The effects of day-to-day variability of physiological data on operator functional state classification
The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain–computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have be...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 57 - 63 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2012
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 1095-9572 |
DOI | 10.1016/j.neuroimage.2011.07.091 |
Cover
Loading…
Abstract | The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain–computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach.
► Psychophysiological data exhibits variability or nonstationarity across days. ► We applied pattern classification to EEG data in order to monitor mental workload. ► Accuracy was low across days, but improved with multiple days in the training set. ► Including small amounts of data from a new day boosted accuracy as well. ► Either method produces 80%+classification accuracy, adequate for many applications. |
---|---|
AbstractList | The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain–computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach.
► Psychophysiological data exhibits variability or nonstationarity across days. ► We applied pattern classification to EEG data in order to monitor mental workload. ► Accuracy was low across days, but improved with multiple days in the training set. ► Including small amounts of data from a new day boosted accuracy as well. ► Either method produces 80%+classification accuracy, adequate for many applications. The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain-computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach. The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain-computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach.The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain-computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach. |
Author | Wilson, Glenn F. Russell, Christopher A. Christensen, James C. Estepp, Justin R. |
Author_xml | – sequence: 1 givenname: James C. surname: Christensen fullname: Christensen, James C. email: james.christensen@wpafb.af.mil organization: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA – sequence: 2 givenname: Justin R. surname: Estepp fullname: Estepp, Justin R. organization: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA – sequence: 3 givenname: Glenn F. surname: Wilson fullname: Wilson, Glenn F. organization: Physiometrex, Inc., Keizer, OR 97303, USA – sequence: 4 givenname: Christopher A. surname: Russell fullname: Russell, Christopher A. organization: Archinoetics, LLC, Honolulu, HI 96813, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21840403$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks-P1CAUx4lZ4_7Qf8E08eCpFQq0cDHqxl1NNvGyngmFxyxjp4xAN-l_L3VWTebinB7hfd4n4X25RGdTmAChiuCGYNK92zYTzDH4nd5A02JCGtw3WJJn6IJgyWvJ-_ZsPXNaC0LkObpMaYtxQZh4gc5bIhhmmF6gzf0DVOAcmJyq4CqrlzqHupTqUUevBz_6vKyd_cOSfBjDxhs9Fi7rKkxV2EPUOcTKzZPJPkyll7LOUJlRp-Rdodfrl-i502OCV0_1Cn2_-Xx__aW--3b79frjXW2YxLnmdqBD19vekt5QbLvBaMkdY2CtFB1juqW2B6CCSUmlJS2jruNGmpY64JReobcH7z6GnzOkrHY-GRhHPUGYk5K4pT3vOfsvKaQQjJZtF_LNEbkNcywvTYpw3AlOsVh9r5-oediBVftY4omL-rPrAogDYGJIKYL7ixCs1ljVVv2LVa2xKtyrklkZfX80anz-vdcctR9PEXw6CKDs_tFDVMl4mAxYH0v0ygZ_iuTDkcSMflq_ww9YTlP8Anjx27s |
CitedBy_id | crossref_primary_10_1109_TNSRE_2019_2913400 crossref_primary_10_1016_j_bspc_2014_08_005 crossref_primary_10_1016_j_eswa_2020_113768 crossref_primary_10_3389_fnins_2014_00322 crossref_primary_10_1016_j_patrec_2017_05_020 crossref_primary_10_1080_1463922X_2017_1297865 crossref_primary_10_3389_fnins_2015_00054 crossref_primary_10_1038_s41598_020_65610_z crossref_primary_10_3390_brainsci14080811 crossref_primary_10_2139_ssrn_4133048 crossref_primary_10_3389_fnhum_2019_00366 crossref_primary_10_1371_journal_pone_0242857 crossref_primary_10_3390_s22186834 crossref_primary_10_1016_j_arcontrol_2017_09_010 crossref_primary_10_1111_1559_8918_2019_01284 crossref_primary_10_1016_j_cmpb_2013_09_007 crossref_primary_10_3390_sym11050683 crossref_primary_10_1016_j_neucom_2017_05_002 crossref_primary_10_1145_3314387 crossref_primary_10_3389_fnins_2014_00372 crossref_primary_10_1177_1555343419847906 crossref_primary_10_3389_fnrgo_2024_1346791 crossref_primary_10_1155_2017_2107451 crossref_primary_10_1177_1475921719840994 crossref_primary_10_1080_1463922X_2019_1697389 crossref_primary_10_1016_j_ijpsycho_2015_10_004 crossref_primary_10_1016_j_jneuroling_2020_100904 crossref_primary_10_1080_2326263X_2017_1338012 crossref_primary_10_3389_fnhum_2014_00703 crossref_primary_10_1016_j_eswa_2022_118694 crossref_primary_10_1109_TNSRE_2022_3192543 crossref_primary_10_1109_TAFFC_2020_2995769 crossref_primary_10_1016_j_ijpsycho_2013_11_002 crossref_primary_10_1109_ACCESS_2020_3000187 crossref_primary_10_1109_THMS_2014_2366914 crossref_primary_10_1016_j_bspc_2021_102711 crossref_primary_10_1080_15732479_2023_2274878 crossref_primary_10_1016_j_biopsycho_2019_107726 crossref_primary_10_1016_j_bspc_2016_11_013 crossref_primary_10_1088_1741_2552_abb9bc crossref_primary_10_1109_TCYB_2019_2939399 crossref_primary_10_3389_fnrgo_2022_1007673 crossref_primary_10_1109_THMS_2023_3235003 crossref_primary_10_1177_1071181312561367 crossref_primary_10_1016_j_clinph_2024_11_013 crossref_primary_10_1177_1064804613477099 crossref_primary_10_1109_ACCESS_2020_2966834 crossref_primary_10_1177_0018720814539505 crossref_primary_10_1109_TCBB_2016_2561927 crossref_primary_10_1109_JBHI_2022_3186625 crossref_primary_10_1109_TNSRE_2023_3307481 crossref_primary_10_3389_fnbot_2022_973967 crossref_primary_10_3389_fncom_2017_00064 crossref_primary_10_1016_j_bspc_2023_105662 crossref_primary_10_1016_j_neucom_2019_02_061 crossref_primary_10_1016_j_ijpsycho_2014_05_004 crossref_primary_10_3390_s24041082 crossref_primary_10_1111_ijn_12679 crossref_primary_10_1177_0018720818787135 crossref_primary_10_3390_s17102315 crossref_primary_10_1016_j_cmpb_2014_04_011 crossref_primary_10_1016_j_neucom_2017_12_062 crossref_primary_10_1016_j_bandl_2022_105185 crossref_primary_10_1088_1741_2560_9_4_045008 crossref_primary_10_1016_j_cmpb_2016_12_005 crossref_primary_10_1088_1741_2552_ab58a3 crossref_primary_10_3389_fnhum_2016_00223 crossref_primary_10_1080_10447318_2024_2352936 crossref_primary_10_1088_1741_2560_13_1_016007 crossref_primary_10_3390_su15021673 crossref_primary_10_1061__ASCE_ME_1943_5479_0000753 crossref_primary_10_1177_0018720813476883 crossref_primary_10_1016_j_bspc_2024_106046 crossref_primary_10_1177_1729881419888042 crossref_primary_10_3389_fnbot_2017_00019 crossref_primary_10_1109_THMS_2017_2782483 crossref_primary_10_3389_frvir_2021_694567 crossref_primary_10_1177_0018720816672308 crossref_primary_10_1088_1741_2552_ad0f3d crossref_primary_10_3390_s25020567 crossref_primary_10_1109_TNSRE_2018_2884641 crossref_primary_10_1007_s12652_018_1038_2 crossref_primary_10_1049_gtd2_12650 crossref_primary_10_1109_TCDS_2021_3061564 crossref_primary_10_1016_j_ifacol_2020_12_2731 crossref_primary_10_1115_1_2017_Jun_5 |
Cites_doi | 10.1093/brain/awm319 10.1016/S0301-0511(99)00002-2 10.1016/j.neucom.2010.12.025 10.1518/001872006779166334 10.1016/0301-0511(95)05161-9 10.1016/0013-4694(91)90152-T 10.1152/jn.01082.2009 10.1038/nature02341 10.1038/nn1444 10.1176/jnp.2006.18.4.460 10.1207/s15327590ijhc1702_3 10.1016/0013-4694(58)90053-1 10.1518/001872098779480578 10.1016/0013-4694(91)90203-G 10.1109/TNSRE.2003.814441 10.1109/5.58323 10.1109/MASSP.1987.1165576 10.1111/j.1469-8986.2006.00456.x 10.1109/TBME.2004.827827 10.1518/001872008X288349 10.1518/001872007X249875 10.1016/S1388-2457(99)00258-8 10.1518/hfes.45.3.381.27252 10.1518/hfes.45.4.635.27088 10.1006/nimg.2000.0562 10.1016/j.neuroimage.2006.08.041 10.1038/nrn1931 10.1038/nn.2303 10.3758/BF03209491 10.1016/S1388-2457(02)00057-3 10.1088/1741-2560/8/2/025002 10.1002/hbm.20080 |
ContentType | Journal Article |
Copyright | 2011 Published by Elsevier Inc. Copyright Elsevier Limited Jan 2, 2012 |
Copyright_xml | – notice: 2011 – notice: Published by Elsevier Inc. – notice: Copyright Elsevier Limited Jan 2, 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 7QO |
DOI | 10.1016/j.neuroimage.2011.07.091 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic Biotechnology Research Abstracts |
DatabaseTitleList | ProQuest One Psychology Engineering Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 63 |
ExternalDocumentID | 3244984061 21840403 10_1016_j_neuroimage_2011_07_091 S105381191100886X |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABUWG ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HZ~ IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABMZM ADFGL ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV APXCP ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 7QO |
ID | FETCH-LOGICAL-c490t-5db3b67d7d17c30d6bca95f44edd98644a23d7ee3849939d1243f65c9c23fe533 |
IEDL.DBID | .~1 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Jul 10 18:44:52 EDT 2025 Fri Jul 11 12:32:37 EDT 2025 Wed Aug 13 07:47:36 EDT 2025 Mon Jul 21 05:44:46 EDT 2025 Thu Apr 24 23:08:42 EDT 2025 Tue Jul 01 02:14:43 EDT 2025 Fri Feb 23 02:20:30 EST 2024 Tue Aug 26 16:33:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | EEG Pattern classification Interday variability Workload |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-5db3b67d7d17c30d6bca95f44edd98644a23d7ee3849939d1243f65c9c23fe533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21840403 |
PQID | 1506853084 |
PQPubID | 2031077 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_902375754 proquest_miscellaneous_898843016 proquest_journals_1506853084 pubmed_primary_21840403 crossref_primary_10_1016_j_neuroimage_2011_07_091 crossref_citationtrail_10_1016_j_neuroimage_2011_07_091 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_091 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-02 |
PublicationDateYYYYMMDD | 2012-01-02 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2012 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Refinetti (bb0155) 1999 Haynes, Rees (bb0070) 2006; 7 Kriegeskorte, Simmons, Bellgowan, Baker (bb0100) 2009; 12 Cauwenberghs, Poggio (bb0030) 2001 Wilson, Russell (bb0205) 2007; 49 De Martino, Gentile, Esposito, Balsic, Di Sallea, Goebel, Formisano (bb0045) 2007; 34 Wilson, Fisher (bb0190) 1991; 62 Kamitani, Tong (bb0085) 2005; 8 Pollock, Schneider, Lyness (bb0150) 1991; 79 Wilson, Russell (bb0195) 2003; 45 Berka, Levendowski, Cvetinovic, Petrovic, Davis, Lumicao, Zivkovic, Popovic, Olmstead (bb0005) 2004; 17 Comstock, Arnegard (bb0040) 1992 Smith, Beckmann, Ramnani, Woolrich, Bannister, Jenkinson, Matthews, McGonigle (bb0175) 2005; 24 Kong, Wilson (bb0095) 1998; 30 Freeman, Mikulka, Prinzel, Scerbo (bb0050) 1999; 50 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0090) 2008; 131 Poggio, Rifkin, Mukherjee, Niyogi (bb0145) 2004; 428 Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bb0210) 2002; 113 Garrett, Peterson, Anderson, Thaut (bb0060) 2003; 11 Satti, Guan, Prasad, Coyle (bb0165) 2010 Jasper (bb0080) 1958; 10 Byrne, Parasuraman (bb0215) 1996; 42 McGuirl, Sarter (bb0130) 2006; 48 Wilson, Russell (bb0200) 2003; 45 Huang, Erdogmus, Pavel, Mathan, Hild (bb0075) 2011; 74 McGonigle, Howseman, Athwal, Friston, Frackowiak, Holmes (bb0125) 2000; 11 Pleydell-Pearce, Whitecross, Dickson (bb0140) 2003 Lippmann, R.P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22. Salinsky, Oken, Morehead (bb0160) 1991; 79 Coburn, Lauterbach, Boutros, Black, Arciniegas, Coffey (bb0035) 2006; 18 Suykens, Van Gestel, De Brabanter, De Moor, Vandewalle (bb0180) 2002 Widrow, Lehr (bb0185) 1990; 78 Krusienski, Grosse-Wentrup, Galan, Coyle, Miller, Forney, Anderson (bb0105) 2011; 8 Parasuraman, Wilson (bb0135) 2008; 50 Birbaumer (bb0010) 2006; 43 Bishop (bb0015) 2006 Burgress, Gruzelier (bb0025) 1993; 86 Lal, Schroder, Hinterberger, Weston, Bogdan, Birbaumer, Scholkopf (bb0110) 2004; 51 Blanco, Stead, Krieger, Viventi, Marsh, Lee, Worrell, Litt (bb0020) 2010; 104 McEvoy, Smith, Gevins (bb0120) 2000; 111 Gevins, Smith, Leong, McEvoy, Whitfield, Du, Rush (bb0065) 1998; 40 Shelley, Backs (bb0170) 2006 10.1016/j.neuroimage.2011.07.091_bb0115 Shelley (10.1016/j.neuroimage.2011.07.091_bb0170) 2006 Wilson (10.1016/j.neuroimage.2011.07.091_bb0190) 1991; 62 Wilson (10.1016/j.neuroimage.2011.07.091_bb0205) 2007; 49 Birbaumer (10.1016/j.neuroimage.2011.07.091_bb0010) 2006; 43 Blanco (10.1016/j.neuroimage.2011.07.091_bb0020) 2010; 104 Garrett (10.1016/j.neuroimage.2011.07.091_bb0060) 2003; 11 Wilson (10.1016/j.neuroimage.2011.07.091_bb0195) 2003; 45 Poggio (10.1016/j.neuroimage.2011.07.091_bb0145) 2004; 428 Kriegeskorte (10.1016/j.neuroimage.2011.07.091_bb0100) 2009; 12 McGonigle (10.1016/j.neuroimage.2011.07.091_bb0125) 2000; 11 Cauwenberghs (10.1016/j.neuroimage.2011.07.091_bb0030) 2001 Smith (10.1016/j.neuroimage.2011.07.091_bb0175) 2005; 24 Parasuraman (10.1016/j.neuroimage.2011.07.091_bb0135) 2008; 50 De Martino (10.1016/j.neuroimage.2011.07.091_bb0045) 2007; 34 Kamitani (10.1016/j.neuroimage.2011.07.091_bb0085) 2005; 8 Pollock (10.1016/j.neuroimage.2011.07.091_bb0150) 1991; 79 Wolpaw (10.1016/j.neuroimage.2011.07.091_bb0210) 2002; 113 Krusienski (10.1016/j.neuroimage.2011.07.091_bb0105) 2011; 8 Widrow (10.1016/j.neuroimage.2011.07.091_bb0185) 1990; 78 Wilson (10.1016/j.neuroimage.2011.07.091_bb0200) 2003; 45 Byrne (10.1016/j.neuroimage.2011.07.091_bb0215) 1996; 42 Freeman (10.1016/j.neuroimage.2011.07.091_bb0050) 1999; 50 Haynes (10.1016/j.neuroimage.2011.07.091_bb0070) 2006; 7 Huang (10.1016/j.neuroimage.2011.07.091_bb0075) 2011; 74 Kong (10.1016/j.neuroimage.2011.07.091_bb0095) 1998; 30 Berka (10.1016/j.neuroimage.2011.07.091_bb0005) 2004; 17 Gevins (10.1016/j.neuroimage.2011.07.091_bb0065) 1998; 40 Refinetti (10.1016/j.neuroimage.2011.07.091_bb0155) 1999 Comstock (10.1016/j.neuroimage.2011.07.091_bb0040) 1992 Klöppel (10.1016/j.neuroimage.2011.07.091_bb0090) 2008; 131 Lal (10.1016/j.neuroimage.2011.07.091_bb0110) 2004; 51 McGuirl (10.1016/j.neuroimage.2011.07.091_bb0130) 2006; 48 Pleydell-Pearce (10.1016/j.neuroimage.2011.07.091_bb0140) 2003 Satti (10.1016/j.neuroimage.2011.07.091_bb0165) 2010 McEvoy (10.1016/j.neuroimage.2011.07.091_bb0120) 2000; 111 Burgress (10.1016/j.neuroimage.2011.07.091_bb0025) 1993; 86 Bishop (10.1016/j.neuroimage.2011.07.091_bb0015) 2006 Jasper (10.1016/j.neuroimage.2011.07.091_bb0080) 1958; 10 Suykens (10.1016/j.neuroimage.2011.07.091_bb0180) 2002 Salinsky (10.1016/j.neuroimage.2011.07.091_bb0160) 1991; 79 Coburn (10.1016/j.neuroimage.2011.07.091_bb0035) 2006; 18 |
References_xml | – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: bb0090 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain – volume: 34 start-page: 177 year: 2007 end-page: 194 ident: bb0045 article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers publication-title: NeuroImage – volume: 45 start-page: 635 year: 2003 end-page: 643 ident: bb0200 article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks publication-title: Human Factors – volume: 30 start-page: 713 year: 1998 end-page: 719 ident: bb0095 article-title: A new EOG-based eyeblink detection algorithm publication-title: Behavior Research Methods – volume: 50 start-page: 61 year: 1999 end-page: 76 ident: bb0050 article-title: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task publication-title: Biological Psychology – volume: 10 start-page: 370 year: 1958 end-page: 375 ident: bb0080 article-title: Report of the committee on methods of clinical examination publication-title: Electroencephalography and Clinical Neurophysiology – volume: 11 start-page: 141 year: 2003 end-page: 144 ident: bb0060 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – volume: 113 start-page: 767 year: 2002 end-page: 791 ident: bb0210 article-title: Brain–computer interfaces for communication and control publication-title: Clinical Neurophysiology – volume: 104 start-page: 2900 year: 2010 end-page: 2912 ident: bb0020 article-title: Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients publication-title: Journal of Neurophysiology – volume: 51 start-page: 1003 year: 2004 end-page: 1010 ident: bb0110 article-title: Support vector channel selection in BCI publication-title: IEEE Transactions on Biomedical Engineering – volume: 24 start-page: 248 year: 2005 end-page: 257 ident: bb0175 article-title: Variability in fMRI: a re-examination of intersession differences publication-title: Human Brain Mapping – volume: 17 start-page: 151 year: 2004 end-page: 170 ident: bb0005 article-title: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset publication-title: International Journal of Human Computer Interaction – volume: 48 start-page: 656 year: 2006 end-page: 665 ident: bb0130 article-title: Supporting trust calibration and the effective use of decision aids by presenting dynamic system confidence information publication-title: Human Factors – volume: 42 start-page: 249 year: 1996 end-page: 268 ident: bb0215 article-title: Psychophysiology and adaptive automation publication-title: Biological Psychology – volume: 78 start-page: 1415 year: 1990 end-page: 1442 ident: bb0185 article-title: 30 publication-title: Proceedings of the IEEE – volume: 111 start-page: 457 year: 2000 end-page: 463 ident: bb0120 article-title: Test-retest reliability of cognitive EEG publication-title: Clinical Neurophysiology – volume: 7 start-page: 523 year: 2006 end-page: 534 ident: bb0070 article-title: Decoding mental states from brain activity in humans publication-title: Nature Reviews. Neuroscience – volume: 74 start-page: 2041 year: 2011 end-page: 2051 ident: bb0075 article-title: A framework for rapid visual image search using single-trial brain evoked responses publication-title: Neurocomputing – volume: 8 start-page: 679 year: 2005 end-page: 685 ident: bb0085 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nature Neuroscience – volume: 62 start-page: 959 year: 1991 end-page: 961 ident: bb0190 article-title: The use of cardiac and eye blink measures to determine flight segment in F4 crews publication-title: Aviation, Space, and Environmental Medicine – volume: 428 start-page: 419 year: 2004 end-page: 422 ident: bb0145 article-title: General conditions for predictivity in learning theory publication-title: Nature – year: 1999 ident: bb0155 article-title: Circadian Physiology – start-page: 155 year: 2006 end-page: 161 ident: bb0170 article-title: Categorizing EEG waveform length in simulated driving and working memory dual-tasks using feed-forward neural networks publication-title: Foundations of Augmented Cognition – volume: 8 start-page: 1 year: 2011 end-page: 8 ident: bb0105 article-title: Critical issues in state-of-the-art brain-computer interface signal processing publication-title: Journal of Neural Engineering – start-page: 131 year: 2003 end-page: 141 ident: bb0140 article-title: Multivariate analysis of EEG: predicting cognition basis of frequency decomposition, inter-electrode correlation, coherence, cross phase and cross power publication-title: Proceedings of the 36th Annual Hawaii International Conference on Systems Science – volume: 11 start-page: 708 year: 2000 end-page: 734 ident: bb0125 article-title: Variability in fMRI: an examination of intersession differences publication-title: NeuroImage – volume: 49 start-page: 1005 year: 2007 end-page: 1019 ident: bb0205 article-title: Performance enhancement in a UAV task using psychophysiological determined adaptive aiding publication-title: Human Factors – year: 2006 ident: bb0015 article-title: Pattern Recognition and Machine Learning – year: 1992 ident: bb0040 article-title: The multi-attribute task battery for human operator workload and strategic behavior research publication-title: NASA Technical Memorandum No. 104174 – volume: 18 start-page: 460 year: 2006 end-page: 500 ident: bb0035 article-title: The value of quantitative electroencephalography in clinical psychiatry: a report by the Committee on Research of the American Neuropsychiatric Association publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences – volume: 86 start-page: 210 year: 1993 end-page: 223 ident: bb0025 article-title: Individual reliability of amplitude distribution in topographical mapping of EEG publication-title: Electroencephalography and Clinical Neurophysiology – start-page: 409 year: 2001 end-page: 415 ident: bb0030 article-title: Incremental and decremental support vector machine learning publication-title: Advances in Neural Information Processing Systems 13 – volume: 40 start-page: 79 year: 1998 end-page: 91 ident: bb0065 article-title: Monitoring working memory load during computer-based tasks with EEG pattern recognition methods publication-title: Human Factors – volume: 79 start-page: 0 year: 1991 end-page: 26 ident: bb0150 article-title: Reliability of topographic quantitative EEG amplitude in health late-middle-aged and elderly subjects publication-title: Electroencephalography and Clinical Neurophysiology – reference: Lippmann, R.P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22. – volume: 43 start-page: 517 year: 2006 end-page: 532 ident: bb0010 article-title: Breaking the silence: brain-computer-interfaces (BCI) for communication and motor control publication-title: Psychophysiology – volume: 12 start-page: 535 year: 2009 end-page: 540 ident: bb0100 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nature Neuroscience – volume: 79 start-page: 383 year: 1991 end-page: 392 ident: bb0160 article-title: Test–retest reliability in EEG frequency analysis publication-title: Electroencephalography and Clinical Neurophysiology – start-page: 105 year: 2010 end-page: 108 ident: bb0165 article-title: A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive brain–computer interface publication-title: Proceedings of the 20th International. Conference on Pattern Recognition – volume: 45 start-page: 381 year: 2003 end-page: 389 ident: bb0195 article-title: Operator functional state classification using psychophysiological features in an air traffic control task publication-title: Human Factors – volume: 50 start-page: 468 year: 2008 end-page: 474 ident: bb0135 article-title: Putting the brain to work: neuroergonomics past, present, and future publication-title: Human Factors – year: 2002 ident: bb0180 article-title: Least Squares Support Vector Machines – volume: 131 start-page: 681 year: 2008 ident: 10.1016/j.neuroimage.2011.07.091_bb0090 article-title: Automatic classification of MR scans in Alzheimer's disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 50 start-page: 61 year: 1999 ident: 10.1016/j.neuroimage.2011.07.091_bb0050 article-title: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task publication-title: Biological Psychology doi: 10.1016/S0301-0511(99)00002-2 – year: 2006 ident: 10.1016/j.neuroimage.2011.07.091_bb0015 – volume: 62 start-page: 959 year: 1991 ident: 10.1016/j.neuroimage.2011.07.091_bb0190 article-title: The use of cardiac and eye blink measures to determine flight segment in F4 crews publication-title: Aviation, Space, and Environmental Medicine – volume: 74 start-page: 2041 year: 2011 ident: 10.1016/j.neuroimage.2011.07.091_bb0075 article-title: A framework for rapid visual image search using single-trial brain evoked responses publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.12.025 – volume: 86 start-page: 210 year: 1993 ident: 10.1016/j.neuroimage.2011.07.091_bb0025 article-title: Individual reliability of amplitude distribution in topographical mapping of EEG publication-title: Electroencephalography and Clinical Neurophysiology – volume: 48 start-page: 656 issue: 4 year: 2006 ident: 10.1016/j.neuroimage.2011.07.091_bb0130 article-title: Supporting trust calibration and the effective use of decision aids by presenting dynamic system confidence information publication-title: Human Factors doi: 10.1518/001872006779166334 – start-page: 131 year: 2003 ident: 10.1016/j.neuroimage.2011.07.091_bb0140 article-title: Multivariate analysis of EEG: predicting cognition basis of frequency decomposition, inter-electrode correlation, coherence, cross phase and cross power – volume: 42 start-page: 249 year: 1996 ident: 10.1016/j.neuroimage.2011.07.091_bb0215 article-title: Psychophysiology and adaptive automation publication-title: Biological Psychology doi: 10.1016/0301-0511(95)05161-9 – volume: 79 start-page: 0 year: 1991 ident: 10.1016/j.neuroimage.2011.07.091_bb0150 article-title: Reliability of topographic quantitative EEG amplitude in health late-middle-aged and elderly subjects publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(91)90152-T – year: 1999 ident: 10.1016/j.neuroimage.2011.07.091_bb0155 – volume: 104 start-page: 2900 issue: 5 year: 2010 ident: 10.1016/j.neuroimage.2011.07.091_bb0020 article-title: Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients publication-title: Journal of Neurophysiology doi: 10.1152/jn.01082.2009 – volume: 428 start-page: 419 year: 2004 ident: 10.1016/j.neuroimage.2011.07.091_bb0145 article-title: General conditions for predictivity in learning theory publication-title: Nature doi: 10.1038/nature02341 – start-page: 155 year: 2006 ident: 10.1016/j.neuroimage.2011.07.091_bb0170 article-title: Categorizing EEG waveform length in simulated driving and working memory dual-tasks using feed-forward neural networks – volume: 8 start-page: 679 issue: 5 year: 2005 ident: 10.1016/j.neuroimage.2011.07.091_bb0085 article-title: Decoding the visual and subjective contents of the human brain publication-title: Nature Neuroscience doi: 10.1038/nn1444 – volume: 18 start-page: 460 year: 2006 ident: 10.1016/j.neuroimage.2011.07.091_bb0035 article-title: The value of quantitative electroencephalography in clinical psychiatry: a report by the Committee on Research of the American Neuropsychiatric Association publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences doi: 10.1176/jnp.2006.18.4.460 – volume: 17 start-page: 151 year: 2004 ident: 10.1016/j.neuroimage.2011.07.091_bb0005 article-title: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset publication-title: International Journal of Human Computer Interaction doi: 10.1207/s15327590ijhc1702_3 – year: 1992 ident: 10.1016/j.neuroimage.2011.07.091_bb0040 article-title: The multi-attribute task battery for human operator workload and strategic behavior research – volume: 10 start-page: 370 year: 1958 ident: 10.1016/j.neuroimage.2011.07.091_bb0080 article-title: Report of the committee on methods of clinical examination publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(58)90053-1 – year: 2002 ident: 10.1016/j.neuroimage.2011.07.091_bb0180 – volume: 40 start-page: 79 issue: 1 year: 1998 ident: 10.1016/j.neuroimage.2011.07.091_bb0065 article-title: Monitoring working memory load during computer-based tasks with EEG pattern recognition methods publication-title: Human Factors doi: 10.1518/001872098779480578 – volume: 79 start-page: 383 year: 1991 ident: 10.1016/j.neuroimage.2011.07.091_bb0160 article-title: Test–retest reliability in EEG frequency analysis publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(91)90203-G – volume: 11 start-page: 141 issue: 2 year: 2003 ident: 10.1016/j.neuroimage.2011.07.091_bb0060 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2003.814441 – volume: 78 start-page: 1415 year: 1990 ident: 10.1016/j.neuroimage.2011.07.091_bb0185 article-title: 30years of adaptive neural networks: perceptron, madaline, and backpropagation publication-title: Proceedings of the IEEE doi: 10.1109/5.58323 – ident: 10.1016/j.neuroimage.2011.07.091_bb0115 doi: 10.1109/MASSP.1987.1165576 – volume: 43 start-page: 517 year: 2006 ident: 10.1016/j.neuroimage.2011.07.091_bb0010 article-title: Breaking the silence: brain-computer-interfaces (BCI) for communication and motor control publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2006.00456.x – volume: 51 start-page: 1003 issue: 6 year: 2004 ident: 10.1016/j.neuroimage.2011.07.091_bb0110 article-title: Support vector channel selection in BCI publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2004.827827 – volume: 50 start-page: 468 issue: 3 year: 2008 ident: 10.1016/j.neuroimage.2011.07.091_bb0135 article-title: Putting the brain to work: neuroergonomics past, present, and future publication-title: Human Factors doi: 10.1518/001872008X288349 – start-page: 105 year: 2010 ident: 10.1016/j.neuroimage.2011.07.091_bb0165 article-title: A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive brain–computer interface – volume: 49 start-page: 1005 year: 2007 ident: 10.1016/j.neuroimage.2011.07.091_bb0205 article-title: Performance enhancement in a UAV task using psychophysiological determined adaptive aiding publication-title: Human Factors doi: 10.1518/001872007X249875 – volume: 111 start-page: 457 year: 2000 ident: 10.1016/j.neuroimage.2011.07.091_bb0120 article-title: Test-retest reliability of cognitive EEG publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(99)00258-8 – volume: 45 start-page: 381 issue: 3 year: 2003 ident: 10.1016/j.neuroimage.2011.07.091_bb0195 article-title: Operator functional state classification using psychophysiological features in an air traffic control task publication-title: Human Factors doi: 10.1518/hfes.45.3.381.27252 – volume: 45 start-page: 635 issue: 4 year: 2003 ident: 10.1016/j.neuroimage.2011.07.091_bb0200 article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks publication-title: Human Factors doi: 10.1518/hfes.45.4.635.27088 – volume: 11 start-page: 708 year: 2000 ident: 10.1016/j.neuroimage.2011.07.091_bb0125 article-title: Variability in fMRI: an examination of intersession differences publication-title: NeuroImage doi: 10.1006/nimg.2000.0562 – start-page: 409 year: 2001 ident: 10.1016/j.neuroimage.2011.07.091_bb0030 article-title: Incremental and decremental support vector machine learning – volume: 34 start-page: 177 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2011.07.091_bb0045 article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.08.041 – volume: 7 start-page: 523 year: 2006 ident: 10.1016/j.neuroimage.2011.07.091_bb0070 article-title: Decoding mental states from brain activity in humans publication-title: Nature Reviews. Neuroscience doi: 10.1038/nrn1931 – volume: 12 start-page: 535 year: 2009 ident: 10.1016/j.neuroimage.2011.07.091_bb0100 article-title: Circular analysis in systems neuroscience: the dangers of double dipping publication-title: Nature Neuroscience doi: 10.1038/nn.2303 – volume: 30 start-page: 713 issue: 4 year: 1998 ident: 10.1016/j.neuroimage.2011.07.091_bb0095 article-title: A new EOG-based eyeblink detection algorithm publication-title: Behavior Research Methods doi: 10.3758/BF03209491 – volume: 113 start-page: 767 year: 2002 ident: 10.1016/j.neuroimage.2011.07.091_bb0210 article-title: Brain–computer interfaces for communication and control publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00057-3 – volume: 8 start-page: 1 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2011.07.091_bb0105 article-title: Critical issues in state-of-the-art brain-computer interface signal processing publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/8/2/025002 – volume: 24 start-page: 248 year: 2005 ident: 10.1016/j.neuroimage.2011.07.091_bb0175 article-title: Variability in fMRI: a re-examination of intersession differences publication-title: Human Brain Mapping doi: 10.1002/hbm.20080 |
SSID | ssj0009148 |
Score | 2.3984652 |
Snippet | The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 57 |
SubjectTerms | Accuracy Automation Classification Discriminant analysis EEG Electroencephalography Female Humans Independent sample Interday variability Male Pattern classification Pattern Recognition, Automated - methods Signal processing Signal Processing, Computer-Assisted Task Performance and Analysis User-Computer Interface Workload Workload - classification Young Adult |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5QMklJOkj2zzQIVe1tiVLNj2UEBKWQHJKYG9CL5eW1t5kdwP77zsjy7unDXvywRrZjKSZTzOjT4RcuSI0IpQZU8YXTKiQMyuMYbYBcCpNngWD8Y6HRzl-FveTcpICbrNUVjnYxGiofecwRv4dmfDAtWSV-Dl9YXhrFGZX0xUau2QfqcuwpEtN1Jp0Nxf9UbiSswoapEqevr4r8kX-_gerNhF5qm9ZnW9yT5vgZ3RDd0fkMOFHet0P-DHZCe0J-fCQMuQfyS8Yd5qKNGjXUG-WbN4xeNA32Bb3rNxLfBNjGoPpo1gpSruWdtMQE-8UHV4fJ6Tx0BF1iLOxsCiO5SfyfHf7dDNm6TIF5kSdzVnpLbdSeeVz5XjmpXWmLhshgvdI0S5Mwb0KgVewB-K1B7_PG1m62hW8CQAKP5O9tmvDKaFWNsqWIAs9CMlNJa1X0BC3W6Uw1YioQYfaJaZxvPDirx5Kyv7otfY1al9nSoP2RyRfSU57to0tZOphmPRwmhTsnwaXsIXsj5VsQhw9kthS-nyYFTqt_Jlez9MRoavXsGYxEWPa0C1muqqrSoBllZub1IClFEBp6OVLP99WCombcpHxr-9__owcwL8WMVxUnJO9-esiXACAmtvLuEr-A5k0HHA priority: 102 providerName: ProQuest |
Title | The effects of day-to-day variability of physiological data on operator functional state classification |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S105381191100886X https://dx.doi.org/10.1016/j.neuroimage.2011.07.091 https://www.ncbi.nlm.nih.gov/pubmed/21840403 https://www.proquest.com/docview/1506853084 https://www.proquest.com/docview/898843016 https://www.proquest.com/docview/902375754 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdJL6bvbpkGHXpW1LVmyyClZEraPLCFtYG9CsuSypbGXZBPIpb89M7K8oYeFhV4sbGuEGEkz30gzI0I-10VoRCgzpqwvmFAhZ05Yy1wD4FTaPAsW9zvOZnJ6Kb7Oy_kOmQyxMOhWmWR_L9OjtE5fxomb4-ViMf4ByADUDdgbmJ-mknOMYBcKZ_nB30c3D52LPhyu5AxrJ2-e3scr5oxcXMHKTck81UGm800qahMEjaro9AV5njAkPeq7-ZLshPYVeXqWTslfk18w9jQ5atCuod7es1XHoKB3YBr3mbnv8U_c1xjEH0VvUdq1tFuGePhOUen1e4U0Bh7RGrE2OhfF8XxDLk9Pfk6mLF2owGqhsxUrveNOKq98rmqeeelqq8tGiOA9pmkXtuBehcArsIO49qD7eSPLWtcFbwIAw7dkt-3a8J5QJxvlSqCFFoTktpLOK6iIJlcpbDUiauChqVO2cbz04o8Z3Mp-m0fuG-S-yZQB7o9IvqZc9hk3tqDRwzCZIaIUZKABtbAF7eGa9p-ZtyX13jArTFr9NwazNgIMyioxInT9G9YtHsbYNnS3N6bSVSVAusrNVTTgKQVwGlp518-3NUOiYS4y_uG_Ov-RPIO3Iu4oFXtkd3V9Gz4Bxlq5_biI4Knmap88OZpcfD_H8su36QzK45PZ-cUD_-stnQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcKt4sFPABjoYkfiWqECrQaku7K4RaqTfjVxCoJAu7Ldo_xW_s2HF2T4v20lMOySTRePzNN-PxGKFXtvA18zwjUruCMOlzYpjWxNRAToXOM69DvmM8EaMz9vmcn2-hf_1emFBW2WNiBGrX2pAjfxs64YFryUr2fvqbhFOjwupqf4RGZxbHfvEXQrbZu6NPML6vi-Lw4PTjiKRTBYhlVTYn3BlqhHTS5dLSzAljdcVrxrxzoVc50wV10ntaQjBAKwcOkNaC28oWtPY8JEAB8rcZhVBmgLY_HEy-fF21-c1Zt_mOU1LmeZVqh7qKstih8scvwInUOlS-yap8nUNcR3ij4zu8i3YSY8X7nYndQ1u-uY9ujdOa_AP0HSwNp7IQ3NbY6QWZtwQu-AoC8a4P-CLciVmUHmxxqE3FbYPbqY9L_Ti42C4zieM2J2wDsw-lTNF6HqKzG1H0IzRo2sY_QdiIWhoOsvAGJqguhXESHgwBHme6HCLZ61DZ1Ns8HLFxofoitp9qpX0VtK8yqUD7Q5QvJaddf48NZKp-mFS_fxUQV4ET2kB2bymbOE7HXTaU3u2tQiWsmanVzBgivLwNKBGWfnTj28uZKquyZIDlYv0jFbA3CeQd3vK4s7elQmIagGX06f8__xLdHp2OT9TJ0eT4GboD_13EZFWxiwbzP5f-OdC3uXmR5gxG3256ml4DokRarQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqq4oJbnlgI-wNE0iV-xEEKIsmoprThQaW_GiR0EosmW3YL2r_HrGL92T4v20lMOySTReOabz-PxGKEXbeU65nhBpLEVYdKVpGHGkKYDcipMWTjj8x3nF-Lkkn2c8MkW-pv3wviyyoyJAajt0Poc-ZHvhAehpajZUZfKIj4fj99Or4k_QcqvtObjNKKJnLnFH5i-zd6cHsNYv6yq8Ycv709IOmGAtEwVc8JtQxshrbSlbGlhRdMaxTvGnLW-bzkzFbXSOVrDxIAqC8GQdoK3qq1o57hPhgL870jKS-9jciJXDX9LFrfhcUrqslSpiijWloVeld-vADFSE1H5qlDlutC4jvqGEDjeQ3cTd8XvorHtoy3X30O752l1_j76BjaHU4EIHjpszYLMBwIX_Bum5LEj-MLfCfmUDLvYV6niocfD1IVFf-yDbcxR4rDhCbee4_uipmBHD9Dlraj5Idruh949RrgRnWw4yMIbmKCmFo2V8KCf6nFm6hGSWYe6TV3O_WEbP3UuZ_uhV9rXXvu6kBq0P0LlUnIaO31sIKPyMOm8kxWwV0M42kD29VI2sZ3IYjaUPsxWoRPqzPTKR0YIL28DXvhFINO74Wama1XXDFBdrH9EAY-TQOPhLY-ivS0VEhICrKAH___8c7QLzqk_nV6cPUF34LerkLWqDtH2_NeNewo8bt48Cw6D0dfb9tB_ycRdfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+day-to-day+variability+of+physiological+data+on+operator+functional+state+classification&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Christensen%2C+James+C.&rft.au=Estepp%2C+Justin+R.&rft.au=Wilson%2C+Glenn+F.&rft.au=Russell%2C+Christopher+A.&rft.date=2012-01-02&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=59&rft.issue=1&rft.spage=57&rft.epage=63&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.091&rft.externalDocID=S105381191100886X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |