Identity by descent estimation with dense genome-wide genotype data
We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of...
Saved in:
Published in | Genetic epidemiology Vol. 35; no. 6; pp. 557 - 567 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.09.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high‐density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high‐density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point‐wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13‐generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow‐up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. Genet. Epidemiol. 2011. © 2011 Wiley‐Liss, Inc. 35: 557‐567, 2011 |
---|---|
AbstractList | We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available.We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. Genet. Epidemiol. 2011. copyright 2011 Wiley-Liss, Inc. 35: 557-567, 2011 We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high‐density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high‐density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point‐wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13‐generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow‐up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. Genet. Epidemiol. 2011. © 2011 Wiley‐Liss, Inc. 35: 557‐567, 2011 |
Author | Abney, Mark Han, Lide |
Author_xml | – sequence: 1 givenname: Lide surname: Han fullname: Han, Lide organization: Department of Human Genetics, University of Chicago, Chicago, Illinois – sequence: 2 givenname: Mark surname: Abney fullname: Abney, Mark email: abney@bsd.uchicago.edu organization: Department of Human Genetics, University of Chicago, Chicago, Illinois |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21769932$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9v0zAUxS20iXUbL3wAlDcQUsa1nfjPC9KoRlttggmB9mjZsdMZ0qTELiXfHndZp4HQnmxf_87Rufceo4O2ax1CLzGcYQDybunW_owAA_YMTTBIkRPCyQGaAC9wDlSWR-g4hO8AGBeyfI6OCOZMSkomaLqwro0-DpkZMutClV6ZC9GvdPRdm219vE31Nrhs6dpu5fKtt-M9DmuXWR31KTqsdRPci_vzBH37ePF1Os-vPs8W0_OrvCoksNykiNzR2mCmBa1oSaAwKWkpoCiJ00YTo8HWGGvChKHYCgt1ZXBRW0k5pSfo_ei73piVs7uovW7Uuk9h-0F12qu_f1p_q5bdL0VLwTERyeD1vUHf_dykLtXKp46bRreu2wQlRCEKRqFM5JsnSQyYSyYxJQl99TjVQ5z9jBMAI1D1XQi9q1Xl4910U0jfJC-1W6ParVHdrTFJ3v4j2bv-F8YjvPWNG54g1ezierHX5KPGh-h-P2h0_0MxTnmpbj7N1HzKLi_nXz6oG_oHhES81Q |
CitedBy_id | crossref_primary_10_1002_gepi_21641 crossref_primary_10_1534_g3_119_400763 crossref_primary_10_1002_gepi_21684 crossref_primary_10_1159_000346788 crossref_primary_10_1111_jbg_12236 crossref_primary_10_1159_000430841 crossref_primary_10_1111_1755_0998_14068 crossref_primary_10_1155_2019_2310235 crossref_primary_10_18699_VJGB_23_08 crossref_primary_10_1161_CIRCGEN_120_003232 crossref_primary_10_1007_s11295_023_01611_z crossref_primary_10_1159_000450726 crossref_primary_10_3389_fpls_2023_1226072 crossref_primary_10_1155_2012_485174 crossref_primary_10_1111_age_13424 crossref_primary_10_1186_s12864_023_09860_x crossref_primary_10_3389_fgene_2021_808829 |
Cites_doi | 10.1126/science.1151851 10.1086/519795 10.1002/gepi.20339 10.1002/gepi.20371 10.1101/gr.115972.110 10.1007/s00439-007-0427-y 10.1002/gepi.20378 10.1214/ss/1081443233 10.1038/ng786 10.1038/ejhg.2008.24 10.1002/gepi.2001.21.s1.s222 10.1111/j.1469-1809.1992.tb01162.x 10.1002/gepi.2001.21.s1.s236 10.1086/426155 10.1111/j.1469-1809.1981.tb00341.x 10.1002/gepi.20194 10.1038/ng.216 10.1073/pnas.84.8.2363 10.1093/bioinformatics/btp185 10.1086/324025 10.1016/j.ajhg.2010.02.021 10.1086/497345 10.1086/339705 10.1086/515506 10.1002/gepi.20324 10.1371/journal.pgen.0020041 10.1159/000212501 10.1086/301844 10.1016/j.ajhg.2011.01.010 10.1086/522934 10.1038/nature06258 10.1086/302800 10.1534/genetics.108.089912 10.1086/323659 10.1007/978-0-387-84858-7 10.1534/genetics.107.084624 10.1007/978-3-642-88415-3 10.1038/ng.548 10.1086/302759 10.1101/gr.081398.108 |
ContentType | Journal Article |
Copyright | 2011 Wiley‐Liss, Inc. 2011 Wiley-Liss, Inc. 2011 Wiley-Liss, Inc. 2011 |
Copyright_xml | – notice: 2011 Wiley‐Liss, Inc. – notice: 2011 Wiley-Liss, Inc. – notice: 2011 Wiley-Liss, Inc. 2011 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.1002/gepi.20606 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology |
EISSN | 1098-2272 |
EndPage | 567 |
ExternalDocumentID | PMC3587128 21769932 10_1002_gepi_20606 GEPI20606 ark_67375_WNG_HC6KKHRB_W |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health funderid: R01HG002899 – fundername: NHGRI NIH HHS grantid: R01 HG002899 – fundername: NHGRI NIH HHS grantid: R01HG002899 – fundername: National Human Genome Research Institute : NHGRI grantid: R01 HG002899 || HG |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DVXWH EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M66 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWV RX1 RYL SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WTM WXSBR WYISQ XG1 XV2 ZGI ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4906-b2067e3fb16a83c35204b227580452eaba2ba0df11a268b31d8d0fcb14fd93733 |
IEDL.DBID | DR2 |
ISSN | 0741-0395 1098-2272 |
IngestDate | Thu Aug 21 13:49:59 EDT 2025 Fri Jul 11 12:14:25 EDT 2025 Fri Jul 11 09:15:01 EDT 2025 Wed Feb 19 01:57:58 EST 2025 Thu Apr 24 23:09:58 EDT 2025 Tue Jul 01 02:45:07 EDT 2025 Wed Jan 22 16:54:32 EST 2025 Wed Oct 30 09:52:39 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2011 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4906-b2067e3fb16a83c35204b227580452eaba2ba0df11a268b31d8d0fcb14fd93733 |
Notes | National Institutes of Health - No. R01HG002899 ark:/67375/WNG-HC6KKHRB-W istex:799DA4EC2663A142BBC37BF0B1C87AA77D15CC52 ArticleID:GEPI20606 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/gepi.20606 |
PMID | 21769932 |
PQID | 1017969132 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3587128 proquest_miscellaneous_884846305 proquest_miscellaneous_1017969132 pubmed_primary_21769932 crossref_citationtrail_10_1002_gepi_20606 crossref_primary_10_1002_gepi_20606 wiley_primary_10_1002_gepi_20606_GEPI20606 istex_primary_ark_67375_WNG_HC6KKHRB_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Genetic epidemiology |
PublicationTitleAlternate | Genet. Epidemiol |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Bellenguez C, Ober C, Bourgain C. 2009b. A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12. Genet Epidemiol 33:207-216. Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, Olason PI, Ingason A, Steinberg S, Rafna T, Sulem P, Mouy M, Jonsson F, Thorsteinsdottir U, Gudbjartsson DF, Stefansson H, Stefansson K. 2008. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet 40:1068-1075. Falchi M, Forabosco P, Mocci E, Borlino CC, Picciau A, Virdis E, Persico I, Parracciani D, Angius A, Pirastu M. 2004. A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low-density lipoprotein cholesterol in two genetically differentiated isolates of sardinia. Am J Hum Genet 75:1015-1031. Kurbasic A, Hossjer O. 2008. A general method for linkage disequilibrium correction for multipoint linkage and association. Genet Epidemiol 32:647-657. Hostetler JA. 1974. Hutterite Society. Baltimore: Johns Hopkins University Press. Jacquard A. 1974. The Genetic Structure of Populations. New York: Springer. Abney M. 2008. Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees. Genetics 179:1577-1590. Heath SC. 1997. Markov chain monte carlo segregation and linkage analysis for oli- gogenic models. Am J Hum Genet 61:748-760. Abney M, McPeek MS, Ober C. 2000. Estimation of variance components of quantitative traits in inbred populations. Am J Hum Genet 66:629-650. Abney M, Ober C, McPeek MS. 2002. Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the hutterites. Am J Hum Genet 70:920-934. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. 2007. Plink: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-575. Ober C, Abney M, McPeek MS. 2001. The genetic dissection of complex traits in a founder population. Am J Hum Genet 69:1068-1079. Newman DL, Abney M, McPeek MS, Ober C, Cox NJ. 2001. The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet 69:1146-1148. Sung YJ, Thompson EA, Wijsman EM. 2007. Mcmc-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component. Genet Epidemiol 31:103-114. Browning SR. 2008. Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes. Genetics 178:2123-2132. Huff CD, Witherspoon DJ, Simonson TS, Xing J, Watkins WS, Zhang Y, Tuohy TM, Neklason DW, Burt RW, Guthery SL, Woodward SR, Jorde LB. 2011. Maximum-likelihood estimation of recent shared ancestry (ersa). Genome Res 21:768-774. Browning BL, Browning SR. 2011. A fast, powerful method for detecting identity by descent. Am J Hum Genet 88:173-182. George A, Thompson E. 2003. Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach. Stat Sci 18:515-535. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. 1996. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347-1363. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. 2010. Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348-354. Lander ES, Green P. 1987. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363-2367. Lange K, Sinsheimer JS. 1992. Calculation of genetic identity coefficients. Ann Hum Genet 4:339-346. Abecasis GR, Wigginton JE 2005. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754-767. Bellenguez C, Ober C, Bourgain C 2009a. Linkage analysis with dense SNP maps in isolated populations. Hum Hered 68:87-97. Sobel E, Lange K. 1996. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323-1337. Chapman NH, Wijsman EM. 2001. Introduction: linkage analyses in the hutterites. Genet Epidemiol 21:S222-S223. Hastie T, Tibshirani R, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd edition. Springer series in statistics. New York, NY: Springer Abecasis GR, Cherny SS, Cookson WO, Cardon LR. 2002. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97-101 Keith J, McRae A, Duffy D, Mengersen K, Visscher P. 2008. Calculation of IBD probabilities with dense SNP or sequence data. Genet Epidemiol 32:513-519. Abney M. 2009. A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients. Bioinformatics 25:1561-1563. Baum LE. 1972. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3:1-8. Yu Z, Schaid DJ. 2007. Methods to impute missing genotypes for population data. Hum Genet 122:495-504. Browning SR, Browning BL. 2010. High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86:526-539. Albrechtsen A, Sand Korneliussen T, Moltke I, van Overseem Hansen T, Nielsen FC, Nielsen R. 2009. Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genet Epidemiol 33:266-274. Almasy L, Blangero J. 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198-1211. McPeek MS, Sun L 2000. Statistical tests for detection of misspecified relationships by use of genome-screen data. Am J Hum Genet 66:1076-1094. Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG. 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2:e41. Dyer TD, Blangero J, Williams JT, Göring HH, Mahaney MC. 2001. The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol 21:S236-S243. Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. 2008. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395-1398. Karigl G. 1981. A recursive algorithm for the calculation of identity coefficients. Ann Hum Genet 45:299-305. Liu F, Kirichenko A, Axenovich TI, van Duijn CM, Aulchenko YS. 2008. An approach for cutting large and complex pedigrees for linkage analysis. Eur J Hum Genet 16:854-860. International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851-861. Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, Hill WG, Hottenga JJ, Willemsen G, Boomsma DI, Liu YZ, Deng HW, Montgomery GW, Martin NG. 2007. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet 81:1104-1110. Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D, Breslow JL, Friedman JM, Pe'er I. 2009. Whole population, genome-wide mapping of hidden relatedness. Genome Res 19:318-326. 2009; 25 1997; 61 2007; 449 2002; 30 2000; 66 2007; 122 2008; 16 2009 1974 2008; 32 1994 2003; 18 2006; 2 1996; 58 2007; 31 1998; 62 2001; 69 1981; 45 1972; 3 2001; 21 2009; 33 2010; 86 2004; 75 2010; 42 2009b; 33 1987; 84 2008; 319 2011; 88 2011; 21 2007; 81 2002; 70 2009a; 68 2008; 179 2008; 178 2009; 19 2008; 40 2005; 77 1992; 4 Falchi (10.1002/gepi.20606-BIB19|cit19) 2004; 75 Jacquard (10.1002/gepi.20606-BIB27|cit27) 1974 Kruglyak (10.1002/gepi.20606-BIB32|cit32) 1996; 58 Huff (10.1002/gepi.20606-BIB25|cit25) 2011; 21 Bellenguez (10.1002/gepi.20606-BIB10|cit10) 2009a; 68 Heath (10.1002/gepi.20606-BIB23|cit23) 1997; 61 Lander (10.1002/gepi.20606-BIB34|cit34) 1987; 84 Browning (10.1002/gepi.20606-BIB13|cit13) 2011; 88 Kang (10.1002/gepi.20606-BIB28|cit28) 2010; 42 Abecasis (10.1002/gepi.20606-BIB1|cit1) 2002; 30 Browning (10.1002/gepi.20606-BIB14|cit14) 2008; 178 Visscher (10.1002/gepi.20606-BIB44|cit44) 2006; 2 Coop (10.1002/gepi.20606-BIB17|cit17) 2008; 319 10.1002/gepi.20606-BIB12|cit12 Kong (10.1002/gepi.20606-BIB31|cit31) 2008; 40 International HapMap Consortium (10.1002/gepi.20606-BIB26|cit26) 2007; 449 Purcell (10.1002/gepi.20606-BIB40|cit40) 2007; 81 Kurbasic (10.1002/gepi.20606-BIB33|cit33) 2008; 32 Thompson (10.1002/gepi.20606-BIB43|cit43) 1994 Abney (10.1002/gepi.20606-BIB4|cit4) 2009; 25 Abney (10.1002/gepi.20606-BIB5|cit5) 2000; 66 Chapman (10.1002/gepi.20606-BIB16|cit16) 2001; 21 Newman (10.1002/gepi.20606-BIB38|cit38) 2001; 69 Lange (10.1002/gepi.20606-BIB35|cit35) 1992; 4 Almasy (10.1002/gepi.20606-BIB8|cit8) 1998; 62 Karigl (10.1002/gepi.20606-BIB29|cit29) 1981; 45 Albrechtsen (10.1002/gepi.20606-BIB7|cit7) 2009; 33 Baum (10.1002/gepi.20606-BIB9|cit9) 1972; 3 McPeek (10.1002/gepi.20606-BIB37|cit37) 2000; 66 Visscher (10.1002/gepi.20606-BIB45|cit45) 2007; 81 Abney (10.1002/gepi.20606-BIB3|cit3) 2008; 179 Gusev (10.1002/gepi.20606-BIB21|cit21) 2009; 19 Ober (10.1002/gepi.20606-BIB39|cit39) 2001; 69 Hastie (10.1002/gepi.20606-BIB22|cit22) 2009 Sung (10.1002/gepi.20606-BIB42|cit42) 2007; 31 Yu (10.1002/gepi.20606-BIB46|cit46) 2007; 122 Abecasis (10.1002/gepi.20606-BIB2|cit2) 2005; 77 Dyer (10.1002/gepi.20606-BIB18|cit18) 2001; 21 Abney (10.1002/gepi.20606-BIB6|cit6) 2002; 70 George (10.1002/gepi.20606-BIB20|cit20) 2003; 18 Bellenguez (10.1002/gepi.20606-BIB11|cit11) 2009b; 33 Browning (10.1002/gepi.20606-BIB15|cit15) 2010; 86 Keith (10.1002/gepi.20606-BIB30|cit30) 2008; 32 Sobel (10.1002/gepi.20606-BIB41|cit41) 1996; 58 Hostetler (10.1002/gepi.20606-BIB24|cit24) 1974 Liu (10.1002/gepi.20606-BIB36|cit36) 2008; 16 11793675 - Genet Epidemiol. 2001;21 Suppl 1:S236-43 8651310 - Am J Hum Genet. 1996 Jun;58(6):1323-37 18239090 - Science. 2008 Mar 7;319(5868):1395-8 19359355 - Bioinformatics. 2009 Jun 15;25(12):1561-3 9545414 - Am J Hum Genet. 1998 May;62(5):1198-211 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 19165921 - Nat Genet. 2008 Sep;40(9):1068-75 18839415 - Genet Epidemiol. 2009 Apr;33(3):207-16 20303063 - Am J Hum Genet. 2010 Apr 9;86(4):526-39 18301450 - Eur J Hum Genet. 2008 Jul;16(7):854-60 11731797 - Nat Genet. 2002 Jan;30(1):97-101 18481794 - Genet Epidemiol. 2008 Nov;32(7):647-57 17943122 - Nature. 2007 Oct 18;449(7164):851-61 18357613 - Genet Epidemiol. 2008 Sep;32(6):513-9 11880950 - Am J Hum Genet. 2002 Apr;70(4):920-34 18971310 - Genome Res. 2009 Feb;19(2):318-26 11858132 - Genet Epidemiol. 2001;21 Suppl 1:S222-3 9326339 - Am J Hum Genet. 1997 Sep;61(3):748-60 18430938 - Genetics. 2008 Apr;178(4):2123-32 11590547 - Am J Hum Genet. 2001 Nov;69(5):1068-79 7305283 - Ann Hum Genet. 1981 Jul;45(Pt 3):299-305 17123301 - Genet Epidemiol. 2007 Feb;31(2):103-14 19025785 - Genet Epidemiol. 2009 Apr;33(3):266-74 19365135 - Hum Hered. 2009;68(2):87-97 3470801 - Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363-7 16252236 - Am J Hum Genet. 2005 Nov;77(5):754-67 15478097 - Am J Hum Genet. 2004 Dec;75(6):1015-31 10712219 - Am J Hum Genet. 2000 Mar;66(3):1076-94 21310274 - Am J Hum Genet. 2011 Feb 11;88(2):173-82 11590549 - Am J Hum Genet. 2001 Nov;69(5):1146-8 18622032 - Genetics. 2008 Jul;179(3):1577-90 1492748 - Ann Hum Genet. 1992 Oct;56(Pt 4):339-46 16565746 - PLoS Genet. 2006 Mar;2(3):e41 8651312 - Am J Hum Genet. 1996 Jun;58(6):1347-63 17851696 - Hum Genet. 2007 Dec;122(5):495-504 20208533 - Nat Genet. 2010 Apr;42(4):348-54 21324875 - Genome Res. 2011 May;21(5):768-74 17924350 - Am J Hum Genet. 2007 Nov;81(5):1104-10 10677322 - Am J Hum Genet. 2000 Feb;66(2):629-50 |
References_xml | – reference: Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG. 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2:e41. – reference: Hostetler JA. 1974. Hutterite Society. Baltimore: Johns Hopkins University Press. – reference: Abney M. 2008. Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees. Genetics 179:1577-1590. – reference: Jacquard A. 1974. The Genetic Structure of Populations. New York: Springer. – reference: Falchi M, Forabosco P, Mocci E, Borlino CC, Picciau A, Virdis E, Persico I, Parracciani D, Angius A, Pirastu M. 2004. A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low-density lipoprotein cholesterol in two genetically differentiated isolates of sardinia. Am J Hum Genet 75:1015-1031. – reference: George A, Thompson E. 2003. Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach. Stat Sci 18:515-535. – reference: Heath SC. 1997. Markov chain monte carlo segregation and linkage analysis for oli- gogenic models. Am J Hum Genet 61:748-760. – reference: Lander ES, Green P. 1987. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363-2367. – reference: Browning SR. 2008. Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes. Genetics 178:2123-2132. – reference: Bellenguez C, Ober C, Bourgain C. 2009b. A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12. Genet Epidemiol 33:207-216. – reference: McPeek MS, Sun L 2000. Statistical tests for detection of misspecified relationships by use of genome-screen data. Am J Hum Genet 66:1076-1094. – reference: Browning SR, Browning BL. 2010. High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86:526-539. – reference: Hastie T, Tibshirani R, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd edition. Springer series in statistics. New York, NY: Springer – reference: Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, Hill WG, Hottenga JJ, Willemsen G, Boomsma DI, Liu YZ, Deng HW, Montgomery GW, Martin NG. 2007. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet 81:1104-1110. – reference: Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. 2007. Plink: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-575. – reference: Huff CD, Witherspoon DJ, Simonson TS, Xing J, Watkins WS, Zhang Y, Tuohy TM, Neklason DW, Burt RW, Guthery SL, Woodward SR, Jorde LB. 2011. Maximum-likelihood estimation of recent shared ancestry (ersa). Genome Res 21:768-774. – reference: Chapman NH, Wijsman EM. 2001. Introduction: linkage analyses in the hutterites. Genet Epidemiol 21:S222-S223. – reference: Keith J, McRae A, Duffy D, Mengersen K, Visscher P. 2008. Calculation of IBD probabilities with dense SNP or sequence data. Genet Epidemiol 32:513-519. – reference: International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851-861. – reference: Karigl G. 1981. A recursive algorithm for the calculation of identity coefficients. Ann Hum Genet 45:299-305. – reference: Sobel E, Lange K. 1996. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323-1337. – reference: Sung YJ, Thompson EA, Wijsman EM. 2007. Mcmc-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component. Genet Epidemiol 31:103-114. – reference: Abney M, McPeek MS, Ober C. 2000. Estimation of variance components of quantitative traits in inbred populations. Am J Hum Genet 66:629-650. – reference: Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D, Breslow JL, Friedman JM, Pe'er I. 2009. Whole population, genome-wide mapping of hidden relatedness. Genome Res 19:318-326. – reference: Newman DL, Abney M, McPeek MS, Ober C, Cox NJ. 2001. The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet 69:1146-1148. – reference: Abney M. 2009. A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients. Bioinformatics 25:1561-1563. – reference: Yu Z, Schaid DJ. 2007. Methods to impute missing genotypes for population data. Hum Genet 122:495-504. – reference: Abney M, Ober C, McPeek MS. 2002. Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the hutterites. Am J Hum Genet 70:920-934. – reference: Almasy L, Blangero J. 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198-1211. – reference: Bellenguez C, Ober C, Bourgain C 2009a. Linkage analysis with dense SNP maps in isolated populations. Hum Hered 68:87-97. – reference: Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. 2010. Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348-354. – reference: Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. 1996. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347-1363. – reference: Abecasis GR, Wigginton JE 2005. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754-767. – reference: Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, Olason PI, Ingason A, Steinberg S, Rafna T, Sulem P, Mouy M, Jonsson F, Thorsteinsdottir U, Gudbjartsson DF, Stefansson H, Stefansson K. 2008. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet 40:1068-1075. – reference: Lange K, Sinsheimer JS. 1992. Calculation of genetic identity coefficients. Ann Hum Genet 4:339-346. – reference: Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. 2008. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395-1398. – reference: Ober C, Abney M, McPeek MS. 2001. The genetic dissection of complex traits in a founder population. Am J Hum Genet 69:1068-1079. – reference: Dyer TD, Blangero J, Williams JT, Göring HH, Mahaney MC. 2001. The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol 21:S236-S243. – reference: Baum LE. 1972. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3:1-8. – reference: Browning BL, Browning SR. 2011. A fast, powerful method for detecting identity by descent. Am J Hum Genet 88:173-182. – reference: Abecasis GR, Cherny SS, Cookson WO, Cardon LR. 2002. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97-101 – reference: Albrechtsen A, Sand Korneliussen T, Moltke I, van Overseem Hansen T, Nielsen FC, Nielsen R. 2009. Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genet Epidemiol 33:266-274. – reference: Kurbasic A, Hossjer O. 2008. A general method for linkage disequilibrium correction for multipoint linkage and association. Genet Epidemiol 32:647-657. – reference: Liu F, Kirichenko A, Axenovich TI, van Duijn CM, Aulchenko YS. 2008. An approach for cutting large and complex pedigrees for linkage analysis. Eur J Hum Genet 16:854-860. – volume: 66 start-page: 1076 year: 2000 end-page: 1094 article-title: Statistical tests for detection of misspecified relationships by use of genome‐screen data publication-title: Am J Hum Genet – volume: 42 start-page: 348 year: 2010 end-page: 354 article-title: Variance component model to account for sample structure in genome‐wide association studies publication-title: Nat Genet – start-page: 498 year: 1994 end-page: 506 – year: 2009 – volume: 31 start-page: 103 year: 2007 end-page: 114 article-title: Mcmc‐based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two‐locus model and a polygenic component publication-title: Genet Epidemiol – volume: 3 start-page: 1 year: 1972 end-page: 8 article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes publication-title: Inequalities – volume: 40 start-page: 1068 year: 2008 end-page: 1075 article-title: Detection of sharing by descent, long‐range phasing and haplotype imputation publication-title: Nat Genet – volume: 122 start-page: 495 year: 2007 end-page: 504 article-title: Methods to impute missing genotypes for population data publication-title: Hum Genet – volume: 75 start-page: 1015 year: 2004 end-page: 1031 article-title: A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low‐density lipoprotein cholesterol in two genetically differentiated isolates of sardinia publication-title: Am J Hum Genet – volume: 319 start-page: 1395 year: 2008 end-page: 1398 article-title: High‐resolution mapping of crossovers reveals extensive variation in fine‐scale recombination patterns among humans publication-title: Science – volume: 58 start-page: 1323 year: 1996 end-page: 1337 article-title: Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker‐sharing statistics publication-title: Am J Hum Genet – volume: 32 start-page: 513 year: 2008 end-page: 519 article-title: Calculation of IBD probabilities with dense SNP or sequence data publication-title: Genet Epidemiol – volume: 4 start-page: 339 year: 1992 end-page: 346 article-title: Calculation of genetic identity coefficients publication-title: Ann Hum Genet – volume: 33 start-page: 266 year: 2009 end-page: 274 article-title: Relatedness mapping and tracts of relatedness for genome‐wide data in the presence of linkage disequilibrium publication-title: Genet Epidemiol – volume: 81 start-page: 1104 year: 2007 end-page: 1110 article-title: Genome partitioning of genetic variation for height from 11,214 sibling pairs publication-title: Am J Hum Genet – volume: 33 start-page: 207 year: 2009b end-page: 216 article-title: A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12 publication-title: Genet Epidemiol – volume: 30 start-page: 97 year: 2002 end-page: 101 article-title: Merlin–rapid analysis of dense genetic maps using sparse gene flow trees publication-title: Nat Genet – volume: 179 start-page: 1577 year: 2008 end-page: 1590 article-title: Identity‐by‐descent estimation and mapping of qualitative traits in large, complex pedigrees publication-title: Genetics – volume: 449 start-page: 851 year: 2007 end-page: 861 article-title: A second generation human haplotype map of over 3.1 million SNPs publication-title: Nature – volume: 61 start-page: 748 year: 1997 end-page: 760 article-title: Markov chain monte carlo segregation and linkage analysis for oli‐ gogenic models publication-title: Am J Hum Genet – volume: 62 start-page: 1198 year: 1998 end-page: 1211 article-title: Multipoint quantitative‐trait linkage analysis in general pedigrees publication-title: Am J Hum Genet – volume: 45 start-page: 299 year: 1981 end-page: 305 article-title: A recursive algorithm for the calculation of identity coefficients publication-title: Ann Hum Genet – volume: 81 start-page: 559 year: 2007 end-page: 575 article-title: Plink: a tool set for whole‐genome association and population‐based linkage analyses publication-title: Am J Hum Genet – volume: 2 start-page: e41 year: 2006 article-title: Assumption‐free estimation of heritability from genome‐wide identity‐by‐descent sharing between full siblings publication-title: PLoS Genet – volume: 25 start-page: 1561 year: 2009 end-page: 1563 article-title: A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients publication-title: Bioinformatics – volume: 86 start-page: 526 year: 2010 end-page: 539 article-title: High‐resolution detection of identity by descent in unrelated individuals publication-title: Am J Hum Genet – volume: 32 start-page: 647 year: 2008 end-page: 657 article-title: A general method for linkage disequilibrium correction for multipoint linkage and association publication-title: Genet Epidemiol – volume: 68 start-page: 87 year: 2009a end-page: 97 article-title: Linkage analysis with dense SNP maps in isolated populations publication-title: Hum Hered – volume: 178 start-page: 2123 year: 2008 end-page: 2132 article-title: Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes publication-title: Genetics – volume: 66 start-page: 629 year: 2000 end-page: 650 article-title: Estimation of variance components of quantitative traits in inbred populations publication-title: Am J Hum Genet – volume: 58 start-page: 1347 year: 1996 end-page: 1363 article-title: Parametric and nonparametric linkage analysis: a unified multipoint approach publication-title: Am J Hum Genet – volume: 21 start-page: S236 year: 2001 end-page: S243 article-title: The effect of pedigree complexity on quantitative trait linkage analysis publication-title: Genet Epidemiol – volume: 88 start-page: 173 year: 2011 end-page: 182 article-title: A fast, powerful method for detecting identity by descent publication-title: Am J Hum Genet – volume: 19 start-page: 318 year: 2009 end-page: 326 article-title: Whole population, genome‐wide mapping of hidden relatedness publication-title: Genome Res – volume: 77 start-page: 754 year: 2005 end-page: 767 article-title: Handling marker‐marker linkage disequilibrium: pedigree analysis with clustered markers publication-title: Am J Hum Genet – volume: 84 start-page: 2363 year: 1987 end-page: 2367 article-title: Construction of multilocus genetic linkage maps in humans publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 854 year: 2008 end-page: 860 article-title: An approach for cutting large and complex pedigrees for linkage analysis publication-title: Eur J Hum Genet – volume: 70 start-page: 920 year: 2002 end-page: 934 article-title: Quantitative‐trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum‐insulin level in the hutterites publication-title: Am J Hum Genet – year: 1974 – volume: 18 start-page: 515 year: 2003 end-page: 535 article-title: Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach publication-title: Stat Sci – volume: 69 start-page: 1068 year: 2001 end-page: 1079 article-title: The genetic dissection of complex traits in a founder population publication-title: Am J Hum Genet – volume: 21 start-page: S222 year: 2001 end-page: S223 article-title: Introduction: linkage analyses in the hutterites publication-title: Genet Epidemiol – volume: 69 start-page: 1146 year: 2001 end-page: 1148 article-title: The importance of genealogy in determining genetic associations with complex traits publication-title: Am J Hum Genet – volume: 21 start-page: 768 year: 2011 end-page: 774 article-title: Maximum‐likelihood estimation of recent shared ancestry (ersa) publication-title: Genome Res – volume: 319 start-page: 1395 year: 2008 ident: 10.1002/gepi.20606-BIB17|cit17 article-title: High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans publication-title: Science doi: 10.1126/science.1151851 – volume: 81 start-page: 559 year: 2007 ident: 10.1002/gepi.20606-BIB40|cit40 article-title: Plink: a tool set for whole-genome association and population-based linkage analyses publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 32 start-page: 647 year: 2008 ident: 10.1002/gepi.20606-BIB33|cit33 article-title: A general method for linkage disequilibrium correction for multipoint linkage and association publication-title: Genet Epidemiol doi: 10.1002/gepi.20339 – volume: 33 start-page: 207 year: 2009b ident: 10.1002/gepi.20606-BIB11|cit11 article-title: A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12 publication-title: Genet Epidemiol doi: 10.1002/gepi.20371 – volume: 21 start-page: 768 year: 2011 ident: 10.1002/gepi.20606-BIB25|cit25 article-title: Maximum-likelihood estimation of recent shared ancestry (ersa) publication-title: Genome Res doi: 10.1101/gr.115972.110 – volume-title: Hutterite Society year: 1974 ident: 10.1002/gepi.20606-BIB24|cit24 – volume: 122 start-page: 495 year: 2007 ident: 10.1002/gepi.20606-BIB46|cit46 article-title: Methods to impute missing genotypes for population data publication-title: Hum Genet doi: 10.1007/s00439-007-0427-y – volume: 33 start-page: 266 year: 2009 ident: 10.1002/gepi.20606-BIB7|cit7 article-title: Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium publication-title: Genet Epidemiol doi: 10.1002/gepi.20378 – volume: 18 start-page: 515 year: 2003 ident: 10.1002/gepi.20606-BIB20|cit20 article-title: Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach publication-title: Stat Sci doi: 10.1214/ss/1081443233 – volume: 30 start-page: 97 year: 2002 ident: 10.1002/gepi.20606-BIB1|cit1 article-title: Merlin-rapid analysis of dense genetic maps using sparse gene flow trees publication-title: Nat Genet doi: 10.1038/ng786 – volume: 16 start-page: 854 year: 2008 ident: 10.1002/gepi.20606-BIB36|cit36 article-title: An approach for cutting large and complex pedigrees for linkage analysis publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2008.24 – ident: 10.1002/gepi.20606-BIB12|cit12 – volume: 3 start-page: 1 year: 1972 ident: 10.1002/gepi.20606-BIB9|cit9 article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes publication-title: Inequalities – volume: 21 start-page: S222 year: 2001 ident: 10.1002/gepi.20606-BIB16|cit16 article-title: Introduction: linkage analyses in the hutterites publication-title: Genet Epidemiol doi: 10.1002/gepi.2001.21.s1.s222 – volume: 4 start-page: 339 year: 1992 ident: 10.1002/gepi.20606-BIB35|cit35 article-title: Calculation of genetic identity coefficients publication-title: Ann Hum Genet doi: 10.1111/j.1469-1809.1992.tb01162.x – volume: 21 start-page: S236 year: 2001 ident: 10.1002/gepi.20606-BIB18|cit18 article-title: The effect of pedigree complexity on quantitative trait linkage analysis publication-title: Genet Epidemiol doi: 10.1002/gepi.2001.21.s1.s236 – volume: 75 start-page: 1015 year: 2004 ident: 10.1002/gepi.20606-BIB19|cit19 article-title: A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low-density lipoprotein cholesterol in two genetically differentiated isolates of sardinia publication-title: Am J Hum Genet doi: 10.1086/426155 – volume: 45 start-page: 299 year: 1981 ident: 10.1002/gepi.20606-BIB29|cit29 article-title: A recursive algorithm for the calculation of identity coefficients publication-title: Ann Hum Genet doi: 10.1111/j.1469-1809.1981.tb00341.x – volume: 31 start-page: 103 year: 2007 ident: 10.1002/gepi.20606-BIB42|cit42 article-title: Mcmc-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component publication-title: Genet Epidemiol doi: 10.1002/gepi.20194 – volume: 40 start-page: 1068 year: 2008 ident: 10.1002/gepi.20606-BIB31|cit31 article-title: Detection of sharing by descent, long-range phasing and haplotype imputation publication-title: Nat Genet doi: 10.1038/ng.216 – volume: 84 start-page: 2363 year: 1987 ident: 10.1002/gepi.20606-BIB34|cit34 article-title: Construction of multilocus genetic linkage maps in humans publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.84.8.2363 – volume: 25 start-page: 1561 year: 2009 ident: 10.1002/gepi.20606-BIB4|cit4 article-title: A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp185 – volume: 69 start-page: 1068 year: 2001 ident: 10.1002/gepi.20606-BIB39|cit39 article-title: The genetic dissection of complex traits in a founder population publication-title: Am J Hum Genet doi: 10.1086/324025 – volume: 86 start-page: 526 year: 2010 ident: 10.1002/gepi.20606-BIB15|cit15 article-title: High-resolution detection of identity by descent in unrelated individuals publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2010.02.021 – volume: 77 start-page: 754 year: 2005 ident: 10.1002/gepi.20606-BIB2|cit2 article-title: Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers publication-title: Am J Hum Genet doi: 10.1086/497345 – volume: 70 start-page: 920 year: 2002 ident: 10.1002/gepi.20606-BIB6|cit6 article-title: Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the hutterites publication-title: Am J Hum Genet doi: 10.1086/339705 – volume: 58 start-page: 1347 year: 1996 ident: 10.1002/gepi.20606-BIB32|cit32 article-title: Parametric and nonparametric linkage analysis: a unified multipoint approach publication-title: Am J Hum Genet – volume: 61 start-page: 748 year: 1997 ident: 10.1002/gepi.20606-BIB23|cit23 article-title: Markov chain monte carlo segregation and linkage analysis for oli- gogenic models publication-title: Am J Hum Genet doi: 10.1086/515506 – volume: 32 start-page: 513 year: 2008 ident: 10.1002/gepi.20606-BIB30|cit30 article-title: Calculation of IBD probabilities with dense SNP or sequence data publication-title: Genet Epidemiol doi: 10.1002/gepi.20324 – volume: 2 start-page: e41 year: 2006 ident: 10.1002/gepi.20606-BIB44|cit44 article-title: Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings publication-title: PLoS Genet doi: 10.1371/journal.pgen.0020041 – volume: 68 start-page: 87 year: 2009a ident: 10.1002/gepi.20606-BIB10|cit10 article-title: Linkage analysis with dense SNP maps in isolated populations publication-title: Hum Hered doi: 10.1159/000212501 – volume: 62 start-page: 1198 year: 1998 ident: 10.1002/gepi.20606-BIB8|cit8 article-title: Multipoint quantitative-trait linkage analysis in general pedigrees publication-title: Am J Hum Genet doi: 10.1086/301844 – volume: 88 start-page: 173 year: 2011 ident: 10.1002/gepi.20606-BIB13|cit13 article-title: A fast, powerful method for detecting identity by descent publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2011.01.010 – volume: 81 start-page: 1104 year: 2007 ident: 10.1002/gepi.20606-BIB45|cit45 article-title: Genome partitioning of genetic variation for height from 11,214 sibling pairs publication-title: Am J Hum Genet doi: 10.1086/522934 – volume: 449 start-page: 851 year: 2007 ident: 10.1002/gepi.20606-BIB26|cit26 article-title: A second generation human haplotype map of over 3.1 million SNPs publication-title: Nature doi: 10.1038/nature06258 – volume: 66 start-page: 1076 year: 2000 ident: 10.1002/gepi.20606-BIB37|cit37 article-title: Statistical tests for detection of misspecified relationships by use of genome-screen data publication-title: Am J Hum Genet doi: 10.1086/302800 – volume: 179 start-page: 1577 year: 2008 ident: 10.1002/gepi.20606-BIB3|cit3 article-title: Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees publication-title: Genetics doi: 10.1534/genetics.108.089912 – volume: 69 start-page: 1146 year: 2001 ident: 10.1002/gepi.20606-BIB38|cit38 article-title: The importance of genealogy in determining genetic associations with complex traits publication-title: Am J Hum Genet doi: 10.1086/323659 – volume-title: The elements of statistical learning: data mining, inference, and prediction year: 2009 ident: 10.1002/gepi.20606-BIB22|cit22 doi: 10.1007/978-0-387-84858-7 – start-page: 498 volume-title: Proceedings of the 1994 Interface Conference year: 1994 ident: 10.1002/gepi.20606-BIB43|cit43 – volume: 178 start-page: 2123 year: 2008 ident: 10.1002/gepi.20606-BIB14|cit14 article-title: Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes publication-title: Genetics doi: 10.1534/genetics.107.084624 – volume-title: The Genetic Structure of Populations year: 1974 ident: 10.1002/gepi.20606-BIB27|cit27 doi: 10.1007/978-3-642-88415-3 – volume: 42 start-page: 348 year: 2010 ident: 10.1002/gepi.20606-BIB28|cit28 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng.548 – volume: 58 start-page: 1323 year: 1996 ident: 10.1002/gepi.20606-BIB41|cit41 article-title: Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics publication-title: Am J Hum Genet – volume: 66 start-page: 629 year: 2000 ident: 10.1002/gepi.20606-BIB5|cit5 article-title: Estimation of variance components of quantitative traits in inbred populations publication-title: Am J Hum Genet doi: 10.1086/302759 – volume: 19 start-page: 318 year: 2009 ident: 10.1002/gepi.20606-BIB21|cit21 article-title: Whole population, genome-wide mapping of hidden relatedness publication-title: Genome Res doi: 10.1101/gr.081398.108 – reference: 11731797 - Nat Genet. 2002 Jan;30(1):97-101 – reference: 17123301 - Genet Epidemiol. 2007 Feb;31(2):103-14 – reference: 18839415 - Genet Epidemiol. 2009 Apr;33(3):207-16 – reference: 19359355 - Bioinformatics. 2009 Jun 15;25(12):1561-3 – reference: 20208533 - Nat Genet. 2010 Apr;42(4):348-54 – reference: 19165921 - Nat Genet. 2008 Sep;40(9):1068-75 – reference: 8651312 - Am J Hum Genet. 1996 Jun;58(6):1347-63 – reference: 16565746 - PLoS Genet. 2006 Mar;2(3):e41 – reference: 17924350 - Am J Hum Genet. 2007 Nov;81(5):1104-10 – reference: 18357613 - Genet Epidemiol. 2008 Sep;32(6):513-9 – reference: 11880950 - Am J Hum Genet. 2002 Apr;70(4):920-34 – reference: 16252236 - Am J Hum Genet. 2005 Nov;77(5):754-67 – reference: 11590549 - Am J Hum Genet. 2001 Nov;69(5):1146-8 – reference: 10712219 - Am J Hum Genet. 2000 Mar;66(3):1076-94 – reference: 7305283 - Ann Hum Genet. 1981 Jul;45(Pt 3):299-305 – reference: 11793675 - Genet Epidemiol. 2001;21 Suppl 1:S236-43 – reference: 8651310 - Am J Hum Genet. 1996 Jun;58(6):1323-37 – reference: 18239090 - Science. 2008 Mar 7;319(5868):1395-8 – reference: 18301450 - Eur J Hum Genet. 2008 Jul;16(7):854-60 – reference: 15478097 - Am J Hum Genet. 2004 Dec;75(6):1015-31 – reference: 18430938 - Genetics. 2008 Apr;178(4):2123-32 – reference: 19365135 - Hum Hered. 2009;68(2):87-97 – reference: 11858132 - Genet Epidemiol. 2001;21 Suppl 1:S222-3 – reference: 17851696 - Hum Genet. 2007 Dec;122(5):495-504 – reference: 21324875 - Genome Res. 2011 May;21(5):768-74 – reference: 9326339 - Am J Hum Genet. 1997 Sep;61(3):748-60 – reference: 21310274 - Am J Hum Genet. 2011 Feb 11;88(2):173-82 – reference: 3470801 - Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363-7 – reference: 9545414 - Am J Hum Genet. 1998 May;62(5):1198-211 – reference: 1492748 - Ann Hum Genet. 1992 Oct;56(Pt 4):339-46 – reference: 20303063 - Am J Hum Genet. 2010 Apr 9;86(4):526-39 – reference: 17943122 - Nature. 2007 Oct 18;449(7164):851-61 – reference: 18622032 - Genetics. 2008 Jul;179(3):1577-90 – reference: 10677322 - Am J Hum Genet. 2000 Feb;66(2):629-50 – reference: 19025785 - Genet Epidemiol. 2009 Apr;33(3):266-74 – reference: 11590547 - Am J Hum Genet. 2001 Nov;69(5):1068-79 – reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 – reference: 18481794 - Genet Epidemiol. 2008 Nov;32(7):647-57 – reference: 18971310 - Genome Res. 2009 Feb;19(2):318-26 |
SSID | ssj0011495 |
Score | 2.249105 |
Snippet | We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 557 |
SubjectTerms | Algorithms Computer programs Computer Simulation Data processing Female Gene mapping Genome-Wide Association Study Genotype Genotypes Genotyping Hidden Markov Models Humans IBD Linkage Disequilibrium Male Models, Genetic Molecular Epidemiology - methods Oligonucleotide Array Sequence Analysis - methods Pedigree pedigrees Probability Pruning Quantitative Trait Loci relatedness Reproducibility of Results Single-nucleotide polymorphism SNP software |
Title | Identity by descent estimation with dense genome-wide genotype data |
URI | https://api.istex.fr/ark:/67375/WNG-HC6KKHRB-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.20606 https://www.ncbi.nlm.nih.gov/pubmed/21769932 https://www.proquest.com/docview/1017969132 https://www.proquest.com/docview/884846305 https://pubmed.ncbi.nlm.nih.gov/PMC3587128 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1RSxwxEMcHUYSCaGtbXa0lpUWosLqb3c3uQV-qnF4rSBFFX0pINjk91FW8O-z1qR-hn7GfpDPJ3eq1Wqhvt3ezLMlOkv_MTX4BeMejzCRC2NBEOg9xCbBhIylNqCwul0IrFMGuQHZPtA7Tz8fZ8QR8GO2F8XyIOuFGI8PN1zTAle5u3EJDT-xVB-M74XjbVKxFimi_ZkfFJP09g5NqhhpZzSblG7e3jq1GU9Sx3-6Tmn9XTN5Vsm4p2p6Dr6NG-AqUs_V-T6-X3__gOz62lU9hdqhR2UfvVM9gwlbzMO1PrRzMw4xP9TG_g-k5NIebfQdMD5jxeChG8A6_K5JRqhe_r7qWERH2wv768fOmY_wVpYAZlam-gMPt5sFWKxyezhCWaSMSoSbwu03aOhaqSEoUclGqOcf4gyjtVmnFtYpMO44VF4VOYlOYqF3qOG0b1ERJ8hImq8vKLgJTylIYVeQ4uaS8FApVWa6VzQqhS6FNAO9Hb0mWQ3Q5naBxLj10mUvqJum6KYC3te2VB3bca7XqXnZtoq7PqMQtz-TR3o5sbYnd3db-pjwK4M3IGyQOPPo3RVX2st-Vbi4TDYzmA2AP2BRFivoOp9QAFrwD1Q_EUFCgNsSb8zHXqg2I-z3-S9U5dfzvJMMolxcBrDnP-Ucz5U7zyyf3ael_jJfhiU-dUyndK5jsXfftCmqvnn7txthvV54rPA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1tb9MwEMdPaBMCCfEwHhYejUBITMqWOImTvoSpW0ZHhaZN2zvLjl1WbcumtdVWXvER-Ix8Eu7sLKMwkOBdHy6q4pzt_13PvwN4zaPMJELY0EQ6D3ELsGEnqUyoLG6XQisUwa5Ati_KnfTDXrbX1ObQWRjPh2gTbjQz3HpNE5wS0iuX1NDP9mSIAZ4g4PY8tfR2EdVWS4-KSfx7CidVDXWylk7KVy6vndmP5mloz68Sm7_XTP6sZd1mtHbHd1wdOYYh1aAcLE_Gern68gvh8b_v8y7cbmQqe-f96h5cs_UCXPeNK6cLcMtn-5g_xHQfus153ynTU2Y8IYoRv8MfjGSU7cXP65FlBIU9st-_fjsbGv-OssCMKlUfwM5ad3u1DJsGDWGVdiIRamK_22SgY6GKpEItF6WacwxBCNRulVZcq8gM4lhxUegkNoWJBpWO04FBWZQkD2GuPq7tIjClLEVSRY7rS8oroVCY5VrZrBC6EtoE8PbiMcmqoZdTE41D6bnLXNIwSTdMAbxqbU88s-NKqzfuabcm6vSAqtzyTO7212W5Knq9cuu93A3g5YU7SJx79IeKqu3xZCTdciY6GNAHwP5gUxQpSjxcVQN45D2o_UGMBgXKQ7w4n_Gt1oDQ37Pf1MN9hwBPMgx0eRHAknOdv9ymXO9-2nCvHv-L8Qu4UW5_3JSbG_3eE7jpM-lUWfcU5sanE_sMpdhYP3cT7gflQy9X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbhMxEIZHVSsQEqJQTsvRCIQE0rZ79DoSN9AmTQmKqoqqvUGWvfZCVNhGbSKaXvUReEaehBk72RIoSHCXTWa1snds_zMZfwZ4lkS5STm3oYl0EeISYMNWWppQWVwuuVYogl2BbJ93d7O3-_n-Arya7YXxfIgm4UYjw83XNMCHplo7h4Z-tMMBxneceNtLGY8E-fTGTgOPikn7ewgnFQ218gZOmqyd3zu3HC1Rz55cpDV_L5n8Wcq6taizDB9mrfAlKAer45FeLU9_ATz-bzOvw7WpSGWvvVfdgAVbr8Alf2zlZAWu-lwf81uYbkJ7utt3wvSEGc-HYkTv8NsiGeV68fv62DJCwn6x38--fR0Yf0U5YEZ1qrdgt9N-v94Np8czhGXWinioifxu00rHXIm0RCUXZTpJMAAhTLtVWiVaRaaKY5VwodPYCBNVpY6zyqAoStPbsFgf1vYuMKUsxVGiwNklS0quUJYVWtlccF1ybQJ4MXtLspyyy-kIjc_SU5cTSd0kXTcF8LSxHXpix4VWz93LbkzU0QHVuBW53Otvyu467_W6O2_kXgBPZt4gceTR3ymqtofjY-kmM97CcD4A9gcbITIUeDinBnDHO1DzQIwFOYpDvLmYc63GgMDf87_Ug08OAJ7mGOYmIoCXznP-0ky52d7ecp_u_YvxY7i8vdGR77b6vftwxafRqazuASyOjsb2IeqwkX7khtsPWk0uDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identity+by+descent+estimation+with+dense+genome-wide+genotype+data&rft.jtitle=Genetic+epidemiology&rft.au=Han%2C+Lide&rft.au=Abney%2C+Mark&rft.date=2011-09-01&rft.issn=0741-0395&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fgepi.20606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_gepi_20606 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon |