Proline: an efficient and user-friendly software suite for large-scale proteomics

Abstract Motivation The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processi...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 36; no. 10; pp. 3148 - 3155
Main Authors Bouyssié, David, Hesse, Anne-Marie, Mouton-Barbosa, Emmanuelle, Rompais, Magali, Macron, Charlotte, Carapito, Christine, Gonzalez de Peredo, Anne, Couté, Yohann, Dupierris, Véronique, Burel, Alexandre, Menetrey, Jean-Philippe, Kalaitzakis, Andrea, Poisat, Julie, Romdhani, Aymen, Burlet-Schiltz, Odile, Cianférani, Sarah, Garin, Jerome, Bruley, Christophe
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2020
Oxford University Press (OUP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study. Results Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline’s ability to provide high quantification accuracy in a user-friendly interface for datasets of any size. Availability and implementation Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client–server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study. Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size. Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client-server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads. Supplementary data are available at Bioinformatics online.
Abstract Motivation The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study. Results Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline’s ability to provide high quantification accuracy in a user-friendly interface for datasets of any size. Availability and implementation Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client–server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads. Supplementary information Supplementary data are available at Bioinformatics online.
The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study.MOTIVATIONThe proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study.Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size.RESULTSHere, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size.Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client-server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads.AVAILABILITY AND IMPLEMENTATIONProline is available for Windows and Linux under CECILL open-source license. It can be deployed in client-server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Motivation: The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study. Results: Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size. Availability and implementation: Proline is available for Windows and Linux under CECILL open-source license.
Author Hesse, Anne-Marie
Bouyssié, David
Burlet-Schiltz, Odile
Garin, Jerome
Rompais, Magali
Carapito, Christine
Couté, Yohann
Cianférani, Sarah
Kalaitzakis, Andrea
Mouton-Barbosa, Emmanuelle
Gonzalez de Peredo, Anne
Romdhani, Aymen
Burel, Alexandre
Dupierris, Véronique
Macron, Charlotte
Menetrey, Jean-Philippe
Poisat, Julie
Bruley, Christophe
AuthorAffiliation b3 Laboratoire de Spectrométrie de Masse BioOrganique , Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
b1 Institut de Pharmacologie et de Biologie Structurale (IPBS) , Université de Toulouse, CNRS, UPS, Toulouse, France
b2 Université Grenoble Alpes , Inserm, CEA, IRIG, BGE, Grenoble 38000, France
AuthorAffiliation_xml – name: b2 Université Grenoble Alpes , Inserm, CEA, IRIG, BGE, Grenoble 38000, France
– name: b3 Laboratoire de Spectrométrie de Masse BioOrganique , Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
– name: b1 Institut de Pharmacologie et de Biologie Structurale (IPBS) , Université de Toulouse, CNRS, UPS, Toulouse, France
Author_xml – sequence: 1
  givenname: David
  surname: Bouyssié
  fullname: Bouyssié, David
  organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 2
  givenname: Anne-Marie
  surname: Hesse
  fullname: Hesse, Anne-Marie
  organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France
– sequence: 3
  givenname: Emmanuelle
  surname: Mouton-Barbosa
  fullname: Mouton-Barbosa, Emmanuelle
  organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 4
  givenname: Magali
  surname: Rompais
  fullname: Rompais, Magali
  organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
– sequence: 5
  givenname: Charlotte
  surname: Macron
  fullname: Macron, Charlotte
  organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
– sequence: 6
  givenname: Christine
  surname: Carapito
  fullname: Carapito, Christine
  organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
– sequence: 7
  givenname: Anne
  surname: Gonzalez de Peredo
  fullname: Gonzalez de Peredo, Anne
  organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 8
  givenname: Yohann
  surname: Couté
  fullname: Couté, Yohann
  organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France
– sequence: 9
  givenname: Véronique
  surname: Dupierris
  fullname: Dupierris, Véronique
  organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France
– sequence: 10
  givenname: Alexandre
  surname: Burel
  fullname: Burel, Alexandre
  organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
– sequence: 11
  givenname: Jean-Philippe
  surname: Menetrey
  fullname: Menetrey, Jean-Philippe
  organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France
– sequence: 12
  givenname: Andrea
  surname: Kalaitzakis
  fullname: Kalaitzakis, Andrea
  organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France
– sequence: 13
  givenname: Julie
  surname: Poisat
  fullname: Poisat, Julie
  organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 14
  givenname: Aymen
  surname: Romdhani
  fullname: Romdhani, Aymen
  organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
– sequence: 15
  givenname: Odile
  surname: Burlet-Schiltz
  fullname: Burlet-Schiltz, Odile
  organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
– sequence: 16
  givenname: Sarah
  surname: Cianférani
  fullname: Cianférani, Sarah
  organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France
– sequence: 17
  givenname: Jerome
  surname: Garin
  fullname: Garin, Jerome
  organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France
– sequence: 18
  givenname: Christophe
  surname: Bruley
  fullname: Bruley, Christophe
  email: christophe.bruley@cea.fr
  organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32096818$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02551168$$DView record in HAL
BookMark eNqNUUtrFTEUDlKxD_0LZZa6GJuT18yICKWoLVywBV2HTB5tJDO5JplK_7253NvSdlNXyTn5XuQ7RHtznC1Cx4A_Ah7oyeijn11Mkype55OxKAXQv0IHwARuCebDXr1T0bWsx3QfHeb8G2MOjLE3aJ8SPIge-gN0dZli8LP91Ki5sc557e1c6mCaJdvUulRnE-6aHF35q5Jt8uKLbap1E1S6tm3WKthmnWKxcapZ3qLXToVs3-3OI_Tr29efZ-ft6sf3i7PTVavZgEvLFWBNHTfEgDH9iLkTo-m4UwYGjTkB4jBQrgUXvTFCa6pV14_aGcUGMtAj9GWru17GyRpdYycV5Dr5SaU7GZWXT19mfyOv463sCDDMuirwYStw84x2frqSmx0mnAOI_hYq9v3OLMU_i81FTj5rG4KabVyyJFQwTIFzUaHHj3M9KN__eQV83gJ0ijkn66T2pdYYNzF9kIDlpmL5tGK5q7jSxTP6vcOLRNgS47L-X84_7YTGfQ
CitedBy_id crossref_primary_10_1186_s40364_024_00583_z
crossref_primary_10_1083_jcb_202307074
crossref_primary_10_1038_s41467_024_52659_x
crossref_primary_10_1242_jcs_250902
crossref_primary_10_3389_fmolb_2022_900947
crossref_primary_10_3390_foods10020280
crossref_primary_10_7554_eLife_95191_3
crossref_primary_10_1016_j_pep_2023_106325
crossref_primary_10_1021_acsinfecdis_2c00049
crossref_primary_10_1038_s41467_025_57809_3
crossref_primary_10_1074_jbc_RA120_013299
crossref_primary_10_3389_fimmu_2023_1108682
crossref_primary_10_3390_cells12060844
crossref_primary_10_7554_eLife_96831_3
crossref_primary_10_1093_nar_gkad487
crossref_primary_10_3389_fgene_2021_635814
crossref_primary_10_1038_s41564_024_01657_2
crossref_primary_10_1016_j_omton_2024_200887
crossref_primary_10_1038_s41467_024_46601_4
crossref_primary_10_1016_j_biortech_2021_125340
crossref_primary_10_1021_acschembio_4c00820
crossref_primary_10_7554_eLife_88207_3
crossref_primary_10_7554_eLife_88207
crossref_primary_10_1128_msystems_00750_24
crossref_primary_10_1186_s12985_024_02349_3
crossref_primary_10_1007_s00395_020_00835_7
crossref_primary_10_1016_j_ijpddr_2024_100565
crossref_primary_10_1016_j_jpha_2023_03_009
crossref_primary_10_1093_plphys_kiab529
crossref_primary_10_1038_s41586_023_06713_1
crossref_primary_10_1186_s12915_021_01213_y
crossref_primary_10_1038_s42003_021_01801_2
crossref_primary_10_1371_journal_ppat_1011417
crossref_primary_10_3390_microorganisms8060820
crossref_primary_10_1038_s41467_024_48711_5
crossref_primary_10_1002_1873_3468_14740
crossref_primary_10_1021_acsinfecdis_1c00525
crossref_primary_10_2139_ssrn_3967675
crossref_primary_10_26508_lsa_202201429
crossref_primary_10_1038_s41598_024_65558_4
crossref_primary_10_3390_jof7070568
crossref_primary_10_1038_s41597_021_01095_3
crossref_primary_10_26508_lsa_202101140
crossref_primary_10_3390_biology11111687
crossref_primary_10_1128_aem_01553_21
crossref_primary_10_1159_000543633
crossref_primary_10_1038_s41366_024_01705_1
crossref_primary_10_7554_eLife_77607
crossref_primary_10_1002_glia_23884
crossref_primary_10_1016_j_jmb_2020_10_024
crossref_primary_10_1096_fj_202202018RR
crossref_primary_10_1084_jem_20211295
crossref_primary_10_1002_1878_0261_13088
crossref_primary_10_1038_s41467_022_35453_5
crossref_primary_10_3390_molecules25051125
crossref_primary_10_3390_v14092030
crossref_primary_10_1021_acs_analchem_0c02270
crossref_primary_10_1038_s41467_022_33799_4
crossref_primary_10_1038_s41467_024_53768_3
crossref_primary_10_1007_s11103_020_01105_9
crossref_primary_10_1016_j_biortech_2021_124866
crossref_primary_10_1038_s41598_023_31769_4
crossref_primary_10_1038_s41467_024_52906_1
crossref_primary_10_1016_j_isci_2022_104596
crossref_primary_10_1016_j_jhepr_2021_100297
crossref_primary_10_1126_sciadv_abg9055
crossref_primary_10_1073_pnas_2319951121
crossref_primary_10_1093_nar_gkae045
crossref_primary_10_1038_s41598_020_79611_5
crossref_primary_10_7554_eLife_69162
crossref_primary_10_1016_j_isci_2024_109224
crossref_primary_10_1038_s41598_023_27959_9
crossref_primary_10_3390_cancers13235900
crossref_primary_10_1371_journal_ppat_1010020
crossref_primary_10_1186_s13287_023_03425_1
crossref_primary_10_1111_nph_20276
crossref_primary_10_1111_1462_2920_15372
crossref_primary_10_1038_s41598_021_00983_3
crossref_primary_10_1002_pmic_202200013
crossref_primary_10_1016_j_antiviral_2020_104861
crossref_primary_10_3390_microorganisms10112302
crossref_primary_10_1038_s41421_023_00644_x
crossref_primary_10_1021_acs_jproteome_3c00243
crossref_primary_10_3390_ijms222011071
crossref_primary_10_1094_PHYTOFR_12_22_0149_R
crossref_primary_10_1111_febs_16737
crossref_primary_10_1021_acs_jproteome_3c00636
crossref_primary_10_1038_s41598_024_69152_6
crossref_primary_10_3390_cells10113119
crossref_primary_10_1093_ismejo_wraf002
crossref_primary_10_1128_mbio_02375_22
crossref_primary_10_1158_2159_8290_CD_21_0205
crossref_primary_10_1002_iub_2891
crossref_primary_10_1093_nar_gkac878
crossref_primary_10_1016_j_celrep_2023_112579
crossref_primary_10_1093_nar_gkac759
crossref_primary_10_3390_ijms23115995
crossref_primary_10_1021_acs_jproteome_2c00812
crossref_primary_10_1186_s13046_023_02909_5
crossref_primary_10_1002_pro_4964
crossref_primary_10_1007_s00401_022_02468_7
crossref_primary_10_3390_ijms23179922
crossref_primary_10_1261_rna_078121_120
crossref_primary_10_26508_lsa_202101334
crossref_primary_10_1016_j_jhepr_2023_100913
crossref_primary_10_1242_dev_201755
crossref_primary_10_7554_eLife_95191
crossref_primary_10_1002_cbic_202400187
crossref_primary_10_1016_j_jbc_2022_101987
crossref_primary_10_1021_acs_jproteome_0c00192
crossref_primary_10_1093_femsml_uqae006
crossref_primary_10_3390_cells13231966
crossref_primary_10_7554_eLife_61254
crossref_primary_10_1021_acssynbio_1c00115
crossref_primary_10_3389_fmicb_2022_1029828
crossref_primary_10_1038_s41598_024_83713_9
crossref_primary_10_1186_s13068_021_01981_3
crossref_primary_10_3390_biomedicines10030569
crossref_primary_10_3389_fmicb_2023_1254728
crossref_primary_10_1002_pmic_202000152
crossref_primary_10_1016_j_neuron_2021_10_033
crossref_primary_10_1186_s13059_022_02701_2
crossref_primary_10_1038_s41598_024_60118_2
crossref_primary_10_1038_s41467_021_23596_w
crossref_primary_10_1128_mbio_02211_23
crossref_primary_10_1038_s41467_023_35951_0
crossref_primary_10_3389_fphys_2020_569329
crossref_primary_10_1093_bioinformatics_btad461
crossref_primary_10_7554_eLife_96831
crossref_primary_10_1021_acs_analchem_0c00328
crossref_primary_10_1126_sciadv_adh0140
crossref_primary_10_1038_s41598_021_91258_4
crossref_primary_10_1111_nph_17359
crossref_primary_10_15252_embr_202256316
Cites_doi 10.1074/mcp.R112.025163
10.1371/journal.pone.0188059
10.1038/nbt.3109
10.1038/nbt.1511
10.1074/mcp.R113.027797
10.1021/acs.jproteome.5b00853
10.1074/mcp.M110.003830
10.1021/pr700758r
10.1074/mcp.O114.039115
10.1021/acs.jproteome.6b00881
10.1016/j.jprot.2015.11.011
10.1038/nature19949
10.1038/ni.3693
10.1002/pmic.200900402
10.1152/physiolgenomics.00298.2007
10.1002/pmic.200700694
10.1074/mcp.M113.031591
10.1074/mcp.R500012-MCP200
10.1016/j.molcel.2013.01.029
10.1021/pr0606880
10.1021/ac0341261
10.1038/nbt.2839
ContentType Journal Article
Copyright The Author(s) 2020. Published by Oxford University Press. 2020
The Author(s) 2020. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020. Published by Oxford University Press. 2020
– notice: The Author(s) 2020. Published by Oxford University Press.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID TOX
AAYXX
CITATION
NPM
7X8
1XC
VOOES
5PM
DOI 10.1093/bioinformatics/btaa118
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 1460-2059
1367-4811
EndPage 3155
ExternalDocumentID PMC7214047
oai_HAL_hal_02551168v1
32096818
10_1093_bioinformatics_btaa118
10.1093/bioinformatics/btaa118
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: ANR-10-INBS-08
GroupedDBID -~X
.2P
5GY
AAMVS
ABPTD
ACGFS
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
F5P
HW0
KOP
Q5Y
RD5
ROX
TLC
TN5
TOX
WH7
---
-E4
.DC
.I3
0R~
23N
2WC
4.4
48X
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUFI
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EMOBN
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HZ~
IOX
J21
JXSIZ
KAQDR
KQ8
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
RXO
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
~KM
ADRIX
AFXEN
M49
NPM
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c490t-5a10c3f5d2d1dd8b05f6bd75fad19c05212f0135c6568dd6cc3ca78bcfda49293
IEDL.DBID TOX
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:22:09 EDT 2025
Tue Jun 17 07:51:50 EDT 2025
Thu Jul 10 22:49:03 EDT 2025
Wed Feb 19 02:31:11 EST 2025
Tue Jul 01 02:33:51 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
Wed Aug 28 03:20:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2020. Published by Oxford University Press.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-5a10c3f5d2d1dd8b05f6bd75fad19c05212f0135c6568dd6cc3ca78bcfda49293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC7214047
The authors wish it to be known that, in their opinion, David Bouyssié, Anne-Marie Hesse and Emmanuelle Mouton-Barbosa should be regarded as Joint First Authors.
ORCID 0000-0003-3062-9646
0000-0003-3896-6196
0000-0002-3606-2356
0000-0002-0847-4759
0000-0002-7793-4560
0000-0001-6152-6311
0000-0003-4013-4129
0000-0002-0079-319X
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btaa118
PMID 32096818
PQID 2364031556
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214047
hal_primary_oai_HAL_hal_02551168v1
proquest_miscellaneous_2364031556
pubmed_primary_32096818
crossref_citationtrail_10_1093_bioinformatics_btaa118
crossref_primary_10_1093_bioinformatics_btaa118
oup_primary_10_1093_bioinformatics_btaa118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2020
Publisher Oxford University Press
Oxford University Press (OUP)
Publisher_xml – name: Oxford University Press
– name: Oxford University Press (OUP)
References Mann (2023013112032326100_btaa118-B13) 2013; 49
Mueller (2023013112032326100_btaa118-B14) 2008; 7
Nahnsen (2023013112032326100_btaa118-B15) 2013; 12
America (2023013112032326100_btaa118-B2) 2008; 8
Nesvizhskii (2023013112032326100_btaa118-B18) 2003; 75
Vizcaíno (2023013112032326100_btaa118-B25) 2014; 32
Vaudel (2023013112032326100_btaa118-B23) 2015; 33
Vizcaíno (2023013112032326100_btaa118-B24) 2009; 9
Choi (2023013112032326100_btaa118-B5) 2017; 16
Shteynberg (2023013112032326100_btaa118-B22) 2013; 12
Cox (2023013112032326100_btaa118-B6) 2008; 26
Rieckmann (2023013112032326100_btaa118-B20) 2017; 18
Cox (2023013112032326100_btaa118-B8) 2014; 13
Handy (2023013112032326100_btaa118-B11) 2017; 12
Neuhauser (2023013112032326100_btaa118-B2225716) 2013
Savitski (2023013112032326100_btaa118-B21) 2011; 10
Doll (2023013112032326100_btaa118-B10) 2017; 8, 1469
Hesse (2023013112032326100_btaa118-B12) 2016; 15
Andreev (2023013112032326100_btaa118-B3) 2007; 6
Aebersold (2023013112032326100_btaa118-B1) 2016; 537
Bouyssié (2023013112032326100_btaa118-B4) 2015; 14
Deutsch (2023013112032326100_btaa118-B9) 2008; 33
Ramus (2023013112032326100_btaa118-B19) 2016; 132
Nesvizhskii (2023013112032326100_btaa118-B17) 2005; 4
References_xml – volume: 12
  start-page: 549
  year: 2013
  ident: 2023013112032326100_btaa118-B15
  article-title: Tools for label-free peptide quantification
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.R112.025163
– volume: 12
  start-page: e0188059
  year: 2017
  ident: 2023013112032326100_btaa118-B11
  article-title: Fast, axis-agnostic, dynamically summarized storage and retrieval for mass spectrometry data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0188059
– volume: 33
  start-page: 22
  year: 2015
  ident: 2023013112032326100_btaa118-B23
  article-title: PeptideShaker enables reanalysis of MS-derived proteomics data sets
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.3109
– volume: 26
  start-page: 1367
  year: 2008
  ident: 2023013112032326100_btaa118-B6
  article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.1511
– volume: 12
  start-page: 2383
  year: 2013
  ident: 2023013112032326100_btaa118-B22
  article-title: Combining results of multiple search engines in proteomics
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.R113.027797
– volume: 15
  start-page: 3896
  year: 2016
  ident: 2023013112032326100_btaa118-B12
  article-title: hEIDI: an intuitive application tool to organize and treat large-scale proteomics data
  publication-title: J. Proteome Res
  doi: 10.1021/acs.jproteome.5b00853
– volume: 10
  year: 2011
  ident: 2023013112032326100_btaa118-B21
  article-title: Confident phosphorylation site localization using the mascot delta score
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M110.003830
– volume: 7
  start-page: 51
  year: 2008
  ident: 2023013112032326100_btaa118-B14
  article-title: An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data
  publication-title: J. Proteome Res
  doi: 10.1021/pr700758r
– volume: 14
  start-page: 771
  year: 2015
  ident: 2023013112032326100_btaa118-B4
  article-title: mzDB: a file format using multiple indexing strategies for the efficient analysis of large LC-MS/MS and SWATH-MS data sets
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.O114.039115
– volume: 16
  start-page: 945
  year: 2017
  ident: 2023013112032326100_btaa118-B5
  article-title: ABRF Proteome Informatics Research Group (iPRG) 2015 Study: detection of differentially abundant proteins in label-free quantitative LC-MS/MS Experiments
  publication-title: J. Proteome Res
  doi: 10.1021/acs.jproteome.6b00881
– volume: 132
  start-page: 51
  year: 2016
  ident: 2023013112032326100_btaa118-B19
  article-title: Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset
  publication-title: J. Proteomics
  doi: 10.1016/j.jprot.2015.11.011
– volume: 537
  start-page: 347
  year: 2016
  ident: 2023013112032326100_btaa118-B1
  article-title: Mass-spectrometric exploration of proteome structure and function
  publication-title: Nature
  doi: 10.1038/nature19949
– volume: 8, 1469
  year: 2017
  ident: 2023013112032326100_btaa118-B10
  article-title: Region and cell-type resolved quantitative proteomic map of the human heart
  publication-title: Nat. Commun
– volume: 18
  start-page: 583
  year: 2017
  ident: 2023013112032326100_btaa118-B20
  article-title: Social network architecture of human immune cells unveiled by quantitative proteomics
  publication-title: Nat. Immunol
  doi: 10.1038/ni.3693
– volume: 9
  start-page: 4276
  year: 2009
  ident: 2023013112032326100_btaa118-B24
  article-title: A guide to the proteomics identifications database proteomics data repository
  publication-title: Proteomics
  doi: 10.1002/pmic.200900402
– volume: 33
  start-page: 18
  year: 2008
  ident: 2023013112032326100_btaa118-B9
  article-title: Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.00298.2007
– volume: 8
  start-page: 731
  year: 2008
  ident: 2023013112032326100_btaa118-B2
  article-title: Comparative LC-MS: a landscape of peaks and valleys
  publication-title: Proteomics
  doi: 10.1002/pmic.200700694
– volume: 13
  start-page: 2513
  year: 2014
  ident: 2023013112032326100_btaa118-B8
  article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.031591
– start-page: 2858
  year: 2013
  ident: 2023013112032326100_btaa118-B2225716
  article-title: High performance computational analysis of large-scale proteome data sets to assess incremental contribution to coverage of the human genome
– volume: 4
  start-page: 1419
  year: 2005
  ident: 2023013112032326100_btaa118-B17
  article-title: Interpretation of shotgun proteomic data: the protein inference problem
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.R500012-MCP200
– volume: 49
  start-page: 583
  year: 2013
  ident: 2023013112032326100_btaa118-B13
  article-title: The coming age of complete, accurate, and ubiquitous proteomes
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.01.029
– volume: 6
  start-page: 2186
  year: 2007
  ident: 2023013112032326100_btaa118-B3
  article-title: A new algorithm using cross-assignment for label-free quantitation with LC-LTQ-FT MS
  publication-title: J. Proteome Res
  doi: 10.1021/pr0606880
– volume: 75
  start-page: 4646
  year: 2003
  ident: 2023013112032326100_btaa118-B18
  article-title: A statistical model for identifying proteins by tandem mass spectrometry
  publication-title: Anal. Chem
  doi: 10.1021/ac0341261
– volume: 32
  start-page: 223
  year: 2014
  ident: 2023013112032326100_btaa118-B25
  article-title: ProteomeXchange provides globally coordinated proteomics data submission and dissemination
  publication-title: Nat. Biotechnol
  doi: 10.1038/nbt.2839
SSID ssj0051444
ssj0005056
Score 2.6354613
Snippet Abstract Motivation The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results....
The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools...
Motivation: The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results....
SourceID pubmedcentral
hal
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3148
SubjectTerms Biochemistry, Molecular Biology
Computer Science
Genomics
Life Sciences
Original Papers
Title Proline: an efficient and user-friendly software suite for large-scale proteomics
URI https://www.ncbi.nlm.nih.gov/pubmed/32096818
https://www.proquest.com/docview/2364031556
https://hal.science/hal-02551168
https://pubmed.ncbi.nlm.nih.gov/PMC7214047
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF5UEHwRb-PFKj4JS7NJNkl9E7EUEQ-w0LewJwollaZV_PfO5KhGEPVxk-ywzOzxTXbmG0JOZQheQ-Qs60qjWCSdZoprn2kNs9nx2IamjPK9jfuD6HoohguEN7kw36_wu2FHPY9rElEkLu6oqZSAimHXhZMY2fIf74afQR0-UsNUDYACUVXTFqm9Uz9sEoR_lNk6mxafMDKylfX2BXx-j6H8cij11shqjSbpRWX-dbJg8w2yXNWXfN8kD_dlTR57TmVObUkWAXKgYSj-nGAOSY7N6J0WsBm_yYmlxQwgKIUh0xGGiLMCTGhpSeaA6cvFFhn0rh4v-6yuocB01PWnTEju69AJExhuTKp84WJlEuGk4V1dZu46QIFCA65LjYnBRlomqdLOyAigU7hNlvJxbncJFUrpOAZ8o8Fnc-B9yoTLwEnn29QoKzwiGu1luiYYxzoXo6y66A6zttazWuse6cz7vVQUG7_2OAHjzD9Ghuz-xU2Gz9BF4jxOX7lHzsB2f5Z43Jg4g_WFlyYyt-NZkSHBPlbCELFHdiqTz2WGATiAKfZOWpOhNbL2m_z5qeTwBscb1kiy959B7pOVAL39MtzygCxNJzN7CJBoqo7KVfAB1H0Q5g
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proline%3A+an+efficient+and+user-friendly+software+suite+for+large-scale+proteomics&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Bouyssi%C3%A9%2C+David&rft.au=Hesse%2C+Anne-Marie&rft.au=Mouton-Barbosa%2C+Emmanuelle&rft.au=Rompais%2C+Magali&rft.date=2020-05-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=36&rft.issue=10&rft.spage=3148&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa118&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon