Clustering of Brain Function Network Based on Attribute and Structural Information and Its Application in Brain Diseases

At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resti...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 13; p. 79
Main Authors Cui, Xiaohong, Xiao, Jihai, Guo, Hao, Wang, Bin, Li, Dandan, Niu, Yan, Xiang, Jie, Chen, Junjie
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 07.02.2020
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.
AbstractList At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.
At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to psychiatrists' bias. The purpose of this study is to develop a brain network clustering model to accurately identify brain diseases based on resting state functional magnetic resonance imaging (fMRI) in the absence of clinical information. We use cosine similarity and sub-network kernels to measure attribute similarity and structure similarity, respectively. By integrating the structure similarity and attribute similarity into one matrix, spectral clustering is used to achieve brain network clustering. Finally, we evaluate this method on three diseases: Alzheimer's disease, Bipolar disorder patients, and Schizophrenia. The performance of methods is evaluated by measuring clustering consistency. Clustering consistency is similar to clustering accuracy, which is used to evaluate the consistency between the clustering labels and clinical diagnostic labels of the subjects. The experimental results show that our proposed method can significantly improve clustering performance, with a consistency of 60.6% for Alzheimer's disease, with a consistency of 100% for Schizophrenia, with a consistency of 100% for Bipolar disorder patients.
Author Xiao, Jihai
Guo, Hao
Cui, Xiaohong
Niu, Yan
Xiang, Jie
Chen, Junjie
Wang, Bin
Li, Dandan
AuthorAffiliation College of Information and Computer, Taiyuan University of Technology , Taiyuan , China
AuthorAffiliation_xml – name: College of Information and Computer, Taiyuan University of Technology , Taiyuan , China
Author_xml – sequence: 1
  givenname: Xiaohong
  surname: Cui
  fullname: Cui, Xiaohong
– sequence: 2
  givenname: Jihai
  surname: Xiao
  fullname: Xiao, Jihai
– sequence: 3
  givenname: Hao
  surname: Guo
  fullname: Guo, Hao
– sequence: 4
  givenname: Bin
  surname: Wang
  fullname: Wang, Bin
– sequence: 5
  givenname: Dandan
  surname: Li
  fullname: Li, Dandan
– sequence: 6
  givenname: Yan
  surname: Niu
  fullname: Niu, Yan
– sequence: 7
  givenname: Jie
  surname: Xiang
  fullname: Xiang, Jie
– sequence: 8
  givenname: Junjie
  surname: Chen
  fullname: Chen, Junjie
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32116624$$D View this record in MEDLINE/PubMed
BookMark eNp1kk2PFCEQhjtmjfuhd0-mEy9eZgS6oeFiMju6OslGD-qZ0FCMjD0wAu3Hv5fp3jW7m3ggkKq3Hl6oOq9OfPBQVc8xWjYNF6-td94uCcJiiRDqxKPqDDNGFhQLdnLnfFqdp7RDiBFGuyfVaUPwMdeeVb_Xw5gyROe3dbD1ZVTO11ej19kFX3-E_CvE7_WlSmDqEljlHF0_ZqiVN_XnHEedx6iGeuNtiHs1VR1Tm5zq1eEwOD3HCnVmv3UJCi09rR5bNSR4drNfVF-v3n1Zf1hcf3q_Wa-uF7oVKBf3BGjDekCAsWmxsZz2rO0sQg3Whiog3DYMQBsLXHVgBdGWcAwATDSmuag2M9cEtZOH6PYq_pFBOTkFQtxKFbPTA0hgnPVcI9F3fdsz3gtDOaOCc8OJRl1hvZlZh7Hfg9Hgc3n7Pej9jHff5Db8lB0iiDJWAK9uADH8GCFluXdJwzAoD2FMkjSs3MYYJUX68oF0F8boy1cVFSVlUSqK6sVdR_-s3Da4CNgs0DGkFMFK7fLUkmLQDRIjeZwkOU2SPE6SnCapFKIHhbfs_5b8BaiczkM
CitedBy_id crossref_primary_10_1016_j_bspc_2021_103349
crossref_primary_10_1007_s00521_022_07122_7
crossref_primary_10_1016_j_eswa_2023_122898
crossref_primary_10_1016_j_bspc_2021_103293
Cites_doi 10.1090/S0002-9939-1956-0078686-7
10.1523/JNEUROSCI.2874-10.2010
10.1371/journal.pone.0071061
10.3389/fnsys.2010.00013
10.3389/fnins.2017.00639
10.1371/journal.pcbi.1001006
10.1016/j.pscychresns.2010.04.008
10.1007/s11222-007-9033-z
10.1523/JNEUROSCI.0141-08.2008
10.1523/JNEUROSCI.0333-10.2010
10.1016/j.eswa.2016.10.033
10.1016/j.neuroimage.2010.09.046
10.1002/hbm.24014
10.1016/j.nicl.2014.09.004
10.1146/annurev-clinpsy-040510-143934
10.4061/2011/535816
10.3389/fncom.2018.00031
10.1007/s10044-008-0141-y
10.1145/2641190.2641196
10.1016/j.schres.2010.02.624
10.1016/j.patcog.2012.05.007
10.1109/TNN.2009.2036998
10.1007/s11682-017-9753-4
10.1109/TIP.2018.2799706
10.1006/nimg.2001.0978
10.1109/TKDE.2011.86
10.1016/j.neuroimage.2014.10.015
10.1007/s10439-011-0258-9
10.1371/journal.pone.0025031
ContentType Journal Article
Copyright Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen. 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen
Copyright_xml – notice: Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen. 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2019.00079
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
Proquest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_e686b8c09b7b4b68b9d5865988d82c07
PMC7020566
32116624
10_3389_fninf_2019_00079
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-512e536be0e11d41df85b647f0031cd5ae28f36eecdfe8a7ef92cf281eee693d3
IEDL.DBID M48
ISSN 1662-5196
IngestDate Wed Aug 27 01:21:26 EDT 2025
Thu Aug 21 18:17:23 EDT 2025
Thu Jul 10 22:57:04 EDT 2025
Fri Jul 25 11:58:38 EDT 2025
Thu Jan 02 22:37:47 EST 2025
Tue Jul 01 01:13:22 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords graph mining
Alzheimer's disease
similarity
spectral clustering
sub-network kernels
Language English
License Copyright © 2020 Cui, Xiao, Guo, Wang, Li, Niu, Xiang and Chen.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-512e536be0e11d41df85b647f0031cd5ae28f36eecdfe8a7ef92cf281eee693d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Xi-Nian Zuo, Institute of Psychology (CAS), China
Reviewed by: Daoqiang Zhang, Nanjing University of Aeronautics and Astronautics, China; Sam Neymotin, Nathan Kline Institute for Psychiatric Research, United States; Yi Su, Banner Alzheimer's Institute, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fninf.2019.00079
PMID 32116624
PQID 2352235559
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_e686b8c09b7b4b68b9d5865988d82c07
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7020566
proquest_miscellaneous_2369886652
proquest_journals_2352235559
pubmed_primary_32116624
crossref_citationtrail_10_3389_fninf_2019_00079
crossref_primary_10_3389_fninf_2019_00079
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-07
PublicationDateYYYYMMDD 2020-02-07
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-07
  day: 07
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Öngür (B22) 2010; 183
B23
von Luxburg (B31) 2007; 17
Kruskal (B14) 1956; 7
Jie (B12) 2018; 27
Zhang (B34) 2017; 12
Cui (B5) 2018; 12
van den Heuvel (B30) 2010; 30
Zou (B35) 2017
Wang (B32) 2010; 21
Garcés (B7) 2014; 6
Ciftçi (B4) 2011; 39
Song (B25) 2011; 6
Gao (B6) 2010; 13
Guo (B8) 2017; 11
Halder (B9) 2016; 72
Tang (B26) 2013; 8
van Dellen (B29) 2018; 39
Yao (B33) 2010; 6
Ng (B20) 2002; 14
Shrivastava (B24) 2014
He (B10) 2008; 28
B17
Bullmore (B2) 2011; 7
Jiao (B11) 2012; 45
Mheich (B18) 2019
Becerril (B1) 2011; 54
Kong (B13) 2014; 15
Tewarie (B27) 2015; 104
Lynall (B15) 2010; 30
Mevel (B16) 2011; 2011
Tzourio-Mazoyer (B28) 2002; 15
Nguyen (B21) 2011; 24
Chao-Gan (B3) 2010; 4
Mingoia (B19) 2010; 117
References_xml – volume: 7
  start-page: 48
  year: 1956
  ident: B14
  article-title: On the shortest spanning subtree of a graph and the traveling salesman problem
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1956-0078686-7
– start-page: 1061
  volume-title: 2016 2nd IEEE International Conference on Computer and Communications (ICCC)
  year: 2017
  ident: B35
  article-title: Web phishing detection based on graph mining,
– volume: 30
  start-page: 15915
  year: 2010
  ident: B30
  article-title: Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2874-10.2010
– volume: 8
  start-page: e71061
  year: 2013
  ident: B26
  article-title: Aberrant default mode functional connectivity in early onset schizophrenia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0071061
– volume: 4
  start-page: 13
  year: 2010
  ident: B3
  article-title: DPARSF: a MATLAB toolbox for pipeline data analysis of resting-state fMRI
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2010.00013
– volume: 11
  start-page: 639
  year: 2017
  ident: B8
  article-title: Alzheimer classification using a minimum spanning tree of high-order functional network on fMRI dataset
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00639
– volume: 6
  start-page: e1001006
  year: 2010
  ident: B33
  article-title: Abnormal cortical networks in mild cognitive impairment and alzheimer's disease
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1001006
– volume: 183
  start-page: 59
  year: 2010
  ident: B22
  article-title: Default mode network abnormalities in bipolar disorder and schizophrenia
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2010.04.008
– ident: B23
– volume: 17
  start-page: 395
  year: 2007
  ident: B31
  article-title: A tutorial on spectral clustering
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-007-9033-z
– volume: 28
  start-page: 4756
  year: 2008
  ident: B10
  article-title: Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0141-08.2008
– volume: 30
  start-page: 9477
  year: 2010
  ident: B15
  article-title: Functional connectivity and brain networks in schizophrenia
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0333-10.2010
– volume: 72
  start-page: 430
  year: 2016
  ident: B9
  article-title: Supergraph based periodic pattern mining in dynamic social networks
  publication-title: Expert Syst. Appl
  doi: 10.1016/j.eswa.2016.10.033
– volume: 54
  start-page: 1495
  year: 2011
  ident: B1
  article-title: Error processing network dynamics in schizophrenia
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.09.046
– volume: 39
  start-page: 2455
  year: 2018
  ident: B29
  article-title: Minimum spanning tree analysis of the human connectome
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24014
– volume: 6
  start-page: 214
  year: 2014
  ident: B7
  article-title: The Default Mode Network is functionally and structurally disrupted in amnestic mild cognitive impairment - a bimodal MEG-DTI study
  publication-title: Neuroimage Clin.
  doi: 10.1016/j.nicl.2014.09.004
– volume: 14
  start-page: 849
  year: 2002
  ident: B20
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 113
  year: 2011
  ident: B2
  article-title: Brain graphs: graphical models of the human brain connectome
  publication-title: Soc. Sci. Electron. Pub.
  doi: 10.1146/annurev-clinpsy-040510-143934
– volume: 2011
  start-page: 535816
  year: 2011
  ident: B16
  article-title: The default mode network in healthy aging and Alzheimer's disease
  publication-title: Int. J. Alzheimer's Dis.
  doi: 10.4061/2011/535816
– volume: 12
  start-page: 31
  year: 2018
  ident: B5
  article-title: Classification of Alzheimer's disease, mild cognitive impairment, and normal controls with subnetwork selection and graph kernel principal component analysis based on minimum spanning tree brain functional network
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2018.00031
– year: 2019
  ident: B18
  article-title: Brain network similarity: methods and applications
  publication-title: arXiv [Preprint]. arXiv
– volume: 13
  start-page: 113
  year: 2010
  ident: B6
  article-title: A survey of graph edit distance
  publication-title: Pattern Anal Appl.
  doi: 10.1007/s10044-008-0141-y
– volume: 15
  start-page: 30
  year: 2014
  ident: B13
  article-title: Brain network analysis: a data mining perspective
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/2641190.2641196
– volume: 117
  start-page: 355
  year: 2010
  ident: B19
  article-title: Altered default-mode network activity in schizophrenia: a resting state fmri study
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2010.02.624
– volume: 45
  start-page: 4358
  year: 2012
  ident: B11
  article-title: Fast semi-supervised clustering with enhanced spectral embedding
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.05.007
– volume: 21
  start-page: 319
  year: 2010
  ident: B32
  article-title: Linear time maximum margin clustering
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2036998
– volume: 12
  start-page: 1
  year: 2017
  ident: B34
  article-title: Subnetwork mining on functional connectivity network for classification of minimal hepatic encephalopathy
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-017-9753-4
– volume: 27
  start-page: 2340
  year: 2018
  ident: B12
  article-title: Sub-network kernels for measuring similarity of brain connectivity networks in disease diagnosis
  publication-title: IEEE Trans. Image Process
  doi: 10.1109/TIP.2018.2799706
– volume: 15
  start-page: 273
  year: 2002
  ident: B28
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 24
  start-page: 988
  year: 2011
  ident: B21
  article-title: Clustering with multiviewpoint-based similarity measure
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.86
– ident: B17
– volume: 104
  start-page: 177
  year: 2015
  ident: B27
  article-title: The minimum spanning tree: an unbiased method for brain network analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.015
– volume: 39
  start-page: 1493
  year: 2011
  ident: B4
  article-title: Minimum spanning tree reflects the alterations of the default mode network during Alzheimer's disease
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0258-9
– start-page: 62
  volume-title: 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
  year: 2014
  ident: B24
  article-title: A new space for comparing graphs,
– volume: 6
  start-page: e25031
  year: 2011
  ident: B25
  article-title: REST: a toolkit for resting-state functional magnetic resonance imaging data processing
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025031
SSID ssj0062657
Score 2.2140198
Snippet At present, the diagnosis of brain disease is mainly based on the self-reported symptoms and clinical signs of the patient, which can easily lead to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 79
SubjectTerms Alzheimer's disease
Bipolar disorder
Brain diseases
Brain mapping
Brain research
Clustering
Datasets
Functional magnetic resonance imaging
graph mining
Labeling
Medical imaging
Mental disorders
Methods
Neurodegenerative diseases
Neuroimaging
Neuroscience
Researchers
Schizophrenia
similarity
spectral clustering
Studies
sub-network kernels
Time series
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT70goAUCpXIlhMQh2o3jV467hVWLRC9QqbfIj7FAKlmk3Urw75mxs8suQnDpNX7E8Ywz39jjbxh7HVNwMmpV-w5sLZ2TtQ3O104GaDXd9NR0wfnjlb64lh9u1M1Oqi-KCSv0wGXiJqCt9jZMO2-89Nr6LiqrVWdttCKUe-Ro8zbOVPkHI0pXphxKogvWTdKA4qI4LiKnnFLY1o4Rylz9fwOYf8ZJ7hiexSP2cESMfFZG-pg9gOEJO5oN6C1_-8nf8BzDmTfHj9iP89s7Yj5Ae8SXic8p_wNfoOmi6edXJeSbz9FyRY4PZuuS7wq4GyL_lKlkiYaDj5eUcisqulyv-Oz3UTfHXkvf78r5zuqYXS_efz6_qMfcCnWQ3XRdo50H1WoPU2iaKJuYrPJamkSrPETlQNjUaoAQE1hnIHUiJGEbANBdG9un7GBYDvCccVDeGN8kBH5C-qi66EBDI0QS0SQFFZtsJrsPI_E45b-47dEBIfH0WTw9iafP4qnY222L74V04x915yS_bT2iy84PUIn6UYn6_ylRxU420u_HNbzqBWFThGMK33G2LcbVR0cqboDlHdXR2InWSlTsWVGW7Uha9K21FrJiZk-N9oa6XzJ8_ZIZvg2CeMTZL-7j216yQ0F7BBRpbk7YAeoSvEIgtfanec38AnmpH8E
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Proquest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBhfIIFGQkhMQh2sTxKye0W7oqSKwQUKm3KLbHBakkLbuV4N8z42S3XYR6jR-y8nk8M57xN4y9DtG3MmiVuxpsLttW5ta3Lm-lh0rTS09ND5w_LfTxifx4qk7HC7flmFa5PhPTQR16T3fkE0GWAipHVb-7uMypahRFV8cSGnfZLh7BFp2v3dnR4vOX9VmM1royQ3ASXbF6EjuEjfK5iKSyoPStG8oocfb_z9D8N1_yhgKa77H7o-XIpwPUD9gd6B6y_WmHXvPPP_wNT7mc6ZJ8n_0-PL8iBgTUS7yPfEZ1IPgcVRjBwBdD6jefoQYLHD9MV0PdK-BtF_jXRClLdBx8fKyURlHTh9WST69D3hxnHeZ-P8R5lo_Yyfzo2-FxPtZYyL2si1WO-h5UpR0UUJZBliFa5bQ0kaTdB9WCsLHSAD5EsK2BWAsfhS0BQNdVqB6zna7v4CnjoJwxroxoAArpgqpDCxpKIaIIJirI2GT9sxs_EpBTHYzzBh0RgqdJ8DQET5PgydjbzYiLgXzjlr4zwm_Tj2iz04f-11kzSmED2mpnfVE746TT1tVBWa1qa4MVvjAZO1ij34yyvGyud17GXm2aUQoptNJ20F9RH42TaK1Exp4Mm2Wzkgp9bK2FzJjZ2kZbS91u6X58T0zfBo15tLef3b6s5-yeoFsAyiU3B2wHdwm8QFNp5V6O8vAXHxUZBA
  priority: 102
  providerName: ProQuest
Title Clustering of Brain Function Network Based on Attribute and Structural Information and Its Application in Brain Diseases
URI https://www.ncbi.nlm.nih.gov/pubmed/32116624
https://www.proquest.com/docview/2352235559
https://www.proquest.com/docview/2369886652
https://pubmed.ncbi.nlm.nih.gov/PMC7020566
https://doaj.org/article/e686b8c09b7b4b68b9d5865988d82c07
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdge-EFAeMjMCojISQewhrHX3lAqB0rA2kVAir1LYrjMyCVFNZO2v577pw0o6hCvOQhdmzLd5e7851_x9hzH-pKeq1SV4BNZVXJ1NaVSytZQ67ppqemC85nU306kx_man59PbrbwNVO147qSc3OF68uf129QYF_TR4n6tuj0GAzZWkR9OTQFDfZPuolQ2J6JvuYAlruEfcTZ0f3CxmvDVruHGFLSUUs_10G6N95lH8opskddruzKPmoZYG77AY099jBqEFv-scVf8Fjjmc8PD9gl8eLC0JGQH3Fl4GPqT4En6BqI_LwaZsSzseo2TzHF6N1Ww8LeNV4_jlCzRJMB-8uMcWvqOn9esVH16FwjqO2Y79t4z-r-2w2OflyfJp2tRfSWhbDNW6QAJVrB0PIMi8zH6xyWppAf4HaqwqEDbkGqH0AWxkIhaiDsBkA6CL3-QO21ywbeMQ4KGeMywIahkI6rwpfgYZMiCC8CQoSdrTZ7LLugMmpPsaiRAeFyFNG8pREnjKSJ2Ev-y9-tqAc_-g7Jvr1_QhOO75Ynn8tO-ksQVvtbD0snHHSaesKr6xWhbXeinpoEna4oX65YdFSkO2K5prCOZ71zSidFHKpGlheUB-Ng2itRMIetszSryRH3xt5USbMbLHR1lK3W5rv3yICuEEjH-3wx_8x7xN2S9ARASWam0O2h6wCT9GOWrsB2x-fTD9-GsRzCHy-m2eDKDK_AVTvIro
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbhMx1CrpAS4IKMtAASMBEodRMx5vc0AoaRsltI0QtFJvw3j8DEhlUkgq6E_xjbw3S9og1Fuv3mT57X4bYy99KAvptYpdBjaWRSFjWxYuLmQJqaZMT00JzgdTPT6S74_V8Rr70-XCUFhlxxNrRu1nJf2RbwnSFFA4quzd6Y-YukaRd7VrodGgxR6c_0KTbf52soPwfSXEaPdwexy3XQXiUmb9RYwSDlSqHfQhSbxMfLDKaWkC4XfpVQHChlQDlD6ALQyETJRB2AQAdJb6FM-9wdZliqZMj60Pd6cfPna8H60DZRpnKJp-2VaoEE0ofoyKYvYpXOyS8Kt7BPxPsf03PvOSwBvdYbdbTZUPGtS6y9agusc2BhVa6d_P-Wtex47Wn_Ib7Pf2yRlVXEA5yGeBD6nvBB-hyCSw82kTas6HKDE9x4HBoumzBbyoPP9Ul7Cl8h-8TY6qd9HUZDHngwsXO8dTm7N3Gr_S_D47upbXf8B61ayCR4yDcsa4JKDCKaTzKvMFaEiECMKboCBiW91j52Vb8Jz6bpzkaPgQePIaPDmBJ6_BE7E3yx2nTbGPK9YOCX7LdVSmux6Y_fySt1Sfg7ba2bKfOeOk09ZlXlmtMmu9FWXfRGyzg37e8o55foHpEXuxnEaqJ1dOUcHsjNZoPERrJSL2sEGW5U1StOm1FjJiZgWNVq66OlN9-1pXFjdoPKB-__jqaz1nN8eHB_v5_mS694TdEvQDQXHsZpP1EGPgKappC_espQ3OPl83Of4FiYNXlw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVkJcEFAegQJGAiQO0SZO_MgBod1uV10Kqwqo1FuI4zEglaSwW0H_Gr-OmTy2XYR669UvWZ7P8_CMZxh77nxZpE7J0GZgwrQo0tCUhQ2LtIRE0U9PRR-c38_V3mH69kgebbA__V8YCqvseWLDqF1d0hv5UJCmgMJRZkPfhUUcTKZvTn6EVEGKPK19OY0WIvtw9gvNt8Xr2QRp_UKI6e6nnb2wqzAQlmkWLUOUdiATZSGCOHZp7LyRVqXaE9ZLJwsQxicKoHQeTKHBZ6L0wsQAoLLEJbjuNbap0SqKBmxzvDs_-NDLAbQUpG4do2gG4q4rhAzFklGCzIhCxy4IwqZewP-U3H9jNS8Iv-ktdrPTWvmohdlttgHVHbY1qtBi_37GX_ImjrR5oN9iv3eOTyn7AspEXns-phoUfIrikyDA523YOR-j9HQcG0bLtuYW8KJy_GOTzpZSgfDuo1Qzi7pmywUfnbvbOa7arj1pfUyLu-zwSk7_HhtUdQUPGAdptbaxR-VTpNbJzBWgIBbCC6e9hIAN-8POyy75OdXgOM7RCCLy5A15ciJP3pAnYK9WM07axB-XjB0T_VbjKGV301D__JJ3HCAHZZQ1ZZRZbVOrjM2cNEpmxjgjykgHbLunft7xkUV-jvqAPVt1Iwcgt05RQX1KYxQuopQUAbvfgmW1kwTte6VEGjC9BqO1ra73VN--NlnGNRoSqOs_vHxbT9l1vIb5u9l8_xG7IegxgkLa9TYbIGDgMWpsS_ukuxqcfb7q2_gXK2VbzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clustering+of+Brain+Function+Network+Based+on+Attribute+and+Structural+Information+and+Its+Application+in+Brain+Diseases&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Cui%2C+Xiaohong&rft.au=Xiao%2C+Jihai&rft.au=Guo%2C+Hao&rft.au=Wang%2C+Bin&rft.date=2020-02-07&rft.issn=1662-5196&rft.eissn=1662-5196&rft.volume=13&rft.spage=79&rft_id=info:doi/10.3389%2Ffninf.2019.00079&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon