Automated multi-subject fiber clustering of mouse brain using dominant sets
Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structur...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 8; p. 87 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
12.01.2015
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups. |
---|---|
AbstractList | Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise white matter fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same white matter bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant white matter structures. The approach serves the final goal of detecting white matter bundles at a population level, thus paving the way to the study of the white matter organization across groups. Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups. Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups.Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups. |
Author | Murino, Vittorio Sona, Diego Bifone, Angelo Dodero, Luca Gozzi, Alessandro Vascon, Sebastiano |
AuthorAffiliation | 3 NeuroInformatics Laboratory (NiLab), Fondazione Bruno Kessler Trento, Italy 1 Pattern Analysis and Computer Vision Department (PAVIS), Istituto Italiano di Tecnologia Genova, Italy 2 Magnetic Resonance Imaging Department, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy |
AuthorAffiliation_xml | – name: 1 Pattern Analysis and Computer Vision Department (PAVIS), Istituto Italiano di Tecnologia Genova, Italy – name: 3 NeuroInformatics Laboratory (NiLab), Fondazione Bruno Kessler Trento, Italy – name: 2 Magnetic Resonance Imaging Department, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy |
Author_xml | – sequence: 1 givenname: Luca surname: Dodero fullname: Dodero, Luca – sequence: 2 givenname: Sebastiano surname: Vascon fullname: Vascon, Sebastiano – sequence: 3 givenname: Vittorio surname: Murino fullname: Murino, Vittorio – sequence: 4 givenname: Angelo surname: Bifone fullname: Bifone, Angelo – sequence: 5 givenname: Alessandro surname: Gozzi fullname: Gozzi, Alessandro – sequence: 6 givenname: Diego surname: Sona fullname: Sona, Diego |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25628561$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktr3TAQhUVJaR7tvqti6KYb3-hta1MIoY-QQDfJWugxvtXFllJJLvTf1743KUmgK4nRmW8Oo3OKjmKKgNB7gjeM9ep8iCEOG4oJ32CM--4VOiFS0lYQJY-e3I_RaSk7jCWVonuDjqmQtBeSnKDri7mmyVTwzTSPNbRltjtwtRmChdy4cS4VcojbJg3NlOYCjc0mxGYua9GnKUQTa1Oglrfo9WDGAu8ezjN09_XL7eX39ubHt6vLi5vWcYVrK_oeCKaAlWPWAKZWdc6CtIQbIcCxXljAlgPpfeelcs5hodQwONkpRSw7Q1cHrk9mp-9zmEz-o5MJel9IeatNrsGNoHs_eE56cJ4B99zbzhMH0llv3DJCLqzPB9b9bCfwDmLNZnwGff4Sw0-9Tb81pwp3jCyATw-AnH7NUKqeQnEwjibCsi5NpKCcUtKtsz6-kO7SnOOyKk2pEpxJzNii-vDU0T8rj3-2CORB4HIqJcOgXaimhrQaDKMmWK_h0Ptw6DUceh-OpRG_aHxk_7flL_gbv4s |
CitedBy_id | crossref_primary_10_1002_hbm_26210 crossref_primary_10_1016_j_patcog_2020_107318 crossref_primary_10_1016_j_compbiomed_2017_01_016 crossref_primary_10_1007_s12021_020_09488_2 crossref_primary_10_3389_fninf_2021_727859 crossref_primary_10_1371_journal_pone_0133337 crossref_primary_10_3724_SP_J_1089_2022_19221 |
Cites_doi | 10.1371/journal.pone.0083847 10.1109/TMI.2007.906785 10.1016/j.neuroimage.2014.08.021 10.1002/1531-8249(199902)45:2265::AID-ANA213.0.CO;2-3 10.3389/fnins.2012.00175 10.1371/journal.pone.0076655 10.1016/j.neuroimage.2009.08.017 10.1016/j.cortex.2008.05.004 10.1016/j.neuroimage.2004.07.037 10.1016/j.neuroimage.2004.07.051 10.1002/nbm.783 10.1109/VISUAL.2005.1532779 10.1109/CVPR.2003.1211348 10.1126/science.1136800 10.1109/TMI.2010.2067222 10.1109/EMBC.2013.6609443 10.1007/978-3-642-24471-1_19 10.1016/j.neuroimage.2012.02.071 10.1016/j.neuroimage.2009.03.077 10.1109/PRNI.2013.62 10.1007/978-3-540-30135-6_45 10.1109/TPAMI.2007.250608 10.1016/j.neuroimage.2011.11.014 10.1016/j.neuroimage.2007.02.049 10.1016/j.neuroimage.2013.09.050 10.1109/TVCG.2008.52 10.1016/j.neuroimage.2010.10.028 10.1016/j.neuroimage.2010.07.050 10.1172/JCI70372 |
ContentType | Journal Article |
Copyright | 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2015 Dodero, Vascon, Murino, Bifone, Gozzi and Sona. 2015 |
Copyright_xml | – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2015 Dodero, Vascon, Murino, Bifone, Gozzi and Sona. 2015 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fninf.2014.00087 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_8dfd418ecd3e4d4db7d1ce6cbdac0b46 PMC4290731 25628561 10_3389_fninf_2014_00087 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-588e102e09c3bae02b97cbe6b14a55ec385be0b4e18d7d69ccc0599ffc67991b3 |
IEDL.DBID | DOA |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:29:00 EDT 2025 Thu Aug 21 13:45:05 EDT 2025 Fri Jul 11 15:43:19 EDT 2025 Fri Jul 25 12:00:52 EDT 2025 Thu Jan 02 22:16:39 EST 2025 Tue Jul 01 01:13:18 EDT 2025 Thu Apr 24 23:00:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | white matter diffusion magnetic resonance imaging tractography fibers segmentation multi-subject dominant sets DTI clustering |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-588e102e09c3bae02b97cbe6b14a55ec385be0b4e18d7d69ccc0599ffc67991b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors have contributed equally to this work. Reviewed by: Hidetoshi Ikeno, University of Hyogo, Japan; Zhuo Wang, University of Southern California, USA This article was submitted to the journal Frontiers in Neuroinformatics. Edited by: Mihail Bota, University of Southern California, USA |
OpenAccessLink | https://doaj.org/article/8dfd418ecd3e4d4db7d1ce6cbdac0b46 |
PMID | 25628561 |
PQID | 2295436033 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8dfd418ecd3e4d4db7d1ce6cbdac0b46 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4290731 proquest_miscellaneous_1652422176 proquest_journals_2295436033 pubmed_primary_25628561 crossref_citationtrail_10_3389_fninf_2014_00087 crossref_primary_10_3389_fninf_2014_00087 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-12 |
PublicationDateYYYYMMDD | 2015-01-12 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2015 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Li (B12) 2010; 49 Basser (B1) 2002; 15 Olivetti (B21) 2011 Paxinos (B24) 2004 Pavan (B22) 2003 Wang (B32) 2011; 54 Tucci (B29) 2014; 124 O'Donnell (B20) 2012; 60 Ros (B25) 2013; 8 Close (B4) 2009; 47 Frey (B8) 2007; 315 Tournier (B28) 2004; 23 Guevara (B10) 2011; 54 Mori (B16) 2005; 27 Guevara (B11) 2012; 61 Wakana (B31) 2007; 36 Zhang (B33) 2008; 14 Garyfallidis (B9) 2012; 6 Demir (B5) 2013 Moberts (B14) 2005 Brun (B2) 2004 Dodero (B6) 2013a; 8 Catani (B3) 2008; 44 O'Donnell (B18) 2007; 26 Sforazzini (B26) 2013; 87 Ng (B17) 2002; 2 Mori (B15) 1999; 45 Mayer (B13) 2011; 30 O'Donnell (B19) 2006; 27 Pavan (B23) 2007; 29 Tunà (B30) 2014; 102 Dodero (B7) 2013b Smith (B27) 2004; 23 Suppl. 1 24109630 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:85-8 16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6 24386292 - PLoS One. 2013 Dec 30;8(12):e83847 12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67 20678578 - Neuroimage. 2011 Jan 1;54(1):290-302 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 20965259 - Neuroimage. 2011 Feb 1;54(3):1975-93 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 24080504 - Neuroimage. 2014 Feb 15;87:403-15 17218491 - Science. 2007 Feb 16;315(5814):972-6 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99 22155376 - Neuroimage. 2012 Mar;60(1):456-70 17108392 - IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):167-72 24614104 - J Clin Invest. 2014 Apr;124(4):1468-82 18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53 20716499 - IEEE Trans Med Imaging. 2011 Jan;30(1):131-45 25134977 - Neuroimage. 2014 Nov 15;102 Pt 2:596-607 20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375 23248578 - Front Neurosci. 2012 Dec 11;6:175 15528117 - Neuroimage. 2004 Nov;23(3):1176-85 17481925 - Neuroimage. 2007 Jul 1;36(3):630-44 19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58 18619589 - Cortex. 2008 Sep;44(8):1105-32 24146902 - PLoS One. 2013 Oct 16;8(10):e76655 19361565 - Neuroimage. 2009 Oct 1;47(4):1288-300 |
References_xml | – volume: 8 start-page: e83847 year: 2013 ident: B25 article-title: Atlas-guided cluster analysis of large tractography datasets publication-title: PLoS ONE doi: 10.1371/journal.pone.0083847 – volume: 26 start-page: 1562 year: 2007 ident: B18 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2007.906785 – volume: 102 start-page: 596 year: 2014 ident: B30 article-title: Automated tract extraction via atlas based adaptive clustering publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.021 – volume: 45 start-page: 265 year: 1999 ident: B15 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Ann. Neurol doi: 10.1002/1531-8249(199902)45:2265::AID-ANA213.0.CO;2-3 – volume: 6 issue: 175 year: 2012 ident: B9 article-title: Quickbundles, a method for tractography simplification publication-title: Front. Neurosci doi: 10.3389/fnins.2012.00175 – volume: 8 start-page: e76655 year: 2013a ident: B6 article-title: Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the btbr t+tf/j mouse model of autism publication-title: PLoS ONE doi: 10.1371/journal.pone.0076655 – volume: 49 start-page: 1249 year: 2010 ident: B12 article-title: A hybrid approach to automatic clustering of white matter fibers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.08.017 – volume: 44 start-page: 1105 year: 2008 ident: B3 article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections publication-title: Cortex doi: 10.1016/j.cortex.2008.05.004 – volume: 23 start-page: 1176 year: 2004 ident: B28 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.037 – volume: 27 start-page: 1384 year: 2005 ident: B16 article-title: MRI atlas of human white matter publication-title: Am. Soc. Neuroradiol – volume: 23 Suppl. 1 start-page: S208 year: 2004 ident: B27 article-title: Advances in functional and structural mr image analysis and implementation as fsl publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 15 start-page: 456 year: 2002 ident: B1 article-title: Diffusion-tensor mri: theory, experimental design and data analysis–a technical review publication-title: NMR Biomed doi: 10.1002/nbm.783 – start-page: 65 volume-title: Visualization, 2005. VIS 05. IEEE year: 2005 ident: B14 article-title: Evaluation of fiber clustering methods for diffusion tensor imaging, doi: 10.1109/VISUAL.2005.1532779 – volume-title: Proceedings Computer Society Conference on Computer Vision and Pattern Recognition year: 2003 ident: B22 article-title: A new graph-theoretic approach to clustering and segmentation, doi: 10.1109/CVPR.2003.1211348 – volume: 315 start-page: 972 year: 2007 ident: B8 article-title: Clustering by passing messages between data points publication-title: Science doi: 10.1126/science.1136800 – volume: 2 start-page: 849 year: 2002 ident: B17 article-title: On spectral clustering: analysis and an algorithm publication-title: Adv. Neural Inf. Process. Syst – volume: 30 start-page: 131 year: 2011 ident: B13 article-title: A supervised framework for the registration and segmentation of white matter fiber tracts publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2067222 – start-page: 85 volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) year: 2013 ident: B5 article-title: Online agglomerative hierarchical clustering of neural fiber tracts, doi: 10.1109/EMBC.2013.6609443 – start-page: 261 volume-title: Similarity-Based Pattern Recognition year: 2011 ident: B21 article-title: Supervised segmentation of fiber tracts, doi: 10.1007/978-3-642-24471-1_19 – volume: 61 start-page: 1083 year: 2012 ident: B11 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 47 start-page: 1288 year: 2009 ident: B4 article-title: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.03.077 – start-page: 216 volume-title: 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI) year: 2013b ident: B7 article-title: Automatic white matter fiber clustering using dominant sets, doi: 10.1109/PRNI.2013.62 – volume: 27 start-page: 1032 year: 2006 ident: B19 article-title: A method for clustering white matter fiber tracts publication-title: Am. J. Neuroradiol – start-page: 368 volume-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004 year: 2004 ident: B2 article-title: Clustering fiber traces using normalized cuts, doi: 10.1007/978-3-540-30135-6_45 – volume: 29 start-page: 167 year: 2007 ident: B23 article-title: Dominant sets and pairwise clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/TPAMI.2007.250608 – volume: 60 start-page: 456 year: 2012 ident: B20 article-title: fmri-dti modeling via landmark distance atlases for prediction and detection of fiber tracts publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.014 – volume: 36 start-page: 630 year: 2007 ident: B31 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 87 start-page: 403 year: 2013 ident: B26 article-title: Distributed bold and cbv-weighted resting-state networks in the mouse brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.050 – volume-title: The Mouse Brain in Stereotaxic Coordinates year: 2004 ident: B24 – volume: 14 start-page: 1044 year: 2008 ident: B33 article-title: Identifying white-matter fiber bundles in dti data using an automated proximity-based fiber-clustering method publication-title: IEEE Trans. Vis. Comput. Graph doi: 10.1109/TVCG.2008.52 – volume: 54 start-page: 1975 year: 2011 ident: B10 article-title: Robust clustering of massive tractography datasets publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.10.028 – volume: 54 start-page: 290 year: 2011 ident: B32 article-title: Tractography segmentation using a hierarchical dirichlet processes mixture model publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.050 – volume: 124 start-page: 1468 year: 2014 ident: B29 article-title: Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features publication-title: J. Clin. Invest doi: 10.1172/JCI70372 – reference: 17218491 - Science. 2007 Feb 16;315(5814):972-6 – reference: 18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53 – reference: 20965259 - Neuroimage. 2011 Feb 1;54(3):1975-93 – reference: 16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6 – reference: 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99 – reference: 24080504 - Neuroimage. 2014 Feb 15;87:403-15 – reference: 20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375 – reference: 19361565 - Neuroimage. 2009 Oct 1;47(4):1288-300 – reference: 24146902 - PLoS One. 2013 Oct 16;8(10):e76655 – reference: 20716499 - IEEE Trans Med Imaging. 2011 Jan;30(1):131-45 – reference: 24614104 - J Clin Invest. 2014 Apr;124(4):1468-82 – reference: 17108392 - IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):167-72 – reference: 20678578 - Neuroimage. 2011 Jan 1;54(1):290-302 – reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9 – reference: 25134977 - Neuroimage. 2014 Nov 15;102 Pt 2:596-607 – reference: 15528117 - Neuroimage. 2004 Nov;23(3):1176-85 – reference: 24109630 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:85-8 – reference: 19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58 – reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75 – reference: 22155376 - Neuroimage. 2012 Mar;60(1):456-70 – reference: 23248578 - Front Neurosci. 2012 Dec 11;6:175 – reference: 24386292 - PLoS One. 2013 Dec 30;8(12):e83847 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 17481925 - Neuroimage. 2007 Jul 1;36(3):630-44 – reference: 12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67 – reference: 18619589 - Cortex. 2008 Sep;44(8):1105-32 |
SSID | ssj0062657 |
Score | 2.0908797 |
Snippet | Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging... Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction.Diffusion Magnetic Resonance Imaging... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 87 |
SubjectTerms | Algorithms Anatomy Automation Brain architecture Brain mapping Cluster analysis Clustering Datasets Diffusion Diffusion Magnetic Resonance Imaging DTI fibers Game theory Knowledge Magnetic resonance imaging Methods Neural networks Neuroimaging Neuroscience NMR Nuclear magnetic resonance Pattern recognition Structure-function relationships Substantia alba tractography white matter |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBhfIIFGQkhMTB2mT9ik9oi1pVICqEqNSbFY_tglSS0uwe-u-ZSbJLF6FeYydyZjzjb8afZhh7CzEQkm8Egocs1DxY0UCjBTjr0MAQo2RKDXw5NSdn6tO5Pp8Sbv1Eq1z7xMFRxw4oRz6jttNKmlLKD1e_BXWNotvVqYXGfbaLLrjG4Gv38Oj067e1L0a0ru14OYmhmJvlFtVGfC4qmV0Sje7WYTTU7P8f0PyXL3nrADreYw8n5MgXo6ofsXupfcz2Fy1Gzb9u-Ds-cDmHJPk--7xY4VOEkZEPjEHRrwIlXHgmggiHyxXVR8BTi3eZU_CfeKBeEZxo8Bc8diNBhvdp2T9hZ8dH3z-eiKltggDlyqXQdZ0QNqTSgQxNKufBWQjJhEo1WieQtQ6pDCpVdbTROACgIi05g7GIFoN8ynbark3PGTcNRhsKypyTVtnmOmiopC2TM9kZJws2W8vPw1RTnFpbXHqMLUjifpC4J4n7QeIFe79542qsp3HH3ENSyWYeVcIeHnTXF34yLF_HHFVVJ4gyqahisLGCZCDEBvAnTcEO1gr1k3n2_u9mKtibzTAaFt2WNG1CufvKaIQvGLHhJ56N-t-sBHHivEbkWTC7tTO2lro90v78MRTvxvMfvWr14u5lvWQPUA5EqxTV_IDtLK9X6RWin2V4PW3xPwSPCMA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLigQnlsKchICImDabLx84DQtrCqQMsFVurNil8FaUlgHxL998w42cCiFSeudhzZnz2eb-zxDCHPfXDI5GsG5CExPnaK1b4WzBtlQMCAoyQ8Gph9lBdz_v5SXP5-Ht0DuNpr2mE-qfly8ernj-s3IPCv0eIEfXuaGqhGLy0MhF1odZPcAr2kUExnfLhTAOYuVHdRubfVjmLK8fv3kc6_fSf_UEbTQ3KnZ5F00k37XXIjNvfI0aQBC_rbNX1Bs19nPjA_Ih8mGygFShlofm3LYK_Awxc6RWcRer7YYKwE0GC0TXTWblaRnmHeCIou8Vf0bds5y9BPcb26T-bTd5_PL1ifQoF5boo1E1pHoBCxML5ydSzGzijvonQlr4WIvtLCxcLxWOqggjTeewzYkpKXCpijqx6Qg6Zt4iNCZQ2WB_dFSlHwpJJ2wpeVKqKRyUhTjcjpFj_r-_jimOZiYcHOQMRtRtwi4jYjPiIvhxbfu9ga__j2DKdk-A6jYueCdnlleyGzOqTASx19qCIPPDgVSh-ld6H2MEg5IifbCbXblWYxnzmvZFHBCJ4N1SBkeHNSNxFwt6UUQGXAeoNfPOzmf-gJcMaxBhY6ImpnZex0dbem-folB_IGLgA7bHn8P8b2mNwGtNARk5XjE3KwXm7iE-BLa_c0i8EvMXgYWA priority: 102 providerName: Scholars Portal |
Title | Automated multi-subject fiber clustering of mouse brain using dominant sets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25628561 https://www.proquest.com/docview/2295436033 https://www.proquest.com/docview/1652422176 https://pubmed.ncbi.nlm.nih.gov/PMC4290731 https://doaj.org/article/8dfd418ecd3e4d4db7d1ce6cbdac0b46 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2hsmGDgPIILdUgISQWo3jieS6TtqECpUJApexGnhet1DqoTRb8PfeOnSipEGzYeGE70fjM4547Pj6XkHchemTyDQPykJkYec2a0EgWrLYwwYCjZNwamJ2rswvxaS7nW6W-UBPW2QN3wA1NzFFwk0Ksk4gieh15SCr42ITKi2K2DTFvnUx1azCwdKm7l5KQgtlhbqG7UMeFVtkVyue2glDx6v8Twbyvk9wKPNMn5HHPGOm4a-lT8iC1z8j-uIVs-eYXfU-LhrNsju-Tz-MVnAX6GGn5spbBuoAbLXSKwhB6fL1CXwSIVnSR6QyS_kQnWCOCovz9Bz1ZdMIY-i0t756Ti-np9-Mz1pdLYEHYasmkMQnoQqpsqH2TqpG3OvikPBeNlCnURvoEkCVuoo7KhhDQnCXnoDSwRF-_IHvtok2vCFUNZBkiVDknKbLOxsvAa10lq7JVth6Q4Ro_F3ovcSxpce0gp0DEXUHcIeKuID4gHza_-Nn5aPzl3gl2yeY-dMAuJ2BcuH5cuH-NiwE5XHeo66flncPa5aJWVQ1P8HZzGSYUviVp2gS4O64k0BbI1OAvXnb9v2kJ8MORAcY5IHpnZOw0dfdKe3VZTLsh7sNqyl__j2c7II8ALRRdMj46JHvL21V6A9xo6Y_Iw8np-ZevR2U6wPHjnMNxJsxvafoU9g |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALAgo0UMBIgMTB2jwcOz4gtIVWW7ZdIdRKvZn4VZBKUppdof4pfiMzeSxdhHrrNXYsZzwefzP-MkPIK-sMIvmSAXgIjKdGstKWObNKKthggFEChgYOZ2JyzD-d5Cdr5PfwLwzSKgeb2BpqV1uMkY-w7DTPRJxl789_MqwahberQwmNTi2m_vIXuGzNu_2PsL6v03Rv9-jDhPVVBZjlKp6zvCg8nKo-VjYzpY9To6Q1XpiEl3nubVbkxseG-6Rw0gllrcUcJiFYIQFMmQzGvUU2cC5gCDZ2dmefvwy2H7yDXHaXoeD6qVGoQE2QP4YpumOk7V05_NoaAf8Dtv_yM68ceHv3yN0eqdJxp1r3yZqvHpDNcQVe-o9L-oa23NE2KL9JpuMFPAXY6mjLUGTNwmCAhwYkpFB7tsB8DHBK0jpQDDZ4arA2BUXa_Sl1dUfIoY2fNw_J8Y0I9BFZr-rKbxEqSvBuuI1D8DkPMhQmt0kmY69EUEJlERkN8tO2z2GOpTTONPgyKHHdSlyjxHUr8Yi8Xb5x3uXvuKbvDi7Jsh9m3m4f1Benut_IunDB8aTw1mWeO-6MdIn1whpXWvhIEZHtYUF1bw4a_Vd5I_Jy2QwbGW9nysqD3HUicoBL4CHCEI-79V_OBHBpWgDSjYhc0YyVqa62VN-_tcnCAW-AFU-eXD-tF-T25OjwQB_sz6ZPyR2QCVI6WZJuk_X5xcI_A-Q1N897dafk603vsD_6Lkad |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8AgWMBEgcos3DsZMDQlvaVcvCqkJU6s3Er4JUktLsCvWv8euYyWPpItRbr3ESOeMZzzfjLzMAL43VhOTLEMGDD3miZViaMgtNIQs0MMQonlIDn-Zi_4h_OM6ON-D38C8M0SqHPbHdqG1tKEc-prbTPBVRmo59T4s43J2-O_sZUgcpOmkd2ml0KjJzF78wfGveHuziWr9Kkunel_f7Yd9hIDS8iBZhlucOPayLCpPq0kWJLqTRTuiYl1nmTJpn2kWauzi30orCGEP1TLw3QiKw0im-9wZsSoyKohFs7uzNDz8PfgAjhUx2B6MYBhZjX6HKEJeMynVHROG75AjbfgH_A7n_cjUvOb_pHbjdo1Y26dTsLmy46h5sTSqM2H9csNes5ZG2CfotmE2WeBUhrGUtWzFslpqSPcwTOYWZ0yXVZkCPyWrPKPHgmKY-FYwo-CfM1h05hzVu0dyHo2sR6AMYVXXlHgETJUY63ETeu4x76XOdmTiVkSuEL0SRBjAe5KdMX8-c2mqcKoxrSOKqlbgiiatW4gG8WT1x1tXyuOLeHVqS1X1Uhbu9UJ-fqN6oVW695XHujE0dt9xqaWPjhNG2NPiRIoDtYUFVvzU06q8iB_BiNYxGTSc1ZeVQ7ioWGUInjBbxFQ-79V_NBDFqkiPqDUCuacbaVNdHqu_f2sLhiD1wR48fXz2t53ATLUt9PJjPnsAtFAmxO8M42YbR4nzpniIIW-hnvbYz-HrdBvYH0xZK0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Multi-Subject+Fiber+Clustering+of+Mouse+Brain+using+Dominant+Sets&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Luca+eDodero&rft.au=Sebastiano+eVascon&rft.au=Vittorio+eMurino&rft.au=Angelo+eBifone&rft.date=2015-01-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=8&rft_id=info:doi/10.3389%2Ffninf.2014.00087&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8dfd418ecd3e4d4db7d1ce6cbdac0b46 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |