116
10.1103/PhysRevB.9.2590
10.1103/PhysRevB.63.125120
10.1103/PhysRev.156.925
10.1103/RevModPhys.66.1509
10.1103/PhysRevB.64.073203
10.1103/PhysRevB.65.092101
10.1103/PhysRevB.49.14850
10.1107/S0108767383000057
10.1107/S0108767309004966
10.1088/0953-8984/19/21/213201
10.1016/j.nima.2005.01.131
10.1107/S0108768188010109
10.1021/cr0000269
10.1107/S0108767305018209
10.1103/PhysRevLett.91.247402
10.1016/j.physb.2003.11.017
10.1103/PhysRevB.68.064110
10.1103/PhysRevB.30.7060
10.1088/0953-8984/21/26/265402
10.1088/0034-4885/65/4/203
10.1088/0953-8984/2/3/018
10.1107/S010876730100890X
10.1103/PhysRevB.56.14399
10.3367/UFNr.0158.198908e.0679
10.1002/pssb.200301566
10.1088/0953-8984/19/15/156201
10.1107/S0108767385000782
10.1103/PhysRevLett.61.1245
10.1103/PhysRevB.66.165202
10.1107/S0108767300003421
10.1070/PU1989v032n08ABEH002748
10.1107/S0108767384000209
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID NPM
AAYXX
CITATION
7X8
1XC
DOI 10.1088/0953-8984/22/35/355404
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-648X
EndPage 355404
ExternalDocumentID oai_HAL_hal_00752460v1
10_1088_0953_8984_22_35_355404
21403290
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
02
02O
1JI
1PV
1WK
4.4
53G
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
8RP
9BW
AAGCD
AAGID
AAJIO
AALHV
ABHWH
ABQJV
ACGFS
ACNCT
ADIYS
AEFHF
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TN5
UNR
UQL
W28
WH7
X
XFK
XPP
ZMT
---
-~X
AAJKP
AATNI
ABLJU
ABVAM
ACAFW
ACHIP
AERVB
AKPSB
AOAED
CRLBU
IJHAN
JCGBZ
NPM
PJBAE
YQT
~02
AAYXX
CITATION
7X8
1XC
29L
6TJ
8WZ
A6W
AAGCF
AAYJJ
ABCXL
ACMRT
ACWPO
AFFNX
AI.
CBCFC
CEBXE
H~9
MVM
R4D
RKQ
T37
VH1
XOL
ID FETCH-LOGICAL-c490t-63cac38b5fe520dfa546abb6689e57a54a813e17a48d72fd8c07e316c23fc2d93
IEDL.DBID IOP
ISSN 0953-8984
IngestDate Tue Oct 15 15:59:55 EDT 2024
Sat Oct 26 01:36:17 EDT 2024
Thu Sep 26 17:50:15 EDT 2024
Sat Sep 28 07:52:29 EDT 2024
Mon May 13 14:51:36 EDT 2019
Tue Nov 10 14:23:30 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-63cac38b5fe520dfa546abb6689e57a54a813e17a48d72fd8c07e316c23fc2d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21403290
PQID 857290954
PQPubID 23479
PageCount 1
ParticipantIDs hal_primary_oai_HAL_hal_00752460v1
iop_primary_10_1088_0953_8984_22_35_355404
crossref_primary_10_1088_0953_8984_22_35_355404
proquest_miscellaneous_857290954
pubmed_primary_21403290
PublicationCentury 2000
PublicationDate 2010-09-08
PublicationDateYYYYMMDD 2010-09-08
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-09-08
  day: 08
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAlternate J Phys Condens Matter
PublicationYear 2010
Publisher IOP Publishing
IOP Publishing [1989-....]
Publisher_xml – name: IOP Publishing
– name: IOP Publishing [1989-....]
References 22
44
23
24
25
James R W (27) 1950
Zhernov A P (38) 2001; 44
Beutier G (28) 2009; 21
Lovesey S W (1) 1996
31
32
11
33
12
34
13
35
14
Blume M (17) 1994
36
15
37
16
Brouder C (21) 1990; 2
39
Belyakov V A (18) 1989; 158
Collins S P (5) 2007; 19
2
Ishihara S (10) 2002; 65
3
4
Sirotine Yu (30) 1982
6
7
8
9
Goulon J (29) 2007; 19
Belyakov V A (19) 1989; 32
40
41
20
Beutier G Collins S P Ovchinnikova E N Dmitrienko V E (26) 2010
42
43
References_xml – volume: 44
  start-page: 785
  issn: 1063-7869
  year: 2001
  ident: 38
  publication-title: Phys. Usp.
  doi: 10.1070/PU2001v044n08ABEH000965
  contributor:
    fullname: Zhernov A P
– year: 2010
  ident: 26
  contributor:
    fullname: Beutier G Collins S P Ovchinnikova E N Dmitrienko V E
– ident: 44
  doi: 10.1134/S1063774507040062
– ident: 31
  doi: 10.1063/1.2918105
– year: 1982
  ident: 30
  publication-title: Fundamentals of Crystal Physics
  contributor:
    fullname: Sirotine Yu
– year: 1994
  ident: 17
  publication-title: Resonant Anomalous X-Ray Scattering
  contributor:
    fullname: Blume M
– ident: 3
  doi: 10.1016/j.physrep.2005.01.003
– ident: 43
  doi: 10.1002/pssc.200405396
– ident: 14
  doi: 10.1103/PhysRevLett.69.1612
– ident: 15
  doi: 10.1134/1.568116
– ident: 32
  doi: 10.1103/PhysRevB.9.2590
– ident: 42
  doi: 10.1103/PhysRevB.63.125120
– ident: 37
  doi: 10.1103/PhysRev.156.925
– ident: 9
  doi: 10.1103/RevModPhys.66.1509
– ident: 22
  doi: 10.1103/PhysRevB.64.073203
– ident: 40
  doi: 10.1103/PhysRevB.65.092101
– ident: 11
  doi: 10.1103/PhysRevB.49.14850
– ident: 6
  doi: 10.1107/S0108767383000057
– ident: 36
  doi: 10.1107/S0108767309004966
– volume: 19
  start-page: 213201
  issn: 0953-8984
  year: 2007
  ident: 5
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/21/213201
  contributor:
    fullname: Collins S P
– ident: 34
  doi: 10.1016/j.nima.2005.01.131
– ident: 35
  doi: 10.1107/S0108768188010109
– ident: 2
  doi: 10.1021/cr0000269
– ident: 4
  doi: 10.1107/S0108767305018209
– ident: 13
  doi: 10.1103/PhysRevLett.91.247402
– ident: 24
  doi: 10.1016/j.physb.2003.11.017
– year: 1950
  ident: 27
  publication-title: The Optical Principles of the Diffraction of X-Rays
  contributor:
    fullname: James R W
– ident: 25
  doi: 10.1103/PhysRevB.68.064110
– ident: 33
  doi: 10.1103/PhysRevB.30.7060
– volume: 21
  start-page: 265402
  issn: 0953-8984
  year: 2009
  ident: 28
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/21/26/265402
  contributor:
    fullname: Beutier G
– volume: 65
  start-page: 561
  issn: 0034-4885
  year: 2002
  ident: 10
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/65/4/203
  contributor:
    fullname: Ishihara S
– volume: 2
  start-page: 701
  issn: 0953-8984
  year: 1990
  ident: 21
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/2/3/018
  contributor:
    fullname: Brouder C
– ident: 12
  doi: 10.1107/S010876730100890X
– ident: 39
  doi: 10.1103/PhysRevB.56.14399
– volume: 158
  start-page: 672
  issn: 0042-1294
  year: 1989
  ident: 18
  publication-title: Usp. Fiz. Nauk
  doi: 10.3367/UFNr.0158.198908e.0679
  contributor:
    fullname: Belyakov V A
– ident: 41
  doi: 10.1002/pssb.200301566
– volume: 19
  start-page: 156201
  issn: 0953-8984
  year: 2007
  ident: 29
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/19/15/156201
  contributor:
    fullname: Goulon J
– ident: 8
  doi: 10.1107/S0108767385000782
– ident: 20
  doi: 10.1103/PhysRevLett.61.1245
– ident: 23
  doi: 10.1103/PhysRevB.66.165202
– ident: 16
  doi: 10.1107/S0108767300003421
– volume: 32
  start-page: 697
  issn: 0038-5670
  year: 1989
  ident: 19
  publication-title: Sov. Phys.-Usp.
  doi: 10.1070/PU1989v032n08ABEH002748
  contributor:
    fullname: Belyakov V A
– year: 1996
  ident: 1
  publication-title: X-Ray Scattering and Absorption by Magnetic Materials
  contributor:
    fullname: Lovesey S W
– ident: 7
  doi: 10.1107/S0108767384000209
SSID ssj0004834
Score 2.096999
Snippet Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a...
SourceID hal
proquest
crossref
pubmed
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 355404
SubjectTerms Condensed Matter
Physics
Strongly Correlated Electrons
Title Numerical simulation of the forbidden Bragg reflection spectra observed in ZnO
URI http://iopscience.iop.org/0953-8984/22/35/355404
https://www.ncbi.nlm.nih.gov/pubmed/21403290
https://search.proquest.com/docview/857290954
https://hal.science/hal-00752460
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA5toeCLrdbLtlWCiA_C7M7mNsljWyyLlK0FC8WXkGtdrDPLXvrQX9-TzM6qWFHf5nKSkDNn5nyZc84XhN5GpQwFV1J4YnjBHIfvoPO2APQaq6AiIOScbTEWo0v28YpfbaBuE8RJM119-ftwmCP5iRCtkEqyASEDygfJQWYC0FQDnCr2zj_9KISUOYy8btKVBMMq7-FufvFGm19TLuQmDPxnuJndzukOuuiKd9psk2_95cL23d3vXI7_PKNd9HiFQfFRazRP0Eaon6LtnAvq5ntoPF62YZwbPJ98X23vhZuIAStiwLg2sY7U-Hhmrq8xTOkmZ3PVOBdtzgxubPrTGzye1PhLff4MXZ5--HwyKlbbLhSOqXJRCOqMo9LyGDgpfTScCWOtEFIFXsGZkUMahpVh0lckeunKKtChcIRGR7yiz9FW3dThJcJBVVRU3lMjGYvCKlcaZqkP1BDHmOmhQad-PW3ZNXSOikupk5Z00pImRFOuWy310Bt4SmvhRI49OjrT6VpCP4SJ8nbYQ-9A12uhh3vSUx976P3Pgn8bGndGoeEdTIEVU4dmOdeSwxIFGoHIi9ZY1l2SxIcIN_f_Z6QD9KhNUlBFKQ_R1mK2DK8A-yzs62zv9zfw8o4
link.rule.ids 230,315,783,787,888,1560,27936,27937,53918
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLY6RaBeWrbCsFoIcUDKJPGS2McWOppCNe2BShUXy2upWpLRLD3w63lOMmERFULcsjzb8fPyXvK-9wWh10FKTcGUJI5onjDLYR-0ziTgvYbSywAecoO2mBaTU_bhjJ9toIM-F6aedVv_CA5bouBWhR0gTqSRIS0RUrCUkJTyNFrMjKUzFwboFqcyj8iuw-OTH-mRogku9-XWicI31vWLjRp8iQjJATzNzU5oY4zGOy1oZNFwGEYMyuVotTQj--03hsf_7uddtN25q3ivLXQPbfjqPrrdwEbt4gGaTldtxOcKLy6-dn8Cw3XA4FZicIdNJCip8P5cn59j6OdVA_yqcJPfOde4NvGjsHf4osKfq-OH6HR88OndJOn-0JBYJrNlUlCrLRWGB89J5oLmrNDGFIWQnpdwpkVOfV5qJlxJghM2Kz3NC0tosMRJuos2q7ryjxH2sqRF6RzVgrFQGGkzzQx1nmpiGdNDlK7HRM1aIg7VBNCFUFFTKmpKEaIoV62mhugVDF0vHHm0J3tHKl6LjhJhRXadD9Eb0H8v9OeaFOh8iN7-LPi3pvF6pihYrjEGoytfrxZKcHibgUIg8qidQX2VJFInws0n_9LSS3Tn5P1YHR1OPz5FWy20QSaZeIY2l_OVfw4e09K8aNbDdz1hApA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+the+forbidden+Bragg+reflection+spectra+observed+in+ZnO&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Ovchinnikova%2C+E+N&rft.au=Dmitrienko%2C+V+E&rft.au=Oreshko%2C+A+P&rft.au=Beutier%2C+G&rft.date=2010-09-08&rft.eissn=1361-648X&rft.volume=22&rft.issue=35&rft.spage=355404&rft_id=info:doi/10.1088%2F0953-8984%2F22%2F35%2F355404&rft_id=info%3Apmid%2F21403290&rft.externalDocID=21403290
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon