Proline: an efficient and user-friendly software suite for large-scale proteomics
Abstract Motivation The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processi...
Saved in:
Published in | Bioinformatics Vol. 36; no. 10; pp. 3148 - 3155 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.05.2020
Oxford University Press (OUP) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Motivation
The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study.
Results
Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline’s ability to provide high quantification accuracy in a user-friendly interface for datasets of any size.
Availability and implementation
Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client–server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
AbstractList | The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study.
Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size.
Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client-server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads.
Supplementary data are available at Bioinformatics online. Abstract Motivation The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study. Results Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline’s ability to provide high quantification accuracy in a user-friendly interface for datasets of any size. Availability and implementation Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client–server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads. Supplementary information Supplementary data are available at Bioinformatics online. The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study.MOTIVATIONThe proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study.Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size.RESULTSHere, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size.Proline is available for Windows and Linux under CECILL open-source license. It can be deployed in client-server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads.AVAILABILITY AND IMPLEMENTATIONProline is available for Windows and Linux under CECILL open-source license. It can be deployed in client-server mode or in standalone mode at http://proline.profiproteomics.fr/#downloads.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online. Motivation: The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools or algorithms exist, very few consider the importance of combining, in a unique software environment, efficient processing algorithms and a data management system to process and curate hundreds of datasets associated with a single proteomics study. Results: Here, we present Proline, a robust software suite for analysis of MS-based proteomics data, which collects, processes and allows visualization and publication of proteomics datasets. We illustrate its ease of use for various steps in the validation and quantification workflow, its data curation capabilities and its computational efficiency. The DDA label-free quantification workflow efficiency was assessed by comparing results obtained with Proline to those obtained with a widely used software using a spiked-in sample. This assessment demonstrated Proline's ability to provide high quantification accuracy in a user-friendly interface for datasets of any size. Availability and implementation: Proline is available for Windows and Linux under CECILL open-source license. |
Author | Hesse, Anne-Marie Bouyssié, David Burlet-Schiltz, Odile Garin, Jerome Rompais, Magali Carapito, Christine Couté, Yohann Cianférani, Sarah Kalaitzakis, Andrea Mouton-Barbosa, Emmanuelle Gonzalez de Peredo, Anne Romdhani, Aymen Burel, Alexandre Dupierris, Véronique Macron, Charlotte Menetrey, Jean-Philippe Poisat, Julie Bruley, Christophe |
AuthorAffiliation | b3 Laboratoire de Spectrométrie de Masse BioOrganique , Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France b1 Institut de Pharmacologie et de Biologie Structurale (IPBS) , Université de Toulouse, CNRS, UPS, Toulouse, France b2 Université Grenoble Alpes , Inserm, CEA, IRIG, BGE, Grenoble 38000, France |
AuthorAffiliation_xml | – name: b2 Université Grenoble Alpes , Inserm, CEA, IRIG, BGE, Grenoble 38000, France – name: b3 Laboratoire de Spectrométrie de Masse BioOrganique , Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France – name: b1 Institut de Pharmacologie et de Biologie Structurale (IPBS) , Université de Toulouse, CNRS, UPS, Toulouse, France |
Author_xml | – sequence: 1 givenname: David surname: Bouyssié fullname: Bouyssié, David organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 2 givenname: Anne-Marie surname: Hesse fullname: Hesse, Anne-Marie organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France – sequence: 3 givenname: Emmanuelle surname: Mouton-Barbosa fullname: Mouton-Barbosa, Emmanuelle organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 4 givenname: Magali surname: Rompais fullname: Rompais, Magali organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France – sequence: 5 givenname: Charlotte surname: Macron fullname: Macron, Charlotte organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France – sequence: 6 givenname: Christine surname: Carapito fullname: Carapito, Christine organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France – sequence: 7 givenname: Anne surname: Gonzalez de Peredo fullname: Gonzalez de Peredo, Anne organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 8 givenname: Yohann surname: Couté fullname: Couté, Yohann organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France – sequence: 9 givenname: Véronique surname: Dupierris fullname: Dupierris, Véronique organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France – sequence: 10 givenname: Alexandre surname: Burel fullname: Burel, Alexandre organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France – sequence: 11 givenname: Jean-Philippe surname: Menetrey fullname: Menetrey, Jean-Philippe organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France – sequence: 12 givenname: Andrea surname: Kalaitzakis fullname: Kalaitzakis, Andrea organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France – sequence: 13 givenname: Julie surname: Poisat fullname: Poisat, Julie organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 14 givenname: Aymen surname: Romdhani fullname: Romdhani, Aymen organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France – sequence: 15 givenname: Odile surname: Burlet-Schiltz fullname: Burlet-Schiltz, Odile organization: Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France – sequence: 16 givenname: Sarah surname: Cianférani fullname: Cianférani, Sarah organization: Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC, Strasbourg 67087, UMR 7178, France – sequence: 17 givenname: Jerome surname: Garin fullname: Garin, Jerome organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France – sequence: 18 givenname: Christophe surname: Bruley fullname: Bruley, Christophe email: christophe.bruley@cea.fr organization: Université Grenoble Alpes, Inserm, CEA, IRIG, BGE, Grenoble 38000, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32096818$$D View this record in MEDLINE/PubMed https://hal.science/hal-02551168$$DView record in HAL |
BookMark | eNqNUUtrFTEUDlKxD_0LZZa6GJuT18yICKWoLVywBV2HTB5tJDO5JplK_7253NvSdlNXyTn5XuQ7RHtznC1Cx4A_Ah7oyeijn11Mkype55OxKAXQv0IHwARuCebDXr1T0bWsx3QfHeb8G2MOjLE3aJ8SPIge-gN0dZli8LP91Ki5sc557e1c6mCaJdvUulRnE-6aHF35q5Jt8uKLbap1E1S6tm3WKthmnWKxcapZ3qLXToVs3-3OI_Tr29efZ-ft6sf3i7PTVavZgEvLFWBNHTfEgDH9iLkTo-m4UwYGjTkB4jBQrgUXvTFCa6pV14_aGcUGMtAj9GWru17GyRpdYycV5Dr5SaU7GZWXT19mfyOv463sCDDMuirwYStw84x2frqSmx0mnAOI_hYq9v3OLMU_i81FTj5rG4KabVyyJFQwTIFzUaHHj3M9KN__eQV83gJ0ijkn66T2pdYYNzF9kIDlpmL5tGK5q7jSxTP6vcOLRNgS47L-X84_7YTGfQ |
CitedBy_id | crossref_primary_10_1186_s40364_024_00583_z crossref_primary_10_1083_jcb_202307074 crossref_primary_10_1038_s41467_024_52659_x crossref_primary_10_1242_jcs_250902 crossref_primary_10_3389_fmolb_2022_900947 crossref_primary_10_3390_foods10020280 crossref_primary_10_7554_eLife_95191_3 crossref_primary_10_1016_j_pep_2023_106325 crossref_primary_10_1021_acsinfecdis_2c00049 crossref_primary_10_1038_s41467_025_57809_3 crossref_primary_10_1074_jbc_RA120_013299 crossref_primary_10_3389_fimmu_2023_1108682 crossref_primary_10_3390_cells12060844 crossref_primary_10_7554_eLife_96831_3 crossref_primary_10_1093_nar_gkad487 crossref_primary_10_3389_fgene_2021_635814 crossref_primary_10_1038_s41564_024_01657_2 crossref_primary_10_1016_j_omton_2024_200887 crossref_primary_10_1038_s41467_024_46601_4 crossref_primary_10_1016_j_biortech_2021_125340 crossref_primary_10_1021_acschembio_4c00820 crossref_primary_10_7554_eLife_88207_3 crossref_primary_10_7554_eLife_88207 crossref_primary_10_1128_msystems_00750_24 crossref_primary_10_1186_s12985_024_02349_3 crossref_primary_10_1007_s00395_020_00835_7 crossref_primary_10_1016_j_ijpddr_2024_100565 crossref_primary_10_1016_j_jpha_2023_03_009 crossref_primary_10_1093_plphys_kiab529 crossref_primary_10_1038_s41586_023_06713_1 crossref_primary_10_1186_s12915_021_01213_y crossref_primary_10_1038_s42003_021_01801_2 crossref_primary_10_1371_journal_ppat_1011417 crossref_primary_10_3390_microorganisms8060820 crossref_primary_10_1038_s41467_024_48711_5 crossref_primary_10_1002_1873_3468_14740 crossref_primary_10_1021_acsinfecdis_1c00525 crossref_primary_10_2139_ssrn_3967675 crossref_primary_10_26508_lsa_202201429 crossref_primary_10_1038_s41598_024_65558_4 crossref_primary_10_3390_jof7070568 crossref_primary_10_1038_s41597_021_01095_3 crossref_primary_10_26508_lsa_202101140 crossref_primary_10_3390_biology11111687 crossref_primary_10_1128_aem_01553_21 crossref_primary_10_1159_000543633 crossref_primary_10_1038_s41366_024_01705_1 crossref_primary_10_7554_eLife_77607 crossref_primary_10_1002_glia_23884 crossref_primary_10_1016_j_jmb_2020_10_024 crossref_primary_10_1096_fj_202202018RR crossref_primary_10_1084_jem_20211295 crossref_primary_10_1002_1878_0261_13088 crossref_primary_10_1038_s41467_022_35453_5 crossref_primary_10_3390_molecules25051125 crossref_primary_10_3390_v14092030 crossref_primary_10_1021_acs_analchem_0c02270 crossref_primary_10_1038_s41467_022_33799_4 crossref_primary_10_1038_s41467_024_53768_3 crossref_primary_10_1007_s11103_020_01105_9 crossref_primary_10_1016_j_biortech_2021_124866 crossref_primary_10_1038_s41598_023_31769_4 crossref_primary_10_1038_s41467_024_52906_1 crossref_primary_10_1016_j_isci_2022_104596 crossref_primary_10_1016_j_jhepr_2021_100297 crossref_primary_10_1126_sciadv_abg9055 crossref_primary_10_1073_pnas_2319951121 crossref_primary_10_1093_nar_gkae045 crossref_primary_10_1038_s41598_020_79611_5 crossref_primary_10_7554_eLife_69162 crossref_primary_10_1016_j_isci_2024_109224 crossref_primary_10_1038_s41598_023_27959_9 crossref_primary_10_3390_cancers13235900 crossref_primary_10_1371_journal_ppat_1010020 crossref_primary_10_1186_s13287_023_03425_1 crossref_primary_10_1111_nph_20276 crossref_primary_10_1111_1462_2920_15372 crossref_primary_10_1038_s41598_021_00983_3 crossref_primary_10_1002_pmic_202200013 crossref_primary_10_1016_j_antiviral_2020_104861 crossref_primary_10_3390_microorganisms10112302 crossref_primary_10_1038_s41421_023_00644_x crossref_primary_10_1021_acs_jproteome_3c00243 crossref_primary_10_3390_ijms222011071 crossref_primary_10_1094_PHYTOFR_12_22_0149_R crossref_primary_10_1111_febs_16737 crossref_primary_10_1021_acs_jproteome_3c00636 crossref_primary_10_1038_s41598_024_69152_6 crossref_primary_10_3390_cells10113119 crossref_primary_10_1093_ismejo_wraf002 crossref_primary_10_1128_mbio_02375_22 crossref_primary_10_1158_2159_8290_CD_21_0205 crossref_primary_10_1002_iub_2891 crossref_primary_10_1093_nar_gkac878 crossref_primary_10_1016_j_celrep_2023_112579 crossref_primary_10_1093_nar_gkac759 crossref_primary_10_3390_ijms23115995 crossref_primary_10_1021_acs_jproteome_2c00812 crossref_primary_10_1186_s13046_023_02909_5 crossref_primary_10_1002_pro_4964 crossref_primary_10_1007_s00401_022_02468_7 crossref_primary_10_3390_ijms23179922 crossref_primary_10_1261_rna_078121_120 crossref_primary_10_26508_lsa_202101334 crossref_primary_10_1016_j_jhepr_2023_100913 crossref_primary_10_1242_dev_201755 crossref_primary_10_7554_eLife_95191 crossref_primary_10_1002_cbic_202400187 crossref_primary_10_1016_j_jbc_2022_101987 crossref_primary_10_1021_acs_jproteome_0c00192 crossref_primary_10_1093_femsml_uqae006 crossref_primary_10_3390_cells13231966 crossref_primary_10_7554_eLife_61254 crossref_primary_10_1021_acssynbio_1c00115 crossref_primary_10_3389_fmicb_2022_1029828 crossref_primary_10_1038_s41598_024_83713_9 crossref_primary_10_1186_s13068_021_01981_3 crossref_primary_10_3390_biomedicines10030569 crossref_primary_10_3389_fmicb_2023_1254728 crossref_primary_10_1002_pmic_202000152 crossref_primary_10_1016_j_neuron_2021_10_033 crossref_primary_10_1186_s13059_022_02701_2 crossref_primary_10_1038_s41598_024_60118_2 crossref_primary_10_1038_s41467_021_23596_w crossref_primary_10_1128_mbio_02211_23 crossref_primary_10_1038_s41467_023_35951_0 crossref_primary_10_3389_fphys_2020_569329 crossref_primary_10_1093_bioinformatics_btad461 crossref_primary_10_7554_eLife_96831 crossref_primary_10_1021_acs_analchem_0c00328 crossref_primary_10_1126_sciadv_adh0140 crossref_primary_10_1038_s41598_021_91258_4 crossref_primary_10_1111_nph_17359 crossref_primary_10_15252_embr_202256316 |
Cites_doi | 10.1074/mcp.R112.025163 10.1371/journal.pone.0188059 10.1038/nbt.3109 10.1038/nbt.1511 10.1074/mcp.R113.027797 10.1021/acs.jproteome.5b00853 10.1074/mcp.M110.003830 10.1021/pr700758r 10.1074/mcp.O114.039115 10.1021/acs.jproteome.6b00881 10.1016/j.jprot.2015.11.011 10.1038/nature19949 10.1038/ni.3693 10.1002/pmic.200900402 10.1152/physiolgenomics.00298.2007 10.1002/pmic.200700694 10.1074/mcp.M113.031591 10.1074/mcp.R500012-MCP200 10.1016/j.molcel.2013.01.029 10.1021/pr0606880 10.1021/ac0341261 10.1038/nbt.2839 |
ContentType | Journal Article |
Copyright | The Author(s) 2020. Published by Oxford University Press. 2020 The Author(s) 2020. Published by Oxford University Press. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2020. Published by Oxford University Press. 2020 – notice: The Author(s) 2020. Published by Oxford University Press. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | TOX AAYXX CITATION NPM 7X8 1XC VOOES 5PM |
DOI | 10.1093/bioinformatics/btaa118 |
DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Computer Science |
EISSN | 1460-2059 1367-4811 |
EndPage | 3155 |
ExternalDocumentID | PMC7214047 oai_HAL_hal_02551168v1 32096818 10_1093_bioinformatics_btaa118 10.1093/bioinformatics/btaa118 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: ANR-10-INBS-08 |
GroupedDBID | -~X .2P 5GY AAMVS ABPTD ACGFS ADZXQ ALMA_UNASSIGNED_HOLDINGS BCRHZ F5P HW0 KOP Q5Y RD5 ROX TLC TN5 TOX WH7 --- -E4 .DC .I3 0R~ 23N 2WC 4.4 48X 53G 5WA 70D AAIJN AAIMJ AAJKP AAKPC AAMDB AAOGV AAPQZ AAPXW AAUQX AAVAP AAVLN AAYXX ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABQLI ABWST ABXVV ABZBJ ACIWK ACPRK ACUFI ACUXJ ACYTK ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADMLS ADOCK ADPDF ADRDM ADRTK ADVEK ADYVW ADZTZ AECKG AEGPL AEJOX AEKKA AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIJHB AJEEA AJEUX AKHUL AKWXX ALTZX ALUQC AMNDL APIBT APWMN ARIXL ASPBG AVWKF AXUDD AYOIW AZVOD BAWUL BAYMD BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EMOBN F9B FEDTE FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HZ~ IOX J21 JXSIZ KAQDR KQ8 KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. R44 RNS ROL RPM RUSNO RW1 RXO SV3 TEORI TJP TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ~91 ~KM ADRIX AFXEN M49 NPM 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c490t-5a10c3f5d2d1dd8b05f6bd75fad19c05212f0135c6568dd6cc3ca78bcfda49293 |
IEDL.DBID | TOX |
ISSN | 1367-4803 1367-4811 |
IngestDate | Thu Aug 21 18:22:09 EDT 2025 Tue Jun 17 07:51:50 EDT 2025 Thu Jul 10 22:49:03 EDT 2025 Wed Feb 19 02:31:11 EST 2025 Tue Jul 01 02:33:51 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 Wed Aug 28 03:20:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2020. Published by Oxford University Press. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-5a10c3f5d2d1dd8b05f6bd75fad19c05212f0135c6568dd6cc3ca78bcfda49293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC7214047 The authors wish it to be known that, in their opinion, David Bouyssié, Anne-Marie Hesse and Emmanuelle Mouton-Barbosa should be regarded as Joint First Authors. |
ORCID | 0000-0003-3062-9646 0000-0003-3896-6196 0000-0002-3606-2356 0000-0002-0847-4759 0000-0002-7793-4560 0000-0001-6152-6311 0000-0003-4013-4129 0000-0002-0079-319X |
OpenAccessLink | https://dx.doi.org/10.1093/bioinformatics/btaa118 |
PMID | 32096818 |
PQID | 2364031556 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214047 hal_primary_oai_HAL_hal_02551168v1 proquest_miscellaneous_2364031556 pubmed_primary_32096818 crossref_citationtrail_10_1093_bioinformatics_btaa118 crossref_primary_10_1093_bioinformatics_btaa118 oup_primary_10_1093_bioinformatics_btaa118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinformatics |
PublicationTitleAlternate | Bioinformatics |
PublicationYear | 2020 |
Publisher | Oxford University Press Oxford University Press (OUP) |
Publisher_xml | – name: Oxford University Press – name: Oxford University Press (OUP) |
References | Mann (2023013112032326100_btaa118-B13) 2013; 49 Mueller (2023013112032326100_btaa118-B14) 2008; 7 Nahnsen (2023013112032326100_btaa118-B15) 2013; 12 America (2023013112032326100_btaa118-B2) 2008; 8 Nesvizhskii (2023013112032326100_btaa118-B18) 2003; 75 Vizcaíno (2023013112032326100_btaa118-B25) 2014; 32 Vaudel (2023013112032326100_btaa118-B23) 2015; 33 Vizcaíno (2023013112032326100_btaa118-B24) 2009; 9 Choi (2023013112032326100_btaa118-B5) 2017; 16 Shteynberg (2023013112032326100_btaa118-B22) 2013; 12 Cox (2023013112032326100_btaa118-B6) 2008; 26 Rieckmann (2023013112032326100_btaa118-B20) 2017; 18 Cox (2023013112032326100_btaa118-B8) 2014; 13 Handy (2023013112032326100_btaa118-B11) 2017; 12 Neuhauser (2023013112032326100_btaa118-B2225716) 2013 Savitski (2023013112032326100_btaa118-B21) 2011; 10 Doll (2023013112032326100_btaa118-B10) 2017; 8, 1469 Hesse (2023013112032326100_btaa118-B12) 2016; 15 Andreev (2023013112032326100_btaa118-B3) 2007; 6 Aebersold (2023013112032326100_btaa118-B1) 2016; 537 Bouyssié (2023013112032326100_btaa118-B4) 2015; 14 Deutsch (2023013112032326100_btaa118-B9) 2008; 33 Ramus (2023013112032326100_btaa118-B19) 2016; 132 Nesvizhskii (2023013112032326100_btaa118-B17) 2005; 4 |
References_xml | – volume: 12 start-page: 549 year: 2013 ident: 2023013112032326100_btaa118-B15 article-title: Tools for label-free peptide quantification publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.R112.025163 – volume: 12 start-page: e0188059 year: 2017 ident: 2023013112032326100_btaa118-B11 article-title: Fast, axis-agnostic, dynamically summarized storage and retrieval for mass spectrometry data publication-title: PLoS One doi: 10.1371/journal.pone.0188059 – volume: 33 start-page: 22 year: 2015 ident: 2023013112032326100_btaa118-B23 article-title: PeptideShaker enables reanalysis of MS-derived proteomics data sets publication-title: Nat. Biotechnol doi: 10.1038/nbt.3109 – volume: 26 start-page: 1367 year: 2008 ident: 2023013112032326100_btaa118-B6 article-title: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification publication-title: Nat. Biotechnol doi: 10.1038/nbt.1511 – volume: 12 start-page: 2383 year: 2013 ident: 2023013112032326100_btaa118-B22 article-title: Combining results of multiple search engines in proteomics publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.R113.027797 – volume: 15 start-page: 3896 year: 2016 ident: 2023013112032326100_btaa118-B12 article-title: hEIDI: an intuitive application tool to organize and treat large-scale proteomics data publication-title: J. Proteome Res doi: 10.1021/acs.jproteome.5b00853 – volume: 10 year: 2011 ident: 2023013112032326100_btaa118-B21 article-title: Confident phosphorylation site localization using the mascot delta score publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M110.003830 – volume: 7 start-page: 51 year: 2008 ident: 2023013112032326100_btaa118-B14 article-title: An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data publication-title: J. Proteome Res doi: 10.1021/pr700758r – volume: 14 start-page: 771 year: 2015 ident: 2023013112032326100_btaa118-B4 article-title: mzDB: a file format using multiple indexing strategies for the efficient analysis of large LC-MS/MS and SWATH-MS data sets publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O114.039115 – volume: 16 start-page: 945 year: 2017 ident: 2023013112032326100_btaa118-B5 article-title: ABRF Proteome Informatics Research Group (iPRG) 2015 Study: detection of differentially abundant proteins in label-free quantitative LC-MS/MS Experiments publication-title: J. Proteome Res doi: 10.1021/acs.jproteome.6b00881 – volume: 132 start-page: 51 year: 2016 ident: 2023013112032326100_btaa118-B19 article-title: Benchmarking quantitative label-free LC-MS data processing workflows using a complex spiked proteomic standard dataset publication-title: J. Proteomics doi: 10.1016/j.jprot.2015.11.011 – volume: 537 start-page: 347 year: 2016 ident: 2023013112032326100_btaa118-B1 article-title: Mass-spectrometric exploration of proteome structure and function publication-title: Nature doi: 10.1038/nature19949 – volume: 8, 1469 year: 2017 ident: 2023013112032326100_btaa118-B10 article-title: Region and cell-type resolved quantitative proteomic map of the human heart publication-title: Nat. Commun – volume: 18 start-page: 583 year: 2017 ident: 2023013112032326100_btaa118-B20 article-title: Social network architecture of human immune cells unveiled by quantitative proteomics publication-title: Nat. Immunol doi: 10.1038/ni.3693 – volume: 9 start-page: 4276 year: 2009 ident: 2023013112032326100_btaa118-B24 article-title: A guide to the proteomics identifications database proteomics data repository publication-title: Proteomics doi: 10.1002/pmic.200900402 – volume: 33 start-page: 18 year: 2008 ident: 2023013112032326100_btaa118-B9 article-title: Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00298.2007 – volume: 8 start-page: 731 year: 2008 ident: 2023013112032326100_btaa118-B2 article-title: Comparative LC-MS: a landscape of peaks and valleys publication-title: Proteomics doi: 10.1002/pmic.200700694 – volume: 13 start-page: 2513 year: 2014 ident: 2023013112032326100_btaa118-B8 article-title: Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.031591 – start-page: 2858 year: 2013 ident: 2023013112032326100_btaa118-B2225716 article-title: High performance computational analysis of large-scale proteome data sets to assess incremental contribution to coverage of the human genome – volume: 4 start-page: 1419 year: 2005 ident: 2023013112032326100_btaa118-B17 article-title: Interpretation of shotgun proteomic data: the protein inference problem publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.R500012-MCP200 – volume: 49 start-page: 583 year: 2013 ident: 2023013112032326100_btaa118-B13 article-title: The coming age of complete, accurate, and ubiquitous proteomes publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.01.029 – volume: 6 start-page: 2186 year: 2007 ident: 2023013112032326100_btaa118-B3 article-title: A new algorithm using cross-assignment for label-free quantitation with LC-LTQ-FT MS publication-title: J. Proteome Res doi: 10.1021/pr0606880 – volume: 75 start-page: 4646 year: 2003 ident: 2023013112032326100_btaa118-B18 article-title: A statistical model for identifying proteins by tandem mass spectrometry publication-title: Anal. Chem doi: 10.1021/ac0341261 – volume: 32 start-page: 223 year: 2014 ident: 2023013112032326100_btaa118-B25 article-title: ProteomeXchange provides globally coordinated proteomics data submission and dissemination publication-title: Nat. Biotechnol doi: 10.1038/nbt.2839 |
SSID | ssj0051444 ssj0005056 |
Score | 2.6354613 |
Snippet | Abstract
Motivation
The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results.... The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results. Although many tools... Motivation: The proteomics field requires the production and publication of reliable mass spectrometry-based identification and quantification results.... |
SourceID | pubmedcentral hal proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3148 |
SubjectTerms | Biochemistry, Molecular Biology Computer Science Genomics Life Sciences Original Papers |
Title | Proline: an efficient and user-friendly software suite for large-scale proteomics |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32096818 https://www.proquest.com/docview/2364031556 https://hal.science/hal-02551168 https://pubmed.ncbi.nlm.nih.gov/PMC7214047 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF5UEHwRb-PFKj4JS7NJNkl9E7EUEQ-w0LewJwollaZV_PfO5KhGEPVxk-ywzOzxTXbmG0JOZQheQ-Qs60qjWCSdZoprn2kNs9nx2IamjPK9jfuD6HoohguEN7kw36_wu2FHPY9rElEkLu6oqZSAimHXhZMY2fIf74afQR0-UsNUDYACUVXTFqm9Uz9sEoR_lNk6mxafMDKylfX2BXx-j6H8cij11shqjSbpRWX-dbJg8w2yXNWXfN8kD_dlTR57TmVObUkWAXKgYSj-nGAOSY7N6J0WsBm_yYmlxQwgKIUh0xGGiLMCTGhpSeaA6cvFFhn0rh4v-6yuocB01PWnTEju69AJExhuTKp84WJlEuGk4V1dZu46QIFCA65LjYnBRlomqdLOyAigU7hNlvJxbncJFUrpOAZ8o8Fnc-B9yoTLwEnn29QoKzwiGu1luiYYxzoXo6y66A6zttazWuse6cz7vVQUG7_2OAHjzD9Ghuz-xU2Gz9BF4jxOX7lHzsB2f5Z43Jg4g_WFlyYyt-NZkSHBPlbCELFHdiqTz2WGATiAKfZOWpOhNbL2m_z5qeTwBscb1kiy959B7pOVAL39MtzygCxNJzN7CJBoqo7KVfAB1H0Q5g |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proline%3A+an+efficient+and+user-friendly+software+suite+for+large-scale+proteomics&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Bouyssi%C3%A9%2C+David&rft.au=Hesse%2C+Anne-Marie&rft.au=Mouton-Barbosa%2C+Emmanuelle&rft.au=Rompais%2C+Magali&rft.date=2020-05-01&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=36&rft.issue=10&rft.spage=3148&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtaa118&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon |