Automated multi-subject fiber clustering of mouse brain using dominant sets

Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structur...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 8; p. 87
Main Authors Dodero, Luca, Vascon, Sebastiano, Murino, Vittorio, Bifone, Angelo, Gozzi, Alessandro, Sona, Diego
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 12.01.2015
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups.
AbstractList Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise white matter fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same white matter bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant white matter structures. The approach serves the final goal of detecting white matter bundles at a population level, thus paving the way to the study of the white matter organization across groups.
Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups.
Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups.Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional datasets whose interpretation requires advanced analytical tools. Indeed, manual identification of specific neuroanatomical tracts based on prior anatomical knowledge is time-consuming and prone to operator-induced bias. Here we propose an automatic multi-subject fiber clustering method that enables retrieval of group-wise WM fiber bundles. In order to account for variance across subjects, we developed a multi-subject approach based on a method known as Dominant Sets algorithm, via an intra- and cross-subject clustering. The intra-subject step allows us to reduce the complexity of the raw tractography data, thus obtaining homogeneous neuroanatomically-plausible bundles in each diffusion space. The cross-subject step, characterized by a proper space-invariant metric in the original diffusion space, enables the identification of the same WM bundles across multiple subjects without any prior neuroanatomical knowledge. Quantitative analysis was conducted comparing our algorithm with spectral clustering and affinity propagation methods on synthetic dataset. We also performed qualitative analysis on mouse brain tractography retrieving significant WM structures. The approach serves the final goal of detecting WM bundles at a population level, thus paving the way to the study of the WM organization across groups.
Author Murino, Vittorio
Sona, Diego
Bifone, Angelo
Dodero, Luca
Gozzi, Alessandro
Vascon, Sebastiano
AuthorAffiliation 3 NeuroInformatics Laboratory (NiLab), Fondazione Bruno Kessler Trento, Italy
1 Pattern Analysis and Computer Vision Department (PAVIS), Istituto Italiano di Tecnologia Genova, Italy
2 Magnetic Resonance Imaging Department, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy
AuthorAffiliation_xml – name: 1 Pattern Analysis and Computer Vision Department (PAVIS), Istituto Italiano di Tecnologia Genova, Italy
– name: 3 NeuroInformatics Laboratory (NiLab), Fondazione Bruno Kessler Trento, Italy
– name: 2 Magnetic Resonance Imaging Department, Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia Rovereto, Italy
Author_xml – sequence: 1
  givenname: Luca
  surname: Dodero
  fullname: Dodero, Luca
– sequence: 2
  givenname: Sebastiano
  surname: Vascon
  fullname: Vascon, Sebastiano
– sequence: 3
  givenname: Vittorio
  surname: Murino
  fullname: Murino, Vittorio
– sequence: 4
  givenname: Angelo
  surname: Bifone
  fullname: Bifone, Angelo
– sequence: 5
  givenname: Alessandro
  surname: Gozzi
  fullname: Gozzi, Alessandro
– sequence: 6
  givenname: Diego
  surname: Sona
  fullname: Sona, Diego
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25628561$$D View this record in MEDLINE/PubMed
BookMark eNp1kktr3TAQhUVJaR7tvqti6KYb3-hta1MIoY-QQDfJWugxvtXFllJJLvTf1743KUmgK4nRmW8Oo3OKjmKKgNB7gjeM9ep8iCEOG4oJ32CM--4VOiFS0lYQJY-e3I_RaSk7jCWVonuDjqmQtBeSnKDri7mmyVTwzTSPNbRltjtwtRmChdy4cS4VcojbJg3NlOYCjc0mxGYua9GnKUQTa1Oglrfo9WDGAu8ezjN09_XL7eX39ubHt6vLi5vWcYVrK_oeCKaAlWPWAKZWdc6CtIQbIcCxXljAlgPpfeelcs5hodQwONkpRSw7Q1cHrk9mp-9zmEz-o5MJel9IeatNrsGNoHs_eE56cJ4B99zbzhMH0llv3DJCLqzPB9b9bCfwDmLNZnwGff4Sw0-9Tb81pwp3jCyATw-AnH7NUKqeQnEwjibCsi5NpKCcUtKtsz6-kO7SnOOyKk2pEpxJzNii-vDU0T8rj3-2CORB4HIqJcOgXaimhrQaDKMmWK_h0Ptw6DUceh-OpRG_aHxk_7flL_gbv4s
CitedBy_id crossref_primary_10_1002_hbm_26210
crossref_primary_10_1016_j_patcog_2020_107318
crossref_primary_10_1016_j_compbiomed_2017_01_016
crossref_primary_10_1007_s12021_020_09488_2
crossref_primary_10_3389_fninf_2021_727859
crossref_primary_10_1371_journal_pone_0133337
crossref_primary_10_3724_SP_J_1089_2022_19221
Cites_doi 10.1371/journal.pone.0083847
10.1109/TMI.2007.906785
10.1016/j.neuroimage.2014.08.021
10.1002/1531-8249(199902)45:2265::AID-ANA213.0.CO;2-3
10.3389/fnins.2012.00175
10.1371/journal.pone.0076655
10.1016/j.neuroimage.2009.08.017
10.1016/j.cortex.2008.05.004
10.1016/j.neuroimage.2004.07.037
10.1016/j.neuroimage.2004.07.051
10.1002/nbm.783
10.1109/VISUAL.2005.1532779
10.1109/CVPR.2003.1211348
10.1126/science.1136800
10.1109/TMI.2010.2067222
10.1109/EMBC.2013.6609443
10.1007/978-3-642-24471-1_19
10.1016/j.neuroimage.2012.02.071
10.1016/j.neuroimage.2009.03.077
10.1109/PRNI.2013.62
10.1007/978-3-540-30135-6_45
10.1109/TPAMI.2007.250608
10.1016/j.neuroimage.2011.11.014
10.1016/j.neuroimage.2007.02.049
10.1016/j.neuroimage.2013.09.050
10.1109/TVCG.2008.52
10.1016/j.neuroimage.2010.10.028
10.1016/j.neuroimage.2010.07.050
10.1172/JCI70372
ContentType Journal Article
Copyright 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2015 Dodero, Vascon, Murino, Bifone, Gozzi and Sona. 2015
Copyright_xml – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2015 Dodero, Vascon, Murino, Bifone, Gozzi and Sona. 2015
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2014.00087
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_8dfd418ecd3e4d4db7d1ce6cbdac0b46
PMC4290731
25628561
10_3389_fninf_2014_00087
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-588e102e09c3bae02b97cbe6b14a55ec385be0b4e18d7d69ccc0599ffc67991b3
IEDL.DBID DOA
ISSN 1662-5196
IngestDate Wed Aug 27 01:29:00 EDT 2025
Thu Aug 21 13:45:05 EDT 2025
Fri Jul 11 15:43:19 EDT 2025
Fri Jul 25 12:00:52 EDT 2025
Thu Jan 02 22:16:39 EST 2025
Tue Jul 01 01:13:18 EDT 2025
Thu Apr 24 23:00:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords white matter
diffusion magnetic resonance imaging
tractography
fibers segmentation
multi-subject
dominant sets
DTI
clustering
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-588e102e09c3bae02b97cbe6b14a55ec385be0b4e18d7d69ccc0599ffc67991b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors have contributed equally to this work.
Reviewed by: Hidetoshi Ikeno, University of Hyogo, Japan; Zhuo Wang, University of Southern California, USA
This article was submitted to the journal Frontiers in Neuroinformatics.
Edited by: Mihail Bota, University of Southern California, USA
OpenAccessLink https://doaj.org/article/8dfd418ecd3e4d4db7d1ce6cbdac0b46
PMID 25628561
PQID 2295436033
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_8dfd418ecd3e4d4db7d1ce6cbdac0b46
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4290731
proquest_miscellaneous_1652422176
proquest_journals_2295436033
pubmed_primary_25628561
crossref_citationtrail_10_3389_fninf_2014_00087
crossref_primary_10_3389_fninf_2014_00087
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-12
PublicationDateYYYYMMDD 2015-01-12
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-12
  day: 12
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2015
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Li (B12) 2010; 49
Basser (B1) 2002; 15
Olivetti (B21) 2011
Paxinos (B24) 2004
Pavan (B22) 2003
Wang (B32) 2011; 54
Tucci (B29) 2014; 124
O'Donnell (B20) 2012; 60
Ros (B25) 2013; 8
Close (B4) 2009; 47
Frey (B8) 2007; 315
Tournier (B28) 2004; 23
Guevara (B10) 2011; 54
Mori (B16) 2005; 27
Guevara (B11) 2012; 61
Wakana (B31) 2007; 36
Zhang (B33) 2008; 14
Garyfallidis (B9) 2012; 6
Demir (B5) 2013
Moberts (B14) 2005
Brun (B2) 2004
Dodero (B6) 2013a; 8
Catani (B3) 2008; 44
O'Donnell (B18) 2007; 26
Sforazzini (B26) 2013; 87
Ng (B17) 2002; 2
Mori (B15) 1999; 45
Mayer (B13) 2011; 30
O'Donnell (B19) 2006; 27
Pavan (B23) 2007; 29
Tunà (B30) 2014; 102
Dodero (B7) 2013b
Smith (B27) 2004; 23 Suppl. 1
24109630 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:85-8
16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6
24386292 - PLoS One. 2013 Dec 30;8(12):e83847
12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67
20678578 - Neuroimage. 2011 Jan 1;54(1):290-302
18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
9989633 - Ann Neurol. 1999 Feb;45(2):265-9
20965259 - Neuroimage. 2011 Feb 1;54(3):1975-93
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
24080504 - Neuroimage. 2014 Feb 15;87:403-15
17218491 - Science. 2007 Feb 16;315(5814):972-6
22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99
22155376 - Neuroimage. 2012 Mar;60(1):456-70
17108392 - IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):167-72
24614104 - J Clin Invest. 2014 Apr;124(4):1468-82
18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53
20716499 - IEEE Trans Med Imaging. 2011 Jan;30(1):131-45
25134977 - Neuroimage. 2014 Nov 15;102 Pt 2:596-607
20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375
23248578 - Front Neurosci. 2012 Dec 11;6:175
15528117 - Neuroimage. 2004 Nov;23(3):1176-85
17481925 - Neuroimage. 2007 Jul 1;36(3):630-44
19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58
18619589 - Cortex. 2008 Sep;44(8):1105-32
24146902 - PLoS One. 2013 Oct 16;8(10):e76655
19361565 - Neuroimage. 2009 Oct 1;47(4):1288-300
References_xml – volume: 8
  start-page: e83847
  year: 2013
  ident: B25
  article-title: Atlas-guided cluster analysis of large tractography datasets
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0083847
– volume: 26
  start-page: 1562
  year: 2007
  ident: B18
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2007.906785
– volume: 102
  start-page: 596
  year: 2014
  ident: B30
  article-title: Automated tract extraction via atlas based adaptive clustering
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.021
– volume: 45
  start-page: 265
  year: 1999
  ident: B15
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Ann. Neurol
  doi: 10.1002/1531-8249(199902)45:2265::AID-ANA213.0.CO;2-3
– volume: 6
  issue: 175
  year: 2012
  ident: B9
  article-title: Quickbundles, a method for tractography simplification
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2012.00175
– volume: 8
  start-page: e76655
  year: 2013a
  ident: B6
  article-title: Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the btbr t+tf/j mouse model of autism
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0076655
– volume: 49
  start-page: 1249
  year: 2010
  ident: B12
  article-title: A hybrid approach to automatic clustering of white matter fibers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.08.017
– volume: 44
  start-page: 1105
  year: 2008
  ident: B3
  article-title: A diffusion tensor imaging tractography atlas for virtual in vivo dissections
  publication-title: Cortex
  doi: 10.1016/j.cortex.2008.05.004
– volume: 23
  start-page: 1176
  year: 2004
  ident: B28
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.037
– volume: 27
  start-page: 1384
  year: 2005
  ident: B16
  article-title: MRI atlas of human white matter
  publication-title: Am. Soc. Neuroradiol
– volume: 23 Suppl. 1
  start-page: S208
  year: 2004
  ident: B27
  article-title: Advances in functional and structural mr image analysis and implementation as fsl
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 15
  start-page: 456
  year: 2002
  ident: B1
  article-title: Diffusion-tensor mri: theory, experimental design and data analysis–a technical review
  publication-title: NMR Biomed
  doi: 10.1002/nbm.783
– start-page: 65
  volume-title: Visualization, 2005. VIS 05. IEEE
  year: 2005
  ident: B14
  article-title: Evaluation of fiber clustering methods for diffusion tensor imaging,
  doi: 10.1109/VISUAL.2005.1532779
– volume-title: Proceedings Computer Society Conference on Computer Vision and Pattern Recognition
  year: 2003
  ident: B22
  article-title: A new graph-theoretic approach to clustering and segmentation,
  doi: 10.1109/CVPR.2003.1211348
– volume: 315
  start-page: 972
  year: 2007
  ident: B8
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– volume: 2
  start-page: 849
  year: 2002
  ident: B17
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Adv. Neural Inf. Process. Syst
– volume: 30
  start-page: 131
  year: 2011
  ident: B13
  article-title: A supervised framework for the registration and segmentation of white matter fiber tracts
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2067222
– start-page: 85
  volume-title: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2013
  ident: B5
  article-title: Online agglomerative hierarchical clustering of neural fiber tracts,
  doi: 10.1109/EMBC.2013.6609443
– start-page: 261
  volume-title: Similarity-Based Pattern Recognition
  year: 2011
  ident: B21
  article-title: Supervised segmentation of fiber tracts,
  doi: 10.1007/978-3-642-24471-1_19
– volume: 61
  start-page: 1083
  year: 2012
  ident: B11
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.071
– volume: 47
  start-page: 1288
  year: 2009
  ident: B4
  article-title: A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.03.077
– start-page: 216
  volume-title: 2013 International Workshop on Pattern Recognition in Neuroimaging (PRNI)
  year: 2013b
  ident: B7
  article-title: Automatic white matter fiber clustering using dominant sets,
  doi: 10.1109/PRNI.2013.62
– volume: 27
  start-page: 1032
  year: 2006
  ident: B19
  article-title: A method for clustering white matter fiber tracts
  publication-title: Am. J. Neuroradiol
– start-page: 368
  volume-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2004
  year: 2004
  ident: B2
  article-title: Clustering fiber traces using normalized cuts,
  doi: 10.1007/978-3-540-30135-6_45
– volume: 29
  start-page: 167
  year: 2007
  ident: B23
  article-title: Dominant sets and pairwise clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell
  doi: 10.1109/TPAMI.2007.250608
– volume: 60
  start-page: 456
  year: 2012
  ident: B20
  article-title: fmri-dti modeling via landmark distance atlases for prediction and detection of fiber tracts
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.014
– volume: 36
  start-page: 630
  year: 2007
  ident: B31
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 87
  start-page: 403
  year: 2013
  ident: B26
  article-title: Distributed bold and cbv-weighted resting-state networks in the mouse brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.050
– volume-title: The Mouse Brain in Stereotaxic Coordinates
  year: 2004
  ident: B24
– volume: 14
  start-page: 1044
  year: 2008
  ident: B33
  article-title: Identifying white-matter fiber bundles in dti data using an automated proximity-based fiber-clustering method
  publication-title: IEEE Trans. Vis. Comput. Graph
  doi: 10.1109/TVCG.2008.52
– volume: 54
  start-page: 1975
  year: 2011
  ident: B10
  article-title: Robust clustering of massive tractography datasets
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.028
– volume: 54
  start-page: 290
  year: 2011
  ident: B32
  article-title: Tractography segmentation using a hierarchical dirichlet processes mixture model
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.050
– volume: 124
  start-page: 1468
  year: 2014
  ident: B29
  article-title: Dominant β-catenin mutations cause intellectual disability with recognizable syndromic features
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI70372
– reference: 17218491 - Science. 2007 Feb 16;315(5814):972-6
– reference: 18599916 - IEEE Trans Vis Comput Graph. 2008 Sep-Oct;14(5):1044-53
– reference: 20965259 - Neuroimage. 2011 Feb 1;54(3):1975-93
– reference: 16687538 - AJNR Am J Neuroradiol. 2006 May;27(5):1032-6
– reference: 22414992 - Neuroimage. 2012 Jul 16;61(4):1083-99
– reference: 24080504 - Neuroimage. 2014 Feb 15;87:403-15
– reference: 20209048 - Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375
– reference: 19361565 - Neuroimage. 2009 Oct 1;47(4):1288-300
– reference: 24146902 - PLoS One. 2013 Oct 16;8(10):e76655
– reference: 20716499 - IEEE Trans Med Imaging. 2011 Jan;30(1):131-45
– reference: 24614104 - J Clin Invest. 2014 Apr;124(4):1468-82
– reference: 17108392 - IEEE Trans Pattern Anal Mach Intell. 2007 Jan;29(1):167-72
– reference: 20678578 - Neuroimage. 2011 Jan 1;54(1):290-302
– reference: 9989633 - Ann Neurol. 1999 Feb;45(2):265-9
– reference: 25134977 - Neuroimage. 2014 Nov 15;102 Pt 2:596-607
– reference: 15528117 - Neuroimage. 2004 Nov;23(3):1176-85
– reference: 24109630 - Conf Proc IEEE Eng Med Biol Soc. 2013;2013:85-8
– reference: 19683061 - Neuroimage. 2010 Jan 15;49(2):1249-58
– reference: 18041271 - IEEE Trans Med Imaging. 2007 Nov;26(11):1562-75
– reference: 22155376 - Neuroimage. 2012 Mar;60(1):456-70
– reference: 23248578 - Front Neurosci. 2012 Dec 11;6:175
– reference: 24386292 - PLoS One. 2013 Dec 30;8(12):e83847
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 17481925 - Neuroimage. 2007 Jul 1;36(3):630-44
– reference: 12489095 - NMR Biomed. 2002 Nov-Dec;15(7-8):456-67
– reference: 18619589 - Cortex. 2008 Sep;44(8):1105-32
SSID ssj0062657
Score 2.0908797
Snippet Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging...
Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction.Diffusion Magnetic Resonance Imaging...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 87
SubjectTerms Algorithms
Anatomy
Automation
Brain architecture
Brain mapping
Cluster analysis
Clustering
Datasets
Diffusion
Diffusion Magnetic Resonance Imaging
DTI
fibers
Game theory
Knowledge
Magnetic resonance imaging
Methods
Neural networks
Neuroimaging
Neuroscience
NMR
Nuclear magnetic resonance
Pattern recognition
Structure-function relationships
Substantia alba
tractography
white matter
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBhfIIFGQkhMTB2mT9ik9oi1pVICqEqNSbFY_tglSS0uwe-u-ZSbJLF6FeYydyZjzjb8afZhh7CzEQkm8Egocs1DxY0UCjBTjr0MAQo2RKDXw5NSdn6tO5Pp8Sbv1Eq1z7xMFRxw4oRz6jttNKmlLKD1e_BXWNotvVqYXGfbaLLrjG4Gv38Oj067e1L0a0ru14OYmhmJvlFtVGfC4qmV0Sje7WYTTU7P8f0PyXL3nrADreYw8n5MgXo6ofsXupfcz2Fy1Gzb9u-Ds-cDmHJPk--7xY4VOEkZEPjEHRrwIlXHgmggiHyxXVR8BTi3eZU_CfeKBeEZxo8Bc8diNBhvdp2T9hZ8dH3z-eiKltggDlyqXQdZ0QNqTSgQxNKufBWQjJhEo1WieQtQ6pDCpVdbTROACgIi05g7GIFoN8ynbark3PGTcNRhsKypyTVtnmOmiopC2TM9kZJws2W8vPw1RTnFpbXHqMLUjifpC4J4n7QeIFe79542qsp3HH3ENSyWYeVcIeHnTXF34yLF_HHFVVJ4gyqahisLGCZCDEBvAnTcEO1gr1k3n2_u9mKtibzTAaFt2WNG1CufvKaIQvGLHhJ56N-t-sBHHivEbkWTC7tTO2lro90v78MRTvxvMfvWr14u5lvWQPUA5EqxTV_IDtLK9X6RWin2V4PW3xPwSPCMA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLigQnlsKchICImDabLx84DQtrCqQMsFVurNil8FaUlgHxL998w42cCiFSeudhzZnz2eb-zxDCHPfXDI5GsG5CExPnaK1b4WzBtlQMCAoyQ8Gph9lBdz_v5SXP5-Ht0DuNpr2mE-qfly8ernj-s3IPCv0eIEfXuaGqhGLy0MhF1odZPcAr2kUExnfLhTAOYuVHdRubfVjmLK8fv3kc6_fSf_UEbTQ3KnZ5F00k37XXIjNvfI0aQBC_rbNX1Bs19nPjA_Ih8mGygFShlofm3LYK_Awxc6RWcRer7YYKwE0GC0TXTWblaRnmHeCIou8Vf0bds5y9BPcb26T-bTd5_PL1ifQoF5boo1E1pHoBCxML5ydSzGzijvonQlr4WIvtLCxcLxWOqggjTeewzYkpKXCpijqx6Qg6Zt4iNCZQ2WB_dFSlHwpJJ2wpeVKqKRyUhTjcjpFj_r-_jimOZiYcHOQMRtRtwi4jYjPiIvhxbfu9ga__j2DKdk-A6jYueCdnlleyGzOqTASx19qCIPPDgVSh-ld6H2MEg5IifbCbXblWYxnzmvZFHBCJ4N1SBkeHNSNxFwt6UUQGXAeoNfPOzmf-gJcMaxBhY6ImpnZex0dbem-folB_IGLgA7bHn8P8b2mNwGtNARk5XjE3KwXm7iE-BLa_c0i8EvMXgYWA
  priority: 102
  providerName: Scholars Portal
Title Automated multi-subject fiber clustering of mouse brain using dominant sets
URI https://www.ncbi.nlm.nih.gov/pubmed/25628561
https://www.proquest.com/docview/2295436033
https://www.proquest.com/docview/1652422176
https://pubmed.ncbi.nlm.nih.gov/PMC4290731
https://doaj.org/article/8dfd418ecd3e4d4db7d1ce6cbdac0b46
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtNAFB2hsmGDgPIILdUgISQWo3jieS6TtqECpUJApexGnhet1DqoTRb8PfeOnSipEGzYeGE70fjM4547Pj6XkHchemTyDQPykJkYec2a0EgWrLYwwYCjZNwamJ2rswvxaS7nW6W-UBPW2QN3wA1NzFFwk0Ksk4gieh15SCr42ITKi2K2DTFvnUx1azCwdKm7l5KQgtlhbqG7UMeFVtkVyue2glDx6v8Twbyvk9wKPNMn5HHPGOm4a-lT8iC1z8j-uIVs-eYXfU-LhrNsju-Tz-MVnAX6GGn5spbBuoAbLXSKwhB6fL1CXwSIVnSR6QyS_kQnWCOCovz9Bz1ZdMIY-i0t756Ti-np9-Mz1pdLYEHYasmkMQnoQqpsqH2TqpG3OvikPBeNlCnURvoEkCVuoo7KhhDQnCXnoDSwRF-_IHvtok2vCFUNZBkiVDknKbLOxsvAa10lq7JVth6Q4Ro_F3ovcSxpce0gp0DEXUHcIeKuID4gHza_-Nn5aPzl3gl2yeY-dMAuJ2BcuH5cuH-NiwE5XHeo66flncPa5aJWVQ1P8HZzGSYUviVp2gS4O64k0BbI1OAvXnb9v2kJ8MORAcY5IHpnZOw0dfdKe3VZTLsh7sNqyl__j2c7II8ALRRdMj46JHvL21V6A9xo6Y_Iw8np-ZevR2U6wPHjnMNxJsxvafoU9g
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKe4ALAgo0UMBIgMTB2jwcOz4gtIVWW7ZdIdRKvZn4VZBKUppdof4pfiMzeSxdhHrrNXYsZzwefzP-MkPIK-sMIvmSAXgIjKdGstKWObNKKthggFEChgYOZ2JyzD-d5Cdr5PfwLwzSKgeb2BpqV1uMkY-w7DTPRJxl789_MqwahberQwmNTi2m_vIXuGzNu_2PsL6v03Rv9-jDhPVVBZjlKp6zvCg8nKo-VjYzpY9To6Q1XpiEl3nubVbkxseG-6Rw0gllrcUcJiFYIQFMmQzGvUU2cC5gCDZ2dmefvwy2H7yDXHaXoeD6qVGoQE2QP4YpumOk7V05_NoaAf8Dtv_yM68ceHv3yN0eqdJxp1r3yZqvHpDNcQVe-o9L-oa23NE2KL9JpuMFPAXY6mjLUGTNwmCAhwYkpFB7tsB8DHBK0jpQDDZ4arA2BUXa_Sl1dUfIoY2fNw_J8Y0I9BFZr-rKbxEqSvBuuI1D8DkPMhQmt0kmY69EUEJlERkN8tO2z2GOpTTONPgyKHHdSlyjxHUr8Yi8Xb5x3uXvuKbvDi7Jsh9m3m4f1Benut_IunDB8aTw1mWeO-6MdIn1whpXWvhIEZHtYUF1bw4a_Vd5I_Jy2QwbGW9nysqD3HUicoBL4CHCEI-79V_OBHBpWgDSjYhc0YyVqa62VN-_tcnCAW-AFU-eXD-tF-T25OjwQB_sz6ZPyR2QCVI6WZJuk_X5xcI_A-Q1N897dafk603vsD_6Lkad
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYS4IKA8AgWMBEgcos3DsZMDQlvaVcvCqkJU6s3Er4JUktLsCvWv8euYyWPpItRbr3ESOeMZzzfjLzMAL43VhOTLEMGDD3miZViaMgtNIQs0MMQonlIDn-Zi_4h_OM6ON-D38C8M0SqHPbHdqG1tKEc-prbTPBVRmo59T4s43J2-O_sZUgcpOmkd2ml0KjJzF78wfGveHuziWr9Kkunel_f7Yd9hIDS8iBZhlucOPayLCpPq0kWJLqTRTuiYl1nmTJpn2kWauzi30orCGEP1TLw3QiKw0im-9wZsSoyKohFs7uzNDz8PfgAjhUx2B6MYBhZjX6HKEJeMynVHROG75AjbfgH_A7n_cjUvOb_pHbjdo1Y26dTsLmy46h5sTSqM2H9csNes5ZG2CfotmE2WeBUhrGUtWzFslpqSPcwTOYWZ0yXVZkCPyWrPKPHgmKY-FYwo-CfM1h05hzVu0dyHo2sR6AMYVXXlHgETJUY63ETeu4x76XOdmTiVkSuEL0SRBjAe5KdMX8-c2mqcKoxrSOKqlbgiiatW4gG8WT1x1tXyuOLeHVqS1X1Uhbu9UJ-fqN6oVW695XHujE0dt9xqaWPjhNG2NPiRIoDtYUFVvzU06q8iB_BiNYxGTSc1ZeVQ7ioWGUInjBbxFQ-79V_NBDFqkiPqDUCuacbaVNdHqu_f2sLhiD1wR48fXz2t53ATLUt9PJjPnsAtFAmxO8M42YbR4nzpniIIW-hnvbYz-HrdBvYH0xZK0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Multi-Subject+Fiber+Clustering+of+Mouse+Brain+using+Dominant+Sets&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Luca+eDodero&rft.au=Sebastiano+eVascon&rft.au=Vittorio+eMurino&rft.au=Angelo+eBifone&rft.date=2015-01-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=8&rft_id=info:doi/10.3389%2Ffninf.2014.00087&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8dfd418ecd3e4d4db7d1ce6cbdac0b46
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon