Analysis of nanobody paratopes reveals greater diversity than classical antibodies

Abstract Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen...

Full description

Saved in:
Bibliographic Details
Published inProtein engineering, design and selection Vol. 31; no. 7-8; pp. 267 - 275
Main Authors Mitchell, Laura S, Colwell, Lucy J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity.
AbstractList Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity.
Abstract Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity.
Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity.Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity.
Author Mitchell, Laura S
Colwell, Lucy J
AuthorAffiliation Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
AuthorAffiliation_xml – name: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
Author_xml – sequence: 1
  givenname: Laura S
  orcidid: 0000-0002-3933-9904
  surname: Mitchell
  fullname: Mitchell, Laura S
  email: lsm35@cam.ac.uk
  organization: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
– sequence: 2
  givenname: Lucy J
  surname: Colwell
  fullname: Colwell, Lucy J
  organization: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30053276$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LxDAQxYMofl89So56WE2abLK9CCJ-gSCInsM0na6RblKT7EL9663sKiqIpxmY93sP5u2QdR88EnLA2QlnpTjtYsjo_On0rWdcr5FtriUfMS7k-tdeqC2yk9ILY4XSnG-SLcHYWBRabZOHcw9tn1yioaEefKhC3dMOIuTQYaIRFwhtotOIkDHS2i0wJpd7mp_BU9tCSs5CS8FnN7AO0x7ZaAYE91dzlzxdXT5e3Izu7q9vL87vRlaWLI-KutTQFKqSvK4mXEnkupaysY2SjFlRqlKUEwAmaw1CWhS1KlFWE8sFMK3FLjlb-nbzaoa1RZ8jtKaLbgaxNwGc-Xnx7tlMw8KoQuvhNYPB0coghtc5pmxmLllsW_AY5skUTE_G5SAcD9LD71lfIZ-PHARyKbAxpBSxMdZlyC58RLvWcGY--jKrvsyyrwE7-YV9Ov8JHC-BMO_-074Ds2Wsig
CitedBy_id crossref_primary_10_1016_j_bios_2023_115872
crossref_primary_10_1146_annurev_animal_021419_083831
crossref_primary_10_3390_ijms20174187
crossref_primary_10_1016_j_polymer_2022_125318
crossref_primary_10_1007_s00018_022_04336_9
crossref_primary_10_3389_fimmu_2023_1231623
crossref_primary_10_1016_j_bej_2024_109402
crossref_primary_10_3390_ijms24065994
crossref_primary_10_1016_j_ijbiomac_2021_06_043
crossref_primary_10_1166_jbn_2024_3906
crossref_primary_10_1016_j_jmb_2019_10_005
crossref_primary_10_1002_jlcr_4069
crossref_primary_10_1007_s00259_022_05998_0
crossref_primary_10_1016_j_ijbiomac_2022_03_113
crossref_primary_10_1039_D2CS00991A
crossref_primary_10_1038_s41467_021_24963_3
crossref_primary_10_1038_s41419_023_06391_x
crossref_primary_10_1186_s13104_022_06001_7
crossref_primary_10_1186_s12951_025_03169_5
crossref_primary_10_3390_computation7020027
crossref_primary_10_1093_bib_bbae518
crossref_primary_10_1016_j_freeradbiomed_2021_09_005
crossref_primary_10_1002_pro_5176
crossref_primary_10_3390_molecules28196838
crossref_primary_10_1038_s41598_021_98977_8
crossref_primary_10_1371_journal_pone_0288259
crossref_primary_10_3389_fimmu_2024_1447212
crossref_primary_10_1016_j_pep_2020_105645
crossref_primary_10_3390_biom11020163
crossref_primary_10_1039_D2SC01536F
crossref_primary_10_3389_fgene_2019_00997
crossref_primary_10_1016_j_drudis_2023_103846
crossref_primary_10_1093_bib_bbz095
crossref_primary_10_3390_antib8010001
crossref_primary_10_3390_ijms23031482
crossref_primary_10_7554_eLife_68253
crossref_primary_10_1007_s12033_019_00224_z
crossref_primary_10_3390_bios14030146
crossref_primary_10_1111_imr_13381
crossref_primary_10_1002_2211_5463_13850
crossref_primary_10_1007_s40259_019_00392_z
crossref_primary_10_1021_acschembio_4c00197
crossref_primary_10_3390_ijms241713229
crossref_primary_10_1093_fqsafe_fyae018
crossref_primary_10_1042_BSR20221546
crossref_primary_10_1002_jmr_2805
crossref_primary_10_1093_abt_tbae020
crossref_primary_10_1146_annurev_cellbio_112122_025214
crossref_primary_10_1016_j_pep_2024_106501
crossref_primary_10_1080_19420862_2023_2261149
crossref_primary_10_3390_antib10040047
crossref_primary_10_3390_antib8010013
crossref_primary_10_1016_j_jim_2024_113759
crossref_primary_10_1016_j_bioorg_2021_105563
crossref_primary_10_1016_j_mcpro_2024_100865
crossref_primary_10_1093_nar_gkab1021
crossref_primary_10_1016_j_bbrc_2021_07_054
crossref_primary_10_1089_cbr_2020_3941
crossref_primary_10_3390_ijms21176324
crossref_primary_10_3389_fimmu_2022_1059771
crossref_primary_10_3389_fimmu_2024_1346328
crossref_primary_10_3390_ph14100968
crossref_primary_10_1093_bioadv_vbae033
crossref_primary_10_1016_j_jbc_2023_105107
crossref_primary_10_1142_S1793545825410019
crossref_primary_10_1186_s12951_024_02900_y
crossref_primary_10_3389_fimmu_2022_884132
crossref_primary_10_3390_biom13030551
crossref_primary_10_1002_wnan_1697
crossref_primary_10_1007_s12033_021_00442_4
crossref_primary_10_3390_molecules28103991
crossref_primary_10_3390_biom11030407
crossref_primary_10_3389_fonc_2020_01182
crossref_primary_10_1016_j_freeradbiomed_2022_02_031
crossref_primary_10_3390_molecules24142600
crossref_primary_10_1038_s42003_023_05241_y
crossref_primary_10_3389_fimmu_2022_1014377
crossref_primary_10_1016_j_jbc_2023_104740
crossref_primary_10_7717_peerj_8408
crossref_primary_10_1007_s11033_024_09684_2
crossref_primary_10_1080_13102818_2022_2044381
crossref_primary_10_3390_ijms241310804
crossref_primary_10_1021_acs_bioconjchem_3c00116
Cites_doi 10.1016/j.sbi.2015.01.001
10.1016/j.bbapap.2011.12.007
10.1107/S0907444910045749
10.1093/bioinformatics/btw197
10.1016/S0969-2126(99)80049-5
10.1093/nar/gks480
10.1146/annurev-biochem-063011-092449
10.1093/nar/28.1.235
10.1093/nar/gku1106
10.4049/jimmunol.147.5.1709
10.1371/journal.pcbi.1002388
10.1006/jmbi.1993.1648
10.1016/j.tibtech.2014.03.001
10.1016/j.jmb.2014.08.013
10.1093/bioinformatics/btt369
10.7554/eLife.11349
10.1038/nature09648
10.1093/bioinformatics/btv552
10.1093/nar/gkt1043
10.1096/fasebj.9.1.7821752
10.1016/j.molimm.2008.05.022
10.2217/nnm.14.178
10.1006/jmbi.2001.4662
10.3389/fimmu.2013.00302
10.7150/thno.8006
10.4049/jimmunol.1100116
10.1073/pnas.1401131111
10.1101/gad.1161904
10.1038/nmeth.1991
10.1038/363446a0
10.1038/342877a0
10.1107/S0907444905007870
10.1073/pnas.0505379103
10.12688/f1000research.7931.1
10.1016/0022-2836(71)90324-X
10.1002/prot.25497
ContentType Journal Article
Copyright The Author(s) 2018. Published by Oxford University Press. 2018
Copyright_xml – notice: The Author(s) 2018. Published by Oxford University Press. 2018
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/protein/gzy017
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Special Issue: Antibodies
EISSN 1741-0134
EndPage 275
ExternalDocumentID PMC6277174
30053276
10_1093_protein_gzy017
10.1093/protein/gzy017
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: 1501548
  funderid: 10.13039/501100000268
– fundername: Research Executive Agency
  grantid: 631609
  funderid: 10.13039/501100000783
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: 1501548
– fundername: ; ;
  grantid: 631609
– fundername: ; ;
  grantid: 1501548
GroupedDBID ---
-E4
-~X
.2P
.I3
.ZR
0R~
123
18M
1TH
29P
2WC
4.4
482
48X
53G
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AASNB
AAUAY
AAUQX
AAVAP
AAVLN
ABEUO
ABIXL
ABKDP
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEEA
AKHUL
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
BAWUL
BAYMD
BCRHZ
BEYMZ
BQDIO
BSWAC
BTRTY
BVRKM
CDBKE
CS3
CZ4
DAKXR
DIK
DILTD
D~K
EBD
EBS
EE~
EJD
EMOBN
F5P
F9B
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H5~
HAR
HH5
HW0
HZ~
I-F
IH2
IOX
J21
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OES
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
RUSNO
RW1
RXO
SV3
TEORI
TJX
TLC
TOX
TR2
W8F
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABDFA
ABEJV
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AGORE
AHMMS
AJBYB
AJNCP
ALXQX
CITATION
JXSIZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c490t-2d97af26b41db8164e17d44fcf6400c3969398aa04d7a34ce3d69e4b8c13a0773
IEDL.DBID TOX
ISSN 1741-0126
1741-0134
IngestDate Thu Aug 21 18:18:28 EDT 2025
Thu Jul 10 18:26:46 EDT 2025
Mon Jul 21 06:05:52 EDT 2025
Tue Jul 01 03:42:42 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Aug 28 03:19:21 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7-8
Keywords antibody
nanobody
paratope
single-domain antibody
VHH
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-2d97af26b41db8164e17d44fcf6400c3969398aa04d7a34ce3d69e4b8c13a0773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3933-9904
OpenAccessLink https://dx.doi.org/10.1093/protein/gzy017
PMID 30053276
PQID 2078597435
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6277174
proquest_miscellaneous_2078597435
pubmed_primary_30053276
crossref_citationtrail_10_1093_protein_gzy017
crossref_primary_10_1093_protein_gzy017
oup_primary_10_1093_protein_gzy017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180701
2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 20180701
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Protein engineering, design and selection
PublicationTitleAlternate Protein Eng Des Sel
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Cohen ( key 2018112607330297800_gzy017C6) 2005; 61
Mitternacht ( key 2018112607330297800_gzy017C24) 2016; 5
Decanniere ( key 2018112607330297800_gzy017C9) 1999; 7
Kunik ( key 2018112607330297800_gzy017C17) 2012; 40
Padlan ( key 2018112607330297800_gzy017C27) 1995; 9
Chothia ( key 2018112607330297800_gzy017C5) 1989; 342
Desmyter ( key 2018112607330297800_gzy017C10) 2015; 32
Pleiner ( key 2018112607330297800_gzy017C29) 2015; 4
Lawrence ( key 2018112607330297800_gzy017C20) 1993; 234
Olimpieri ( key 2018112607330297800_gzy017C26) 2013; 29
De Genst ( key 2018112607330297800_gzy017C7) 2006; 103
Li ( key 2018112607330297800_gzy017C22) 2004; 18
Kijanka ( key 2018112607330297800_gzy017C16) 2015; 10
Sircar ( key 2018112607330297800_gzy017C35) 2011; 186
Chakravarty ( key 2018112607330297800_gzy017C4) 2014; 4
Rasmussen ( key 2018112607330297800_gzy017C31) 2011; 469
Adolf-Bryfogle ( key 2018112607330297800_gzy017C2) 2015; 43
Dunbar ( key 2018112607330297800_gzy017C11) 2015; 32
Honegger ( key 2018112607330297800_gzy017C14) 2001; 309
Lee ( key 2018112607330297800_gzy017C21) 1971; 55
Kabat ( key 2018112607330297800_gzy017C15) 1991; 147
Kuroda ( key 2018112607330297800_gzy017C19) 2016; 32
Mitchell ( key 2018112607330297800_gzy017C23) 2018; 86
Muyldermans ( key 2018112607330297800_gzy017C25) 2013; 82
Abhinandan ( key 2018112607330297800_gzy017C1) 2008; 45
Peng ( key 2018112607330297800_gzy017C28) 2014; 111
Dunbar ( key 2018112607330297800_gzy017C12) 2014; 42
Ramaraj ( key 2018112607330297800_gzy017C30) 2012; 1824
Kunik ( key 2018112607330297800_gzy017C18) 2012; 8
Berman ( key 2018112607330297800_gzy017C3) 2000; 28
Winn ( key 2018112607330297800_gzy017C36) 2011; 67
Ries ( key 2018112607330297800_gzy017C32) 2012; 9
De Meyer ( key 2018112607330297800_gzy017C8) 2014; 32
Sela-Culang ( key 2018112607330297800_gzy017C34) 2013; 4
Robin ( key 2018112607330297800_gzy017C33) 2014; 426
Hamers-Casterman ( key 2018112607330297800_gzy017C13) 1993; 363
References_xml – volume: 32
  start-page: 1
  year: 2015
  ident: key 2018112607330297800_gzy017C10
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2015.01.001
– volume: 1824
  start-page: 520
  year: 2012
  ident: key 2018112607330297800_gzy017C30
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbapap.2011.12.007
– volume: 67
  start-page: 235
  year: 2011
  ident: key 2018112607330297800_gzy017C36
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444910045749
– volume: 32
  start-page: 2451
  year: 2016
  ident: key 2018112607330297800_gzy017C19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw197
– volume: 7
  start-page: 361
  year: 1999
  ident: key 2018112607330297800_gzy017C9
  publication-title: Structure
  doi: 10.1016/S0969-2126(99)80049-5
– volume: 40
  start-page: 1
  year: 2012
  ident: key 2018112607330297800_gzy017C17
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks480
– volume: 82
  start-page: 775
  year: 2013
  ident: key 2018112607330297800_gzy017C25
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-063011-092449
– volume: 28
  start-page: 235
  year: 2000
  ident: key 2018112607330297800_gzy017C3
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– volume: 43
  start-page: D432
  year: 2015
  ident: key 2018112607330297800_gzy017C2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1106
– volume: 147
  start-page: 1709
  year: 1991
  ident: key 2018112607330297800_gzy017C15
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.147.5.1709
– volume: 8
  start-page: e1002388
  year: 2012
  ident: key 2018112607330297800_gzy017C18
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002388
– volume: 234
  start-page: 946
  year: 1993
  ident: key 2018112607330297800_gzy017C20
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1648
– volume: 32
  start-page: 263
  year: 2014
  ident: key 2018112607330297800_gzy017C8
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2014.03.001
– volume: 426
  start-page: 3729
  year: 2014
  ident: key 2018112607330297800_gzy017C33
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2014.08.013
– volume: 29
  start-page: 2285
  year: 2013
  ident: key 2018112607330297800_gzy017C26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt369
– volume: 4
  start-page: 1
  year: 2015
  ident: key 2018112607330297800_gzy017C29
  publication-title: Elife
  doi: 10.7554/eLife.11349
– volume: 469
  start-page: 175
  year: 2011
  ident: key 2018112607330297800_gzy017C31
  publication-title: Nature
  doi: 10.1038/nature09648
– volume: 32
  start-page: 298
  year: 2015
  ident: key 2018112607330297800_gzy017C11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv552
– volume: 42
  start-page: D1140
  year: 2014
  ident: key 2018112607330297800_gzy017C12
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1043
– volume: 9
  start-page: 133
  year: 1995
  ident: key 2018112607330297800_gzy017C27
  publication-title: FASEB J.
  doi: 10.1096/fasebj.9.1.7821752
– volume: 45
  start-page: 3832
  year: 2008
  ident: key 2018112607330297800_gzy017C1
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2008.05.022
– volume: 10
  start-page: 161
  year: 2015
  ident: key 2018112607330297800_gzy017C16
  publication-title: Nanomedicine
  doi: 10.2217/nnm.14.178
– volume: 309
  start-page: 657
  year: 2001
  ident: key 2018112607330297800_gzy017C14
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4662
– volume: 4
  start-page: 1
  year: 2013
  ident: key 2018112607330297800_gzy017C34
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2013.00302
– volume: 4
  start-page: 386
  year: 2014
  ident: key 2018112607330297800_gzy017C4
  publication-title: Theranostics
  doi: 10.7150/thno.8006
– volume: 186
  start-page: 6357
  year: 2011
  ident: key 2018112607330297800_gzy017C35
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100116
– volume: 111
  start-page: E2656
  year: 2014
  ident: key 2018112607330297800_gzy017C28
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1401131111
– volume: 18
  start-page: 1
  year: 2004
  ident: key 2018112607330297800_gzy017C22
  publication-title: Genes Dev.
  doi: 10.1101/gad.1161904
– volume: 9
  start-page: 582
  year: 2012
  ident: key 2018112607330297800_gzy017C32
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1991
– volume: 363
  start-page: 446
  year: 1993
  ident: key 2018112607330297800_gzy017C13
  publication-title: Nature
  doi: 10.1038/363446a0
– volume: 342
  start-page: 877
  year: 1989
  ident: key 2018112607330297800_gzy017C5
  publication-title: Nature
  doi: 10.1038/342877a0
– volume: 61
  start-page: 628
  year: 2005
  ident: key 2018112607330297800_gzy017C6
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S0907444905007870
– volume: 103
  start-page: 4586
  year: 2006
  ident: key 2018112607330297800_gzy017C7
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0505379103
– volume: 5
  start-page: 189
  year: 2016
  ident: key 2018112607330297800_gzy017C24
  publication-title: F1000Res.
  doi: 10.12688/f1000research.7931.1
– volume: 55
  start-page: 379
  year: 1971
  ident: key 2018112607330297800_gzy017C21
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(71)90324-X
– volume: 86
  start-page: 697
  year: 2018
  ident: key 2018112607330297800_gzy017C23
  publication-title: Proteins
  doi: 10.1002/prot.25497
SSID ssj0026711
Score 2.5161004
Snippet Abstract Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and...
Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 267
SubjectTerms Amino Acid Sequence
Animals
Antibody Specificity
Antigens - immunology
Crystallography, X-Ray
Models, Molecular
Original
Protein Conformation
Single-Chain Antibodies - chemistry
Single-Chain Antibodies - immunology
Title Analysis of nanobody paratopes reveals greater diversity than classical antibodies
URI https://www.ncbi.nlm.nih.gov/pubmed/30053276
https://www.proquest.com/docview/2078597435
https://pubmed.ncbi.nlm.nih.gov/PMC6277174
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EkxdRfNVHWUXwFEx3N7vZo4ilKipIhd7CPmtBktLHof56Z5M0tKLoObMhzEwy35eZ_Rahy0TEyiWKRtwkJGKeqUhC7kROxJZSz2WShP3OT8-898YeBsmgFoue_tDCl_S6FCwAljj8XED6wNcWKnBQye-_DBpqxUV50i7A60COCW_kGb8vXys_a1vaVpDl9wHJlYrT3UHbNVTEN1Vsd9GGy_fQ61JFBBce5yovdGEXuBTwLsZuioMiE2QUHgYw6CbYLucucPhHjk0AyyEuGDw6grVAlPfRW_euf9uL6nMRIsNkPIuIlUJ5wjXrWJ0C33EdYRnzxnN4Iw2VXFKZKhUzKxRlxlHLpWM6NR2qYiHoAdrMi9wdIQxky3tKOi5NKVPEKupdnHijSWqZ1rqFoqW7MlOLhoezKz6yqnlNs9q9WeXeFrpq7MeVXMavlhfg_T-NzpfBySDtQy9D5a6YTzMC0CZwIZq00GEVrOZeQYGfEsFbSKyFsTEIktrrV_LReymtzYkAfsuO__NwJ2gL0FNaze6eos3ZZO7OAKHMdBuw-f1ju0zRL_tW65Y
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+nanobody+paratopes+reveals+greater+diversity+than+classical+antibodies&rft.jtitle=Protein+engineering%2C+design+and+selection&rft.au=Mitchell%2C+Laura+S&rft.au=Colwell%2C+Lucy+J&rft.date=2018-07-01&rft.pub=Oxford+University+Press&rft.issn=1741-0126&rft.eissn=1741-0134&rft.volume=31&rft.issue=7-8&rft.spage=267&rft.epage=275&rft_id=info:doi/10.1093%2Fprotein%2Fgzy017&rft.externalDocID=10.1093%2Fprotein%2Fgzy017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-0126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-0126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-0126&client=summon