Analysis of nanobody paratopes reveals greater diversity than classical antibodies
Abstract Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen...
Saved in:
Published in | Protein engineering, design and selection Vol. 31; no. 7-8; pp. 267 - 275 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity. |
---|---|
AbstractList | Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity. Abstract Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity. Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity.Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to classical antibodies (Abs) despite being comprised of only a single variable domain. Here, we use a data set of 156 unique Nb:antigen complex structures to characterize Nb-antigen binding and draw comparison to a set of 156 unique Ab:antigen structures. We analyse residue composition and interactions at the antigen interface, together with structural features of the paratopes of both data sets. Our analysis finds that the set of Nb structures displays much greater paratope diversity, in terms of the structural segments involved in the paratope, the residues used at these positions to contact the antigen and furthermore the type of contacts made with the antigen. Our findings suggest a different relationship between contact propensity and sequence variability from that observed for Ab VH domains. The distinction between sequence positions that control interaction specificity and those that form the domain scaffold is much less clear-cut for Nbs, and furthermore H3 loop positions play a much more dominant role in determining interaction specificity. |
Author | Mitchell, Laura S Colwell, Lucy J |
AuthorAffiliation | Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK |
AuthorAffiliation_xml | – name: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK |
Author_xml | – sequence: 1 givenname: Laura S orcidid: 0000-0002-3933-9904 surname: Mitchell fullname: Mitchell, Laura S email: lsm35@cam.ac.uk organization: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK – sequence: 2 givenname: Lucy J surname: Colwell fullname: Colwell, Lucy J organization: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30053276$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LxDAQxYMofl89So56WE2abLK9CCJ-gSCInsM0na6RblKT7EL9663sKiqIpxmY93sP5u2QdR88EnLA2QlnpTjtYsjo_On0rWdcr5FtriUfMS7k-tdeqC2yk9ILY4XSnG-SLcHYWBRabZOHcw9tn1yioaEefKhC3dMOIuTQYaIRFwhtotOIkDHS2i0wJpd7mp_BU9tCSs5CS8FnN7AO0x7ZaAYE91dzlzxdXT5e3Izu7q9vL87vRlaWLI-KutTQFKqSvK4mXEnkupaysY2SjFlRqlKUEwAmaw1CWhS1KlFWE8sFMK3FLjlb-nbzaoa1RZ8jtKaLbgaxNwGc-Xnx7tlMw8KoQuvhNYPB0coghtc5pmxmLllsW_AY5skUTE_G5SAcD9LD71lfIZ-PHARyKbAxpBSxMdZlyC58RLvWcGY--jKrvsyyrwE7-YV9Ov8JHC-BMO_-074Ds2Wsig |
CitedBy_id | crossref_primary_10_1016_j_bios_2023_115872 crossref_primary_10_1146_annurev_animal_021419_083831 crossref_primary_10_3390_ijms20174187 crossref_primary_10_1016_j_polymer_2022_125318 crossref_primary_10_1007_s00018_022_04336_9 crossref_primary_10_3389_fimmu_2023_1231623 crossref_primary_10_1016_j_bej_2024_109402 crossref_primary_10_3390_ijms24065994 crossref_primary_10_1016_j_ijbiomac_2021_06_043 crossref_primary_10_1166_jbn_2024_3906 crossref_primary_10_1016_j_jmb_2019_10_005 crossref_primary_10_1002_jlcr_4069 crossref_primary_10_1007_s00259_022_05998_0 crossref_primary_10_1016_j_ijbiomac_2022_03_113 crossref_primary_10_1039_D2CS00991A crossref_primary_10_1038_s41467_021_24963_3 crossref_primary_10_1038_s41419_023_06391_x crossref_primary_10_1186_s13104_022_06001_7 crossref_primary_10_1186_s12951_025_03169_5 crossref_primary_10_3390_computation7020027 crossref_primary_10_1093_bib_bbae518 crossref_primary_10_1016_j_freeradbiomed_2021_09_005 crossref_primary_10_1002_pro_5176 crossref_primary_10_3390_molecules28196838 crossref_primary_10_1038_s41598_021_98977_8 crossref_primary_10_1371_journal_pone_0288259 crossref_primary_10_3389_fimmu_2024_1447212 crossref_primary_10_1016_j_pep_2020_105645 crossref_primary_10_3390_biom11020163 crossref_primary_10_1039_D2SC01536F crossref_primary_10_3389_fgene_2019_00997 crossref_primary_10_1016_j_drudis_2023_103846 crossref_primary_10_1093_bib_bbz095 crossref_primary_10_3390_antib8010001 crossref_primary_10_3390_ijms23031482 crossref_primary_10_7554_eLife_68253 crossref_primary_10_1007_s12033_019_00224_z crossref_primary_10_3390_bios14030146 crossref_primary_10_1111_imr_13381 crossref_primary_10_1002_2211_5463_13850 crossref_primary_10_1007_s40259_019_00392_z crossref_primary_10_1021_acschembio_4c00197 crossref_primary_10_3390_ijms241713229 crossref_primary_10_1093_fqsafe_fyae018 crossref_primary_10_1042_BSR20221546 crossref_primary_10_1002_jmr_2805 crossref_primary_10_1093_abt_tbae020 crossref_primary_10_1146_annurev_cellbio_112122_025214 crossref_primary_10_1016_j_pep_2024_106501 crossref_primary_10_1080_19420862_2023_2261149 crossref_primary_10_3390_antib10040047 crossref_primary_10_3390_antib8010013 crossref_primary_10_1016_j_jim_2024_113759 crossref_primary_10_1016_j_bioorg_2021_105563 crossref_primary_10_1016_j_mcpro_2024_100865 crossref_primary_10_1093_nar_gkab1021 crossref_primary_10_1016_j_bbrc_2021_07_054 crossref_primary_10_1089_cbr_2020_3941 crossref_primary_10_3390_ijms21176324 crossref_primary_10_3389_fimmu_2022_1059771 crossref_primary_10_3389_fimmu_2024_1346328 crossref_primary_10_3390_ph14100968 crossref_primary_10_1093_bioadv_vbae033 crossref_primary_10_1016_j_jbc_2023_105107 crossref_primary_10_1142_S1793545825410019 crossref_primary_10_1186_s12951_024_02900_y crossref_primary_10_3389_fimmu_2022_884132 crossref_primary_10_3390_biom13030551 crossref_primary_10_1002_wnan_1697 crossref_primary_10_1007_s12033_021_00442_4 crossref_primary_10_3390_molecules28103991 crossref_primary_10_3390_biom11030407 crossref_primary_10_3389_fonc_2020_01182 crossref_primary_10_1016_j_freeradbiomed_2022_02_031 crossref_primary_10_3390_molecules24142600 crossref_primary_10_1038_s42003_023_05241_y crossref_primary_10_3389_fimmu_2022_1014377 crossref_primary_10_1016_j_jbc_2023_104740 crossref_primary_10_7717_peerj_8408 crossref_primary_10_1007_s11033_024_09684_2 crossref_primary_10_1080_13102818_2022_2044381 crossref_primary_10_3390_ijms241310804 crossref_primary_10_1021_acs_bioconjchem_3c00116 |
Cites_doi | 10.1016/j.sbi.2015.01.001 10.1016/j.bbapap.2011.12.007 10.1107/S0907444910045749 10.1093/bioinformatics/btw197 10.1016/S0969-2126(99)80049-5 10.1093/nar/gks480 10.1146/annurev-biochem-063011-092449 10.1093/nar/28.1.235 10.1093/nar/gku1106 10.4049/jimmunol.147.5.1709 10.1371/journal.pcbi.1002388 10.1006/jmbi.1993.1648 10.1016/j.tibtech.2014.03.001 10.1016/j.jmb.2014.08.013 10.1093/bioinformatics/btt369 10.7554/eLife.11349 10.1038/nature09648 10.1093/bioinformatics/btv552 10.1093/nar/gkt1043 10.1096/fasebj.9.1.7821752 10.1016/j.molimm.2008.05.022 10.2217/nnm.14.178 10.1006/jmbi.2001.4662 10.3389/fimmu.2013.00302 10.7150/thno.8006 10.4049/jimmunol.1100116 10.1073/pnas.1401131111 10.1101/gad.1161904 10.1038/nmeth.1991 10.1038/363446a0 10.1038/342877a0 10.1107/S0907444905007870 10.1073/pnas.0505379103 10.12688/f1000research.7931.1 10.1016/0022-2836(71)90324-X 10.1002/prot.25497 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. Published by Oxford University Press. 2018 |
Copyright_xml | – notice: The Author(s) 2018. Published by Oxford University Press. 2018 |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/protein/gzy017 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | Special Issue: Antibodies |
EISSN | 1741-0134 |
EndPage | 275 |
ExternalDocumentID | PMC6277174 30053276 10_1093_protein_gzy017 10.1093/protein/gzy017 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: 1501548 funderid: 10.13039/501100000268 – fundername: Research Executive Agency grantid: 631609 funderid: 10.13039/501100000783 – fundername: Biotechnology and Biological Sciences Research Council grantid: 1501548 – fundername: ; ; grantid: 631609 – fundername: ; ; grantid: 1501548 |
GroupedDBID | --- -E4 -~X .2P .I3 .ZR 0R~ 123 18M 1TH 29P 2WC 4.4 482 48X 53G 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AASNB AAUAY AAUQX AAVAP AAVLN ABEUO ABIXL ABKDP ABMNT ABNHQ ABNKS ABPTD ABQLI ABWST ABXVV ABZBJ ACGFO ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJEEA AKHUL ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL ATGXG BAWUL BAYMD BCRHZ BEYMZ BQDIO BSWAC BTRTY BVRKM CDBKE CS3 CZ4 DAKXR DIK DILTD D~K EBD EBS EE~ EJD EMOBN F5P F9B FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H5~ HAR HH5 HW0 HZ~ I-F IH2 IOX J21 KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NOYVH NU- O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OES OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX RUSNO RW1 RXO SV3 TEORI TJX TLC TOX TR2 W8F X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX ABDFA ABEJV ABGNP ABPQP ABVGC ABXZS ADNBA AGORE AHMMS AJBYB AJNCP ALXQX CITATION JXSIZ CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c490t-2d97af26b41db8164e17d44fcf6400c3969398aa04d7a34ce3d69e4b8c13a0773 |
IEDL.DBID | TOX |
ISSN | 1741-0126 1741-0134 |
IngestDate | Thu Aug 21 18:18:28 EDT 2025 Thu Jul 10 18:26:46 EDT 2025 Mon Jul 21 06:05:52 EDT 2025 Tue Jul 01 03:42:42 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Aug 28 03:19:21 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7-8 |
Keywords | antibody nanobody paratope single-domain antibody VHH |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-2d97af26b41db8164e17d44fcf6400c3969398aa04d7a34ce3d69e4b8c13a0773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3933-9904 |
OpenAccessLink | https://dx.doi.org/10.1093/protein/gzy017 |
PMID | 30053276 |
PQID | 2078597435 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6277174 proquest_miscellaneous_2078597435 pubmed_primary_30053276 crossref_citationtrail_10_1093_protein_gzy017 crossref_primary_10_1093_protein_gzy017 oup_primary_10_1093_protein_gzy017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180701 2018-07-01 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: 20180701 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Protein engineering, design and selection |
PublicationTitleAlternate | Protein Eng Des Sel |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Cohen ( key 2018112607330297800_gzy017C6) 2005; 61 Mitternacht ( key 2018112607330297800_gzy017C24) 2016; 5 Decanniere ( key 2018112607330297800_gzy017C9) 1999; 7 Kunik ( key 2018112607330297800_gzy017C17) 2012; 40 Padlan ( key 2018112607330297800_gzy017C27) 1995; 9 Chothia ( key 2018112607330297800_gzy017C5) 1989; 342 Desmyter ( key 2018112607330297800_gzy017C10) 2015; 32 Pleiner ( key 2018112607330297800_gzy017C29) 2015; 4 Lawrence ( key 2018112607330297800_gzy017C20) 1993; 234 Olimpieri ( key 2018112607330297800_gzy017C26) 2013; 29 De Genst ( key 2018112607330297800_gzy017C7) 2006; 103 Li ( key 2018112607330297800_gzy017C22) 2004; 18 Kijanka ( key 2018112607330297800_gzy017C16) 2015; 10 Sircar ( key 2018112607330297800_gzy017C35) 2011; 186 Chakravarty ( key 2018112607330297800_gzy017C4) 2014; 4 Rasmussen ( key 2018112607330297800_gzy017C31) 2011; 469 Adolf-Bryfogle ( key 2018112607330297800_gzy017C2) 2015; 43 Dunbar ( key 2018112607330297800_gzy017C11) 2015; 32 Honegger ( key 2018112607330297800_gzy017C14) 2001; 309 Lee ( key 2018112607330297800_gzy017C21) 1971; 55 Kabat ( key 2018112607330297800_gzy017C15) 1991; 147 Kuroda ( key 2018112607330297800_gzy017C19) 2016; 32 Mitchell ( key 2018112607330297800_gzy017C23) 2018; 86 Muyldermans ( key 2018112607330297800_gzy017C25) 2013; 82 Abhinandan ( key 2018112607330297800_gzy017C1) 2008; 45 Peng ( key 2018112607330297800_gzy017C28) 2014; 111 Dunbar ( key 2018112607330297800_gzy017C12) 2014; 42 Ramaraj ( key 2018112607330297800_gzy017C30) 2012; 1824 Kunik ( key 2018112607330297800_gzy017C18) 2012; 8 Berman ( key 2018112607330297800_gzy017C3) 2000; 28 Winn ( key 2018112607330297800_gzy017C36) 2011; 67 Ries ( key 2018112607330297800_gzy017C32) 2012; 9 De Meyer ( key 2018112607330297800_gzy017C8) 2014; 32 Sela-Culang ( key 2018112607330297800_gzy017C34) 2013; 4 Robin ( key 2018112607330297800_gzy017C33) 2014; 426 Hamers-Casterman ( key 2018112607330297800_gzy017C13) 1993; 363 |
References_xml | – volume: 32 start-page: 1 year: 2015 ident: key 2018112607330297800_gzy017C10 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2015.01.001 – volume: 1824 start-page: 520 year: 2012 ident: key 2018112607330297800_gzy017C30 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbapap.2011.12.007 – volume: 67 start-page: 235 year: 2011 ident: key 2018112607330297800_gzy017C36 publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444910045749 – volume: 32 start-page: 2451 year: 2016 ident: key 2018112607330297800_gzy017C19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw197 – volume: 7 start-page: 361 year: 1999 ident: key 2018112607330297800_gzy017C9 publication-title: Structure doi: 10.1016/S0969-2126(99)80049-5 – volume: 40 start-page: 1 year: 2012 ident: key 2018112607330297800_gzy017C17 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks480 – volume: 82 start-page: 775 year: 2013 ident: key 2018112607330297800_gzy017C25 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-063011-092449 – volume: 28 start-page: 235 year: 2000 ident: key 2018112607330297800_gzy017C3 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 – volume: 43 start-page: D432 year: 2015 ident: key 2018112607330297800_gzy017C2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1106 – volume: 147 start-page: 1709 year: 1991 ident: key 2018112607330297800_gzy017C15 publication-title: J. Immunol. doi: 10.4049/jimmunol.147.5.1709 – volume: 8 start-page: e1002388 year: 2012 ident: key 2018112607330297800_gzy017C18 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002388 – volume: 234 start-page: 946 year: 1993 ident: key 2018112607330297800_gzy017C20 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1648 – volume: 32 start-page: 263 year: 2014 ident: key 2018112607330297800_gzy017C8 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2014.03.001 – volume: 426 start-page: 3729 year: 2014 ident: key 2018112607330297800_gzy017C33 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2014.08.013 – volume: 29 start-page: 2285 year: 2013 ident: key 2018112607330297800_gzy017C26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt369 – volume: 4 start-page: 1 year: 2015 ident: key 2018112607330297800_gzy017C29 publication-title: Elife doi: 10.7554/eLife.11349 – volume: 469 start-page: 175 year: 2011 ident: key 2018112607330297800_gzy017C31 publication-title: Nature doi: 10.1038/nature09648 – volume: 32 start-page: 298 year: 2015 ident: key 2018112607330297800_gzy017C11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv552 – volume: 42 start-page: D1140 year: 2014 ident: key 2018112607330297800_gzy017C12 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1043 – volume: 9 start-page: 133 year: 1995 ident: key 2018112607330297800_gzy017C27 publication-title: FASEB J. doi: 10.1096/fasebj.9.1.7821752 – volume: 45 start-page: 3832 year: 2008 ident: key 2018112607330297800_gzy017C1 publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2008.05.022 – volume: 10 start-page: 161 year: 2015 ident: key 2018112607330297800_gzy017C16 publication-title: Nanomedicine doi: 10.2217/nnm.14.178 – volume: 309 start-page: 657 year: 2001 ident: key 2018112607330297800_gzy017C14 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4662 – volume: 4 start-page: 1 year: 2013 ident: key 2018112607330297800_gzy017C34 publication-title: Front. Immunol. doi: 10.3389/fimmu.2013.00302 – volume: 4 start-page: 386 year: 2014 ident: key 2018112607330297800_gzy017C4 publication-title: Theranostics doi: 10.7150/thno.8006 – volume: 186 start-page: 6357 year: 2011 ident: key 2018112607330297800_gzy017C35 publication-title: J. Immunol. doi: 10.4049/jimmunol.1100116 – volume: 111 start-page: E2656 year: 2014 ident: key 2018112607330297800_gzy017C28 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1401131111 – volume: 18 start-page: 1 year: 2004 ident: key 2018112607330297800_gzy017C22 publication-title: Genes Dev. doi: 10.1101/gad.1161904 – volume: 9 start-page: 582 year: 2012 ident: key 2018112607330297800_gzy017C32 publication-title: Nat. Methods doi: 10.1038/nmeth.1991 – volume: 363 start-page: 446 year: 1993 ident: key 2018112607330297800_gzy017C13 publication-title: Nature doi: 10.1038/363446a0 – volume: 342 start-page: 877 year: 1989 ident: key 2018112607330297800_gzy017C5 publication-title: Nature doi: 10.1038/342877a0 – volume: 61 start-page: 628 year: 2005 ident: key 2018112607330297800_gzy017C6 publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S0907444905007870 – volume: 103 start-page: 4586 year: 2006 ident: key 2018112607330297800_gzy017C7 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0505379103 – volume: 5 start-page: 189 year: 2016 ident: key 2018112607330297800_gzy017C24 publication-title: F1000Res. doi: 10.12688/f1000research.7931.1 – volume: 55 start-page: 379 year: 1971 ident: key 2018112607330297800_gzy017C21 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(71)90324-X – volume: 86 start-page: 697 year: 2018 ident: key 2018112607330297800_gzy017C23 publication-title: Proteins doi: 10.1002/prot.25497 |
SSID | ssj0026711 |
Score | 2.5161004 |
Snippet | Abstract
Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and... Nanobodies (Nbs) are a class of antigen-binding protein derived from camelid immune systems, which achieve equivalent binding affinities and specificities to... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 267 |
SubjectTerms | Amino Acid Sequence Animals Antibody Specificity Antigens - immunology Crystallography, X-Ray Models, Molecular Original Protein Conformation Single-Chain Antibodies - chemistry Single-Chain Antibodies - immunology |
Title | Analysis of nanobody paratopes reveals greater diversity than classical antibodies |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30053276 https://www.proquest.com/docview/2078597435 https://pubmed.ncbi.nlm.nih.gov/PMC6277174 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EkxdRfNVHWUXwFEx3N7vZo4ilKipIhd7CPmtBktLHof56Z5M0tKLoObMhzEwy35eZ_Rahy0TEyiWKRtwkJGKeqUhC7kROxJZSz2WShP3OT8-898YeBsmgFoue_tDCl_S6FCwAljj8XED6wNcWKnBQye-_DBpqxUV50i7A60COCW_kGb8vXys_a1vaVpDl9wHJlYrT3UHbNVTEN1Vsd9GGy_fQ61JFBBce5yovdGEXuBTwLsZuioMiE2QUHgYw6CbYLucucPhHjk0AyyEuGDw6grVAlPfRW_euf9uL6nMRIsNkPIuIlUJ5wjXrWJ0C33EdYRnzxnN4Iw2VXFKZKhUzKxRlxlHLpWM6NR2qYiHoAdrMi9wdIQxky3tKOi5NKVPEKupdnHijSWqZ1rqFoqW7MlOLhoezKz6yqnlNs9q9WeXeFrpq7MeVXMavlhfg_T-NzpfBySDtQy9D5a6YTzMC0CZwIZq00GEVrOZeQYGfEsFbSKyFsTEIktrrV_LReymtzYkAfsuO__NwJ2gL0FNaze6eos3ZZO7OAKHMdBuw-f1ju0zRL_tW65Y |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+nanobody+paratopes+reveals+greater+diversity+than+classical+antibodies&rft.jtitle=Protein+engineering%2C+design+and+selection&rft.au=Mitchell%2C+Laura+S&rft.au=Colwell%2C+Lucy+J&rft.date=2018-07-01&rft.pub=Oxford+University+Press&rft.issn=1741-0126&rft.eissn=1741-0134&rft.volume=31&rft.issue=7-8&rft.spage=267&rft.epage=275&rft_id=info:doi/10.1093%2Fprotein%2Fgzy017&rft.externalDocID=10.1093%2Fprotein%2Fgzy017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-0126&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-0126&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-0126&client=summon |