How Cognitive Models of Human Body Experience Might Push Robotics

In the last decades, cognitive models of multisensory integration in human beings have been developed and applied to model human body experience. Recent research indicates that Bayesian and connectionist models might push developments in various branches of robotics: assistive robotic devices might...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurorobotics Vol. 13; p. 14
Main Authors Schürmann, Tim, Mohler, Betty Jo, Peters, Jan, Beckerle, Philipp
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 11.04.2019
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the last decades, cognitive models of multisensory integration in human beings have been developed and applied to model human body experience. Recent research indicates that Bayesian and connectionist models might push developments in various branches of robotics: assistive robotic devices might adapt to their human users aiming at increased device embodiment, e.g., in prosthetics, and humanoid robots could be endowed with human-like capabilities regarding their surrounding space, e.g., by keeping safe or socially appropriate distances to other agents. In this perspective paper, we review cognitive models that aim to approximate the process of human sensorimotor behavior generation, discuss their challenges and potentials in robotics, and give an overview of existing approaches. While model accuracy is still subject to improvement, human-inspired cognitive models support the understanding of how the modulating factors of human body experience are blended. Implementing the resulting insights in adaptive and learning control algorithms could help to taylor assistive devices to their user's individual body experience. Humanoid robots who develop their own body schema could consider this body knowledge in control and learn to optimize their physical interaction with humans and their environment. Cognitive body experience models should be improved in accuracy and online capabilities to achieve these ambitious goals, which would foster human-centered directions in various fields of robotics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Pablo Lanillos, Technische Universität München, Germany
Reviewed by: Anja Kristina Philippsen, Center for Information and Neural Networks (CiNet), Japan; Guido Schillaci, Humboldt-Universität zu Berlin, Germany
ISSN:1662-5218
1662-5218
DOI:10.3389/fnbot.2019.00014