Clustering of Brain Function Network Based on Attribute and Structural Information and Its Application in Brain Diseases
At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resti...
Saved in:
Published in | Frontiers in neuroinformatics Vol. 13; p. 79 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
07.02.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients. |
---|---|
AbstractList | At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients. At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients. |
Author | Xiao, Jihai Guo, Hao Cui, Xiaohong Niu, Yan Xiang, Jie Chen, Junjie Wang, Bin Li, Dandan |
AuthorAffiliation | College of Information and Computer, Taiyuan University of Technology , Taiyuan , China |
AuthorAffiliation_xml | – name: College of Information and Computer, Taiyuan University of Technology , Taiyuan , China |
Author_xml | – sequence: 1 givenname: Xiaohong surname: Cui fullname: Cui, Xiaohong – sequence: 2 givenname: Jihai surname: Xiao fullname: Xiao, Jihai – sequence: 3 givenname: Hao surname: Guo fullname: Guo, Hao – sequence: 4 givenname: Bin surname: Wang fullname: Wang, Bin – sequence: 5 givenname: Dandan surname: Li fullname: Li, Dandan – sequence: 6 givenname: Yan surname: Niu fullname: Niu, Yan – sequence: 7 givenname: Jie surname: Xiang fullname: Xiang, Jie – sequence: 8 givenname: Junjie surname: Chen fullname: Chen, Junjie |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32116624$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk2PFCEQhjtmjfuhd0-mEy9eZgS6oeFiMju6OslGD-qZ0FCMjD0wAu3Hv5fp3jW7m3ggkKq3Hl6oOq9OfPBQVc8xWjYNF6-td94uCcJiiRDqxKPqDDNGFhQLdnLnfFqdp7RDiBFGuyfVaUPwMdeeVb_Xw5gyROe3dbD1ZVTO11ej19kFX3-E_CvE7_WlSmDqEljlHF0_ZqiVN_XnHEedx6iGeuNtiHs1VR1Tm5zq1eEwOD3HCnVmv3UJCi09rR5bNSR4drNfVF-v3n1Zf1hcf3q_Wa-uF7oVKBf3BGjDekCAsWmxsZz2rO0sQg3Whiog3DYMQBsLXHVgBdGWcAwATDSmuag2M9cEtZOH6PYq_pFBOTkFQtxKFbPTA0hgnPVcI9F3fdsz3gtDOaOCc8OJRl1hvZlZh7Hfg9Hgc3n7Pej9jHff5Db8lB0iiDJWAK9uADH8GCFluXdJwzAoD2FMkjSs3MYYJUX68oF0F8boy1cVFSVlUSqK6sVdR_-s3Da4CNgs0DGkFMFK7fLUkmLQDRIjeZwkOU2SPE6SnCapFKIHhbfs_5b8BaiczkM |
CitedBy_id | crossref_primary_10_1016_j_bspc_2021_103349 crossref_primary_10_1007_s00521_022_07122_7 crossref_primary_10_1016_j_eswa_2023_122898 crossref_primary_10_1016_j_bspc_2021_103293 |
Cites_doi | 10.1090/S0002-9939-1956-0078686-7 10.1523/JNEUROSCI.2874-10.2010 10.1371/journal.pone.0071061 10.3389/fnsys.2010.00013 10.3389/fnins.2017.00639 10.1371/journal.pcbi.1001006 10.1016/j.pscychresns.2010.04.008 10.1007/s11222-007-9033-z 10.1523/JNEUROSCI.0141-08.2008 10.1523/JNEUROSCI.0333-10.2010 10.1016/j.eswa.2016.10.033 10.1016/j.neuroimage.2010.09.046 10.1002/hbm.24014 10.1016/j.nicl.2014.09.004 10.1146/annurev-clinpsy-040510-143934 10.4061/2011/535816 10.3389/fncom.2018.00031 10.1007/s10044-008-0141-y 10.1145/2641190.2641196 10.1016/j.schres.2010.02.624 10.1016/j.patcog.2012.05.007 10.1109/TNN.2009.2036998 10.1007/s11682-017-9753-4 10.1109/TIP.2018.2799706 10.1006/nimg.2001.0978 10.1109/TKDE.2011.86 10.1016/j.neuroimage.2014.10.015 10.1007/s10439-011-0258-9 10.1371/journal.pone.0025031 |
ContentType | Journal Article |
Copyright | Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen. 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen. 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen |
Copyright_xml | – notice: Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen. – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen. 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fninf.2019.00079 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection Proquest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5196 |
ExternalDocumentID | oai_doaj_org_article_e686b8c09b7b4b68b9d5865988d82c07 PMC7020566 32116624 10_3389_fninf_2019_00079 |
Genre | Journal Article |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAKPC AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IAO IEA IHR IPNFZ ISR NPM RIG 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c490t-512e536be0e11d41df85b647f0031cd5ae28f36eecdfe8a7ef92cf281eee693d3 |
IEDL.DBID | M48 |
ISSN | 1662-5196 |
IngestDate | Wed Aug 27 01:21:26 EDT 2025 Thu Aug 21 18:17:23 EDT 2025 Thu Jul 10 22:57:04 EDT 2025 Fri Jul 25 11:58:38 EDT 2025 Thu Jan 02 22:37:47 EST 2025 Tue Jul 01 01:13:22 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | graph mining Alzheimer's disease similarity spectral clustering sub-network kernels |
Language | English |
License | Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-512e536be0e11d41df85b647f0031cd5ae28f36eecdfe8a7ef92cf281eee693d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Xi-Nian Zuo, Institute of Psychology (CAS), China Reviewed by: Daoqiang Zhang, Nanjing University of Aeronautics and Astronautics, China; Sam Neymotin, Nathan Kline Institute for Psychiatric Research, United States; Yi Su, Banner Alzheimer's Institute, United States |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2019.00079 |
PMID | 32116624 |
PQID | 2352235559 |
PQPubID | 4424404 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e686b8c09b7b4b68b9d5865988d82c07 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7020566 proquest_miscellaneous_2369886652 proquest_journals_2352235559 pubmed_primary_32116624 crossref_citationtrail_10_3389_fninf_2019_00079 crossref_primary_10_3389_fninf_2019_00079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-07 |
PublicationDateYYYYMMDD | 2020-02-07 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in neuroinformatics |
PublicationTitleAlternate | Front Neuroinform |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Öngür (B22) 2010; 183 B23 von Luxburg (B31) 2007; 17 Kruskal (B14) 1956; 7 Jie (B12) 2018; 27 Zhang (B34) 2017; 12 Cui (B5) 2018; 12 van den Heuvel (B30) 2010; 30 Zou (B35) 2017 Wang (B32) 2010; 21 Garcés (B7) 2014; 6 Ciftçi (B4) 2011; 39 Song (B25) 2011; 6 Gao (B6) 2010; 13 Guo (B8) 2017; 11 Halder (B9) 2016; 72 Tang (B26) 2013; 8 van Dellen (B29) 2018; 39 Yao (B33) 2010; 6 Ng (B20) 2002; 14 Shrivastava (B24) 2014 He (B10) 2008; 28 B17 Bullmore (B2) 2011; 7 Jiao (B11) 2012; 45 Mheich (B18) 2019 Becerril (B1) 2011; 54 Kong (B13) 2014; 15 Tewarie (B27) 2015; 104 Lynall (B15) 2010; 30 Mevel (B16) 2011; 2011 Tzourio-Mazoyer (B28) 2002; 15 Nguyen (B21) 2011; 24 Chao-Gan (B3) 2010; 4 Mingoia (B19) 2010; 117 |
References_xml | – volume: 7 start-page: 48 year: 1956 ident: B14 article-title: On the shortest spanning subtree of a graph and the traveling salesman problem publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1956-0078686-7 – start-page: 1061 volume-title: 2016 2nd IEEE International Conference on Computer and Communications (ICCC) year: 2017 ident: B35 article-title: Web phishing detection based on graph mining, – volume: 30 start-page: 15915 year: 2010 ident: B30 article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2874-10.2010 – volume: 8 start-page: e71061 year: 2013 ident: B26 article-title: Aberrant default mode functional connectivity in early onset schizophrenia publication-title: PLoS ONE doi: 10.1371/journal.pone.0071061 – volume: 4 start-page: 13 year: 2010 ident: B3 article-title: DPARSF: a MATLAB toolbox for pipeline data analysis of resting-state fMRI publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2010.00013 – volume: 11 start-page: 639 year: 2017 ident: B8 article-title: Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI dataset publication-title: Front. Neurosci. doi: 10.3389/fnins.2017.00639 – volume: 6 start-page: e1001006 year: 2010 ident: B33 article-title: Abnormal cortical networks in mild cognitive impairment and alzheimer's disease publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1001006 – volume: 183 start-page: 59 year: 2010 ident: B22 article-title: Default mode network abnormalities in bipolar disorder and schizophrenia publication-title: Psychiatry Res. doi: 10.1016/j.pscychresns.2010.04.008 – ident: B23 – volume: 17 start-page: 395 year: 2007 ident: B31 article-title: A tutorial on spectral clustering publication-title: Stat. Comput. doi: 10.1007/s11222-007-9033-z – volume: 28 start-page: 4756 year: 2008 ident: B10 article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0141-08.2008 – volume: 30 start-page: 9477 year: 2010 ident: B15 article-title: Functional connectivity and brain networks in schizophrenia publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0333-10.2010 – volume: 72 start-page: 430 year: 2016 ident: B9 article-title: Supergraph based periodic pattern mining in dynamic social networks publication-title: Expert Syst. Appl doi: 10.1016/j.eswa.2016.10.033 – volume: 54 start-page: 1495 year: 2011 ident: B1 article-title: Error processing network dynamics in schizophrenia publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.09.046 – volume: 39 start-page: 2455 year: 2018 ident: B29 article-title: Minimum spanning tree analysis of the human connectome publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24014 – volume: 6 start-page: 214 year: 2014 ident: B7 article-title: The Default Mode Network is functionally and structurally disrupted in amnestic mild cognitive impairment - a bimodal MEG-DTI study publication-title: Neuroimage Clin. doi: 10.1016/j.nicl.2014.09.004 – volume: 14 start-page: 849 year: 2002 ident: B20 article-title: On spectral clustering: analysis and an algorithm publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 113 year: 2011 ident: B2 article-title: Brain graphs: graphical models of the human brain connectome publication-title: Soc. Sci. Electron. Pub. doi: 10.1146/annurev-clinpsy-040510-143934 – volume: 2011 start-page: 535816 year: 2011 ident: B16 article-title: The default mode network in healthy aging and Alzheimer's disease publication-title: Int. J. Alzheimer's Dis. doi: 10.4061/2011/535816 – volume: 12 start-page: 31 year: 2018 ident: B5 article-title: Classification of Alzheimer's disease, mild cognitive impairment, and normal controls with subnetwork selection and graph kernel principal component analysis based on minimum spanning tree brain functional network publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2018.00031 – year: 2019 ident: B18 article-title: Brain network similarity: methods and applications publication-title: arXiv [Preprint]. arXiv – volume: 13 start-page: 113 year: 2010 ident: B6 article-title: A survey of graph edit distance publication-title: Pattern Anal Appl. doi: 10.1007/s10044-008-0141-y – volume: 15 start-page: 30 year: 2014 ident: B13 article-title: Brain network analysis: a data mining perspective publication-title: ACM SIGKDD Explor. Newslett. doi: 10.1145/2641190.2641196 – volume: 117 start-page: 355 year: 2010 ident: B19 article-title: Altered default-mode network activity in schizophrenia: a resting state fmri study publication-title: Schizophr. Res. doi: 10.1016/j.schres.2010.02.624 – volume: 45 start-page: 4358 year: 2012 ident: B11 article-title: Fast semi-supervised clustering with enhanced spectral embedding publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.05.007 – volume: 21 start-page: 319 year: 2010 ident: B32 article-title: Linear time maximum margin clustering publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2036998 – volume: 12 start-page: 1 year: 2017 ident: B34 article-title: Subnetwork mining on functional connectivity network for classification of minimal hepatic encephalopathy publication-title: Brain Imaging Behav. doi: 10.1007/s11682-017-9753-4 – volume: 27 start-page: 2340 year: 2018 ident: B12 article-title: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis publication-title: IEEE Trans. Image Process doi: 10.1109/TIP.2018.2799706 – volume: 15 start-page: 273 year: 2002 ident: B28 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 24 start-page: 988 year: 2011 ident: B21 article-title: Clustering with multiviewpoint-based similarity measure publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2011.86 – ident: B17 – volume: 104 start-page: 177 year: 2015 ident: B27 article-title: The minimum spanning tree: an unbiased method for brain network analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.015 – volume: 39 start-page: 1493 year: 2011 ident: B4 article-title: Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0258-9 – start-page: 62 volume-title: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining year: 2014 ident: B24 article-title: A new space for comparing graphs, – volume: 6 start-page: e25031 year: 2011 ident: B25 article-title: REST: a toolkit for resting-state functional magnetic resonance imaging data processing publication-title: PLoS ONE doi: 10.1371/journal.pone.0025031 |
SSID | ssj0062657 |
Score | 2.2140198 |
Snippet | At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 79 |
SubjectTerms | Alzheimer's disease Bipolar disorder Brain diseases Brain mapping Brain research Clustering Datasets Functional magnetic resonance imaging graph mining Labeling Medical imaging Mental disorders Methods Neurodegenerative diseases Neuroimaging Neuroscience Researchers Schizophrenia similarity spectral clustering Studies sub-network kernels Time series |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70goAUCpXIlhMQh2o3jV467hVWLRC9QqbfIj7FAKlmk3Urw75mxs8suQnDpNX7E8Ywz39jjbxh7HVNwMmpV-w5sLZ2TtQ3O104GaDXd9NR0wfnjlb64lh9u1M1Oqi-KCSv0wGXiJqCt9jZMO2-89Nr6LiqrVWdttCKUe-Ro8zbOVPkHI0pXphxKogvWTdKA4qI4LiKnnFLY1o4Rylz9fwOYf8ZJ7hiexSP2cESMfFZG-pg9gOEJO5oN6C1_-8nf8BzDmTfHj9iP89s7Yj5Ae8SXic8p_wNfoOmi6edXJeSbz9FyRY4PZuuS7wq4GyL_lKlkiYaDj5eUcisqulyv-Oz3UTfHXkvf78r5zuqYXS_efz6_qMfcCnWQ3XRdo50H1WoPU2iaKJuYrPJamkSrPETlQNjUaoAQE1hnIHUiJGEbANBdG9un7GBYDvCccVDeGN8kBH5C-qi66EBDI0QS0SQFFZtsJrsPI_E45b-47dEBIfH0WTw9iafP4qnY222L74V04x915yS_bT2iy84PUIn6UYn6_ylRxU420u_HNbzqBWFThGMK33G2LcbVR0cqboDlHdXR2InWSlTsWVGW7Uha9K21FrJiZk-N9oa6XzJ8_ZIZvg2CeMTZL-7j216yQ0F7BBRpbk7YAeoSvEIgtfanec38AnmpH8E priority: 102 providerName: Directory of Open Access Journals – databaseName: Proquest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBhfIIFGQkhMQh2sTxKye0W7oqSKwQUKm3KLbHBakkLbuV4N8z42S3XYR6jR-y8nk8M57xN4y9DtG3MmiVuxpsLttW5ta3Lm-lh0rTS09ND5w_LfTxifx4qk7HC7flmFa5PhPTQR16T3fkE0GWAipHVb-7uMypahRFV8cSGnfZLh7BFp2v3dnR4vOX9VmM1royQ3ASXbF6EjuEjfK5iKSyoPStG8oocfb_z9D8N1_yhgKa77H7o-XIpwPUD9gd6B6y_WmHXvPPP_wNT7mc6ZJ8n_0-PL8iBgTUS7yPfEZ1IPgcVRjBwBdD6jefoQYLHD9MV0PdK-BtF_jXRClLdBx8fKyURlHTh9WST69D3hxnHeZ-P8R5lo_Yyfzo2-FxPtZYyL2si1WO-h5UpR0UUJZBliFa5bQ0kaTdB9WCsLHSAD5EsK2BWAsfhS0BQNdVqB6zna7v4CnjoJwxroxoAArpgqpDCxpKIaIIJirI2GT9sxs_EpBTHYzzBh0RgqdJ8DQET5PgydjbzYiLgXzjlr4zwm_Tj2iz04f-11kzSmED2mpnfVE746TT1tVBWa1qa4MVvjAZO1ij34yyvGyud17GXm2aUQoptNJ20F9RH42TaK1Exp4Mm2Wzkgp9bK2FzJjZ2kZbS91u6X58T0zfBo15tLef3b6s5-yeoFsAyiU3B2wHdwm8QFNp5V6O8vAXHxUZBA priority: 102 providerName: ProQuest |
Title | Clustering of Brain Function Network Based on Attribute and Structural Information and Its Application in Brain Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32116624 https://www.proquest.com/docview/2352235559 https://www.proquest.com/docview/2369886652 https://pubmed.ncbi.nlm.nih.gov/PMC7020566 https://doaj.org/article/e686b8c09b7b4b68b9d5865988d82c07 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdge-EFAeMjMCojISQewhrHX3lAqB0rA2kVAir1LYrjMyCVFNZO2v577pw0o6hCvOQhdmzLd5e7851_x9hzH-pKeq1SV4BNZVXJ1NaVSytZQ67ppqemC85nU306kx_man59PbrbwNVO147qSc3OF68uf129QYF_TR4n6tuj0GAzZWkR9OTQFDfZPuolQ2J6JvuYAlruEfcTZ0f3CxmvDVruHGFLSUUs_10G6N95lH8opskddruzKPmoZYG77AY099jBqEFv-scVf8Fjjmc8PD9gl8eLC0JGQH3Fl4GPqT4En6BqI_LwaZsSzseo2TzHF6N1Ww8LeNV4_jlCzRJMB-8uMcWvqOn9esVH16FwjqO2Y79t4z-r-2w2OflyfJp2tRfSWhbDNW6QAJVrB0PIMi8zH6xyWppAf4HaqwqEDbkGqH0AWxkIhaiDsBkA6CL3-QO21ywbeMQ4KGeMywIahkI6rwpfgYZMiCC8CQoSdrTZ7LLugMmpPsaiRAeFyFNG8pREnjKSJ2Ev-y9-tqAc_-g7Jvr1_QhOO75Ynn8tO-ksQVvtbD0snHHSaesKr6xWhbXeinpoEna4oX65YdFSkO2K5prCOZ71zSidFHKpGlheUB-Ng2itRMIetszSryRH3xt5USbMbLHR1lK3W5rv3yICuEEjH-3wx_8x7xN2S9ARASWam0O2h6wCT9GOWrsB2x-fTD9-GsRzCHy-m2eDKDK_AVTvIro |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1CrpAS4IKMtAASMBEodRMx5vc0AoaRsltI0QtFJvw3j8DEhlUkgq6E_xjbw3S9og1Fuv3mT57X4bYy99KAvptYpdBjaWRSFjWxYuLmQJqaZMT00JzgdTPT6S74_V8Rr70-XCUFhlxxNrRu1nJf2RbwnSFFA4quzd6Y-YukaRd7VrodGgxR6c_0KTbf52soPwfSXEaPdwexy3XQXiUmb9RYwSDlSqHfQhSbxMfLDKaWkC4XfpVQHChlQDlD6ALQyETJRB2AQAdJb6FM-9wdZliqZMj60Pd6cfPna8H60DZRpnKJp-2VaoEE0ofoyKYvYpXOyS8Kt7BPxPsf03PvOSwBvdYbdbTZUPGtS6y9agusc2BhVa6d_P-Wtex47Wn_Ib7Pf2yRlVXEA5yGeBD6nvBB-hyCSw82kTas6HKDE9x4HBoumzBbyoPP9Ul7Cl8h-8TY6qd9HUZDHngwsXO8dTm7N3Gr_S_D47upbXf8B61ayCR4yDcsa4JKDCKaTzKvMFaEiECMKboCBiW91j52Vb8Jz6bpzkaPgQePIaPDmBJ6_BE7E3yx2nTbGPK9YOCX7LdVSmux6Y_fySt1Sfg7ba2bKfOeOk09ZlXlmtMmu9FWXfRGyzg37e8o55foHpEXuxnEaqJ1dOUcHsjNZoPERrJSL2sEGW5U1StOm1FjJiZgWNVq66OlN9-1pXFjdoPKB-__jqaz1nN8eHB_v5_mS694TdEvQDQXHsZpP1EGPgKappC_espQ3OPl83Of4FiYNXlw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEFAegQJGAiQO0SZO_MgBod1uV10Kqwqo1FuI4zEglaSwW0H_Gr-OmTy2XYR669UvWZ7P8_CMZxh77nxZpE7J0GZgwrQo0tCUhQ2LtIRE0U9PRR-c38_V3mH69kgebbA__V8YCqvseWLDqF1d0hv5UJCmgMJRZkPfhUUcTKZvTn6EVEGKPK19OY0WIvtw9gvNt8Xr2QRp_UKI6e6nnb2wqzAQlmkWLUOUdiATZSGCOHZp7LyRVqXaE9ZLJwsQxicKoHQeTKHBZ6L0wsQAoLLEJbjuNbap0SqKBmxzvDs_-NDLAbQUpG4do2gG4q4rhAzFklGCzIhCxy4IwqZewP-U3H9jNS8Iv-ktdrPTWvmohdlttgHVHbY1qtBi_37GX_ImjrR5oN9iv3eOTyn7AspEXns-phoUfIrikyDA523YOR-j9HQcG0bLtuYW8KJy_GOTzpZSgfDuo1Qzi7pmywUfnbvbOa7arj1pfUyLu-zwSk7_HhtUdQUPGAdptbaxR-VTpNbJzBWgIBbCC6e9hIAN-8POyy75OdXgOM7RCCLy5A15ciJP3pAnYK9WM07axB-XjB0T_VbjKGV301D__JJ3HCAHZZQ1ZZRZbVOrjM2cNEpmxjgjykgHbLunft7xkUV-jvqAPVt1Iwcgt05RQX1KYxQuopQUAbvfgmW1kwTte6VEGjC9BqO1ra73VN--NlnGNRoSqOs_vHxbT9l1vIb5u9l8_xG7IegxgkLa9TYbIGDgMWpsS_ukuxqcfb7q2_gXK2VbzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+of+Brain+Function+Network+Based+on+Attribute+and+Structural+Information+and+Its+Application+in+Brain+Diseases&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Cui%2C+Xiaohong&rft.au=Xiao%2C+Jihai&rft.au=Guo%2C+Hao&rft.au=Wang%2C+Bin&rft.date=2020-02-07&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=13&rft.spage=79&rft_id=info:doi/10.3389%2Ffninf.2019.00079&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon |