Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data
Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advan...
Saved in:
Published in | Brain sciences Vol. 12; no. 5; p. 610 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
07.05.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-3425 2076-3425 |
DOI | 10.3390/brainsci12050610 |
Cover
Abstract | Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes. |
---|---|
AbstractList | Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes. Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes.Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes. |
Author | Paulides, Maarten M. Boon, Paul van Ee, Raymond Beumer, Steven Carrette, Evelien Mestrom, Rob M. C. Klooster, Debby C. W. |
AuthorAffiliation | 2 Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium 3 Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands; raymond.van.ee@philips.com 4 Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands 1 Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; paul.boon@uzgent.be (P.B.); debby.klooster@ugent.be (D.C.W.K.); evelien.carrette@uzgent.be (E.C.); m.m.paulides@tue.nl (M.M.P.); r.m.c.mestrom@tue.nl (R.M.C.M.) |
AuthorAffiliation_xml | – name: 3 Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands; raymond.van.ee@philips.com – name: 2 Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium – name: 1 Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; paul.boon@uzgent.be (P.B.); debby.klooster@ugent.be (D.C.W.K.); evelien.carrette@uzgent.be (E.C.); m.m.paulides@tue.nl (M.M.P.); r.m.c.mestrom@tue.nl (R.M.C.M.) – name: 4 Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands |
Author_xml | – sequence: 1 givenname: Steven orcidid: 0000-0002-7718-1394 surname: Beumer fullname: Beumer, Steven – sequence: 2 givenname: Paul orcidid: 0000-0002-4180-8896 surname: Boon fullname: Boon, Paul – sequence: 3 givenname: Debby C. W. orcidid: 0000-0002-9850-9192 surname: Klooster fullname: Klooster, Debby C. W. – sequence: 4 givenname: Raymond orcidid: 0000-0002-1134-8665 surname: van Ee fullname: van Ee, Raymond – sequence: 5 givenname: Evelien orcidid: 0000-0002-9736-7401 surname: Carrette fullname: Carrette, Evelien – sequence: 6 givenname: Maarten M. orcidid: 0000-0002-5891-2139 surname: Paulides fullname: Paulides, Maarten M. – sequence: 7 givenname: Rob M. C. orcidid: 0000-0002-1971-8691 surname: Mestrom fullname: Mestrom, Rob M. C. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35624997$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks1uEzEUhUeoFS2le1bIEhs2oddjz3iGBVJI0hKpAsSPWFp3_BMcJuPUnqQqKx6CJ-RJcJIWtZHwxtb1OZ-OdO6T7KDzncmyZxReMVbDWRPQdVE5mkMBJYVH2XEOohwwnhcH995H2WmMc0inAmAFPM6OWFHmvK7FceY_mhB9h637aTTpx6PPxPpAzr3ClkyWrjXLePPn1-8heY8hYO_Whnwya2euX5MhGWOPg3FIw4588-GHbf01eYsxoXxHpgucuW5GsNNkMrnYqp9mhxbbaE5v75Ps6_nky-jd4PLDxXQ0vBwoXkM_oFgBszUWaKCy0JSU54al8Bp5oa0ohTaaC1Nprpu6BGsKhVTRqgHaWAR2kk13XO1xLpfBLTDcSI9Obgc-zCSG3qnWyEajAl7mlW4YbxAqI7hobA1W26KgLLHe7FjLVbMwWpmuD9g-gD786dx3OfNrWdPUU8ET4OUtIPirlYm9XLioTNtiZ_wqyrwUNBe5EEWSvtiTzv0qpH62KoCaMb5RPb-f6F-Uu16ToNwJVPAxBmOlcn1qz28CulZSkJsdkvs7lIywZ7xj_9fyF6C9y68 |
CitedBy_id | crossref_primary_10_4103_jmss_jmss_11_24 crossref_primary_10_1002_hbm_26810 crossref_primary_10_31083_j_jin2302025 crossref_primary_10_31363_2313_7053_2023_742 crossref_primary_10_31363_2313_7053_2024_742 |
Cites_doi | 10.1155/2011/879716 10.3389/fneur.2019.00325 10.1016/j.yebeh.2005.06.004 10.1007/s10548-012-0274-6 10.1016/j.brs.2015.01.001 10.1016/j.seizure.2017.09.024 10.1101/611962 10.1016/j.neuroimage.2005.09.033 10.3233/JAD-2012-120412 10.1016/j.cmpb.2010.05.008 10.1016/j.clinph.2020.10.030 10.1186/1743-0003-5-25 10.1016/j.brs.2016.08.014 10.1097/00004691-199711000-00003 10.1016/j.jneumeth.2003.10.009 10.1016/j.eplepsyres.2018.07.006 10.1016/j.brs.2010.11.001 10.1016/j.neuroimage.2018.12.053 10.1002/9781119013068 10.1038/s41598-020-65401-6 10.1016/j.neuroimage.2014.06.040 10.1097/WNP.0000000000000838 10.1016/0013-4694(93)90043-U 10.1113/jphysiol.2012.247171 10.3389/fnins.2018.00030 10.1007/s00406-020-01127-w 10.1001/jamaneurol.2017.3949 10.1016/j.neuroimage.2010.04.252 10.1016/j.neuroimage.2020.116797 10.1016/B978-0-12-385048-5.00010-0 10.1016/j.brs.2019.10.002 10.1088/1361-6560/abc5aa 10.1016/j.neuroimage.2015.12.041 10.1109/JBHI.2014.2328317 10.1109/10.364509 10.1007/s10548-014-0423-1 10.1016/S1567-424X(09)70230-2 10.1007/s10548-019-00710-2 10.1038/s41398-020-01055-2 10.1016/j.neuroimage.2019.116403 10.2967/jnumed.114.149997 10.1038/s41380-020-00933-x 10.3389/fnins.2019.01159 10.1109/TNSRE.2018.2889719 10.1088/1741-2552/ab208d 10.1109/EMBC.2015.7318340 10.1038/s41597-020-0467-x 10.1016/j.clinph.2018.12.016 10.1159/000503831 10.5698/1535-7597.18.1.12 10.1016/j.neuroimage.2006.01.015 10.1016/j.neuroimage.2017.05.060 10.1016/j.brs.2019.03.072 10.1016/j.neuroimage.2018.03.001 10.1109/IEMBS.2008.4650027 10.1186/1475-925X-2-14 10.3389/fninf.2019.00067 10.1109/TNSRE.2012.2200046 10.1155/2011/972050 10.1155/2011/156869 10.1109/TNSRE.2017.2697920 10.1016/j.clinph.2016.10.087 10.1016/j.neuroimage.2012.05.006 10.1111/j.1528-1157.1998.tb05127.x 10.1002/ana.25003 10.1111/j.1528-1167.2006.00426.x 10.1088/1361-6560/abe223 10.1088/0031-9155/49/5/004 10.3389/fneur.2019.00601 10.1016/j.brs.2019.10.004 10.1101/269753 10.1016/j.jneumeth.2015.08.015 10.1109/EMBC.2019.8857793 10.1088/1741-2552/ab549d 10.1016/j.bspc.2013.08.003 10.1016/j.cobme.2018.09.006 10.3389/fnins.2019.00531 10.1093/brain/aww019 10.3390/brainsci9100283 10.1097/WCO.0000000000000534 10.1097/WCO.0000000000000545 10.1097/YCT.0000000000000510 10.1093/med/9780190228484.001.0001 10.1016/j.neuroimage.2012.01.021 10.1016/j.tins.2017.02.004 10.1016/j.neuroimage.2018.07.027 10.1088/1741-2560/11/1/016002 10.1007/s10548-013-0313-y 10.1177/1756285609339382 10.1016/j.cell.2017.05.024 10.3389/fneur.2018.00065 10.1080/17415977.2018.1490279 10.1016/j.neubiorev.2016.02.016 10.1088/2057-1976/ac0547 10.1016/j.cnp.2016.12.003 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 3V. 7TK 7XB 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/brainsci12050610 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Neurosciences Abstracts ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Biological Sciences Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2076-3425 |
ExternalDocumentID | oai_doaj_org_article_bdac04628db34ba08e747bf90fdf5513 PMC9139054 35624997 10_3390_brainsci12050610 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Health Holland grantid: LSHM18064-HSGF – fundername: Health Holland, Top Sector Life Sciences & Health |
GroupedDBID | 53G 5VS 8FE 8FH 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM NPM PQGLB 3V. 7TK 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c490t-1a803f9a5ae08f0b6142e3350da45df767ded47e8d4db960fe5ca1c18b01bfa03 |
IEDL.DBID | M48 |
ISSN | 2076-3425 |
IngestDate | Wed Aug 27 01:20:28 EDT 2025 Tue Sep 09 03:25:52 EDT 2025 Thu Sep 04 18:01:44 EDT 2025 Fri Jul 25 12:20:38 EDT 2025 Mon Jul 21 06:02:40 EDT 2025 Tue Jul 01 04:03:33 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | forward modeling inverse modeling transcranial electric stimulation clinical outcome personalized neurostimulation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c490t-1a803f9a5ae08f0b6142e3350da45df767ded47e8d4db960fe5ca1c18b01bfa03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9850-9192 0000-0002-4180-8896 0000-0002-9736-7401 0000-0002-7718-1394 0000-0002-5891-2139 0000-0002-1134-8665 0000-0002-1971-8691 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/brainsci12050610 |
PMID | 35624997 |
PQID | 2670093345 |
PQPubID | 2032423 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bdac04628db34ba08e747bf90fdf5513 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9139054 proquest_miscellaneous_2671272775 proquest_journals_2670093345 pubmed_primary_35624997 crossref_citationtrail_10_3390_brainsci12050610 crossref_primary_10_3390_brainsci12050610 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220507 |
PublicationDateYYYYMMDD | 2022-05-07 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220507 day: 7 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Brain sciences |
PublicationTitleAlternate | Brain Sci |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Groiss (ref_3) 2009; 2 Wu (ref_5) 2021; 26 Mihajlovic (ref_108) 2015; 19 McClure (ref_44) 2019; 13 Mikulan (ref_77) 2020; 7 Bomela (ref_110) 2020; 10 Vorwerk (ref_30) 2014; 100 Opitz (ref_41) 2018; 181 ref_14 Mandal (ref_96) 2012; 31 Anschel (ref_26) 2015; 8 Fregni (ref_15) 2006; 47 Nielsen (ref_34) 2018; 174 Mouthaan (ref_58) 2019; 130 Whittingstall (ref_93) 2003; 2 Song (ref_94) 2013; 3 Lafon (ref_23) 2017; 10 Borgi (ref_2) 2020; 10 Grossman (ref_91) 2017; 169 Seeck (ref_57) 2018; 31 Kuo (ref_62) 2018; 146 ref_29 Suen (ref_6) 2020; 271 Awan (ref_78) 2019; 27 Antonenko (ref_28) 2019; 12 Evans (ref_87) 2020; 13 Rashed (ref_38) 2021; 66 ref_70 Nitsche (ref_21) 2003; Volume 56 Klooster (ref_22) 2016; 65 Datta (ref_40) 2011; 52 Saturnino (ref_100) 2019; 188 Chen (ref_9) 2018; 75 (ref_102) 2018; 36 ref_75 McCann (ref_103) 2021; 7 Ebersole (ref_45) 1997; 14 Fregni (ref_107) 2005; 7 Song (ref_64) 2015; 256 Goossens (ref_33) 2015; 2015 Modolo (ref_24) 2018; 8 ref_82 ref_81 Zangiabadi (ref_4) 2019; 10 Matsumoto (ref_27) 2017; 2 Heers (ref_56) 2016; 29 ref_86 ref_85 ref_84 Jaiswal (ref_69) 2020; 216 Schrader (ref_104) 2020; 65 Lefaucheur (ref_18) 2017; 128 Datta (ref_32) 2011; 4 Yushkevich (ref_39) 2006; 31 Vorwerk (ref_31) 2019; 13 Beltrachini (ref_106) 2011; 103 Turovets (ref_89) 2016; 7 Oostenveld (ref_76) 2011; 2011 Rahman (ref_25) 2013; 591 Hallez (ref_48) 2008; 5 Shirazi (ref_49) 2019; 13 Strobbe (ref_97) 2014; 27 Boon (ref_13) 2018; 31 Piastra (ref_51) 2018; 12 ref_59 Beghi (ref_8) 2020; 54 ref_61 McCann (ref_101) 2019; 32 Makeig (ref_95) 2013; 26 Mosher (ref_92) 1993; 86 Radich (ref_99) 1995; 42 (ref_50) 2013; 7 ref_68 ref_66 ref_65 Acar (ref_98) 2004; 49 ref_63 Grech (ref_67) 2008; 5 Ruffini (ref_20) 2013; 21 Makarov (ref_52) 2020; 9294 Sarmiento (ref_16) 2018; 9 Delso (ref_55) 2015; 56 Turovets (ref_88) 2020; 209 Baillet (ref_72) 2011; 2011 Collinge (ref_12) 2017; 52 Karoly (ref_60) 2016; 139 Jehi (ref_10) 2018; 18 Huang (ref_83) 2019; 16 Aberra (ref_90) 2020; 13 ref_36 ref_111 Chen (ref_17) 2016; 22 Delorme (ref_74) 2004; 134 Fischl (ref_35) 2012; 62 Vidyaratne (ref_109) 2017; 25 Stagg (ref_19) 2018; 34 Bagshaw (ref_79) 2006; 30 Beltrachini (ref_105) 2013; 8 Fiederer (ref_53) 2016; 128 Cohen (ref_47) 2017; 40 Tadel (ref_73) 2011; 2011 Jiang (ref_54) 2020; 17 Centeno (ref_80) 2017; 82 ref_46 Lanfer (ref_37) 2012; 62 ref_43 ref_42 Fischer (ref_112) 2017; 157 ref_1 ref_7 Lesser (ref_11) 1998; 39 Mannepalli (ref_71) 2018; 27 |
References_xml | – volume: 2011 start-page: 879716 year: 2011 ident: ref_73 article-title: Brainstorm: A user-friendly application for MEG/EEG analysis publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/879716 – ident: ref_59 doi: 10.3389/fneur.2019.00325 – volume: 7 start-page: 182 year: 2005 ident: ref_107 article-title: Transcranial magnetic stimulation treatment for epilepsy: Can it also improve depression and vice versa? publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2005.06.004 – volume: 26 start-page: 378 year: 2013 ident: ref_95 article-title: Effects of forward model errors on EEG source localization publication-title: Brain Topogr. doi: 10.1007/s10548-012-0274-6 – volume: 8 start-page: 455 year: 2015 ident: ref_26 article-title: Transcranial direct current stimulation in epilepsy publication-title: Brain Stimul. doi: 10.1016/j.brs.2015.01.001 – volume: 52 start-page: 136 year: 2017 ident: ref_12 article-title: Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: Evidence from a review of advanced functional neuroimaging publication-title: Seizure doi: 10.1016/j.seizure.2017.09.024 – ident: ref_84 doi: 10.1101/611962 – ident: ref_1 – volume: 30 start-page: 417 year: 2006 ident: ref_79 article-title: Correspondence between EEG-fMRI and EEG dipole localisation of interictal discharges in focal epilepsy publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.09.033 – volume: 31 start-page: S169 year: 2012 ident: ref_96 article-title: Structural brain atlases: Design, rationale, and applications in normal and pathological cohorts publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-2012-120412 – volume: 103 start-page: 1 year: 2011 ident: ref_106 article-title: General bounds for electrode mislocation on the EEG inverse problem publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2010.05.008 – ident: ref_61 doi: 10.1016/j.clinph.2020.10.030 – volume: 5 start-page: 25 year: 2008 ident: ref_67 article-title: Review on solving the inverse problem in EEG source analysis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-5-25 – volume: 10 start-page: 36 year: 2017 ident: ref_23 article-title: Direct Current Stimulation Alters Neuronal Input/Output Function publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.08.014 – volume: 14 start-page: 470 year: 1997 ident: ref_45 article-title: Defining Epileptogenic Foci: Past, Present, Future publication-title: J. Clin. Neurophysiol. doi: 10.1097/00004691-199711000-00003 – volume: 134 start-page: 9 year: 2004 ident: ref_74 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 146 start-page: 160 year: 2018 ident: ref_62 article-title: EEG source imaging of epileptic activity at seizure onset publication-title: Epilepsy Res. doi: 10.1016/j.eplepsyres.2018.07.006 – volume: 4 start-page: 169 year: 2011 ident: ref_32 article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient publication-title: Brain Stimul. doi: 10.1016/j.brs.2010.11.001 – volume: 188 start-page: 821 year: 2019 ident: ref_100 article-title: A principled approach to conductivity uncertainty analysis in electric field calculations - addition publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.12.053 – ident: ref_36 doi: 10.1002/9781119013068 – volume: 10 start-page: 8653 year: 2020 ident: ref_110 article-title: Real-time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures publication-title: Sci. Rep. doi: 10.1038/s41598-020-65401-6 – volume: 100 start-page: 590 year: 2014 ident: ref_30 article-title: A guideline for head volume conductor modeling in EEG and MEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.06.040 – ident: ref_7 doi: 10.1097/WNP.0000000000000838 – volume: 86 start-page: 303 year: 1993 ident: ref_92 article-title: Error bounds for EEG and MEG dipole source localization publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(93)90043-U – volume: 591 start-page: 2563 year: 2013 ident: ref_25 article-title: Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.247171 – volume: 12 start-page: 30 year: 2018 ident: ref_51 article-title: The discontinuous Galerkin finite element method for solving the MEG and the combined MEG/EEG forward problem publication-title: Front. Neurosci. doi: 10.3389/fnins.2018.00030 – volume: 271 start-page: 101 year: 2020 ident: ref_6 article-title: Association between tDCS computational modeling and clinical outcomes in depression: Data from the ELECT-TDCS trial publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s00406-020-01127-w – ident: ref_86 – volume: 75 start-page: 279 year: 2018 ident: ref_9 article-title: Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs a 30-year longitudinal cohort study publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2017.3949 – volume: 52 start-page: 1268 year: 2011 ident: ref_40 article-title: Study of Factors Altering Cortical Current Flow publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.252 – volume: 7 start-page: 9 year: 2013 ident: ref_50 article-title: What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia publication-title: Front. Integr. Neurosci. – volume: 216 start-page: 116797 year: 2020 ident: ref_69 article-title: Comparison of beamformer implementations for MEG source localization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116797 – volume: 5 start-page: 25 year: 2008 ident: ref_48 article-title: Review on solving the forward problem in EEG source analysis publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-5-25 – ident: ref_65 doi: 10.1016/B978-0-12-385048-5.00010-0 – volume: 13 start-page: 175 year: 2020 ident: ref_90 article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.10.002 – volume: 65 start-page: 245043 year: 2020 ident: ref_104 article-title: A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/abc5aa – volume: 128 start-page: 193 year: 2016 ident: ref_53 article-title: The role of blood vessels in high-resolution volume conductor head modeling of EEG publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.12.041 – volume: 19 start-page: 6 year: 2015 ident: ref_108 article-title: Wearable, wireless EEG solutions in daily life applications: What are we missing? publication-title: IEEE J. Biomed. Health Informatics doi: 10.1109/JBHI.2014.2328317 – volume: 42 start-page: 233 year: 1995 ident: ref_99 article-title: EEG Dipole Localization Bounds and MAP Algorithms for Head Models with Parameter Uncertainties publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.364509 – volume: 22 start-page: 29 year: 2016 ident: ref_17 article-title: Transcranial magnetic stimulation for the treatment of epilepsy publication-title: Cochrane Database Syst. Rev. – volume: 29 start-page: 162 year: 2016 ident: ref_56 article-title: Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy publication-title: Brain Topogr. doi: 10.1007/s10548-014-0423-1 – volume: Volume 56 start-page: 255 year: 2003 ident: ref_21 article-title: Chapter 27 Modulation of cortical excitability by weak direct current stimulation - technical, safety and functional aspects publication-title: Supplements to Clinical Neurophysiology doi: 10.1016/S1567-424X(09)70230-2 – ident: ref_75 – volume: 32 start-page: 825 year: 2019 ident: ref_101 article-title: Variation in Reported Human Head Tissue Electrical Conductivity Values publication-title: Brain Topogr. doi: 10.1007/s10548-019-00710-2 – volume: 10 start-page: 393 year: 2020 ident: ref_2 article-title: Recovering from depression with repetitive transcranial magnetic stimulation (rTMS): A systematic review and meta-analysis of preclinical studies publication-title: Transl. Psychiatry doi: 10.1038/s41398-020-01055-2 – ident: ref_81 – volume: 209 start-page: 116403 year: 2020 ident: ref_88 article-title: Unification of optimal targeting methods in transcranial electrical stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.116403 – volume: 56 start-page: 417 year: 2015 ident: ref_55 article-title: Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull publication-title: J. Nucl. Med. doi: 10.2967/jnumed.114.149997 – volume: 26 start-page: 60 year: 2021 ident: ref_5 article-title: Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): Emerging or established therapy? publication-title: Mol. Psychiatry doi: 10.1038/s41380-020-00933-x – volume: 13 start-page: 1159 year: 2019 ident: ref_49 article-title: More Reliable EEG Electrode Digitizing Methods Can Reduce Source Estimation Uncertainty, but Current Methods Already Accurately Identify Brodmann Areas publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.01159 – volume: 9294 start-page: 308 year: 2020 ident: ref_52 article-title: Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings publication-title: IEEE Trans. Biomed. Eng. – volume: 27 start-page: 172 year: 2018 ident: ref_71 article-title: Certainty based reduced sparse solution for dense array EEG source localization publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2889719 – volume: 16 start-page: 056006 year: 2019 ident: ref_83 article-title: Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—A fully automated open-source pipeline publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab208d – ident: ref_82 doi: 10.1109/EMBC.2015.7318340 – volume: 7 start-page: 127 year: 2020 ident: ref_77 article-title: Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods publication-title: Sci. Data doi: 10.1038/s41597-020-0467-x – volume: 130 start-page: 845 year: 2019 ident: ref_58 article-title: Diagnostic accuracy of interictal source imaging in presurgical epilepsy evaluation: A systematic review from the E-PILEPSY consortium publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.12.016 – volume: 54 start-page: 185 year: 2020 ident: ref_8 article-title: The Epidemiology of Epilepsy publication-title: Neuroepidemiology doi: 10.1159/000503831 – volume: 18 start-page: 12 year: 2018 ident: ref_10 article-title: The epileptogenic zone: Concept and definition publication-title: Epilepsy Curr. doi: 10.5698/1535-7597.18.1.12 – volume: 31 start-page: 1116 year: 2006 ident: ref_39 article-title: User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 7 start-page: 36020 year: 2016 ident: ref_89 article-title: Transcranial electrical neuromodulation based on the reciprocity principle publication-title: Front. Psychiatry – volume: 157 start-page: 34 year: 2017 ident: ref_112 article-title: Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.05.060 – volume: 12 start-page: 1159 year: 2019 ident: ref_28 article-title: Towards precise brain stimulation: Is electric field simulation related to neuromodulation? publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.03.072 – volume: 174 start-page: 587 year: 2018 ident: ref_34 article-title: Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.03.001 – volume: 36 start-page: 373 year: 2018 ident: ref_102 article-title: The measurement method of meat conductivity publication-title: Czech J. Food Sci. – ident: ref_42 doi: 10.1109/IEMBS.2008.4650027 – volume: 2 start-page: 14 year: 2003 ident: ref_93 article-title: Effects of dipole position, orientation and noise on the occuracy of EEG source localization publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-2-14 – volume: 2015 start-page: 450341 year: 2015 ident: ref_33 article-title: MRI segmentation of the human brain: Challenges, methods, and applications publication-title: Comput. Math. Methods Med. – volume: 13 start-page: 67 year: 2019 ident: ref_44 article-title: Knowing What You Know in Brain Segmentation Using Bayesian Deep Neural Networks publication-title: Front. Neuroinform. doi: 10.3389/fninf.2019.00067 – volume: 21 start-page: 333 year: 2013 ident: ref_20 article-title: Transcranial current brain stimulation (tCS): Models and technologies publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2200046 – volume: 2011 start-page: 972050 year: 2011 ident: ref_72 article-title: Academic software applications for electromagnetic brain mapping using MEG and EEG publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/972050 – volume: 2011 start-page: 156869 year: 2011 ident: ref_76 article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/156869 – volume: 25 start-page: 2146 year: 2017 ident: ref_109 article-title: Real-Time Epileptic Seizure Detection Using EEG publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2017.2697920 – volume: 128 start-page: 56 year: 2017 ident: ref_18 article-title: Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2016.10.087 – volume: 62 start-page: 418 year: 2012 ident: ref_37 article-title: Influences of skull segmentation inaccuracies on EEG source analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.05.006 – volume: 39 start-page: S69 year: 1998 ident: ref_11 article-title: Motor and sensory mapping of the frontal and occipital lobes publication-title: Epilepsia doi: 10.1111/j.1528-1157.1998.tb05127.x – volume: 82 start-page: 278 year: 2017 ident: ref_80 article-title: Combined electroencephalography–functional magnetic resonance imaging and electrical source imaging improves localization of pediatric focal epilepsy publication-title: Ann. Neurol. doi: 10.1002/ana.25003 – volume: 47 start-page: 335 year: 2006 ident: ref_15 article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy publication-title: Epilepsia doi: 10.1111/j.1528-1167.2006.00426.x – volume: 66 start-page: 064002 year: 2021 ident: ref_38 article-title: Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/abe223 – volume: 49 start-page: 701 year: 2004 ident: ref_98 article-title: Sensitivity of EEG and MEG measurements to tissue conductivity publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/49/5/004 – volume: 10 start-page: 601 year: 2019 ident: ref_4 article-title: Deep brain stimulation and drug-resistant epilepsy: A review of the literature publication-title: Front. Neurol. doi: 10.3389/fneur.2019.00601 – ident: ref_66 – volume: 13 start-page: 125 year: 2020 ident: ref_87 article-title: Dose-controlled tDCS reduces electric field intensity variability at a cortical target site publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.10.004 – ident: ref_68 doi: 10.1101/269753 – volume: 256 start-page: 9 year: 2015 ident: ref_64 article-title: EEG source localization: Sensor density and head surface coverage publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.08.015 – ident: ref_70 doi: 10.1109/EMBC.2019.8857793 – volume: 17 start-page: 016027 year: 2020 ident: ref_54 article-title: Enhanced tES and tDCS computational models by meninges emulation publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab549d – volume: 8 start-page: 830 year: 2013 ident: ref_105 article-title: Analysis of parametric estimation of head tissue conductivities using Electrical Impedance Tomography publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.08.003 – volume: 8 start-page: 38 year: 2018 ident: ref_24 article-title: Physiological effects of low-magnitude electric fields on brain activity: Advances from in vitro, in vivo and in silico models publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2018.09.006 – volume: 13 start-page: 531 year: 2019 ident: ref_31 article-title: Influence of head tissue conductivity uncertainties on EEG dipole reconstruction publication-title: Front. Neurosci. doi: 10.3389/fnins.2019.00531 – volume: 139 start-page: 1066 year: 2016 ident: ref_60 article-title: Interictal spikes and epileptic seizures: Their relationship and underlying rhythmicity publication-title: Brain doi: 10.1093/brain/aww019 – ident: ref_14 doi: 10.3390/brainsci9100283 – ident: ref_63 – volume: 31 start-page: 198 year: 2018 ident: ref_13 article-title: Neurostimulation for drug-resistant epilepsy: A systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000534 – ident: ref_111 – volume: 3 start-page: 275 year: 2013 ident: ref_94 article-title: Anatomically Accurate Head Models and Their Derivatives for Dense Array Eeg Source Localization publication-title: Funct. Neurol. Rehabil. Ergon. – volume: 31 start-page: 176 year: 2018 ident: ref_57 article-title: Electroencephalography, magnetoencephalography and source localization: Their value in epilepsy publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0000000000000545 – volume: 34 start-page: 144 year: 2018 ident: ref_19 article-title: Physiology of Transcranial Direct Current Stimulation publication-title: J. ECT doi: 10.1097/YCT.0000000000000510 – ident: ref_46 doi: 10.1093/med/9780190228484.001.0001 – volume: 62 start-page: 774 year: 2012 ident: ref_35 article-title: FreeSurfer publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 40 start-page: 208 year: 2017 ident: ref_47 article-title: Where Does EEG Come from and What Does It Mean? publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.02.004 – volume: 181 start-page: 560 year: 2018 ident: ref_41 article-title: On the importance of precise electrode placement for targeted transcranial electric stimulation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.07.027 – ident: ref_29 doi: 10.1088/1741-2560/11/1/016002 – volume: 27 start-page: 95 year: 2014 ident: ref_97 article-title: Influence of skull modeling approaches on EEG source localization publication-title: Brain Topogr. doi: 10.1007/s10548-013-0313-y – volume: 2 start-page: 379 year: 2009 ident: ref_3 article-title: Deep brain stimulation in Parkinson-s disease publication-title: Ther. Adv. Neurol. Disord. doi: 10.1177/1756285609339382 – ident: ref_85 – volume: 169 start-page: 1029 year: 2017 ident: ref_91 article-title: Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields publication-title: Cell doi: 10.1016/j.cell.2017.05.024 – volume: 9 start-page: 65 year: 2018 ident: ref_16 article-title: Successful treatment of a drug-resistant epilepsy by long-term transcranial direct current stimulation: A case report publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00065 – volume: 27 start-page: 1521 year: 2019 ident: ref_78 article-title: Recent trends and advances in solving the inverse problem for EEG source localization publication-title: Inverse Probl. Sci. Eng. doi: 10.1080/17415977.2018.1490279 – volume: 65 start-page: 113 year: 2016 ident: ref_22 article-title: Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2016.02.016 – ident: ref_43 – volume: 7 start-page: 045018 year: 2021 ident: ref_103 article-title: Does participant’s age impact on tDCS induced fields? Insights from computational simulations publication-title: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ac0547 – volume: 2 start-page: 19 year: 2017 ident: ref_27 article-title: Adverse events of tDCS and tACS: A review publication-title: Clin. Neurophysiol. Pract. doi: 10.1016/j.cnp.2016.12.003 |
SSID | ssj0000800350 |
Score | 2.2169557 |
SecondaryResourceType | review_article |
Snippet | Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 610 |
SubjectTerms | Brain research clinical outcome Convulsions & seizures Customization EEG Electric fields Electrodes Electroencephalography Epilepsy forward modeling Hypotheses inverse modeling Localization Magnetic resonance imaging Neuroimaging Neurons neurostimulation Parkinson's disease personalized Quality of life Review Reviews Segmentation transcranial electric stimulation Transcranial magnetic stimulation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT70goPwEWjRICIlDtE5sxwm3bXe3BYkKCSr1FvlXULXJapsKtScegifkSTp2sqvdqoIL13gsOZ6x5xt7_A0hb51BDEsLmprM-JQzXaTaljZF9GsyqzEcc-FA__NxcXTCP52K07VSXyEnrKcH7idupK0y8QGl1YxrRUuHAFj7inrrQ3GSsPvSiq4FU2cDDmKC9veSDOP6kQ4VF9CrZDkV6MPohh-KdP33Ycy7qZJrvmf2iDwcQCOM-8E-Jg9c84TsjBsMmC-u4R3ENM54Pr5D2i9LeH3jLHSTg6-AuBRmwWfBdI6bwPzy-s-v32M4Voue9hv6C4IPMIaJ6lQ6WYQtEMI5uj9vf8I-ejoLbQMfL2JNI1CNhen0MEo_JSez6beDo3SoqpAaXtEuzVRJma-UUI6Wnmr0z7ljOFlWcWG9LKR1lktXWo66Kqh3wqjMZKWmmfaKsmdkq2kb94KARH16K1TBsa_isjSWOWarXJaKCeMTMlrOcW0GyvFQ-eK8xtAjaKW-q5WEvF_1mPd0G3-R3Q9qW8kFouz4Ac2nHsyn_pf5JGR3qfR6WL2XdR7eLlWMcZGQN6tmXHfhMkU1rr2KMlmO4E-izPPeRlYjYQgqMZKUCZEb1rMx1M2W5sf3yO0dWFoRRb_8H__2imzn4bFGSM-Uu2SrW1y5PYRQnX4dV8stMXQdvQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuIQrRM7cZYL2u1mKUisKqBSb5GfBalNlt1UqJz4EfxCfgkzTjawFeo1HktW5vXNeDxDyAtnAMOynMUmMT4WXOextoWNAf2axGoIxxwm9D8s8sNj8f4kO-kTbuu-rHJjE4Ohto3BHPkoxfckEH2L7M3yW4xTo_B2tR-hcZPsggkuQM53p-Xi6OOQZUE8xDPW3U9yiO9HGicvgHdJUpaBL2Nb_ii07f8f1rxaMvmPD5rfIbd78EgnHbfvkhuuvkf2JjUEzueX9CUN5ZwhT75HmqMNzP7hLG1nB58o4FM6R99FyyUYg-X68vfPXxO6UKuu_TftLgpe0wmdqVbFsxWaQor5dH_WfKdT8HiWNjV9dx5mG1FVW1qWbwP1fXI8Lz8fHMb9dIXYiDFr40QVjPuxypRjhWca_HTqOPwsq0RmvcyldVZIV1gBPMuZd5lRiUkKzRLtFeMPyE7d1O4RoRL46m2mcgF7lZCFsdxxO05loXhmfERGm39cmb71OE7AOKsgBEGuVFe5EpFXw45l13bjGtopsm2gw4bZ4UOzOq16_au0VSa8w7WaC61Y4SCO0n7MvPU44yYi-xumV70Wr6u_MheR58My6B9eqqjaNReBJkkBBEqgedjJyHASDuASIkoZEbklPVtH3V6pv34JPb6xWyug6cfXH-sJuZXicwwswJT7ZKddXbinAJJa_azXhD8KHxXN priority: 102 providerName: ProQuest |
Title | Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35624997 https://www.proquest.com/docview/2670093345 https://www.proquest.com/docview/2671272775 https://pubmed.ncbi.nlm.nih.gov/PMC9139054 https://doaj.org/article/bdac04628db34ba08e747bf90fdf5513 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQ9sILAsZH2KiMhJB4CHNiJ06QEGrXlIG0agIq7S3yJzC1SckyQfnrOTtpoVOFeI3PSeQ7-36_s32H0HOjAMOSlIQqUjZkVKah1JkOAf2qSEugY8YF9M-m6emMfbhILv5cj-4H8GontXP1pGbN_NXP76u3MOHfOMYJlP1YumIK4DCimCTgnoDA74NfSh0VO-vB_mWPjagv2RoDeQ8pWGu3b7nzJVt-yqfz34VBbx6l_Ms3Te6iOz2oxMPOCu6hW6a6jw6GFRDqxQq_wP6Yp4-fH6DF-Rp-_zIat-OTTxhwK544n4aLJSwSy6tVOMRT0XRJwXG3ffAaD_FYtCIcN26BxC7Kbuf1DzwCP6hxXeH3C1_xCItK46J456UfoNmk-HxyGvY1F0LFctKGkcgItblIhCGZJRK8d2woDJsWLNGWp1wbzbjJNANNpsSaRIlIRZkkkbSC0Idor6or8xhhDtq2OhEpg76C8UxpaqjOY54JmigboOP1CJeqT0ju6mLMSyAmTiflTZ0E6OWmx7JLxvEP2ZFT2kbOpdH2D-rmS9nPylJqofztXC0pk4JkBtiVtDmx2rrKNwE6Wqu8XJtmGbubTTmlLAnQs00zzEq31SIqU197mSgGaMhB5lFnIZs_oQA5gWfyAPEt29n61e2W6ttXn_nb5XAFjP3kP757iG7H7qaGO5vJj9Be21ybp4CfWjlA-6Niev5x4OMPAz9JfgMTFh1d |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAXBJTHQgEjARKHVbxr7yNICCVNQkLbqIJW6m3xE5Da3ZCkqsKJH8Hv4EfxSxjvI5AK9dbremxZO-OZb8aeGYDnRiGGpTH1VaCsz5mMfalT7SP6VYGW6I4ZF9Dfn8SjI_7-ODregF9NLox7VtnoxFJR60K5GHk7dPkk6H3z6O30m--6Rrnb1aaFRiUWu2Z5ji7b_M24j_x9EYbDweHOyK-7CviKd-jCD0RKme2ISBiaWirRPoWGsYhqwSNtkzjRRvPEpJrjXmNqTaREoIJU0kBaQRmuew02uctobcFmbzA5-LCK6jj8hUtV96GMdWhbuk4PaM2CkEZoO-ma_SvbBPwP2158ovmPzRvegps1WCXdSrpuw4bJ78BWN0dH_XRJXpLy-WgZl9-C4qCB9d-NJov-zkeCeJgMna0kgykqn-l8-fvHzy6ZiFlVbpxUFxOvSZf0xUL4_ZlTvcTF7-1JcU56aGE1KXIyPi17KRGRazIYvCup78LRlfz3e9DKi9w8AJKgHFkdiZjjXMGTVGlmmO6ESSpYpKwH7eYfZ6oude46bpxk6PI4rmQXueLBq9WMaVXm4xLanmPbis4V6C4_FLPPWX3eM6mFKvN-tWRcCpoa9Nuk7VCrreup48F2w_Ss1hrz7K-Me_BsNYzn3V3iiNwUZyVNECLoTJDmfiUjq50wBLPowSYeJGvSs7bV9ZH865eyprirDovo_eHl23oK10eH-3vZ3niy-whuhC4VxD3-TLahtZidmccI0BbySX0qCHy66oP4ByuyU9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFAegQKLBEgcrKy9a6-DhFDSJLQUogio1Ju7T0Bq7ZCkqsKJH8Gv4efwS5j1I5AK9darPWutPK9vZmdnAJ5ajRiWJjTQoXYBZyoJlElNgOhXh0ZhOGZ9Qv_9ONk94G8P48MN-NXchfFllY1NLA21KbTPkXcif58Eo28ed1xdFjEZjF5PvwV-gpQ_aW3GaVQism-XZxi-zV_tDZDXz6JoNPy0sxvUEwYCzbt0EYQypcx1ZSwtTR1V6Ksiy1hMjeSxcSIRxhoubGo47juhzsZahjpMFQ2Vk5Thd6_ApkCvyFuw2R-OJx9WGR6PxfBT1dkoY13aUX7qA3q2MKIx-lG65gvLkQH_w7nnyzX_8X-jG3C9Bq6kV0naTdiw-S3Y6uUYtJ8syXNSlpKWOfotKCYNxP9uDVkMdj4SxMZk5P0mGU7REE3ny98_fvbIWM6q1uOkOqR4SXpkIBcyGMy8GSY-l--OizPSR29rSJGTvZNyrhKRuSHD4ZuS-jYcXMp_vwOtvMjtPSACZcqZWCYc10ouUm2YZaYbiVSyWLs2dJp_nOm67bmfvnGcYfjjuZKd50obXqxWTKuWHxfQ9j3bVnS-WXf5oJh9zmrdz5SRurwDbBTjStLUYgynXJc64_x8nTZsN0zPagsyz_7KexuerF6j7vsDHZnb4rSkCSMEoAJp7lYystoJQ2CL0axog1iTnrWtrr_Jv34p-4v7TrGI5O9fvK3HcBUVMHu3N95_ANcifyvE14GKbWgtZqf2IWK1hXpUKwWBo8vWwz-OtlgE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+tDCS+for+Focal+Epilepsy-A+Narrative+Review%3A+A+Data-Driven+Workflow+Based+on+Imaging+and+EEG+Data&rft.jtitle=Brain+sciences&rft.au=Beumer%2C+Steven&rft.au=Boon%2C+Paul&rft.au=Klooster%2C+Debby+C+W&rft.au=van+Ee%2C+Raymond&rft.date=2022-05-07&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fbrainsci12050610&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon |