Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data

Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advan...

Full description

Saved in:
Bibliographic Details
Published inBrain sciences Vol. 12; no. 5; p. 610
Main Authors Beumer, Steven, Boon, Paul, Klooster, Debby C. W., van Ee, Raymond, Carrette, Evelien, Paulides, Maarten M., Mestrom, Rob M. C.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 07.05.2022
MDPI
Subjects
Online AccessGet full text
ISSN2076-3425
2076-3425
DOI10.3390/brainsci12050610

Cover

Abstract Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes.
AbstractList Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes.
Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes.Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not sufficiently selective in targeting and reaching specific brain locations, leading to suboptimal application of electric fields. Recent advancements in in vivo electric field characterization may enable clinical researchers to derive better relationships between the electric field strength and the clinical results. Subject-specific electric field simulations could lead to improved electrode placement and more efficient treatments. Through this narrative review, we present a processing workflow to personalize tES for focal epilepsy, for which there is a clear cortical target to stimulate. The workflow utilizes clinical imaging and electroencephalography data and enables us to relate the simulated fields to clinical outcomes. We review and analyze the relevant literature for the processing steps in the workflow, which are the following: tissue segmentation, source localization, and stimulation optimization. In addition, we identify shortcomings and ongoing trends with regard to, for example, segmentation quality and tissue conductivity measurements. The presented processing steps result in personalized tES based on metrics like focality and field strength, which allow for correlation with clinical outcomes.
Author Paulides, Maarten M.
Boon, Paul
van Ee, Raymond
Beumer, Steven
Carrette, Evelien
Mestrom, Rob M. C.
Klooster, Debby C. W.
AuthorAffiliation 2 Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
3 Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands; raymond.van.ee@philips.com
4 Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
1 Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; paul.boon@uzgent.be (P.B.); debby.klooster@ugent.be (D.C.W.K.); evelien.carrette@uzgent.be (E.C.); m.m.paulides@tue.nl (M.M.P.); r.m.c.mestrom@tue.nl (R.M.C.M.)
AuthorAffiliation_xml – name: 3 Philips Research Eindhoven, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands; raymond.van.ee@philips.com
– name: 2 Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
– name: 1 Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; paul.boon@uzgent.be (P.B.); debby.klooster@ugent.be (D.C.W.K.); evelien.carrette@uzgent.be (E.C.); m.m.paulides@tue.nl (M.M.P.); r.m.c.mestrom@tue.nl (R.M.C.M.)
– name: 4 Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Burgemeester Oudlaan 50, 3062 PA Rotterdam, The Netherlands
Author_xml – sequence: 1
  givenname: Steven
  orcidid: 0000-0002-7718-1394
  surname: Beumer
  fullname: Beumer, Steven
– sequence: 2
  givenname: Paul
  orcidid: 0000-0002-4180-8896
  surname: Boon
  fullname: Boon, Paul
– sequence: 3
  givenname: Debby C. W.
  orcidid: 0000-0002-9850-9192
  surname: Klooster
  fullname: Klooster, Debby C. W.
– sequence: 4
  givenname: Raymond
  orcidid: 0000-0002-1134-8665
  surname: van Ee
  fullname: van Ee, Raymond
– sequence: 5
  givenname: Evelien
  orcidid: 0000-0002-9736-7401
  surname: Carrette
  fullname: Carrette, Evelien
– sequence: 6
  givenname: Maarten M.
  orcidid: 0000-0002-5891-2139
  surname: Paulides
  fullname: Paulides, Maarten M.
– sequence: 7
  givenname: Rob M. C.
  orcidid: 0000-0002-1971-8691
  surname: Mestrom
  fullname: Mestrom, Rob M. C.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35624997$$D View this record in MEDLINE/PubMed
BookMark eNp1ks1uEzEUhUeoFS2le1bIEhs2oddjz3iGBVJI0hKpAsSPWFp3_BMcJuPUnqQqKx6CJ-RJcJIWtZHwxtb1OZ-OdO6T7KDzncmyZxReMVbDWRPQdVE5mkMBJYVH2XEOohwwnhcH995H2WmMc0inAmAFPM6OWFHmvK7FceY_mhB9h637aTTpx6PPxPpAzr3ClkyWrjXLePPn1-8heY8hYO_Whnwya2euX5MhGWOPg3FIw4588-GHbf01eYsxoXxHpgucuW5GsNNkMrnYqp9mhxbbaE5v75Ps6_nky-jd4PLDxXQ0vBwoXkM_oFgBszUWaKCy0JSU54al8Bp5oa0ohTaaC1Nprpu6BGsKhVTRqgHaWAR2kk13XO1xLpfBLTDcSI9Obgc-zCSG3qnWyEajAl7mlW4YbxAqI7hobA1W26KgLLHe7FjLVbMwWpmuD9g-gD786dx3OfNrWdPUU8ET4OUtIPirlYm9XLioTNtiZ_wqyrwUNBe5EEWSvtiTzv0qpH62KoCaMb5RPb-f6F-Uu16ToNwJVPAxBmOlcn1qz28CulZSkJsdkvs7lIywZ7xj_9fyF6C9y68
CitedBy_id crossref_primary_10_4103_jmss_jmss_11_24
crossref_primary_10_1002_hbm_26810
crossref_primary_10_31083_j_jin2302025
crossref_primary_10_31363_2313_7053_2023_742
crossref_primary_10_31363_2313_7053_2024_742
Cites_doi 10.1155/2011/879716
10.3389/fneur.2019.00325
10.1016/j.yebeh.2005.06.004
10.1007/s10548-012-0274-6
10.1016/j.brs.2015.01.001
10.1016/j.seizure.2017.09.024
10.1101/611962
10.1016/j.neuroimage.2005.09.033
10.3233/JAD-2012-120412
10.1016/j.cmpb.2010.05.008
10.1016/j.clinph.2020.10.030
10.1186/1743-0003-5-25
10.1016/j.brs.2016.08.014
10.1097/00004691-199711000-00003
10.1016/j.jneumeth.2003.10.009
10.1016/j.eplepsyres.2018.07.006
10.1016/j.brs.2010.11.001
10.1016/j.neuroimage.2018.12.053
10.1002/9781119013068
10.1038/s41598-020-65401-6
10.1016/j.neuroimage.2014.06.040
10.1097/WNP.0000000000000838
10.1016/0013-4694(93)90043-U
10.1113/jphysiol.2012.247171
10.3389/fnins.2018.00030
10.1007/s00406-020-01127-w
10.1001/jamaneurol.2017.3949
10.1016/j.neuroimage.2010.04.252
10.1016/j.neuroimage.2020.116797
10.1016/B978-0-12-385048-5.00010-0
10.1016/j.brs.2019.10.002
10.1088/1361-6560/abc5aa
10.1016/j.neuroimage.2015.12.041
10.1109/JBHI.2014.2328317
10.1109/10.364509
10.1007/s10548-014-0423-1
10.1016/S1567-424X(09)70230-2
10.1007/s10548-019-00710-2
10.1038/s41398-020-01055-2
10.1016/j.neuroimage.2019.116403
10.2967/jnumed.114.149997
10.1038/s41380-020-00933-x
10.3389/fnins.2019.01159
10.1109/TNSRE.2018.2889719
10.1088/1741-2552/ab208d
10.1109/EMBC.2015.7318340
10.1038/s41597-020-0467-x
10.1016/j.clinph.2018.12.016
10.1159/000503831
10.5698/1535-7597.18.1.12
10.1016/j.neuroimage.2006.01.015
10.1016/j.neuroimage.2017.05.060
10.1016/j.brs.2019.03.072
10.1016/j.neuroimage.2018.03.001
10.1109/IEMBS.2008.4650027
10.1186/1475-925X-2-14
10.3389/fninf.2019.00067
10.1109/TNSRE.2012.2200046
10.1155/2011/972050
10.1155/2011/156869
10.1109/TNSRE.2017.2697920
10.1016/j.clinph.2016.10.087
10.1016/j.neuroimage.2012.05.006
10.1111/j.1528-1157.1998.tb05127.x
10.1002/ana.25003
10.1111/j.1528-1167.2006.00426.x
10.1088/1361-6560/abe223
10.1088/0031-9155/49/5/004
10.3389/fneur.2019.00601
10.1016/j.brs.2019.10.004
10.1101/269753
10.1016/j.jneumeth.2015.08.015
10.1109/EMBC.2019.8857793
10.1088/1741-2552/ab549d
10.1016/j.bspc.2013.08.003
10.1016/j.cobme.2018.09.006
10.3389/fnins.2019.00531
10.1093/brain/aww019
10.3390/brainsci9100283
10.1097/WCO.0000000000000534
10.1097/WCO.0000000000000545
10.1097/YCT.0000000000000510
10.1093/med/9780190228484.001.0001
10.1016/j.neuroimage.2012.01.021
10.1016/j.tins.2017.02.004
10.1016/j.neuroimage.2018.07.027
10.1088/1741-2560/11/1/016002
10.1007/s10548-013-0313-y
10.1177/1756285609339382
10.1016/j.cell.2017.05.024
10.3389/fneur.2018.00065
10.1080/17415977.2018.1490279
10.1016/j.neubiorev.2016.02.016
10.1088/2057-1976/ac0547
10.1016/j.cnp.2016.12.003
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7TK
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/brainsci12050610
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Biological Sciences
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_bdac04628db34ba08e747bf90fdf5513
PMC9139054
35624997
10_3390_brainsci12050610
Genre Journal Article
Review
GrantInformation_xml – fundername: Health Holland
  grantid: LSHM18064-HSGF
– fundername: Health Holland, Top Sector Life Sciences & Health
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
NPM
PQGLB
3V.
7TK
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c490t-1a803f9a5ae08f0b6142e3350da45df767ded47e8d4db960fe5ca1c18b01bfa03
IEDL.DBID M48
ISSN 2076-3425
IngestDate Wed Aug 27 01:20:28 EDT 2025
Tue Sep 09 03:25:52 EDT 2025
Thu Sep 04 18:01:44 EDT 2025
Fri Jul 25 12:20:38 EDT 2025
Mon Jul 21 06:02:40 EDT 2025
Tue Jul 01 04:03:33 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords forward modeling
inverse modeling
transcranial electric stimulation
clinical outcome
personalized
neurostimulation
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c490t-1a803f9a5ae08f0b6142e3350da45df767ded47e8d4db960fe5ca1c18b01bfa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9850-9192
0000-0002-4180-8896
0000-0002-9736-7401
0000-0002-7718-1394
0000-0002-5891-2139
0000-0002-1134-8665
0000-0002-1971-8691
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/brainsci12050610
PMID 35624997
PQID 2670093345
PQPubID 2032423
ParticipantIDs doaj_primary_oai_doaj_org_article_bdac04628db34ba08e747bf90fdf5513
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9139054
proquest_miscellaneous_2671272775
proquest_journals_2670093345
pubmed_primary_35624997
crossref_citationtrail_10_3390_brainsci12050610
crossref_primary_10_3390_brainsci12050610
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220507
PublicationDateYYYYMMDD 2022-05-07
PublicationDate_xml – month: 5
  year: 2022
  text: 20220507
  day: 7
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Brain sciences
PublicationTitleAlternate Brain Sci
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Groiss (ref_3) 2009; 2
Wu (ref_5) 2021; 26
Mihajlovic (ref_108) 2015; 19
McClure (ref_44) 2019; 13
Mikulan (ref_77) 2020; 7
Bomela (ref_110) 2020; 10
Vorwerk (ref_30) 2014; 100
Opitz (ref_41) 2018; 181
ref_14
Mandal (ref_96) 2012; 31
Anschel (ref_26) 2015; 8
Fregni (ref_15) 2006; 47
Nielsen (ref_34) 2018; 174
Mouthaan (ref_58) 2019; 130
Whittingstall (ref_93) 2003; 2
Song (ref_94) 2013; 3
Lafon (ref_23) 2017; 10
Borgi (ref_2) 2020; 10
Grossman (ref_91) 2017; 169
Seeck (ref_57) 2018; 31
Kuo (ref_62) 2018; 146
ref_29
Suen (ref_6) 2020; 271
Awan (ref_78) 2019; 27
Antonenko (ref_28) 2019; 12
Evans (ref_87) 2020; 13
Rashed (ref_38) 2021; 66
ref_70
Nitsche (ref_21) 2003; Volume 56
Klooster (ref_22) 2016; 65
Datta (ref_40) 2011; 52
Saturnino (ref_100) 2019; 188
Chen (ref_9) 2018; 75
(ref_102) 2018; 36
ref_75
McCann (ref_103) 2021; 7
Ebersole (ref_45) 1997; 14
Fregni (ref_107) 2005; 7
Song (ref_64) 2015; 256
Goossens (ref_33) 2015; 2015
Modolo (ref_24) 2018; 8
ref_82
ref_81
Zangiabadi (ref_4) 2019; 10
Matsumoto (ref_27) 2017; 2
Heers (ref_56) 2016; 29
ref_86
ref_85
ref_84
Jaiswal (ref_69) 2020; 216
Schrader (ref_104) 2020; 65
Lefaucheur (ref_18) 2017; 128
Datta (ref_32) 2011; 4
Yushkevich (ref_39) 2006; 31
Vorwerk (ref_31) 2019; 13
Beltrachini (ref_106) 2011; 103
Turovets (ref_89) 2016; 7
Oostenveld (ref_76) 2011; 2011
Rahman (ref_25) 2013; 591
Hallez (ref_48) 2008; 5
Shirazi (ref_49) 2019; 13
Strobbe (ref_97) 2014; 27
Boon (ref_13) 2018; 31
Piastra (ref_51) 2018; 12
ref_59
Beghi (ref_8) 2020; 54
ref_61
McCann (ref_101) 2019; 32
Makeig (ref_95) 2013; 26
Mosher (ref_92) 1993; 86
Radich (ref_99) 1995; 42
(ref_50) 2013; 7
ref_68
ref_66
ref_65
Acar (ref_98) 2004; 49
ref_63
Grech (ref_67) 2008; 5
Ruffini (ref_20) 2013; 21
Makarov (ref_52) 2020; 9294
Sarmiento (ref_16) 2018; 9
Delso (ref_55) 2015; 56
Turovets (ref_88) 2020; 209
Baillet (ref_72) 2011; 2011
Collinge (ref_12) 2017; 52
Karoly (ref_60) 2016; 139
Jehi (ref_10) 2018; 18
Huang (ref_83) 2019; 16
Aberra (ref_90) 2020; 13
ref_36
ref_111
Chen (ref_17) 2016; 22
Delorme (ref_74) 2004; 134
Fischl (ref_35) 2012; 62
Vidyaratne (ref_109) 2017; 25
Stagg (ref_19) 2018; 34
Bagshaw (ref_79) 2006; 30
Beltrachini (ref_105) 2013; 8
Fiederer (ref_53) 2016; 128
Cohen (ref_47) 2017; 40
Tadel (ref_73) 2011; 2011
Jiang (ref_54) 2020; 17
Centeno (ref_80) 2017; 82
ref_46
Lanfer (ref_37) 2012; 62
ref_43
ref_42
Fischer (ref_112) 2017; 157
ref_1
ref_7
Lesser (ref_11) 1998; 39
Mannepalli (ref_71) 2018; 27
References_xml – volume: 2011
  start-page: 879716
  year: 2011
  ident: ref_73
  article-title: Brainstorm: A user-friendly application for MEG/EEG analysis
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/879716
– ident: ref_59
  doi: 10.3389/fneur.2019.00325
– volume: 7
  start-page: 182
  year: 2005
  ident: ref_107
  article-title: Transcranial magnetic stimulation treatment for epilepsy: Can it also improve depression and vice versa?
  publication-title: Epilepsy Behav.
  doi: 10.1016/j.yebeh.2005.06.004
– volume: 26
  start-page: 378
  year: 2013
  ident: ref_95
  article-title: Effects of forward model errors on EEG source localization
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-012-0274-6
– volume: 8
  start-page: 455
  year: 2015
  ident: ref_26
  article-title: Transcranial direct current stimulation in epilepsy
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.01.001
– volume: 52
  start-page: 136
  year: 2017
  ident: ref_12
  article-title: Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: Evidence from a review of advanced functional neuroimaging
  publication-title: Seizure
  doi: 10.1016/j.seizure.2017.09.024
– ident: ref_84
  doi: 10.1101/611962
– ident: ref_1
– volume: 30
  start-page: 417
  year: 2006
  ident: ref_79
  article-title: Correspondence between EEG-fMRI and EEG dipole localisation of interictal discharges in focal epilepsy
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.09.033
– volume: 31
  start-page: S169
  year: 2012
  ident: ref_96
  article-title: Structural brain atlases: Design, rationale, and applications in normal and pathological cohorts
  publication-title: J. Alzheimer’s Dis.
  doi: 10.3233/JAD-2012-120412
– volume: 103
  start-page: 1
  year: 2011
  ident: ref_106
  article-title: General bounds for electrode mislocation on the EEG inverse problem
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.05.008
– ident: ref_61
  doi: 10.1016/j.clinph.2020.10.030
– volume: 5
  start-page: 25
  year: 2008
  ident: ref_67
  article-title: Review on solving the inverse problem in EEG source analysis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-5-25
– volume: 10
  start-page: 36
  year: 2017
  ident: ref_23
  article-title: Direct Current Stimulation Alters Neuronal Input/Output Function
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.08.014
– volume: 14
  start-page: 470
  year: 1997
  ident: ref_45
  article-title: Defining Epileptogenic Foci: Past, Present, Future
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/00004691-199711000-00003
– volume: 134
  start-page: 9
  year: 2004
  ident: ref_74
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 146
  start-page: 160
  year: 2018
  ident: ref_62
  article-title: EEG source imaging of epileptic activity at seizure onset
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2018.07.006
– volume: 4
  start-page: 169
  year: 2011
  ident: ref_32
  article-title: Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2010.11.001
– volume: 188
  start-page: 821
  year: 2019
  ident: ref_100
  article-title: A principled approach to conductivity uncertainty analysis in electric field calculations - addition
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.12.053
– ident: ref_36
  doi: 10.1002/9781119013068
– volume: 10
  start-page: 8653
  year: 2020
  ident: ref_110
  article-title: Real-time Inference and Detection of Disruptive EEG Networks for Epileptic Seizures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-65401-6
– volume: 100
  start-page: 590
  year: 2014
  ident: ref_30
  article-title: A guideline for head volume conductor modeling in EEG and MEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.06.040
– ident: ref_7
  doi: 10.1097/WNP.0000000000000838
– volume: 86
  start-page: 303
  year: 1993
  ident: ref_92
  article-title: Error bounds for EEG and MEG dipole source localization
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(93)90043-U
– volume: 591
  start-page: 2563
  year: 2013
  ident: ref_25
  article-title: Cellular effects of acute direct current stimulation: Somatic and synaptic terminal effects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.247171
– volume: 12
  start-page: 30
  year: 2018
  ident: ref_51
  article-title: The discontinuous Galerkin finite element method for solving the MEG and the combined MEG/EEG forward problem
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00030
– volume: 271
  start-page: 101
  year: 2020
  ident: ref_6
  article-title: Association between tDCS computational modeling and clinical outcomes in depression: Data from the ELECT-TDCS trial
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-020-01127-w
– ident: ref_86
– volume: 75
  start-page: 279
  year: 2018
  ident: ref_9
  article-title: Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs a 30-year longitudinal cohort study
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2017.3949
– volume: 52
  start-page: 1268
  year: 2011
  ident: ref_40
  article-title: Study of Factors Altering Cortical Current Flow
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.252
– volume: 7
  start-page: 9
  year: 2013
  ident: ref_50
  article-title: What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia
  publication-title: Front. Integr. Neurosci.
– volume: 216
  start-page: 116797
  year: 2020
  ident: ref_69
  article-title: Comparison of beamformer implementations for MEG source localization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116797
– volume: 5
  start-page: 25
  year: 2008
  ident: ref_48
  article-title: Review on solving the forward problem in EEG source analysis
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-5-25
– ident: ref_65
  doi: 10.1016/B978-0-12-385048-5.00010-0
– volume: 13
  start-page: 175
  year: 2020
  ident: ref_90
  article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.10.002
– volume: 65
  start-page: 245043
  year: 2020
  ident: ref_104
  article-title: A novel method for calibrating head models to account for variability in conductivity and its evaluation in a sphere model
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abc5aa
– volume: 128
  start-page: 193
  year: 2016
  ident: ref_53
  article-title: The role of blood vessels in high-resolution volume conductor head modeling of EEG
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.12.041
– volume: 19
  start-page: 6
  year: 2015
  ident: ref_108
  article-title: Wearable, wireless EEG solutions in daily life applications: What are we missing?
  publication-title: IEEE J. Biomed. Health Informatics
  doi: 10.1109/JBHI.2014.2328317
– volume: 42
  start-page: 233
  year: 1995
  ident: ref_99
  article-title: EEG Dipole Localization Bounds and MAP Algorithms for Head Models with Parameter Uncertainties
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.364509
– volume: 22
  start-page: 29
  year: 2016
  ident: ref_17
  article-title: Transcranial magnetic stimulation for the treatment of epilepsy
  publication-title: Cochrane Database Syst. Rev.
– volume: 29
  start-page: 162
  year: 2016
  ident: ref_56
  article-title: Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-014-0423-1
– volume: Volume 56
  start-page: 255
  year: 2003
  ident: ref_21
  article-title: Chapter 27 Modulation of cortical excitability by weak direct current stimulation - technical, safety and functional aspects
  publication-title: Supplements to Clinical Neurophysiology
  doi: 10.1016/S1567-424X(09)70230-2
– ident: ref_75
– volume: 32
  start-page: 825
  year: 2019
  ident: ref_101
  article-title: Variation in Reported Human Head Tissue Electrical Conductivity Values
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-019-00710-2
– volume: 10
  start-page: 393
  year: 2020
  ident: ref_2
  article-title: Recovering from depression with repetitive transcranial magnetic stimulation (rTMS): A systematic review and meta-analysis of preclinical studies
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-020-01055-2
– ident: ref_81
– volume: 209
  start-page: 116403
  year: 2020
  ident: ref_88
  article-title: Unification of optimal targeting methods in transcranial electrical stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.116403
– volume: 56
  start-page: 417
  year: 2015
  ident: ref_55
  article-title: Clinical evaluation of zero-echo-time MR imaging for the segmentation of the skull
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.114.149997
– volume: 26
  start-page: 60
  year: 2021
  ident: ref_5
  article-title: Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): Emerging or established therapy?
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-020-00933-x
– volume: 13
  start-page: 1159
  year: 2019
  ident: ref_49
  article-title: More Reliable EEG Electrode Digitizing Methods Can Reduce Source Estimation Uncertainty, but Current Methods Already Accurately Identify Brodmann Areas
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.01159
– volume: 9294
  start-page: 308
  year: 2020
  ident: ref_52
  article-title: Boundary Element Fast Multipole Method for Enhanced Modeling of Neurophysiological Recordings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 172
  year: 2018
  ident: ref_71
  article-title: Certainty based reduced sparse solution for dense array EEG source localization
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2018.2889719
– volume: 16
  start-page: 056006
  year: 2019
  ident: ref_83
  article-title: Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—A fully automated open-source pipeline
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab208d
– ident: ref_82
  doi: 10.1109/EMBC.2015.7318340
– volume: 7
  start-page: 127
  year: 2020
  ident: ref_77
  article-title: Simultaneous human intracerebral stimulation and HD-EEG, ground-truth for source localization methods
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-0467-x
– volume: 130
  start-page: 845
  year: 2019
  ident: ref_58
  article-title: Diagnostic accuracy of interictal source imaging in presurgical epilepsy evaluation: A systematic review from the E-PILEPSY consortium
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.12.016
– volume: 54
  start-page: 185
  year: 2020
  ident: ref_8
  article-title: The Epidemiology of Epilepsy
  publication-title: Neuroepidemiology
  doi: 10.1159/000503831
– volume: 18
  start-page: 12
  year: 2018
  ident: ref_10
  article-title: The epileptogenic zone: Concept and definition
  publication-title: Epilepsy Curr.
  doi: 10.5698/1535-7597.18.1.12
– volume: 31
  start-page: 1116
  year: 2006
  ident: ref_39
  article-title: User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 7
  start-page: 36020
  year: 2016
  ident: ref_89
  article-title: Transcranial electrical neuromodulation based on the reciprocity principle
  publication-title: Front. Psychiatry
– volume: 157
  start-page: 34
  year: 2017
  ident: ref_112
  article-title: Multifocal tDCS targeting the resting state motor network increases cortical excitability beyond traditional tDCS targeting unilateral motor cortex
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.05.060
– volume: 12
  start-page: 1159
  year: 2019
  ident: ref_28
  article-title: Towards precise brain stimulation: Is electric field simulation related to neuromodulation?
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.03.072
– volume: 174
  start-page: 587
  year: 2018
  ident: ref_34
  article-title: Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.03.001
– volume: 36
  start-page: 373
  year: 2018
  ident: ref_102
  article-title: The measurement method of meat conductivity
  publication-title: Czech J. Food Sci.
– ident: ref_42
  doi: 10.1109/IEMBS.2008.4650027
– volume: 2
  start-page: 14
  year: 2003
  ident: ref_93
  article-title: Effects of dipole position, orientation and noise on the occuracy of EEG source localization
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-2-14
– volume: 2015
  start-page: 450341
  year: 2015
  ident: ref_33
  article-title: MRI segmentation of the human brain: Challenges, methods, and applications
  publication-title: Comput. Math. Methods Med.
– volume: 13
  start-page: 67
  year: 2019
  ident: ref_44
  article-title: Knowing What You Know in Brain Segmentation Using Bayesian Deep Neural Networks
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2019.00067
– volume: 21
  start-page: 333
  year: 2013
  ident: ref_20
  article-title: Transcranial current brain stimulation (tCS): Models and technologies
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2200046
– volume: 2011
  start-page: 972050
  year: 2011
  ident: ref_72
  article-title: Academic software applications for electromagnetic brain mapping using MEG and EEG
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/972050
– volume: 2011
  start-page: 156869
  year: 2011
  ident: ref_76
  article-title: FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/156869
– volume: 25
  start-page: 2146
  year: 2017
  ident: ref_109
  article-title: Real-Time Epileptic Seizure Detection Using EEG
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2017.2697920
– volume: 128
  start-page: 56
  year: 2017
  ident: ref_18
  article-title: Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS)
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2016.10.087
– volume: 62
  start-page: 418
  year: 2012
  ident: ref_37
  article-title: Influences of skull segmentation inaccuracies on EEG source analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.05.006
– volume: 39
  start-page: S69
  year: 1998
  ident: ref_11
  article-title: Motor and sensory mapping of the frontal and occipital lobes
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1157.1998.tb05127.x
– volume: 82
  start-page: 278
  year: 2017
  ident: ref_80
  article-title: Combined electroencephalography–functional magnetic resonance imaging and electrical source imaging improves localization of pediatric focal epilepsy
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25003
– volume: 47
  start-page: 335
  year: 2006
  ident: ref_15
  article-title: A controlled clinical trial of cathodal DC polarization in patients with refractory epilepsy
  publication-title: Epilepsia
  doi: 10.1111/j.1528-1167.2006.00426.x
– volume: 66
  start-page: 064002
  year: 2021
  ident: ref_38
  article-title: Influence of segmentation accuracy in structural MR head scans on electric field computation for TMS and tES
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/abe223
– volume: 49
  start-page: 701
  year: 2004
  ident: ref_98
  article-title: Sensitivity of EEG and MEG measurements to tissue conductivity
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/49/5/004
– volume: 10
  start-page: 601
  year: 2019
  ident: ref_4
  article-title: Deep brain stimulation and drug-resistant epilepsy: A review of the literature
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2019.00601
– ident: ref_66
– volume: 13
  start-page: 125
  year: 2020
  ident: ref_87
  article-title: Dose-controlled tDCS reduces electric field intensity variability at a cortical target site
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.10.004
– ident: ref_68
  doi: 10.1101/269753
– volume: 256
  start-page: 9
  year: 2015
  ident: ref_64
  article-title: EEG source localization: Sensor density and head surface coverage
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.08.015
– ident: ref_70
  doi: 10.1109/EMBC.2019.8857793
– volume: 17
  start-page: 016027
  year: 2020
  ident: ref_54
  article-title: Enhanced tES and tDCS computational models by meninges emulation
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab549d
– volume: 8
  start-page: 830
  year: 2013
  ident: ref_105
  article-title: Analysis of parametric estimation of head tissue conductivities using Electrical Impedance Tomography
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.08.003
– volume: 8
  start-page: 38
  year: 2018
  ident: ref_24
  article-title: Physiological effects of low-magnitude electric fields on brain activity: Advances from in vitro, in vivo and in silico models
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2018.09.006
– volume: 13
  start-page: 531
  year: 2019
  ident: ref_31
  article-title: Influence of head tissue conductivity uncertainties on EEG dipole reconstruction
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00531
– volume: 139
  start-page: 1066
  year: 2016
  ident: ref_60
  article-title: Interictal spikes and epileptic seizures: Their relationship and underlying rhythmicity
  publication-title: Brain
  doi: 10.1093/brain/aww019
– ident: ref_14
  doi: 10.3390/brainsci9100283
– ident: ref_63
– volume: 31
  start-page: 198
  year: 2018
  ident: ref_13
  article-title: Neurostimulation for drug-resistant epilepsy: A systematic review of clinical evidence for efficacy, safety, contraindications and predictors for response
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000534
– ident: ref_111
– volume: 3
  start-page: 275
  year: 2013
  ident: ref_94
  article-title: Anatomically Accurate Head Models and Their Derivatives for Dense Array Eeg Source Localization
  publication-title: Funct. Neurol. Rehabil. Ergon.
– volume: 31
  start-page: 176
  year: 2018
  ident: ref_57
  article-title: Electroencephalography, magnetoencephalography and source localization: Their value in epilepsy
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0000000000000545
– volume: 34
  start-page: 144
  year: 2018
  ident: ref_19
  article-title: Physiology of Transcranial Direct Current Stimulation
  publication-title: J. ECT
  doi: 10.1097/YCT.0000000000000510
– ident: ref_46
  doi: 10.1093/med/9780190228484.001.0001
– volume: 62
  start-page: 774
  year: 2012
  ident: ref_35
  article-title: FreeSurfer
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 40
  start-page: 208
  year: 2017
  ident: ref_47
  article-title: Where Does EEG Come from and What Does It Mean?
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.02.004
– volume: 181
  start-page: 560
  year: 2018
  ident: ref_41
  article-title: On the importance of precise electrode placement for targeted transcranial electric stimulation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.07.027
– ident: ref_29
  doi: 10.1088/1741-2560/11/1/016002
– volume: 27
  start-page: 95
  year: 2014
  ident: ref_97
  article-title: Influence of skull modeling approaches on EEG source localization
  publication-title: Brain Topogr.
  doi: 10.1007/s10548-013-0313-y
– volume: 2
  start-page: 379
  year: 2009
  ident: ref_3
  article-title: Deep brain stimulation in Parkinson-s disease
  publication-title: Ther. Adv. Neurol. Disord.
  doi: 10.1177/1756285609339382
– ident: ref_85
– volume: 169
  start-page: 1029
  year: 2017
  ident: ref_91
  article-title: Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.024
– volume: 9
  start-page: 65
  year: 2018
  ident: ref_16
  article-title: Successful treatment of a drug-resistant epilepsy by long-term transcranial direct current stimulation: A case report
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00065
– volume: 27
  start-page: 1521
  year: 2019
  ident: ref_78
  article-title: Recent trends and advances in solving the inverse problem for EEG source localization
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415977.2018.1490279
– volume: 65
  start-page: 113
  year: 2016
  ident: ref_22
  article-title: Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2016.02.016
– ident: ref_43
– volume: 7
  start-page: 045018
  year: 2021
  ident: ref_103
  article-title: Does participant’s age impact on tDCS induced fields? Insights from computational simulations
  publication-title: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ac0547
– volume: 2
  start-page: 19
  year: 2017
  ident: ref_27
  article-title: Adverse events of tDCS and tACS: A review
  publication-title: Clin. Neurophysiol. Pract.
  doi: 10.1016/j.cnp.2016.12.003
SSID ssj0000800350
Score 2.2169557
SecondaryResourceType review_article
Snippet Conventional transcranial electric stimulation(tES) using standard anatomical positions for the electrodes and standard stimulation currents is frequently not...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 610
SubjectTerms Brain research
clinical outcome
Convulsions & seizures
Customization
EEG
Electric fields
Electrodes
Electroencephalography
Epilepsy
forward modeling
Hypotheses
inverse modeling
Localization
Magnetic resonance imaging
Neuroimaging
Neurons
neurostimulation
Parkinson's disease
personalized
Quality of life
Review
Reviews
Segmentation
transcranial electric stimulation
Transcranial magnetic stimulation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT70goPwEWjRICIlDtE5sxwm3bXe3BYkKCSr1FvlXULXJapsKtScegifkSTp2sqvdqoIL13gsOZ6x5xt7_A0hb51BDEsLmprM-JQzXaTaljZF9GsyqzEcc-FA__NxcXTCP52K07VSXyEnrKcH7idupK0y8QGl1YxrRUuHAFj7inrrQ3GSsPvSiq4FU2cDDmKC9veSDOP6kQ4VF9CrZDkV6MPohh-KdP33Ycy7qZJrvmf2iDwcQCOM-8E-Jg9c84TsjBsMmC-u4R3ENM54Pr5D2i9LeH3jLHSTg6-AuBRmwWfBdI6bwPzy-s-v32M4Voue9hv6C4IPMIaJ6lQ6WYQtEMI5uj9vf8I-ejoLbQMfL2JNI1CNhen0MEo_JSez6beDo3SoqpAaXtEuzVRJma-UUI6Wnmr0z7ljOFlWcWG9LKR1lktXWo66Kqh3wqjMZKWmmfaKsmdkq2kb94KARH16K1TBsa_isjSWOWarXJaKCeMTMlrOcW0GyvFQ-eK8xtAjaKW-q5WEvF_1mPd0G3-R3Q9qW8kFouz4Ac2nHsyn_pf5JGR3qfR6WL2XdR7eLlWMcZGQN6tmXHfhMkU1rr2KMlmO4E-izPPeRlYjYQgqMZKUCZEb1rMx1M2W5sf3yO0dWFoRRb_8H__2imzn4bFGSM-Uu2SrW1y5PYRQnX4dV8stMXQdvQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvXBBQHkECjISQuIQrRM7cZYL2u1mKUisKqBSb5GfBalNlt1UqJz4EfxCfgkzTjawFeo1HktW5vXNeDxDyAtnAMOynMUmMT4WXOextoWNAf2axGoIxxwm9D8s8sNj8f4kO-kTbuu-rHJjE4Ohto3BHPkoxfckEH2L7M3yW4xTo_B2tR-hcZPsggkuQM53p-Xi6OOQZUE8xDPW3U9yiO9HGicvgHdJUpaBL2Nb_ii07f8f1rxaMvmPD5rfIbd78EgnHbfvkhuuvkf2JjUEzueX9CUN5ZwhT75HmqMNzP7hLG1nB58o4FM6R99FyyUYg-X68vfPXxO6UKuu_TftLgpe0wmdqVbFsxWaQor5dH_WfKdT8HiWNjV9dx5mG1FVW1qWbwP1fXI8Lz8fHMb9dIXYiDFr40QVjPuxypRjhWca_HTqOPwsq0RmvcyldVZIV1gBPMuZd5lRiUkKzRLtFeMPyE7d1O4RoRL46m2mcgF7lZCFsdxxO05loXhmfERGm39cmb71OE7AOKsgBEGuVFe5EpFXw45l13bjGtopsm2gw4bZ4UOzOq16_au0VSa8w7WaC61Y4SCO0n7MvPU44yYi-xumV70Wr6u_MheR58My6B9eqqjaNReBJkkBBEqgedjJyHASDuASIkoZEbklPVtH3V6pv34JPb6xWyug6cfXH-sJuZXicwwswJT7ZKddXbinAJJa_azXhD8KHxXN
  priority: 102
  providerName: ProQuest
Title Personalized tDCS for Focal Epilepsy—A Narrative Review: A Data-Driven Workflow Based on Imaging and EEG Data
URI https://www.ncbi.nlm.nih.gov/pubmed/35624997
https://www.proquest.com/docview/2670093345
https://www.proquest.com/docview/2671272775
https://pubmed.ncbi.nlm.nih.gov/PMC9139054
https://doaj.org/article/bdac04628db34ba08e747bf90fdf5513
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQ9sILAsZH2KiMhJB4CHNiJ06QEGrXlIG0agIq7S3yJzC1SckyQfnrOTtpoVOFeI3PSeQ7-36_s32H0HOjAMOSlIQqUjZkVKah1JkOAf2qSEugY8YF9M-m6emMfbhILv5cj-4H8GontXP1pGbN_NXP76u3MOHfOMYJlP1YumIK4DCimCTgnoDA74NfSh0VO-vB_mWPjagv2RoDeQ8pWGu3b7nzJVt-yqfz34VBbx6l_Ms3Te6iOz2oxMPOCu6hW6a6jw6GFRDqxQq_wP6Yp4-fH6DF-Rp-_zIat-OTTxhwK544n4aLJSwSy6tVOMRT0XRJwXG3ffAaD_FYtCIcN26BxC7Kbuf1DzwCP6hxXeH3C1_xCItK46J456UfoNmk-HxyGvY1F0LFctKGkcgItblIhCGZJRK8d2woDJsWLNGWp1wbzbjJNANNpsSaRIlIRZkkkbSC0Idor6or8xhhDtq2OhEpg76C8UxpaqjOY54JmigboOP1CJeqT0ju6mLMSyAmTiflTZ0E6OWmx7JLxvEP2ZFT2kbOpdH2D-rmS9nPylJqofztXC0pk4JkBtiVtDmx2rrKNwE6Wqu8XJtmGbubTTmlLAnQs00zzEq31SIqU197mSgGaMhB5lFnIZs_oQA5gWfyAPEt29n61e2W6ttXn_nb5XAFjP3kP757iG7H7qaGO5vJj9Be21ybp4CfWjlA-6Niev5x4OMPAz9JfgMTFh1d
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAXBJTHQgEjARKHVbxr7yNICCVNQkLbqIJW6m3xE5Da3ZCkqsKJH8Hv4EfxSxjvI5AK9dbremxZO-OZb8aeGYDnRiGGpTH1VaCsz5mMfalT7SP6VYGW6I4ZF9Dfn8SjI_7-ODregF9NLox7VtnoxFJR60K5GHk7dPkk6H3z6O30m--6Rrnb1aaFRiUWu2Z5ji7b_M24j_x9EYbDweHOyK-7CviKd-jCD0RKme2ISBiaWirRPoWGsYhqwSNtkzjRRvPEpJrjXmNqTaREoIJU0kBaQRmuew02uctobcFmbzA5-LCK6jj8hUtV96GMdWhbuk4PaM2CkEZoO-ma_SvbBPwP2158ovmPzRvegps1WCXdSrpuw4bJ78BWN0dH_XRJXpLy-WgZl9-C4qCB9d-NJov-zkeCeJgMna0kgykqn-l8-fvHzy6ZiFlVbpxUFxOvSZf0xUL4_ZlTvcTF7-1JcU56aGE1KXIyPi17KRGRazIYvCup78LRlfz3e9DKi9w8AJKgHFkdiZjjXMGTVGlmmO6ESSpYpKwH7eYfZ6oude46bpxk6PI4rmQXueLBq9WMaVXm4xLanmPbis4V6C4_FLPPWX3eM6mFKvN-tWRcCpoa9Nuk7VCrreup48F2w_Ss1hrz7K-Me_BsNYzn3V3iiNwUZyVNECLoTJDmfiUjq50wBLPowSYeJGvSs7bV9ZH865eyprirDovo_eHl23oK10eH-3vZ3niy-whuhC4VxD3-TLahtZidmccI0BbySX0qCHy66oP4ByuyU9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEFAegQKLBEgcrKy9a6-DhFDSJLQUogio1Ju7T0Bq7ZCkqsKJH8Gv4efwS5j1I5AK9darPWutPK9vZmdnAJ5ajRiWJjTQoXYBZyoJlElNgOhXh0ZhOGZ9Qv_9ONk94G8P48MN-NXchfFllY1NLA21KbTPkXcif58Eo28ed1xdFjEZjF5PvwV-gpQ_aW3GaVQism-XZxi-zV_tDZDXz6JoNPy0sxvUEwYCzbt0EYQypcx1ZSwtTR1V6Ksiy1hMjeSxcSIRxhoubGo47juhzsZahjpMFQ2Vk5Thd6_ApkCvyFuw2R-OJx9WGR6PxfBT1dkoY13aUX7qA3q2MKIx-lG65gvLkQH_w7nnyzX_8X-jG3C9Bq6kV0naTdiw-S3Y6uUYtJ8syXNSlpKWOfotKCYNxP9uDVkMdj4SxMZk5P0mGU7REE3ny98_fvbIWM6q1uOkOqR4SXpkIBcyGMy8GSY-l--OizPSR29rSJGTvZNyrhKRuSHD4ZuS-jYcXMp_vwOtvMjtPSACZcqZWCYc10ouUm2YZaYbiVSyWLs2dJp_nOm67bmfvnGcYfjjuZKd50obXqxWTKuWHxfQ9j3bVnS-WXf5oJh9zmrdz5SRurwDbBTjStLUYgynXJc64_x8nTZsN0zPagsyz_7KexuerF6j7vsDHZnb4rSkCSMEoAJp7lYystoJQ2CL0axog1iTnrWtrr_Jv34p-4v7TrGI5O9fvK3HcBUVMHu3N95_ANcifyvE14GKbWgtZqf2IWK1hXpUKwWBo8vWwz-OtlgE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+tDCS+for+Focal+Epilepsy-A+Narrative+Review%3A+A+Data-Driven+Workflow+Based+on+Imaging+and+EEG+Data&rft.jtitle=Brain+sciences&rft.au=Beumer%2C+Steven&rft.au=Boon%2C+Paul&rft.au=Klooster%2C+Debby+C+W&rft.au=van+Ee%2C+Raymond&rft.date=2022-05-07&rft.issn=2076-3425&rft.eissn=2076-3425&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fbrainsci12050610&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon