Numerical simulation of the forbidden Bragg reflection spectra observed in ZnO
Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy...
Saved in:
Published in | Journal of physics. Condensed matter Vol. 22; no. 35; p. 355404 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
08.09.2010
IOP Publishing [1989-....] |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation <u(x)(2)(Zn)> and correlation <u(x)(O)u(x)(Zn)> functions. |
---|---|
AbstractList | Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation langux2(Zn)rang and correlation langux(O)ux(Zn)rang functions. Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation <u(x)(2)(Zn)> and correlation <u(x)(O)u(x)(Zn)> functions. Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a novel approach to extract atomic correlation functions. Using numerical calculations, we are able to reproduce the temperature-dependent energy spectrum of the 115 'forbidden' Bragg reflection in ZnO. Our previous experimental studies showed that the intensity growth of such reflections over a wide range of temperatures is accompanied by a dramatic change in the resonant spectral lineshape. This is the result of the interplay between the temperature-independent (TI) and temperature-dependent TMI contributions. Here, we confirm that the TI part of the resonant structure factor can be associated with the dipole-quadrupole contribution to the structure factor and show that the temperature-dependent part arises from the zinc and oxygen vibrations, which provide additional temperature-dependent dipole-dipole tensor components to the structure factor. By fitting the experimental data at various temperatures we have determined the temperature dependences of autocorrelation <u(x)(2)(Zn)> and correlation <u(x)(O)u(x)(Zn)> functions. |
Author | Oreshko, A P Collins, S P Dmitrienko, V E Ovchinnikova, E N Beutier, G |
Author_xml | – sequence: 1 fullname: Ovchinnikova, E N – sequence: 2 fullname: Dmitrienko, V E – sequence: 3 fullname: Oreshko, A P – sequence: 4 fullname: Beutier, G – sequence: 5 fullname: Collins, S P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21403290$$D View this record in MEDLINE/PubMed https://hal.science/hal-00752460$$DView record in HAL |
BookMark | eNqNkE1rFTEUhoNU7G31L5TsxMV48z2ZZS3aCpd2oyBuQiY5aSMzkzG5U_Dfm9upd6MLIZAPnvc95DlDJ1OaAKELSt5TovWWdJI3utNiy9iWy7qkIOIF2lCuaKOE_naCNkfoFJ2V8oMQIjQXr9Apo4Jw1pENur1dRsjR2QGXOC6D3cc04RTw_gFwSLmP3sOEP2R7f48zhAHcE1HmesgWp75AfgSP44S_T3ev0ctghwJvnvdz9PXTxy9XN83u7vrz1eWucaIj-0ZxZx3XvQwgGfHBSqFs3yulO5BtvVlNOdDWCu1bFrx2pAVOlWM8OOY7fo7erb0PdjBzjqPNv0yy0dxc7szhjZBWMqHII63s25Wdc_q5QNmbMRYHw2AnSEsxWrZVRSdFJdVKupxKqb89VlNiDtrNwag5GDWMGS7Nqr0GL55HLP0I_hj747kCdAVimv-_tPk782_WzD7w33p9mvc |
CitedBy_id | crossref_primary_10_31857_S0023476123700029 crossref_primary_10_1134_S1063774523700013 crossref_primary_10_1103_PhysRevB_89_094110 crossref_primary_10_1134_S1027451019050239 crossref_primary_10_1140_epjst_e2012_01605_4 crossref_primary_10_1140_epjst_e2012_01606_3 crossref_primary_10_1140_epjst_e2012_01609_0 crossref_primary_10_1103_PhysRevB_92_214116 crossref_primary_10_1134_S1063774511040146 crossref_primary_10_1107_S1600577520014344 |
Cites_doi | 10.1070/PU2001v044n08ABEH000965 10.1134/S1063774507040062 10.1063/1.2918105 10.1016/j.physrep.2005.01.003 10.1002/pssc.200405396 10.1103/PhysRevLett.69.1612 10.1134/1.568116 10.1103/PhysRevB.9.2590 10.1103/PhysRevB.63.125120 10.1103/PhysRev.156.925 10.1103/RevModPhys.66.1509 10.1103/PhysRevB.64.073203 10.1103/PhysRevB.65.092101 10.1103/PhysRevB.49.14850 10.1107/S0108767383000057 10.1107/S0108767309004966 10.1088/0953-8984/19/21/213201 10.1016/j.nima.2005.01.131 10.1107/S0108768188010109 10.1021/cr0000269 10.1107/S0108767305018209 10.1103/PhysRevLett.91.247402 10.1016/j.physb.2003.11.017 10.1103/PhysRevB.68.064110 10.1103/PhysRevB.30.7060 10.1088/0953-8984/21/26/265402 10.1088/0034-4885/65/4/203 10.1088/0953-8984/2/3/018 10.1107/S010876730100890X 10.1103/PhysRevB.56.14399 10.3367/UFNr.0158.198908e.0679 10.1002/pssb.200301566 10.1088/0953-8984/19/15/156201 10.1107/S0108767385000782 10.1103/PhysRevLett.61.1245 10.1103/PhysRevB.66.165202 10.1107/S0108767300003421 10.1070/PU1989v032n08ABEH002748 10.1107/S0108767384000209 |
ContentType | Journal Article |
Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | NPM AAYXX CITATION 7X8 1XC |
DOI | 10.1088/0953-8984/22/35/355404 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1361-648X |
EndPage | 355404 |
ExternalDocumentID | oai_HAL_hal_00752460v1 10_1088_0953_8984_22_35_355404 21403290 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 02 02O 1JI 1PV 1WK 4.4 53G 5B3 5GY 5PX 5VS 5ZH 5ZI 7.M 7.Q 8RP 9BW AAGCD AAGID AAJIO AALHV ABHWH ABQJV ACGFS ACNCT ADIYS AEFHF AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IOP IZVLO KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 RIN RNS RO9 ROL RPA RW3 S3P SY9 TN5 UNR UQL W28 WH7 X XFK XPP ZMT --- -~X AAJKP AATNI ABLJU ABVAM ACAFW ACHIP AERVB AKPSB AOAED CRLBU IJHAN JCGBZ NPM PJBAE YQT ~02 AAYXX CITATION 7X8 1XC 29L 6TJ 8WZ A6W AAGCF AAYJJ ABCXL ACMRT ACWPO AFFNX AI. CBCFC CEBXE H~9 MVM R4D RKQ T37 VH1 XOL |
ID | FETCH-LOGICAL-c490t-63cac38b5fe520dfa546abb6689e57a54a813e17a48d72fd8c07e316c23fc2d93 |
IEDL.DBID | IOP |
ISSN | 0953-8984 |
IngestDate | Tue Oct 15 15:59:55 EDT 2024 Sat Oct 26 01:36:17 EDT 2024 Thu Sep 26 17:50:15 EDT 2024 Sat Sep 28 07:52:29 EDT 2024 Mon May 13 14:51:36 EDT 2019 Tue Nov 10 14:23:30 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 35 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-63cac38b5fe520dfa546abb6689e57a54a813e17a48d72fd8c07e316c23fc2d93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21403290 |
PQID | 857290954 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | hal_primary_oai_HAL_hal_00752460v1 iop_primary_10_1088_0953_8984_22_35_355404 crossref_primary_10_1088_0953_8984_22_35_355404 proquest_miscellaneous_857290954 pubmed_primary_21403290 |
PublicationCentury | 2000 |
PublicationDate | 2010-09-08 |
PublicationDateYYYYMMDD | 2010-09-08 |
PublicationDate_xml | – month: 09 year: 2010 text: 2010-09-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of physics. Condensed matter |
PublicationTitleAlternate | J Phys Condens Matter |
PublicationYear | 2010 |
Publisher | IOP Publishing IOP Publishing [1989-....] |
Publisher_xml | – name: IOP Publishing – name: IOP Publishing [1989-....] |
References | 22 44 23 24 25 James R W (27) 1950 Zhernov A P (38) 2001; 44 Beutier G (28) 2009; 21 Lovesey S W (1) 1996 31 32 11 33 12 34 13 35 14 Blume M (17) 1994 36 15 37 16 Brouder C (21) 1990; 2 39 Belyakov V A (18) 1989; 158 Collins S P (5) 2007; 19 2 Ishihara S (10) 2002; 65 3 4 Sirotine Yu (30) 1982 6 7 8 9 Goulon J (29) 2007; 19 Belyakov V A (19) 1989; 32 40 41 20 Beutier G Collins S P Ovchinnikova E N Dmitrienko V E (26) 2010 42 43 |
References_xml | – volume: 44 start-page: 785 issn: 1063-7869 year: 2001 ident: 38 publication-title: Phys. Usp. doi: 10.1070/PU2001v044n08ABEH000965 contributor: fullname: Zhernov A P – year: 2010 ident: 26 contributor: fullname: Beutier G Collins S P Ovchinnikova E N Dmitrienko V E – ident: 44 doi: 10.1134/S1063774507040062 – ident: 31 doi: 10.1063/1.2918105 – year: 1982 ident: 30 publication-title: Fundamentals of Crystal Physics contributor: fullname: Sirotine Yu – year: 1994 ident: 17 publication-title: Resonant Anomalous X-Ray Scattering contributor: fullname: Blume M – ident: 3 doi: 10.1016/j.physrep.2005.01.003 – ident: 43 doi: 10.1002/pssc.200405396 – ident: 14 doi: 10.1103/PhysRevLett.69.1612 – ident: 15 doi: 10.1134/1.568116 – ident: 32 doi: 10.1103/PhysRevB.9.2590 – ident: 42 doi: 10.1103/PhysRevB.63.125120 – ident: 37 doi: 10.1103/PhysRev.156.925 – ident: 9 doi: 10.1103/RevModPhys.66.1509 – ident: 22 doi: 10.1103/PhysRevB.64.073203 – ident: 40 doi: 10.1103/PhysRevB.65.092101 – ident: 11 doi: 10.1103/PhysRevB.49.14850 – ident: 6 doi: 10.1107/S0108767383000057 – ident: 36 doi: 10.1107/S0108767309004966 – volume: 19 start-page: 213201 issn: 0953-8984 year: 2007 ident: 5 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/21/213201 contributor: fullname: Collins S P – ident: 34 doi: 10.1016/j.nima.2005.01.131 – ident: 35 doi: 10.1107/S0108768188010109 – ident: 2 doi: 10.1021/cr0000269 – ident: 4 doi: 10.1107/S0108767305018209 – ident: 13 doi: 10.1103/PhysRevLett.91.247402 – ident: 24 doi: 10.1016/j.physb.2003.11.017 – year: 1950 ident: 27 publication-title: The Optical Principles of the Diffraction of X-Rays contributor: fullname: James R W – ident: 25 doi: 10.1103/PhysRevB.68.064110 – ident: 33 doi: 10.1103/PhysRevB.30.7060 – volume: 21 start-page: 265402 issn: 0953-8984 year: 2009 ident: 28 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/21/26/265402 contributor: fullname: Beutier G – volume: 65 start-page: 561 issn: 0034-4885 year: 2002 ident: 10 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/65/4/203 contributor: fullname: Ishihara S – volume: 2 start-page: 701 issn: 0953-8984 year: 1990 ident: 21 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/2/3/018 contributor: fullname: Brouder C – ident: 12 doi: 10.1107/S010876730100890X – ident: 39 doi: 10.1103/PhysRevB.56.14399 – volume: 158 start-page: 672 issn: 0042-1294 year: 1989 ident: 18 publication-title: Usp. Fiz. Nauk doi: 10.3367/UFNr.0158.198908e.0679 contributor: fullname: Belyakov V A – ident: 41 doi: 10.1002/pssb.200301566 – volume: 19 start-page: 156201 issn: 0953-8984 year: 2007 ident: 29 publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/19/15/156201 contributor: fullname: Goulon J – ident: 8 doi: 10.1107/S0108767385000782 – ident: 20 doi: 10.1103/PhysRevLett.61.1245 – ident: 23 doi: 10.1103/PhysRevB.66.165202 – ident: 16 doi: 10.1107/S0108767300003421 – volume: 32 start-page: 697 issn: 0038-5670 year: 1989 ident: 19 publication-title: Sov. Phys.-Usp. doi: 10.1070/PU1989v032n08ABEH002748 contributor: fullname: Belyakov V A – year: 1996 ident: 1 publication-title: X-Ray Scattering and Absorption by Magnetic Materials contributor: fullname: Lovesey S W – ident: 7 doi: 10.1107/S0108767384000209 |
SSID | ssj0004834 |
Score | 2.096999 |
Snippet | Thermal motion induced (TMI) scattering is a unique probe of changes in electronic states with atomic displacements in crystals. We show that it provides a... |
SourceID | hal proquest crossref pubmed iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 355404 |
SubjectTerms | Condensed Matter Physics Strongly Correlated Electrons |
Title | Numerical simulation of the forbidden Bragg reflection spectra observed in ZnO |
URI | http://iopscience.iop.org/0953-8984/22/35/355404 https://www.ncbi.nlm.nih.gov/pubmed/21403290 https://search.proquest.com/docview/857290954 https://hal.science/hal-00752460 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA5toeCLrdbLtlWCiA_C7M7mNsljWyyLlK0FC8WXkGtdrDPLXvrQX9-TzM6qWFHf5nKSkDNn5nyZc84XhN5GpQwFV1J4YnjBHIfvoPO2APQaq6AiIOScbTEWo0v28YpfbaBuE8RJM119-ftwmCP5iRCtkEqyASEDygfJQWYC0FQDnCr2zj_9KISUOYy8btKVBMMq7-FufvFGm19TLuQmDPxnuJndzukOuuiKd9psk2_95cL23d3vXI7_PKNd9HiFQfFRazRP0Eaon6LtnAvq5ntoPF62YZwbPJ98X23vhZuIAStiwLg2sY7U-Hhmrq8xTOkmZ3PVOBdtzgxubPrTGzye1PhLff4MXZ5--HwyKlbbLhSOqXJRCOqMo9LyGDgpfTScCWOtEFIFXsGZkUMahpVh0lckeunKKtChcIRGR7yiz9FW3dThJcJBVVRU3lMjGYvCKlcaZqkP1BDHmOmhQad-PW3ZNXSOikupk5Z00pImRFOuWy310Bt4SmvhRI49OjrT6VpCP4SJ8nbYQ-9A12uhh3vSUx976P3Pgn8bGndGoeEdTIEVU4dmOdeSwxIFGoHIi9ZY1l2SxIcIN_f_Z6QD9KhNUlBFKQ_R1mK2DK8A-yzs62zv9zfw8o4 |
link.rule.ids | 230,315,783,787,888,1560,27936,27937,53918 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFLY6RaBeWrbCsFoIcUDKJPGS2McWOppCNe2BShUXy2upWpLRLD3w63lOMmERFULcsjzb8fPyXvK-9wWh10FKTcGUJI5onjDLYR-0ziTgvYbSywAecoO2mBaTU_bhjJ9toIM-F6aedVv_CA5bouBWhR0gTqSRIS0RUrCUkJTyNFrMjKUzFwboFqcyj8iuw-OTH-mRogku9-XWicI31vWLjRp8iQjJATzNzU5oY4zGOy1oZNFwGEYMyuVotTQj--03hsf_7uddtN25q3ivLXQPbfjqPrrdwEbt4gGaTldtxOcKLy6-dn8Cw3XA4FZicIdNJCip8P5cn59j6OdVA_yqcJPfOde4NvGjsHf4osKfq-OH6HR88OndJOn-0JBYJrNlUlCrLRWGB89J5oLmrNDGFIWQnpdwpkVOfV5qJlxJghM2Kz3NC0tosMRJuos2q7ryjxH2sqRF6RzVgrFQGGkzzQx1nmpiGdNDlK7HRM1aIg7VBNCFUFFTKmpKEaIoV62mhugVDF0vHHm0J3tHKl6LjhJhRXadD9Eb0H8v9OeaFOh8iN7-LPi3pvF6pihYrjEGoytfrxZKcHibgUIg8qidQX2VJFInws0n_9LSS3Tn5P1YHR1OPz5FWy20QSaZeIY2l_OVfw4e09K8aNbDdz1hApA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+the+forbidden+Bragg+reflection+spectra+observed+in+ZnO&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Ovchinnikova%2C+E+N&rft.au=Dmitrienko%2C+V+E&rft.au=Oreshko%2C+A+P&rft.au=Beutier%2C+G&rft.date=2010-09-08&rft.eissn=1361-648X&rft.volume=22&rft.issue=35&rft.spage=355404&rft_id=info:doi/10.1088%2F0953-8984%2F22%2F35%2F355404&rft_id=info%3Apmid%2F21403290&rft.externalDocID=21403290 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon |