Approximate Subject Specific Pseudo MRI from an Available MRI Dataset for MEG Source Imaging

Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an ava...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroinformatics Vol. 11; p. 50
Main Authors Gohel, Bakul, Lim, Sanghyun, Kim, Min-Young, Kwon, Hyukchan, Kim, Kiwoong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 08.08.2017
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-5196
1662-5196
DOI10.3389/fninf.2017.00050

Cover

Loading…
Abstract Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.
AbstractList Computation of headmodel and sourcemodel from the subject’s MRI scan is an essential step for source localization of MEG (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject’s digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error after being registered (rigid body transformation with isotropic scaling) to the subject’s digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject’s digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 mm ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.
Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.
Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG) sensor signals. In the absence of a real MRI scan, pseudo MRI (i.e., associated headmodel and sourcemodel) is often approximated from an available standard MRI template or pool of MRI scans considering the subject's digitized head surface. In the present study, we approximated two types of pseudo MRI (i.e., associated headmodel and sourcemodel) using an available pool of MRI scans with the focus on MEG source imaging. The first was the first rank pseudo MRI; that is, the MRI scan in the dataset having the lowest objective registration error (ORE) after being registered (rigid body transformation with isotropic scaling) to the subject's digitized head surface. The second was the averaged rank pseudo MRI that is generated by averaging of headmodels and sourcemodels from multiple MRI scans respectively, after being registered to the subject's digitized head surface. Subject level analysis showed that the mean upper bound of source location error for the approximated sourcemodel in reference to the real one was 10 ± 3 mm for the averaged rank pseudo MRI, which was significantly lower than the first rank pseudo MRI approach. Functional group source response in the brain to visual stimulation in the form of event-related power (ERP) at the time latency of peak amplitude showed noticeably identical source distribution for first rank pseudo MRI, averaged rank pseudo MRI, and real MRI. The source localization error for functional peak response was significantly lower for averaged rank pseudo MRI compared to first rank pseudo MRI. We conclude that it is feasible to use approximated pseudo MRI, particularly the averaged rank pseudo MRI, as a substitute for real MRI without losing the generality of the functional group source response.
Author Kim, Min-Young
Gohel, Bakul
Kim, Kiwoong
Kwon, Hyukchan
Lim, Sanghyun
AuthorAffiliation Center for Biosignals, Korea Research Institute of Standards and Science Daejeon, South Korea
AuthorAffiliation_xml – name: Center for Biosignals, Korea Research Institute of Standards and Science Daejeon, South Korea
Author_xml – sequence: 1
  givenname: Bakul
  surname: Gohel
  fullname: Gohel, Bakul
– sequence: 2
  givenname: Sanghyun
  surname: Lim
  fullname: Lim, Sanghyun
– sequence: 3
  givenname: Min-Young
  surname: Kim
  fullname: Kim, Min-Young
– sequence: 4
  givenname: Hyukchan
  surname: Kwon
  fullname: Kwon, Hyukchan
– sequence: 5
  givenname: Kiwoong
  surname: Kim
  fullname: Kim, Kiwoong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28848418$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1rVDEUxYNU7IfuXUnAjZsZ8_2SjTDUWgdaFEd3QsjLS8YMb15ek7yi_72ZmVbagquEm3N-3HtzTsHREAcHwGuM5pRK9d4PYfBzgnAzRwhx9AycYCHIjGMljh7cj8FpzhuEBBG8eQGOiZRMMixPwM_FOKb4O2xNcXA1tRtnC1yNzgYfLPya3dRFeP1tCX2KW2gGuLg1oTdt7_bVj6aY7Ar0McHri0u4ilOyDi63Zh2G9Uvw3Js-u1d35xn48eni-_nn2dWXy-X54mpmmUJlRhVRHe0aQ7lknBornDCKMI9t2xLlRUuIIUh2XinRkK4qlVBctk2LMaGenoHlgdtFs9FjqtOkPzqaoPeFmNbapBJs77SrXqmMtYwr1iDRVqT0BHND6hqJrKwPB9Y4tVvXWTeUZPpH0McvQ_il1_FWc85RQ1gFvLsDpHgzuVz0NmTr-t4MLk5ZY0WpQAgrUqVvn0g3dX9DXZUmRDGMBEO0qt487OhfK_efWAXiILAp5pyc1zYUU0LcNRh6jZHepUXv06J3adH7tFQjemK8Z__X8hdE6MCI
CitedBy_id crossref_primary_10_1016_j_cognition_2020_104247
crossref_primary_10_1093_cercor_bhad054
crossref_primary_10_1038_s41598_023_30223_9
crossref_primary_10_1002_ima_22786
crossref_primary_10_1038_s41598_024_56878_6
crossref_primary_10_1016_j_dcn_2022_101181
crossref_primary_10_3390_brainsci10020095
crossref_primary_10_1016_j_nicl_2020_102275
crossref_primary_10_1002_hbm_70148
crossref_primary_10_1111_ner_13408
crossref_primary_10_1016_j_cub_2024_04_034
crossref_primary_10_1093_braincomms_fcab296
crossref_primary_10_1186_s13229_020_00357_y
crossref_primary_10_1016_j_neuroscience_2018_10_040
crossref_primary_10_1093_cercor_bhae369
crossref_primary_10_1016_j_neuroimage_2022_119061
Cites_doi 10.1109/10.966602
10.1002/hbm.10133
10.1016/S0167-8655(03)00157-0
10.1016/j.neuroimage.2013.05.041
10.1002/hbm.20171
10.1016/j.neuroimage.2013.05.056
10.1016/j.neuroimage.2009.03.036
10.1016/j.neuroimage.2012.06.065
10.1016/j.neuroimage.2006.03.018
10.3109/10929080500066922
10.1155/2011/156869
10.1016/j.neuroimage.2010.05.075
10.1155/2011/879716
10.1155/2009/656092
10.1117/1.JBO.20.1.016009
10.1016/j.neuroimage.2012.10.001
10.1006/nimg.2000.0621
10.1016/j.jneumeth.2009.09.005
10.1109/IM.2001.924423
10.1016/S1388-2457(02)00030-5
10.1002/hbm.20465
10.1006/cviu.1999.0815
ContentType Journal Article
Copyright 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2017 Gohel, Lim, Kim, Kwon and Kim. 2017 Gohel, Lim, Kim, Kwon and Kim
Copyright_xml – notice: 2017. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2017 Gohel, Lim, Kim, Kwon and Kim. 2017 Gohel, Lim, Kim, Kwon and Kim
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fninf.2017.00050
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5196
ExternalDocumentID oai_doaj_org_article_e7a989acc4594706b9968f215a220128
PMC5550724
28848418
10_3389_fninf_2017_00050
Genre Journal Article
GeographicLocations Los Angeles California
California
United States--US
Massachusetts
GeographicLocations_xml – name: California
– name: Los Angeles California
– name: Massachusetts
– name: United States--US
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: U54 MH091657
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAKPC
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c490t-3929d3d7a358453ac6e6a924f1cbb29f6b22a208df99672dd7a96958b7b1123f3
IEDL.DBID DOA
ISSN 1662-5196
IngestDate Wed Aug 27 01:20:44 EDT 2025
Thu Aug 21 18:20:56 EDT 2025
Fri Jul 11 14:01:25 EDT 2025
Fri Jul 25 11:53:55 EDT 2025
Thu Apr 03 06:55:30 EDT 2025
Tue Jul 01 01:13:20 EDT 2025
Thu Apr 24 22:58:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords headmodel
sourcemodel
MEG source imaging
ICP registration
MRI
pseudo MRI
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-3929d3d7a358453ac6e6a924f1cbb29f6b22a208df99672dd7a96958b7b1123f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Christos Papadelis, Harvard Medical School, United States; Andras Jakab, University Children's Hospital Zurich, Switzerland
Edited by: Arjen van Ooyen, VU University Amsterdam, Netherlands
OpenAccessLink https://doaj.org/article/e7a989acc4594706b9968f215a220128
PMID 28848418
PQID 2294106403
PQPubID 4424404
ParticipantIDs doaj_primary_oai_doaj_org_article_e7a989acc4594706b9968f215a220128
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5550724
proquest_miscellaneous_1933600192
proquest_journals_2294106403
pubmed_primary_28848418
crossref_citationtrail_10_3389_fninf_2017_00050
crossref_primary_10_3389_fninf_2017_00050
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-08
PublicationDateYYYYMMDD 2017-08-08
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-08
  day: 08
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroinformatics
PublicationTitleAlternate Front Neuroinform
PublicationYear 2017
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Rusinkiewicz (B16) 2001
Holliday (B9) 2003; 20
Larson-Prior (B11) 2013; 80
Nieto-Castanon (B13) 2012; 63
Christensen (B2) 2006; 32
Guimond (B7) 2000; 77
Gross (B6) 2013; 65
Fuchs (B4) 2002; 113
Tadel (B17) 2011; 1
Oostenveld (B14) 2011; 1
Van 't Ent (B20) 2001; 48
Whalen (B22) 2008; 29
Xiong (B23) 2000; 12
Hinds (B8) 2009; 46
Low (B12) 2004
Park (B15) 2003; 24
Labadie (B10) 2004; 9
Ghosh (B5) 2010; 53
Van Essen (B19) 2013; 80
Darvas (B3) 2006; 27
Valdés-Hernández (B18) 2009; 185
Wendel (B21) 2009; 9
Chiarelli (B1) 2015
References_xml – volume: 48
  start-page: 1434
  year: 2001
  ident: B20
  article-title: A fast method to derive realistic BEM models for E/MEG source reconstruction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.966602
– volume: 20
  start-page: 142
  year: 2003
  ident: B9
  article-title: Accuracy and applications of group MEG studies using cortical source locations estimated from participants' scalp surfaces
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10133
– volume: 24
  start-page: 2967
  year: 2003
  ident: B15
  article-title: An accurate and fast point-to-plane registration technique
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/S0167-8655(03)00157-0
– volume: 80
  start-page: 62
  year: 2013
  ident: B19
  article-title: The WU-Minn human connectome project: an overview
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 27
  start-page: 129
  year: 2006
  ident: B3
  article-title: Generic head models for atlas-based EEG source analysis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20171
– volume: 80
  start-page: 190
  year: 2013
  ident: B11
  article-title: Adding dynamics to the human connectome project with MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.056
– volume: 46
  start-page: 915
  year: 2009
  ident: B8
  article-title: Locating the functional and anatomical boundaries of human primary visual cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.03.036
– volume: 63
  start-page: 1646
  year: 2012
  ident: B13
  article-title: Subject-specific functional localizers increase sensitivity and functional resolution of multi-subject analyses
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.065
– volume: 32
  start-page: 146
  year: 2006
  ident: B2
  article-title: Synthesizing average 3D anatomical shapes
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.03.018
– volume: 9
  start-page: 145
  year: 2004
  ident: B10
  article-title: Submillimetric target-registration error using a novel, non-invasive fiducial system for image-guided otologic surgery
  publication-title: Comput. Aided Surg.
  doi: 10.3109/10929080500066922
– volume: 1
  start-page: 156869
  year: 2011
  ident: B14
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 53
  start-page: 85
  year: 2010
  ident: B5
  article-title: Evaluating the validity of volume-based and surface-based brain image registration for developmental cognitive neuroscience studies in children 4 to 11 years of age
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.075
– volume: 1
  start-page: 879716
  year: 2011
  ident: B17
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– volume: 9
  start-page: 656092
  year: 2009
  ident: B21
  article-title: EEG/MEG source imaging: methods, challenges, and open issues
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2009/656092
– start-page: 16009
  year: 2015
  ident: B1
  article-title: Comparison of procedures for co-registering scalp-recording locations to anatomical magnetic resonance images
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.JBO.20.1.016009
– volume: 65
  start-page: 349
  year: 2013
  ident: B6
  article-title: Good practice for conducting and reporting MEG research
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.10.001
– volume: 12
  start-page: 326
  year: 2000
  ident: B23
  article-title: Intersubject variability in cortical activations during a complex language task
  publication-title: Neuroimage
  doi: 10.1006/nimg.2000.0621
– volume: 185
  start-page: 125
  year: 2009
  ident: B18
  article-title: Approximate average head models for EEG source imaging
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.09.005
– start-page: 145
  volume-title: Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM
  year: 2001
  ident: B16
  article-title: Efficient variants of the ICP algorithm
  doi: 10.1109/IM.2001.924423
– volume: 113
  start-page: 702
  year: 2002
  ident: B4
  article-title: A standardized boundary element method volume conductor model
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(02)00030-5
– volume: 29
  start-page: 1288
  year: 2008
  ident: B22
  article-title: Validation of a method for coregistering scalp recording locations with 3D structural MR images
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20465
– volume-title: Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration.
  year: 2004
  ident: B12
– volume: 77
  start-page: 192
  year: 2000
  ident: B7
  article-title: Average brain models: a convergence study
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1999.0815
SSID ssj0062657
Score 2.2047067
Snippet Computation of headmodel and sourcemodel from the subject's MRI scan is an essential step for source localization of magnetoencephalography (MEG) (or EEG)...
Computation of headmodel and sourcemodel from the subject’s MRI scan is an essential step for source localization of MEG (or EEG) sensor signals. In the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 50
SubjectTerms Datasets
Digitization
EEG
Electrodes
Functional magnetic resonance imaging
headmodel
ICP registration
Latency
Localization
MEG source imaging
MRI
Neuroimaging
Neuroscience
pseudo MRI
Registration
Researchers
Sensors
sourcemodel
Studies
Visual stimuli
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-EFwcZHYExGQkg8RE2d2LGfULd1bEidpsGkPSBZtmOPSlsy1hTBf8-d65YVob3GTnTxne9-dz7fEfLOVrVz3jU5l64GByXw3JqiyJ03XHkpvIyd5yYn4ui8-nzBL1LAbZbSKpc6MSrqpnMYIx8wpqohHjuVH29-5Ng1Ck9XUwuNh2QTVLAECd_cG5-cni11MaB1Xi8OJ8EVU4PQAtswnyvWLcS79neMUazZ_z-g-W--5B0DdPiEPE7IkY4WrH5KHvh2i2yPWvCar3_T9zTmcsYg-Tb5NsJS4b-mAEc9Bd2AwRYaW82HqaOnMz9vOjo5O6Z4u4Salo5-mukV3qKKTw9MD8atpwBo6WT8iX6JEX56fB1bGj0j54fjr_tHeeqjkLtKFX2OEKgpm9qUgDZ4aZzwwoDfFYbOWqaCsIwZVsgmgPNTswZmKqG4tLUFNFaG8jnZaLvWvyS0MNyGuhRONoALACtwoWwBKjIw2MjWZWSwXFDtUpFx7HVxpcHZQBboyAKNLNCRBRn5sHrjZlFg4565e8ij1TwsjR0fdLeXOu007YF6qYxzFVdVXQgLPyUDIBvDGFrjjOwsOazTfp3pv9KVkberYdhpeHxiWt_NZxqgbikiJM7Ii4VArChhUlayGsLH6zVRWSN1faSdfo_VvDlWlGPVq_vJek0e4TrE1EO5Qzb627l_A3Cot7tJ5v8ACjAKmQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQuXBBQHksLchICInD0o3Xrz2gKkBLixSEgEg9IFm216aR0g0kG9T--844m4WgiBNXP1Zej8fzfR57hpDnjivvg69zob0CghJF7mxR5D5YUQUtg06Z50Yf5cmYfzgTZ7-fR3cTuNhK7TCf1Hg-fXX58-oQFP41Mk6wtwexgWq8pZWiESKBvwl2SWEihxHvfQqA3IVaOSq39towTCl-_zbQ-ffdyT-M0fEdcrtDkXS4EvtdciM098jusAEGfXFFX9B0rzMdmO-Sb0MMG345AWgaKOwTePBCU9r5OPH00yIs6xkdfT6l-NKE2oYOf9nJFF9UpdJ3tgVD11IAt3R09J5-Saf99PQipTe6T8bHR1_fnuRdToXc86poc4RDdVkrWwLyEKX1MkgLHCwOvHOsitIxZlmh6whESLEaWlayEtopB8isjOUDstPMmvCI0MIKF1Upva4BIwBuELJyBWyXkYFSO5-Rg_WEGt8FHMe8F1MDxANFYJIIDIrAJBFk5GXf48cq2MY_2r5BGfXtMEx2KpjNv5tO60yA0evKes9FxVUhHfyUjoByLGNomTOyv5awWS89w1jFB-jgLDPyrK8GrUNXim3CbLkwAHtLmeBxRh6uFkQ_EqY113wAH1cbS2VjqJs1zeQ8RfYWGF2O8cf_49_2yC2crXRZUe-TnXa-DE8AQLXuadKLa6EQGTs
  priority: 102
  providerName: Scholars Portal
Title Approximate Subject Specific Pseudo MRI from an Available MRI Dataset for MEG Source Imaging
URI https://www.ncbi.nlm.nih.gov/pubmed/28848418
https://www.proquest.com/docview/2294106403
https://www.proquest.com/docview/1933600192
https://pubmed.ncbi.nlm.nih.gov/PMC5550724
https://doaj.org/article/e7a989acc4594706b9968f215a220128
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQcuGCWJZH2WVlJITEIWrq-HnsQveB1NVqYaUekCzbsUWl3RTRFMG_Z8ZJqxYhuHDJIXEixzOe-cYef0PIa89VCDHUhdBBQYCSROFdWRYhOmGillHnynPTS3l-wz_MxGyr1BfmhHX0wN3ADaNyRhsXAheGq1J6AOg6gaNyjKFxResLPm8dTHU2GFC6UN2mJIRgZpgaEBfmcWW-Qjxjv-WEMlf_nwDm73mSW47n9BF52CNGOu56uk_uxeYxORg3EC3f_aRvaM7hzIvjB-TzGCnCf8wBhkYKNgEXWWguMZ_mgV4t46pe0On1BcVTJdQ1dPzdzW_x9FS--9614NRaCkCWTidn9GNe2acXd7mU0RNyczr59O686OsnFIGbsi0Q-tRVrVwFKENULsgoHcRbaRS8ZyZJz5hjpa4TjKliNbQ00gjtlQcUVqXqKdlrFk18TmjphE-qkkHXgAcAIwhpfAmmMTGYwD4MyHA9oDb05OJY4-LWQpCBIrBZBBZFYLMIBuTt5o2vHbHGX9qeoIw27ZASO98ARbG9oth_KcqAHK0lbPt5urSMGT7CzcxqQF5tHsMMw20T18TFamkB4lYyQ-EBedYpxKYnTGuu-Qg-rnZUZaeru0-a-ZfM4i2QSY7xF__j3w7JAxytnJioj8he-20VXwJYav0xuX8yuby6Ps7zA65nsxFcp1z_AgVEE-Y
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N7gFeEDD-BAYYCZB4iJo6ceI8INSxjpat1TQ2aQ9IxnYcqLSlY22BfSk-I3duUlaE9rZX27Ec3_nud77zHcBLk2TWOluEQtoMDZRShEZHUWidFrmTqZO-8txwlPaPko_H4ngNfjdvYSisspGJXlAXE0t35G3O86RDbqf43dn3kKpGkXe1KaGxYItdd_ETTbbp28E20vcV5zu9w_f9sK4qENokj2YhAYIiLjIdo-4VsbapSzVaIWXHGsPzMjWcax7JokRTIOMFjszTXEiTGcQmcRnjvDdgPYkRKrRgfas32j9oZD9aByJbOEPR9MvbZYVsQvFjPk8ive2_pPx8jYD_Adt_4zMvKbydO3C7Rqqsu2Ctu7Dmqnuw0a3QSj-9YK-Zjx31l_Ib8LlLqcl_jRH-OoayiC53mC9tX44t25-6eTFhw4MBo9csTFes-0OPT-jVlm_d1jNUpjOGAJoNex_YJ-9RYINTX0LpPhxdyw4_gFY1qdwjYJEWpszi1MoCcQhiE5HmJkKRXHIUHMYG0G42VNk6qTnV1jhRaNwQCZQngSISKE-CAN4svzhbJPS4YuwW0Wg5jlJx-4bJ-VdVn2zlcPUy19YmIk-yKDX4U7JEJKU5J-0fwGZDYVXLh6n6y80BvFh248kmd42u3GQ-VQiticcQggfwcMEQy5VwKROZdHDybIVVVpa62lONv_ns4YIy2PHk8dXLeg43-4fDPbU3GO0-gVu0Jz7sUW5Ca3Y-d08Ris3Ms5r_GXy57iP3B_RrRqY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDA-CmMYCZB4iJo6ceI8INTRlpXRqhpM2gOSsR0bKm3JWFNg_xp_3e7cpKwI7W2vsRM5vvPd73xfhLzQcWqMNXnAhUnBQHE80CoMA2MVz6xIrPCd58aTZO8w_nDEjzbInyYXBsMqG5noBXVeGrwj7zCWxV10O0UdV4dFTPvDt6c_AuwghZ7Wpp3GkkX27fkvMN_mb0Z9oPVLxoaDz-_2grrDQGDiLKwCBAd5lKcqAj3MI2USmyiwSFzXaM0yl2jGFAtF7sAsSFkOM7Mk40KnGnBK5CL47g2ymWL6aIts7g4m04NGD4ClwNOlYxTMwKzjCmAZjCXzNRMxz_-SIvT9Av4Hcv-N1byk_IZ3yO0atdLeks3ukg1b3CNbvQIs9pNz-or6OFJ_Qb9FvvSwTPnvGUBhS0Eu4UUP9W3u3czQ6dwu8pKOD0YUM1uoKmjvp5odYwaXf9pXFSjWigKYpuPBe_rJexfo6MS3U7pPDq9lhx-QVlEW9hGhoeLapVFiRA6YBHAKTzIdgnh2DISINm3SaTZUmrrAOfbZOJZg6CAJpCeBRBJIT4I2eb1643RZ3OOKubtIo9U8LMvtH5Rn32R9yqWF1YtMGRPzLE7DRMNPCQeoSjGGSKBNthsKy1pWzOVfzm6T56thOOXoulGFLRdzCTA7Sjwcb5OHS4ZYrYQJEYu4Cx9P11hlbanrI8Xsu68kzrGaHYsfX72sZ-QmHDX5cTTZf0Ju4Zb4CEixTVrV2cI-BVRW6Z2a_Sn5et0n7gJCQkrk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Subject+Specific+Pseudo+MRI+from+an+Available+MRI+Dataset+for+MEG+Source+Imaging&rft.jtitle=Frontiers+in+neuroinformatics&rft.au=Bakul+Gohel&rft.au=Sanghyun+Lim&rft.au=Min-Young+Kim&rft.au=Hyukchan+Kwon&rft.date=2017-08-08&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5196&rft.volume=11&rft_id=info:doi/10.3389%2Ffninf.2017.00050&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e7a989acc4594706b9968f215a220128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5196&client=summon