The effects of day-to-day variability of physiological data on operator functional state classification

The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain–computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have be...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 59; no. 1; pp. 57 - 63
Main Authors Christensen, James C., Estepp, Justin R., Wilson, Glenn F., Russell, Christopher A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2012
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
1095-9572
DOI10.1016/j.neuroimage.2011.07.091

Cover

Loading…
Abstract The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain–computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach. ► Psychophysiological data exhibits variability or nonstationarity across days. ► We applied pattern classification to EEG data in order to monitor mental workload. ► Accuracy was low across days, but improved with multiple days in the training set. ► Including small amounts of data from a new day boosted accuracy as well. ► Either method produces 80%+classification accuracy, adequate for many applications.
AbstractList The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain–computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach. ► Psychophysiological data exhibits variability or nonstationarity across days. ► We applied pattern classification to EEG data in order to monitor mental workload. ► Accuracy was low across days, but improved with multiple days in the training set. ► Including small amounts of data from a new day boosted accuracy as well. ► Either method produces 80%+classification accuracy, adequate for many applications.
The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain-computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach.
The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain-computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach.The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from magnetic resonance images, brain-computer interfaces for the disabled, and the decoding of brain functioning based on electrical activity have been accomplished quite successfully with pattern classification. These classifiers have been further applied in complex cognitive tasks to improve performance, in one example as an input to adaptive automation. In order to produce generalizable results and facilitate the development of practical systems, these techniques should be stable across repeated sessions. This paper describes the application of three popular pattern classification techniques to EEG data obtained from asymptotically trained subjects performing a complex multitask across five days in one month. All three classifiers performed well above chance levels. The performance of all three was significantly negatively impacted by classifying across days; however two modifications are presented that substantially reduce misclassifications. The results demonstrate that with proper methods, pattern classification is stable enough across days and weeks to be a valid, useful approach.
Author Wilson, Glenn F.
Russell, Christopher A.
Christensen, James C.
Estepp, Justin R.
Author_xml – sequence: 1
  givenname: James C.
  surname: Christensen
  fullname: Christensen, James C.
  email: james.christensen@wpafb.af.mil
  organization: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
– sequence: 2
  givenname: Justin R.
  surname: Estepp
  fullname: Estepp, Justin R.
  organization: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
– sequence: 3
  givenname: Glenn F.
  surname: Wilson
  fullname: Wilson, Glenn F.
  organization: Physiometrex, Inc., Keizer, OR 97303, USA
– sequence: 4
  givenname: Christopher A.
  surname: Russell
  fullname: Russell, Christopher A.
  organization: Archinoetics, LLC, Honolulu, HI 96813, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21840403$$D View this record in MEDLINE/PubMed
BookMark eNqNks-P1CAUx4lZ4_7Qf8E08eCpFQq0cDHqxl1NNvGyngmFxyxjp4xAN-l_L3VWTebinB7hfd4n4X25RGdTmAChiuCGYNK92zYTzDH4nd5A02JCGtw3WJJn6IJgyWvJ-_ZsPXNaC0LkObpMaYtxQZh4gc5bIhhmmF6gzf0DVOAcmJyq4CqrlzqHupTqUUevBz_6vKyd_cOSfBjDxhs9Fi7rKkxV2EPUOcTKzZPJPkyll7LOUJlRp-Rdodfrl-i502OCV0_1Cn2_-Xx__aW--3b79frjXW2YxLnmdqBD19vekt5QbLvBaMkdY2CtFB1juqW2B6CCSUmlJS2jruNGmpY64JReobcH7z6GnzOkrHY-GRhHPUGYk5K4pT3vOfsvKaQQjJZtF_LNEbkNcywvTYpw3AlOsVh9r5-oediBVftY4omL-rPrAogDYGJIKYL7ixCs1ljVVv2LVa2xKtyrklkZfX80anz-vdcctR9PEXw6CKDs_tFDVMl4mAxYH0v0ygZ_iuTDkcSMflq_ww9YTlP8Anjx27s
CitedBy_id crossref_primary_10_1109_TNSRE_2019_2913400
crossref_primary_10_1016_j_bspc_2014_08_005
crossref_primary_10_1016_j_eswa_2020_113768
crossref_primary_10_3389_fnins_2014_00322
crossref_primary_10_1016_j_patrec_2017_05_020
crossref_primary_10_1080_1463922X_2017_1297865
crossref_primary_10_3389_fnins_2015_00054
crossref_primary_10_1038_s41598_020_65610_z
crossref_primary_10_3390_brainsci14080811
crossref_primary_10_2139_ssrn_4133048
crossref_primary_10_3389_fnhum_2019_00366
crossref_primary_10_1371_journal_pone_0242857
crossref_primary_10_3390_s22186834
crossref_primary_10_1016_j_arcontrol_2017_09_010
crossref_primary_10_1111_1559_8918_2019_01284
crossref_primary_10_1016_j_cmpb_2013_09_007
crossref_primary_10_3390_sym11050683
crossref_primary_10_1016_j_neucom_2017_05_002
crossref_primary_10_1145_3314387
crossref_primary_10_3389_fnins_2014_00372
crossref_primary_10_1177_1555343419847906
crossref_primary_10_3389_fnrgo_2024_1346791
crossref_primary_10_1155_2017_2107451
crossref_primary_10_1177_1475921719840994
crossref_primary_10_1080_1463922X_2019_1697389
crossref_primary_10_1016_j_ijpsycho_2015_10_004
crossref_primary_10_1016_j_jneuroling_2020_100904
crossref_primary_10_1080_2326263X_2017_1338012
crossref_primary_10_3389_fnhum_2014_00703
crossref_primary_10_1016_j_eswa_2022_118694
crossref_primary_10_1109_TNSRE_2022_3192543
crossref_primary_10_1109_TAFFC_2020_2995769
crossref_primary_10_1016_j_ijpsycho_2013_11_002
crossref_primary_10_1109_ACCESS_2020_3000187
crossref_primary_10_1109_THMS_2014_2366914
crossref_primary_10_1016_j_bspc_2021_102711
crossref_primary_10_1080_15732479_2023_2274878
crossref_primary_10_1016_j_biopsycho_2019_107726
crossref_primary_10_1016_j_bspc_2016_11_013
crossref_primary_10_1088_1741_2552_abb9bc
crossref_primary_10_1109_TCYB_2019_2939399
crossref_primary_10_3389_fnrgo_2022_1007673
crossref_primary_10_1109_THMS_2023_3235003
crossref_primary_10_1177_1071181312561367
crossref_primary_10_1016_j_clinph_2024_11_013
crossref_primary_10_1177_1064804613477099
crossref_primary_10_1109_ACCESS_2020_2966834
crossref_primary_10_1177_0018720814539505
crossref_primary_10_1109_TCBB_2016_2561927
crossref_primary_10_1109_JBHI_2022_3186625
crossref_primary_10_1109_TNSRE_2023_3307481
crossref_primary_10_3389_fnbot_2022_973967
crossref_primary_10_3389_fncom_2017_00064
crossref_primary_10_1016_j_bspc_2023_105662
crossref_primary_10_1016_j_neucom_2019_02_061
crossref_primary_10_1016_j_ijpsycho_2014_05_004
crossref_primary_10_3390_s24041082
crossref_primary_10_1111_ijn_12679
crossref_primary_10_1177_0018720818787135
crossref_primary_10_3390_s17102315
crossref_primary_10_1016_j_cmpb_2014_04_011
crossref_primary_10_1016_j_neucom_2017_12_062
crossref_primary_10_1016_j_bandl_2022_105185
crossref_primary_10_1088_1741_2560_9_4_045008
crossref_primary_10_1016_j_cmpb_2016_12_005
crossref_primary_10_1088_1741_2552_ab58a3
crossref_primary_10_3389_fnhum_2016_00223
crossref_primary_10_1080_10447318_2024_2352936
crossref_primary_10_1088_1741_2560_13_1_016007
crossref_primary_10_3390_su15021673
crossref_primary_10_1061__ASCE_ME_1943_5479_0000753
crossref_primary_10_1177_0018720813476883
crossref_primary_10_1016_j_bspc_2024_106046
crossref_primary_10_1177_1729881419888042
crossref_primary_10_3389_fnbot_2017_00019
crossref_primary_10_1109_THMS_2017_2782483
crossref_primary_10_3389_frvir_2021_694567
crossref_primary_10_1177_0018720816672308
crossref_primary_10_1088_1741_2552_ad0f3d
crossref_primary_10_3390_s25020567
crossref_primary_10_1109_TNSRE_2018_2884641
crossref_primary_10_1007_s12652_018_1038_2
crossref_primary_10_1049_gtd2_12650
crossref_primary_10_1109_TCDS_2021_3061564
crossref_primary_10_1016_j_ifacol_2020_12_2731
crossref_primary_10_1115_1_2017_Jun_5
Cites_doi 10.1093/brain/awm319
10.1016/S0301-0511(99)00002-2
10.1016/j.neucom.2010.12.025
10.1518/001872006779166334
10.1016/0301-0511(95)05161-9
10.1016/0013-4694(91)90152-T
10.1152/jn.01082.2009
10.1038/nature02341
10.1038/nn1444
10.1176/jnp.2006.18.4.460
10.1207/s15327590ijhc1702_3
10.1016/0013-4694(58)90053-1
10.1518/001872098779480578
10.1016/0013-4694(91)90203-G
10.1109/TNSRE.2003.814441
10.1109/5.58323
10.1109/MASSP.1987.1165576
10.1111/j.1469-8986.2006.00456.x
10.1109/TBME.2004.827827
10.1518/001872008X288349
10.1518/001872007X249875
10.1016/S1388-2457(99)00258-8
10.1518/hfes.45.3.381.27252
10.1518/hfes.45.4.635.27088
10.1006/nimg.2000.0562
10.1016/j.neuroimage.2006.08.041
10.1038/nrn1931
10.1038/nn.2303
10.3758/BF03209491
10.1016/S1388-2457(02)00057-3
10.1088/1741-2560/8/2/025002
10.1002/hbm.20080
ContentType Journal Article
Copyright 2011
Published by Elsevier Inc.
Copyright Elsevier Limited Jan 2, 2012
Copyright_xml – notice: 2011
– notice: Published by Elsevier Inc.
– notice: Copyright Elsevier Limited Jan 2, 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
7QO
DOI 10.1016/j.neuroimage.2011.07.091
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
Biotechnology Research Abstracts
DatabaseTitleList
ProQuest One Psychology
Engineering Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 63
ExternalDocumentID 3244984061
21840403
10_1016_j_neuroimage_2011_07_091
S105381191100886X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABUWG
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HZ~
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABMZM
ADFGL
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
7QO
ID FETCH-LOGICAL-c490t-5db3b67d7d17c30d6bca95f44edd98644a23d7ee3849939d1243f65c9c23fe533
IEDL.DBID .~1
ISSN 1053-8119
1095-9572
IngestDate Thu Jul 10 18:44:52 EDT 2025
Fri Jul 11 12:32:37 EDT 2025
Wed Aug 13 07:47:36 EDT 2025
Mon Jul 21 05:44:46 EDT 2025
Thu Apr 24 23:08:42 EDT 2025
Tue Jul 01 02:14:43 EDT 2025
Fri Feb 23 02:20:30 EST 2024
Tue Aug 26 16:33:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EEG
Pattern classification
Interday variability
Workload
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-5db3b67d7d17c30d6bca95f44edd98644a23d7ee3849939d1243f65c9c23fe533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21840403
PQID 1506853084
PQPubID 2031077
PageCount 7
ParticipantIDs proquest_miscellaneous_902375754
proquest_miscellaneous_898843016
proquest_journals_1506853084
pubmed_primary_21840403
crossref_primary_10_1016_j_neuroimage_2011_07_091
crossref_citationtrail_10_1016_j_neuroimage_2011_07_091
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2011_07_091
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2011_07_091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-02
PublicationDateYYYYMMDD 2012-01-02
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2012
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Refinetti (bb0155) 1999
Haynes, Rees (bb0070) 2006; 7
Kriegeskorte, Simmons, Bellgowan, Baker (bb0100) 2009; 12
Cauwenberghs, Poggio (bb0030) 2001
Wilson, Russell (bb0205) 2007; 49
De Martino, Gentile, Esposito, Balsic, Di Sallea, Goebel, Formisano (bb0045) 2007; 34
Wilson, Fisher (bb0190) 1991; 62
Kamitani, Tong (bb0085) 2005; 8
Pollock, Schneider, Lyness (bb0150) 1991; 79
Wilson, Russell (bb0195) 2003; 45
Berka, Levendowski, Cvetinovic, Petrovic, Davis, Lumicao, Zivkovic, Popovic, Olmstead (bb0005) 2004; 17
Comstock, Arnegard (bb0040) 1992
Smith, Beckmann, Ramnani, Woolrich, Bannister, Jenkinson, Matthews, McGonigle (bb0175) 2005; 24
Kong, Wilson (bb0095) 1998; 30
Freeman, Mikulka, Prinzel, Scerbo (bb0050) 1999; 50
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (bb0090) 2008; 131
Poggio, Rifkin, Mukherjee, Niyogi (bb0145) 2004; 428
Wolpaw, Birbaumer, McFarland, Pfurtscheller, Vaughan (bb0210) 2002; 113
Garrett, Peterson, Anderson, Thaut (bb0060) 2003; 11
Satti, Guan, Prasad, Coyle (bb0165) 2010
Jasper (bb0080) 1958; 10
Byrne, Parasuraman (bb0215) 1996; 42
McGuirl, Sarter (bb0130) 2006; 48
Wilson, Russell (bb0200) 2003; 45
Huang, Erdogmus, Pavel, Mathan, Hild (bb0075) 2011; 74
McGonigle, Howseman, Athwal, Friston, Frackowiak, Holmes (bb0125) 2000; 11
Pleydell-Pearce, Whitecross, Dickson (bb0140) 2003
Lippmann, R.P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22.
Salinsky, Oken, Morehead (bb0160) 1991; 79
Coburn, Lauterbach, Boutros, Black, Arciniegas, Coffey (bb0035) 2006; 18
Suykens, Van Gestel, De Brabanter, De Moor, Vandewalle (bb0180) 2002
Widrow, Lehr (bb0185) 1990; 78
Krusienski, Grosse-Wentrup, Galan, Coyle, Miller, Forney, Anderson (bb0105) 2011; 8
Parasuraman, Wilson (bb0135) 2008; 50
Birbaumer (bb0010) 2006; 43
Bishop (bb0015) 2006
Burgress, Gruzelier (bb0025) 1993; 86
Lal, Schroder, Hinterberger, Weston, Bogdan, Birbaumer, Scholkopf (bb0110) 2004; 51
Blanco, Stead, Krieger, Viventi, Marsh, Lee, Worrell, Litt (bb0020) 2010; 104
McEvoy, Smith, Gevins (bb0120) 2000; 111
Gevins, Smith, Leong, McEvoy, Whitfield, Du, Rush (bb0065) 1998; 40
Shelley, Backs (bb0170) 2006
10.1016/j.neuroimage.2011.07.091_bb0115
Shelley (10.1016/j.neuroimage.2011.07.091_bb0170) 2006
Wilson (10.1016/j.neuroimage.2011.07.091_bb0190) 1991; 62
Wilson (10.1016/j.neuroimage.2011.07.091_bb0205) 2007; 49
Birbaumer (10.1016/j.neuroimage.2011.07.091_bb0010) 2006; 43
Blanco (10.1016/j.neuroimage.2011.07.091_bb0020) 2010; 104
Garrett (10.1016/j.neuroimage.2011.07.091_bb0060) 2003; 11
Wilson (10.1016/j.neuroimage.2011.07.091_bb0195) 2003; 45
Poggio (10.1016/j.neuroimage.2011.07.091_bb0145) 2004; 428
Kriegeskorte (10.1016/j.neuroimage.2011.07.091_bb0100) 2009; 12
McGonigle (10.1016/j.neuroimage.2011.07.091_bb0125) 2000; 11
Cauwenberghs (10.1016/j.neuroimage.2011.07.091_bb0030) 2001
Smith (10.1016/j.neuroimage.2011.07.091_bb0175) 2005; 24
Parasuraman (10.1016/j.neuroimage.2011.07.091_bb0135) 2008; 50
De Martino (10.1016/j.neuroimage.2011.07.091_bb0045) 2007; 34
Kamitani (10.1016/j.neuroimage.2011.07.091_bb0085) 2005; 8
Pollock (10.1016/j.neuroimage.2011.07.091_bb0150) 1991; 79
Wolpaw (10.1016/j.neuroimage.2011.07.091_bb0210) 2002; 113
Krusienski (10.1016/j.neuroimage.2011.07.091_bb0105) 2011; 8
Widrow (10.1016/j.neuroimage.2011.07.091_bb0185) 1990; 78
Wilson (10.1016/j.neuroimage.2011.07.091_bb0200) 2003; 45
Byrne (10.1016/j.neuroimage.2011.07.091_bb0215) 1996; 42
Freeman (10.1016/j.neuroimage.2011.07.091_bb0050) 1999; 50
Haynes (10.1016/j.neuroimage.2011.07.091_bb0070) 2006; 7
Huang (10.1016/j.neuroimage.2011.07.091_bb0075) 2011; 74
Kong (10.1016/j.neuroimage.2011.07.091_bb0095) 1998; 30
Berka (10.1016/j.neuroimage.2011.07.091_bb0005) 2004; 17
Gevins (10.1016/j.neuroimage.2011.07.091_bb0065) 1998; 40
Refinetti (10.1016/j.neuroimage.2011.07.091_bb0155) 1999
Comstock (10.1016/j.neuroimage.2011.07.091_bb0040) 1992
Klöppel (10.1016/j.neuroimage.2011.07.091_bb0090) 2008; 131
Lal (10.1016/j.neuroimage.2011.07.091_bb0110) 2004; 51
McGuirl (10.1016/j.neuroimage.2011.07.091_bb0130) 2006; 48
Pleydell-Pearce (10.1016/j.neuroimage.2011.07.091_bb0140) 2003
Satti (10.1016/j.neuroimage.2011.07.091_bb0165) 2010
McEvoy (10.1016/j.neuroimage.2011.07.091_bb0120) 2000; 111
Burgress (10.1016/j.neuroimage.2011.07.091_bb0025) 1993; 86
Bishop (10.1016/j.neuroimage.2011.07.091_bb0015) 2006
Jasper (10.1016/j.neuroimage.2011.07.091_bb0080) 1958; 10
Suykens (10.1016/j.neuroimage.2011.07.091_bb0180) 2002
Salinsky (10.1016/j.neuroimage.2011.07.091_bb0160) 1991; 79
Coburn (10.1016/j.neuroimage.2011.07.091_bb0035) 2006; 18
References_xml – volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: bb0090
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
– volume: 34
  start-page: 177
  year: 2007
  end-page: 194
  ident: bb0045
  article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
  publication-title: NeuroImage
– volume: 45
  start-page: 635
  year: 2003
  end-page: 643
  ident: bb0200
  article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks
  publication-title: Human Factors
– volume: 30
  start-page: 713
  year: 1998
  end-page: 719
  ident: bb0095
  article-title: A new EOG-based eyeblink detection algorithm
  publication-title: Behavior Research Methods
– volume: 50
  start-page: 61
  year: 1999
  end-page: 76
  ident: bb0050
  article-title: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task
  publication-title: Biological Psychology
– volume: 10
  start-page: 370
  year: 1958
  end-page: 375
  ident: bb0080
  article-title: Report of the committee on methods of clinical examination
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 11
  start-page: 141
  year: 2003
  end-page: 144
  ident: bb0060
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– volume: 113
  start-page: 767
  year: 2002
  end-page: 791
  ident: bb0210
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
– volume: 104
  start-page: 2900
  year: 2010
  end-page: 2912
  ident: bb0020
  article-title: Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients
  publication-title: Journal of Neurophysiology
– volume: 51
  start-page: 1003
  year: 2004
  end-page: 1010
  ident: bb0110
  article-title: Support vector channel selection in BCI
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 24
  start-page: 248
  year: 2005
  end-page: 257
  ident: bb0175
  article-title: Variability in fMRI: a re-examination of intersession differences
  publication-title: Human Brain Mapping
– volume: 17
  start-page: 151
  year: 2004
  end-page: 170
  ident: bb0005
  article-title: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset
  publication-title: International Journal of Human Computer Interaction
– volume: 48
  start-page: 656
  year: 2006
  end-page: 665
  ident: bb0130
  article-title: Supporting trust calibration and the effective use of decision aids by presenting dynamic system confidence information
  publication-title: Human Factors
– volume: 42
  start-page: 249
  year: 1996
  end-page: 268
  ident: bb0215
  article-title: Psychophysiology and adaptive automation
  publication-title: Biological Psychology
– volume: 78
  start-page: 1415
  year: 1990
  end-page: 1442
  ident: bb0185
  article-title: 30
  publication-title: Proceedings of the IEEE
– volume: 111
  start-page: 457
  year: 2000
  end-page: 463
  ident: bb0120
  article-title: Test-retest reliability of cognitive EEG
  publication-title: Clinical Neurophysiology
– volume: 7
  start-page: 523
  year: 2006
  end-page: 534
  ident: bb0070
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nature Reviews. Neuroscience
– volume: 74
  start-page: 2041
  year: 2011
  end-page: 2051
  ident: bb0075
  article-title: A framework for rapid visual image search using single-trial brain evoked responses
  publication-title: Neurocomputing
– volume: 8
  start-page: 679
  year: 2005
  end-page: 685
  ident: bb0085
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nature Neuroscience
– volume: 62
  start-page: 959
  year: 1991
  end-page: 961
  ident: bb0190
  article-title: The use of cardiac and eye blink measures to determine flight segment in F4 crews
  publication-title: Aviation, Space, and Environmental Medicine
– volume: 428
  start-page: 419
  year: 2004
  end-page: 422
  ident: bb0145
  article-title: General conditions for predictivity in learning theory
  publication-title: Nature
– year: 1999
  ident: bb0155
  article-title: Circadian Physiology
– start-page: 155
  year: 2006
  end-page: 161
  ident: bb0170
  article-title: Categorizing EEG waveform length in simulated driving and working memory dual-tasks using feed-forward neural networks
  publication-title: Foundations of Augmented Cognition
– volume: 8
  start-page: 1
  year: 2011
  end-page: 8
  ident: bb0105
  article-title: Critical issues in state-of-the-art brain-computer interface signal processing
  publication-title: Journal of Neural Engineering
– start-page: 131
  year: 2003
  end-page: 141
  ident: bb0140
  article-title: Multivariate analysis of EEG: predicting cognition basis of frequency decomposition, inter-electrode correlation, coherence, cross phase and cross power
  publication-title: Proceedings of the 36th Annual Hawaii International Conference on Systems Science
– volume: 11
  start-page: 708
  year: 2000
  end-page: 734
  ident: bb0125
  article-title: Variability in fMRI: an examination of intersession differences
  publication-title: NeuroImage
– volume: 49
  start-page: 1005
  year: 2007
  end-page: 1019
  ident: bb0205
  article-title: Performance enhancement in a UAV task using psychophysiological determined adaptive aiding
  publication-title: Human Factors
– year: 2006
  ident: bb0015
  article-title: Pattern Recognition and Machine Learning
– year: 1992
  ident: bb0040
  article-title: The multi-attribute task battery for human operator workload and strategic behavior research
  publication-title: NASA Technical Memorandum No. 104174
– volume: 18
  start-page: 460
  year: 2006
  end-page: 500
  ident: bb0035
  article-title: The value of quantitative electroencephalography in clinical psychiatry: a report by the Committee on Research of the American Neuropsychiatric Association
  publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences
– volume: 86
  start-page: 210
  year: 1993
  end-page: 223
  ident: bb0025
  article-title: Individual reliability of amplitude distribution in topographical mapping of EEG
  publication-title: Electroencephalography and Clinical Neurophysiology
– start-page: 409
  year: 2001
  end-page: 415
  ident: bb0030
  article-title: Incremental and decremental support vector machine learning
  publication-title: Advances in Neural Information Processing Systems 13
– volume: 40
  start-page: 79
  year: 1998
  end-page: 91
  ident: bb0065
  article-title: Monitoring working memory load during computer-based tasks with EEG pattern recognition methods
  publication-title: Human Factors
– volume: 79
  start-page: 0
  year: 1991
  end-page: 26
  ident: bb0150
  article-title: Reliability of topographic quantitative EEG amplitude in health late-middle-aged and elderly subjects
  publication-title: Electroencephalography and Clinical Neurophysiology
– reference: Lippmann, R.P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22.
– volume: 43
  start-page: 517
  year: 2006
  end-page: 532
  ident: bb0010
  article-title: Breaking the silence: brain-computer-interfaces (BCI) for communication and motor control
  publication-title: Psychophysiology
– volume: 12
  start-page: 535
  year: 2009
  end-page: 540
  ident: bb0100
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nature Neuroscience
– volume: 79
  start-page: 383
  year: 1991
  end-page: 392
  ident: bb0160
  article-title: Test–retest reliability in EEG frequency analysis
  publication-title: Electroencephalography and Clinical Neurophysiology
– start-page: 105
  year: 2010
  end-page: 108
  ident: bb0165
  article-title: A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive brain–computer interface
  publication-title: Proceedings of the 20th International. Conference on Pattern Recognition
– volume: 45
  start-page: 381
  year: 2003
  end-page: 389
  ident: bb0195
  article-title: Operator functional state classification using psychophysiological features in an air traffic control task
  publication-title: Human Factors
– volume: 50
  start-page: 468
  year: 2008
  end-page: 474
  ident: bb0135
  article-title: Putting the brain to work: neuroergonomics past, present, and future
  publication-title: Human Factors
– year: 2002
  ident: bb0180
  article-title: Least Squares Support Vector Machines
– volume: 131
  start-page: 681
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.091_bb0090
  article-title: Automatic classification of MR scans in Alzheimer's disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 50
  start-page: 61
  year: 1999
  ident: 10.1016/j.neuroimage.2011.07.091_bb0050
  article-title: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task
  publication-title: Biological Psychology
  doi: 10.1016/S0301-0511(99)00002-2
– year: 2006
  ident: 10.1016/j.neuroimage.2011.07.091_bb0015
– volume: 62
  start-page: 959
  year: 1991
  ident: 10.1016/j.neuroimage.2011.07.091_bb0190
  article-title: The use of cardiac and eye blink measures to determine flight segment in F4 crews
  publication-title: Aviation, Space, and Environmental Medicine
– volume: 74
  start-page: 2041
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.091_bb0075
  article-title: A framework for rapid visual image search using single-trial brain evoked responses
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.12.025
– volume: 86
  start-page: 210
  year: 1993
  ident: 10.1016/j.neuroimage.2011.07.091_bb0025
  article-title: Individual reliability of amplitude distribution in topographical mapping of EEG
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 48
  start-page: 656
  issue: 4
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.091_bb0130
  article-title: Supporting trust calibration and the effective use of decision aids by presenting dynamic system confidence information
  publication-title: Human Factors
  doi: 10.1518/001872006779166334
– start-page: 131
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.091_bb0140
  article-title: Multivariate analysis of EEG: predicting cognition basis of frequency decomposition, inter-electrode correlation, coherence, cross phase and cross power
– volume: 42
  start-page: 249
  year: 1996
  ident: 10.1016/j.neuroimage.2011.07.091_bb0215
  article-title: Psychophysiology and adaptive automation
  publication-title: Biological Psychology
  doi: 10.1016/0301-0511(95)05161-9
– volume: 79
  start-page: 0
  year: 1991
  ident: 10.1016/j.neuroimage.2011.07.091_bb0150
  article-title: Reliability of topographic quantitative EEG amplitude in health late-middle-aged and elderly subjects
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(91)90152-T
– year: 1999
  ident: 10.1016/j.neuroimage.2011.07.091_bb0155
– volume: 104
  start-page: 2900
  issue: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.091_bb0020
  article-title: Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.01082.2009
– volume: 428
  start-page: 419
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.091_bb0145
  article-title: General conditions for predictivity in learning theory
  publication-title: Nature
  doi: 10.1038/nature02341
– start-page: 155
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.091_bb0170
  article-title: Categorizing EEG waveform length in simulated driving and working memory dual-tasks using feed-forward neural networks
– volume: 8
  start-page: 679
  issue: 5
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.091_bb0085
  article-title: Decoding the visual and subjective contents of the human brain
  publication-title: Nature Neuroscience
  doi: 10.1038/nn1444
– volume: 18
  start-page: 460
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.091_bb0035
  article-title: The value of quantitative electroencephalography in clinical psychiatry: a report by the Committee on Research of the American Neuropsychiatric Association
  publication-title: The Journal of Neuropsychiatry and Clinical Neurosciences
  doi: 10.1176/jnp.2006.18.4.460
– volume: 17
  start-page: 151
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.091_bb0005
  article-title: Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset
  publication-title: International Journal of Human Computer Interaction
  doi: 10.1207/s15327590ijhc1702_3
– year: 1992
  ident: 10.1016/j.neuroimage.2011.07.091_bb0040
  article-title: The multi-attribute task battery for human operator workload and strategic behavior research
– volume: 10
  start-page: 370
  year: 1958
  ident: 10.1016/j.neuroimage.2011.07.091_bb0080
  article-title: Report of the committee on methods of clinical examination
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(58)90053-1
– year: 2002
  ident: 10.1016/j.neuroimage.2011.07.091_bb0180
– volume: 40
  start-page: 79
  issue: 1
  year: 1998
  ident: 10.1016/j.neuroimage.2011.07.091_bb0065
  article-title: Monitoring working memory load during computer-based tasks with EEG pattern recognition methods
  publication-title: Human Factors
  doi: 10.1518/001872098779480578
– volume: 79
  start-page: 383
  year: 1991
  ident: 10.1016/j.neuroimage.2011.07.091_bb0160
  article-title: Test–retest reliability in EEG frequency analysis
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(91)90203-G
– volume: 11
  start-page: 141
  issue: 2
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.091_bb0060
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2003.814441
– volume: 78
  start-page: 1415
  year: 1990
  ident: 10.1016/j.neuroimage.2011.07.091_bb0185
  article-title: 30years of adaptive neural networks: perceptron, madaline, and backpropagation
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.58323
– ident: 10.1016/j.neuroimage.2011.07.091_bb0115
  doi: 10.1109/MASSP.1987.1165576
– volume: 43
  start-page: 517
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.091_bb0010
  article-title: Breaking the silence: brain-computer-interfaces (BCI) for communication and motor control
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2006.00456.x
– volume: 51
  start-page: 1003
  issue: 6
  year: 2004
  ident: 10.1016/j.neuroimage.2011.07.091_bb0110
  article-title: Support vector channel selection in BCI
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2004.827827
– volume: 50
  start-page: 468
  issue: 3
  year: 2008
  ident: 10.1016/j.neuroimage.2011.07.091_bb0135
  article-title: Putting the brain to work: neuroergonomics past, present, and future
  publication-title: Human Factors
  doi: 10.1518/001872008X288349
– start-page: 105
  year: 2010
  ident: 10.1016/j.neuroimage.2011.07.091_bb0165
  article-title: A covariate shift minimisation method to alleviate non-stationarity effects for an adaptive brain–computer interface
– volume: 49
  start-page: 1005
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.091_bb0205
  article-title: Performance enhancement in a UAV task using psychophysiological determined adaptive aiding
  publication-title: Human Factors
  doi: 10.1518/001872007X249875
– volume: 111
  start-page: 457
  year: 2000
  ident: 10.1016/j.neuroimage.2011.07.091_bb0120
  article-title: Test-retest reliability of cognitive EEG
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(99)00258-8
– volume: 45
  start-page: 381
  issue: 3
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.091_bb0195
  article-title: Operator functional state classification using psychophysiological features in an air traffic control task
  publication-title: Human Factors
  doi: 10.1518/hfes.45.3.381.27252
– volume: 45
  start-page: 635
  issue: 4
  year: 2003
  ident: 10.1016/j.neuroimage.2011.07.091_bb0200
  article-title: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks
  publication-title: Human Factors
  doi: 10.1518/hfes.45.4.635.27088
– volume: 11
  start-page: 708
  year: 2000
  ident: 10.1016/j.neuroimage.2011.07.091_bb0125
  article-title: Variability in fMRI: an examination of intersession differences
  publication-title: NeuroImage
  doi: 10.1006/nimg.2000.0562
– start-page: 409
  year: 2001
  ident: 10.1016/j.neuroimage.2011.07.091_bb0030
  article-title: Incremental and decremental support vector machine learning
– volume: 34
  start-page: 177
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2011.07.091_bb0045
  article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.08.041
– volume: 7
  start-page: 523
  year: 2006
  ident: 10.1016/j.neuroimage.2011.07.091_bb0070
  article-title: Decoding mental states from brain activity in humans
  publication-title: Nature Reviews. Neuroscience
  doi: 10.1038/nrn1931
– volume: 12
  start-page: 535
  year: 2009
  ident: 10.1016/j.neuroimage.2011.07.091_bb0100
  article-title: Circular analysis in systems neuroscience: the dangers of double dipping
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.2303
– volume: 30
  start-page: 713
  issue: 4
  year: 1998
  ident: 10.1016/j.neuroimage.2011.07.091_bb0095
  article-title: A new EOG-based eyeblink detection algorithm
  publication-title: Behavior Research Methods
  doi: 10.3758/BF03209491
– volume: 113
  start-page: 767
  year: 2002
  ident: 10.1016/j.neuroimage.2011.07.091_bb0210
  article-title: Brain–computer interfaces for communication and control
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00057-3
– volume: 8
  start-page: 1
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2011.07.091_bb0105
  article-title: Critical issues in state-of-the-art brain-computer interface signal processing
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/8/2/025002
– volume: 24
  start-page: 248
  year: 2005
  ident: 10.1016/j.neuroimage.2011.07.091_bb0175
  article-title: Variability in fMRI: a re-examination of intersession differences
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20080
SSID ssj0009148
Score 2.3984652
Snippet The application of pattern classification techniques to physiological data has undergone rapid expansion. Tasks as varied as the diagnosis of disease from...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms Accuracy
Automation
Classification
Discriminant analysis
EEG
Electroencephalography
Female
Humans
Independent sample
Interday variability
Male
Pattern classification
Pattern Recognition, Automated - methods
Signal processing
Signal Processing, Computer-Assisted
Task Performance and Analysis
User-Computer Interface
Workload
Workload - classification
Young Adult
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZ5QMklJOkj2zzQIVe1tiVLNj2UEBKWQHJKYG9CL5eW1t5kdwP77zsjy7unDXvywRrZjKSZTzOjT4RcuSI0IpQZU8YXTKiQMyuMYbYBcCpNngWD8Y6HRzl-FveTcpICbrNUVjnYxGiofecwRv4dmfDAtWSV-Dl9YXhrFGZX0xUau2QfqcuwpEtN1Jp0Nxf9UbiSswoapEqevr4r8kX-_gerNhF5qm9ZnW9yT5vgZ3RDd0fkMOFHet0P-DHZCe0J-fCQMuQfyS8Yd5qKNGjXUG-WbN4xeNA32Bb3rNxLfBNjGoPpo1gpSruWdtMQE-8UHV4fJ6Tx0BF1iLOxsCiO5SfyfHf7dDNm6TIF5kSdzVnpLbdSeeVz5XjmpXWmLhshgvdI0S5Mwb0KgVewB-K1B7_PG1m62hW8CQAKP5O9tmvDKaFWNsqWIAs9CMlNJa1X0BC3W6Uw1YioQYfaJaZxvPDirx5Kyv7otfY1al9nSoP2RyRfSU57to0tZOphmPRwmhTsnwaXsIXsj5VsQhw9kthS-nyYFTqt_Jlez9MRoavXsGYxEWPa0C1muqqrSoBllZub1IClFEBp6OVLP99WCombcpHxr-9__owcwL8WMVxUnJO9-esiXACAmtvLuEr-A5k0HHA
  priority: 102
  providerName: ProQuest
Title The effects of day-to-day variability of physiological data on operator functional state classification
URI https://www.clinicalkey.com/#!/content/1-s2.0-S105381191100886X
https://dx.doi.org/10.1016/j.neuroimage.2011.07.091
https://www.ncbi.nlm.nih.gov/pubmed/21840403
https://www.proquest.com/docview/1506853084
https://www.proquest.com/docview/898843016
https://www.proquest.com/docview/902375754
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhhdJL6bvbpkGHXpW1LVmyyClZEraPLCFtYG9CsuSypbGXZBPIpb89M7K8oYeFhV4sbGuEGEkz30gzI0I-10VoRCgzpqwvmFAhZ05Yy1wD4FTaPAsW9zvOZnJ6Kb7Oy_kOmQyxMOhWmWR_L9OjtE5fxomb4-ViMf4ByADUDdgbmJ-mknOMYBcKZ_nB30c3D52LPhyu5AxrJ2-e3scr5oxcXMHKTck81UGm800qahMEjaro9AV5njAkPeq7-ZLshPYVeXqWTslfk18w9jQ5atCuod7es1XHoKB3YBr3mbnv8U_c1xjEH0VvUdq1tFuGePhOUen1e4U0Bh7RGrE2OhfF8XxDLk9Pfk6mLF2owGqhsxUrveNOKq98rmqeeelqq8tGiOA9pmkXtuBehcArsIO49qD7eSPLWtcFbwIAw7dkt-3a8J5QJxvlSqCFFoTktpLOK6iIJlcpbDUiauChqVO2cbz04o8Z3Mp-m0fuG-S-yZQB7o9IvqZc9hk3tqDRwzCZIaIUZKABtbAF7eGa9p-ZtyX13jArTFr9NwazNgIMyioxInT9G9YtHsbYNnS3N6bSVSVAusrNVTTgKQVwGlp518-3NUOiYS4y_uG_Ov-RPIO3Iu4oFXtkd3V9Gz4Bxlq5_biI4Knmap88OZpcfD_H8su36QzK45PZ-cUD_-stnQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrQRcKt4sFPABjoYkfiWqECrQaku7K4RaqTfjVxCoJAu7Ldo_xW_s2HF2T4v20lMOySTRePzNN-PxGKFXtvA18zwjUruCMOlzYpjWxNRAToXOM69DvmM8EaMz9vmcn2-hf_1emFBW2WNiBGrX2pAjfxs64YFryUr2fvqbhFOjwupqf4RGZxbHfvEXQrbZu6NPML6vi-Lw4PTjiKRTBYhlVTYn3BlqhHTS5dLSzAljdcVrxrxzoVc50wV10ntaQjBAKwcOkNaC28oWtPY8JEAB8rcZhVBmgLY_HEy-fF21-c1Zt_mOU1LmeZVqh7qKstih8scvwInUOlS-yap8nUNcR3ij4zu8i3YSY8X7nYndQ1u-uY9ujdOa_AP0HSwNp7IQ3NbY6QWZtwQu-AoC8a4P-CLciVmUHmxxqE3FbYPbqY9L_Ti42C4zieM2J2wDsw-lTNF6HqKzG1H0IzRo2sY_QdiIWhoOsvAGJqguhXESHgwBHme6HCLZ61DZ1Ns8HLFxofoitp9qpX0VtK8yqUD7Q5QvJaddf48NZKp-mFS_fxUQV4ET2kB2bymbOE7HXTaU3u2tQiWsmanVzBgivLwNKBGWfnTj28uZKquyZIDlYv0jFbA3CeQd3vK4s7elQmIagGX06f8__xLdHp2OT9TJ0eT4GboD_13EZFWxiwbzP5f-OdC3uXmR5gxG3256ml4DokRarQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqq4oJbnlgI-wNE0iV-xEEKIsmoprThQaW_GiR0EosmW3YL2r_HrGL92T4v20lMOySTReOabz-PxGKEXbeU65nhBpLEVYdKVpGHGkKYDcipMWTjj8x3nF-Lkkn2c8MkW-pv3wviyyoyJAajt0Poc-ZHvhAehpajZUZfKIj4fj99Or4k_QcqvtObjNKKJnLnFH5i-zd6cHsNYv6yq8Ycv709IOmGAtEwVc8JtQxshrbSlbGlhRdMaxTvGnLW-bzkzFbXSOVrDxIAqC8GQdoK3qq1o57hPhgL870jKS-9jciJXDX9LFrfhcUrqslSpiijWloVeld-vADFSE1H5qlDlutC4jvqGEDjeQ3cTd8XvorHtoy3X30O752l1_j76BjaHU4EIHjpszYLMBwIX_Bum5LEj-MLfCfmUDLvYV6niocfD1IVFf-yDbcxR4rDhCbee4_uipmBHD9Dlraj5Idruh949RrgRnWw4yMIbmKCmFo2V8KCf6nFm6hGSWYe6TV3O_WEbP3UuZ_uhV9rXXvu6kBq0P0LlUnIaO31sIKPyMOm8kxWwV0M42kD29VI2sZ3IYjaUPsxWoRPqzPTKR0YIL28DXvhFINO74Wama1XXDFBdrH9EAY-TQOPhLY-ivS0VEhICrKAH___8c7QLzqk_nV6cPUF34LerkLWqDtH2_NeNewo8bt48Cw6D0dfb9tB_ycRdfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+day-to-day+variability+of+physiological+data+on+operator+functional+state+classification&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Christensen%2C+James+C.&rft.au=Estepp%2C+Justin+R.&rft.au=Wilson%2C+Glenn+F.&rft.au=Russell%2C+Christopher+A.&rft.date=2012-01-02&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=59&rft.issue=1&rft.spage=57&rft.epage=63&rft_id=info:doi/10.1016%2Fj.neuroimage.2011.07.091&rft.externalDocID=S105381191100886X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon