Identity by descent estimation with dense genome-wide genotype data

We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of...

Full description

Saved in:
Bibliographic Details
Published inGenetic epidemiology Vol. 35; no. 6; pp. 557 - 567
Main Authors Han, Lide, Abney, Mark
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.09.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high‐density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high‐density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point‐wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13‐generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow‐up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. Genet. Epidemiol. 2011. © 2011 Wiley‐Liss, Inc. 35: 557‐567, 2011
AbstractList We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available.We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available.
We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. Genet. Epidemiol. 2011. copyright 2011 Wiley-Liss, Inc. 35: 557-567, 2011
We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high-density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high-density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point-wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13-generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow-up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available.
We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense genotype data and a pedigree of arbitrary size and complexity. IBDLD overcomes the challenges of exact multipoint estimation of IBD in pedigrees of potentially large size and eliminates the difficulty of accommodating the background linkage disequilibrium (LD) that is present in high‐density genotype data. We show that IBDLD is much more accurate at estimating the true IBD sharing than methods that remove LD by pruning SNPs and is highly robust to pedigree errors or other forms of misspecified relationships. The method is fast and can be used to estimate the probability for each possible IBD sharing state at every SNP from a high‐density genotyping array for hundreds of thousands of pairs of individuals. We use it to estimate point‐wise and genomewide IBD sharing between 185,745 pairs of subjects all of whom are related through a single, large and complex 13‐generation pedigree and genotyped with the Affymetrix 500 k chip. We find that we are able to identify the true pedigree relationship for individuals who were misidentified in the collected data and estimate empirical kinship coefficients that can be used in follow‐up QTL mapping studies. IBDLD is implemented as an open source software package and is freely available. Genet. Epidemiol. 2011. © 2011 Wiley‐Liss, Inc. 35: 557‐567, 2011
Author Abney, Mark
Han, Lide
Author_xml – sequence: 1
  givenname: Lide
  surname: Han
  fullname: Han, Lide
  organization: Department of Human Genetics, University of Chicago, Chicago, Illinois
– sequence: 2
  givenname: Mark
  surname: Abney
  fullname: Abney, Mark
  email: abney@bsd.uchicago.edu
  organization: Department of Human Genetics, University of Chicago, Chicago, Illinois
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21769932$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9v0zAUxS20iXUbL3wAlDcQUsa1nfjPC9KoRlttggmB9mjZsdMZ0qTELiXfHndZp4HQnmxf_87Rufceo4O2ax1CLzGcYQDybunW_owAA_YMTTBIkRPCyQGaAC9wDlSWR-g4hO8AGBeyfI6OCOZMSkomaLqwro0-DpkZMutClV6ZC9GvdPRdm219vE31Nrhs6dpu5fKtt-M9DmuXWR31KTqsdRPci_vzBH37ePF1Os-vPs8W0_OrvCoksNykiNzR2mCmBa1oSaAwKWkpoCiJ00YTo8HWGGvChKHYCgt1ZXBRW0k5pSfo_ei73piVs7uovW7Uuk9h-0F12qu_f1p_q5bdL0VLwTERyeD1vUHf_dykLtXKp46bRreu2wQlRCEKRqFM5JsnSQyYSyYxJQl99TjVQ5z9jBMAI1D1XQi9q1Xl4910U0jfJC-1W6ParVHdrTFJ3v4j2bv-F8YjvPWNG54g1ezierHX5KPGh-h-P2h0_0MxTnmpbj7N1HzKLi_nXz6oG_oHhES81Q
CitedBy_id crossref_primary_10_1002_gepi_21641
crossref_primary_10_1534_g3_119_400763
crossref_primary_10_1002_gepi_21684
crossref_primary_10_1159_000346788
crossref_primary_10_1111_jbg_12236
crossref_primary_10_1159_000430841
crossref_primary_10_1111_1755_0998_14068
crossref_primary_10_1155_2019_2310235
crossref_primary_10_18699_VJGB_23_08
crossref_primary_10_1161_CIRCGEN_120_003232
crossref_primary_10_1007_s11295_023_01611_z
crossref_primary_10_1159_000450726
crossref_primary_10_3389_fpls_2023_1226072
crossref_primary_10_1155_2012_485174
crossref_primary_10_1111_age_13424
crossref_primary_10_1186_s12864_023_09860_x
crossref_primary_10_3389_fgene_2021_808829
Cites_doi 10.1126/science.1151851
10.1086/519795
10.1002/gepi.20339
10.1002/gepi.20371
10.1101/gr.115972.110
10.1007/s00439-007-0427-y
10.1002/gepi.20378
10.1214/ss/1081443233
10.1038/ng786
10.1038/ejhg.2008.24
10.1002/gepi.2001.21.s1.s222
10.1111/j.1469-1809.1992.tb01162.x
10.1002/gepi.2001.21.s1.s236
10.1086/426155
10.1111/j.1469-1809.1981.tb00341.x
10.1002/gepi.20194
10.1038/ng.216
10.1073/pnas.84.8.2363
10.1093/bioinformatics/btp185
10.1086/324025
10.1016/j.ajhg.2010.02.021
10.1086/497345
10.1086/339705
10.1086/515506
10.1002/gepi.20324
10.1371/journal.pgen.0020041
10.1159/000212501
10.1086/301844
10.1016/j.ajhg.2011.01.010
10.1086/522934
10.1038/nature06258
10.1086/302800
10.1534/genetics.108.089912
10.1086/323659
10.1007/978-0-387-84858-7
10.1534/genetics.107.084624
10.1007/978-3-642-88415-3
10.1038/ng.548
10.1086/302759
10.1101/gr.081398.108
ContentType Journal Article
Copyright 2011 Wiley‐Liss, Inc.
2011 Wiley-Liss, Inc.
2011 Wiley-Liss, Inc. 2011
Copyright_xml – notice: 2011 Wiley‐Liss, Inc.
– notice: 2011 Wiley-Liss, Inc.
– notice: 2011 Wiley-Liss, Inc. 2011
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.1002/gepi.20606
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
EISSN 1098-2272
EndPage 567
ExternalDocumentID PMC3587128
21769932
10_1002_gepi_20606
GEPI20606
ark_67375_WNG_HC6KKHRB_W
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  funderid: R01HG002899
– fundername: NHGRI NIH HHS
  grantid: R01 HG002899
– fundername: NHGRI NIH HHS
  grantid: R01HG002899
– fundername: National Human Genome Research Institute : NHGRI
  grantid: R01 HG002899 || HG
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DVXWH
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M66
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWV
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WTM
WXSBR
WYISQ
XG1
XV2
ZGI
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4906-b2067e3fb16a83c35204b227580452eaba2ba0df11a268b31d8d0fcb14fd93733
IEDL.DBID DR2
ISSN 0741-0395
1098-2272
IngestDate Thu Aug 21 13:49:59 EDT 2025
Fri Jul 11 12:14:25 EDT 2025
Fri Jul 11 09:15:01 EDT 2025
Wed Feb 19 01:57:58 EST 2025
Thu Apr 24 23:09:58 EDT 2025
Tue Jul 01 02:45:07 EDT 2025
Wed Jan 22 16:54:32 EST 2025
Wed Oct 30 09:52:39 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4906-b2067e3fb16a83c35204b227580452eaba2ba0df11a268b31d8d0fcb14fd93733
Notes National Institutes of Health - No. R01HG002899
ark:/67375/WNG-HC6KKHRB-W
istex:799DA4EC2663A142BBC37BF0B1C87AA77D15CC52
ArticleID:GEPI20606
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/gepi.20606
PMID 21769932
PQID 1017969132
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3587128
proquest_miscellaneous_884846305
proquest_miscellaneous_1017969132
pubmed_primary_21769932
crossref_citationtrail_10_1002_gepi_20606
crossref_primary_10_1002_gepi_20606
wiley_primary_10_1002_gepi_20606_GEPI20606
istex_primary_ark_67375_WNG_HC6KKHRB_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Genetic epidemiology
PublicationTitleAlternate Genet. Epidemiol
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Bellenguez C, Ober C, Bourgain C. 2009b. A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12. Genet Epidemiol 33:207-216.
Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, Olason PI, Ingason A, Steinberg S, Rafna T, Sulem P, Mouy M, Jonsson F, Thorsteinsdottir U, Gudbjartsson DF, Stefansson H, Stefansson K. 2008. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet 40:1068-1075.
Falchi M, Forabosco P, Mocci E, Borlino CC, Picciau A, Virdis E, Persico I, Parracciani D, Angius A, Pirastu M. 2004. A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low-density lipoprotein cholesterol in two genetically differentiated isolates of sardinia. Am J Hum Genet 75:1015-1031.
Kurbasic A, Hossjer O. 2008. A general method for linkage disequilibrium correction for multipoint linkage and association. Genet Epidemiol 32:647-657.
Hostetler JA. 1974. Hutterite Society. Baltimore: Johns Hopkins University Press.
Jacquard A. 1974. The Genetic Structure of Populations. New York: Springer.
Abney M. 2008. Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees. Genetics 179:1577-1590.
Heath SC. 1997. Markov chain monte carlo segregation and linkage analysis for oli- gogenic models. Am J Hum Genet 61:748-760.
Abney M, McPeek MS, Ober C. 2000. Estimation of variance components of quantitative traits in inbred populations. Am J Hum Genet 66:629-650.
Abney M, Ober C, McPeek MS. 2002. Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the hutterites. Am J Hum Genet 70:920-934.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. 2007. Plink: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-575.
Ober C, Abney M, McPeek MS. 2001. The genetic dissection of complex traits in a founder population. Am J Hum Genet 69:1068-1079.
Newman DL, Abney M, McPeek MS, Ober C, Cox NJ. 2001. The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet 69:1146-1148.
Sung YJ, Thompson EA, Wijsman EM. 2007. Mcmc-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component. Genet Epidemiol 31:103-114.
Browning SR. 2008. Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes. Genetics 178:2123-2132.
Huff CD, Witherspoon DJ, Simonson TS, Xing J, Watkins WS, Zhang Y, Tuohy TM, Neklason DW, Burt RW, Guthery SL, Woodward SR, Jorde LB. 2011. Maximum-likelihood estimation of recent shared ancestry (ersa). Genome Res 21:768-774.
Browning BL, Browning SR. 2011. A fast, powerful method for detecting identity by descent. Am J Hum Genet 88:173-182.
George A, Thompson E. 2003. Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach. Stat Sci 18:515-535.
Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. 1996. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347-1363.
Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. 2010. Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348-354.
Lander ES, Green P. 1987. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363-2367.
Lange K, Sinsheimer JS. 1992. Calculation of genetic identity coefficients. Ann Hum Genet 4:339-346.
Abecasis GR, Wigginton JE 2005. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754-767.
Bellenguez C, Ober C, Bourgain C 2009a. Linkage analysis with dense SNP maps in isolated populations. Hum Hered 68:87-97.
Sobel E, Lange K. 1996. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323-1337.
Chapman NH, Wijsman EM. 2001. Introduction: linkage analyses in the hutterites. Genet Epidemiol 21:S222-S223.
Hastie T, Tibshirani R, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd edition. Springer series in statistics. New York, NY: Springer
Abecasis GR, Cherny SS, Cookson WO, Cardon LR. 2002. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97-101
Keith J, McRae A, Duffy D, Mengersen K, Visscher P. 2008. Calculation of IBD probabilities with dense SNP or sequence data. Genet Epidemiol 32:513-519.
Abney M. 2009. A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients. Bioinformatics 25:1561-1563.
Baum LE. 1972. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3:1-8.
Yu Z, Schaid DJ. 2007. Methods to impute missing genotypes for population data. Hum Genet 122:495-504.
Browning SR, Browning BL. 2010. High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86:526-539.
Albrechtsen A, Sand Korneliussen T, Moltke I, van Overseem Hansen T, Nielsen FC, Nielsen R. 2009. Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genet Epidemiol 33:266-274.
Almasy L, Blangero J. 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198-1211.
McPeek MS, Sun L 2000. Statistical tests for detection of misspecified relationships by use of genome-screen data. Am J Hum Genet 66:1076-1094.
Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG. 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2:e41.
Dyer TD, Blangero J, Williams JT, Göring HH, Mahaney MC. 2001. The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol 21:S236-S243.
Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. 2008. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395-1398.
Karigl G. 1981. A recursive algorithm for the calculation of identity coefficients. Ann Hum Genet 45:299-305.
Liu F, Kirichenko A, Axenovich TI, van Duijn CM, Aulchenko YS. 2008. An approach for cutting large and complex pedigrees for linkage analysis. Eur J Hum Genet 16:854-860.
International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851-861.
Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, Hill WG, Hottenga JJ, Willemsen G, Boomsma DI, Liu YZ, Deng HW, Montgomery GW, Martin NG. 2007. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet 81:1104-1110.
Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D, Breslow JL, Friedman JM, Pe'er I. 2009. Whole population, genome-wide mapping of hidden relatedness. Genome Res 19:318-326.
2009; 25
1997; 61
2007; 449
2002; 30
2000; 66
2007; 122
2008; 16
2009
1974
2008; 32
1994
2003; 18
2006; 2
1996; 58
2007; 31
1998; 62
2001; 69
1981; 45
1972; 3
2001; 21
2009; 33
2010; 86
2004; 75
2010; 42
2009b; 33
1987; 84
2008; 319
2011; 88
2011; 21
2007; 81
2002; 70
2009a; 68
2008; 179
2008; 178
2009; 19
2008; 40
2005; 77
1992; 4
Falchi (10.1002/gepi.20606-BIB19|cit19) 2004; 75
Jacquard (10.1002/gepi.20606-BIB27|cit27) 1974
Kruglyak (10.1002/gepi.20606-BIB32|cit32) 1996; 58
Huff (10.1002/gepi.20606-BIB25|cit25) 2011; 21
Bellenguez (10.1002/gepi.20606-BIB10|cit10) 2009a; 68
Heath (10.1002/gepi.20606-BIB23|cit23) 1997; 61
Lander (10.1002/gepi.20606-BIB34|cit34) 1987; 84
Browning (10.1002/gepi.20606-BIB13|cit13) 2011; 88
Kang (10.1002/gepi.20606-BIB28|cit28) 2010; 42
Abecasis (10.1002/gepi.20606-BIB1|cit1) 2002; 30
Browning (10.1002/gepi.20606-BIB14|cit14) 2008; 178
Visscher (10.1002/gepi.20606-BIB44|cit44) 2006; 2
Coop (10.1002/gepi.20606-BIB17|cit17) 2008; 319
10.1002/gepi.20606-BIB12|cit12
Kong (10.1002/gepi.20606-BIB31|cit31) 2008; 40
International HapMap Consortium (10.1002/gepi.20606-BIB26|cit26) 2007; 449
Purcell (10.1002/gepi.20606-BIB40|cit40) 2007; 81
Kurbasic (10.1002/gepi.20606-BIB33|cit33) 2008; 32
Thompson (10.1002/gepi.20606-BIB43|cit43) 1994
Abney (10.1002/gepi.20606-BIB4|cit4) 2009; 25
Abney (10.1002/gepi.20606-BIB5|cit5) 2000; 66
Chapman (10.1002/gepi.20606-BIB16|cit16) 2001; 21
Newman (10.1002/gepi.20606-BIB38|cit38) 2001; 69
Lange (10.1002/gepi.20606-BIB35|cit35) 1992; 4
Almasy (10.1002/gepi.20606-BIB8|cit8) 1998; 62
Karigl (10.1002/gepi.20606-BIB29|cit29) 1981; 45
Albrechtsen (10.1002/gepi.20606-BIB7|cit7) 2009; 33
Baum (10.1002/gepi.20606-BIB9|cit9) 1972; 3
McPeek (10.1002/gepi.20606-BIB37|cit37) 2000; 66
Visscher (10.1002/gepi.20606-BIB45|cit45) 2007; 81
Abney (10.1002/gepi.20606-BIB3|cit3) 2008; 179
Gusev (10.1002/gepi.20606-BIB21|cit21) 2009; 19
Ober (10.1002/gepi.20606-BIB39|cit39) 2001; 69
Hastie (10.1002/gepi.20606-BIB22|cit22) 2009
Sung (10.1002/gepi.20606-BIB42|cit42) 2007; 31
Yu (10.1002/gepi.20606-BIB46|cit46) 2007; 122
Abecasis (10.1002/gepi.20606-BIB2|cit2) 2005; 77
Dyer (10.1002/gepi.20606-BIB18|cit18) 2001; 21
Abney (10.1002/gepi.20606-BIB6|cit6) 2002; 70
George (10.1002/gepi.20606-BIB20|cit20) 2003; 18
Bellenguez (10.1002/gepi.20606-BIB11|cit11) 2009b; 33
Browning (10.1002/gepi.20606-BIB15|cit15) 2010; 86
Keith (10.1002/gepi.20606-BIB30|cit30) 2008; 32
Sobel (10.1002/gepi.20606-BIB41|cit41) 1996; 58
Hostetler (10.1002/gepi.20606-BIB24|cit24) 1974
Liu (10.1002/gepi.20606-BIB36|cit36) 2008; 16
11793675 - Genet Epidemiol. 2001;21 Suppl 1:S236-43
8651310 - Am J Hum Genet. 1996 Jun;58(6):1323-37
18239090 - Science. 2008 Mar 7;319(5868):1395-8
19359355 - Bioinformatics. 2009 Jun 15;25(12):1561-3
9545414 - Am J Hum Genet. 1998 May;62(5):1198-211
17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
19165921 - Nat Genet. 2008 Sep;40(9):1068-75
18839415 - Genet Epidemiol. 2009 Apr;33(3):207-16
20303063 - Am J Hum Genet. 2010 Apr 9;86(4):526-39
18301450 - Eur J Hum Genet. 2008 Jul;16(7):854-60
11731797 - Nat Genet. 2002 Jan;30(1):97-101
18481794 - Genet Epidemiol. 2008 Nov;32(7):647-57
17943122 - Nature. 2007 Oct 18;449(7164):851-61
18357613 - Genet Epidemiol. 2008 Sep;32(6):513-9
11880950 - Am J Hum Genet. 2002 Apr;70(4):920-34
18971310 - Genome Res. 2009 Feb;19(2):318-26
11858132 - Genet Epidemiol. 2001;21 Suppl 1:S222-3
9326339 - Am J Hum Genet. 1997 Sep;61(3):748-60
18430938 - Genetics. 2008 Apr;178(4):2123-32
11590547 - Am J Hum Genet. 2001 Nov;69(5):1068-79
7305283 - Ann Hum Genet. 1981 Jul;45(Pt 3):299-305
17123301 - Genet Epidemiol. 2007 Feb;31(2):103-14
19025785 - Genet Epidemiol. 2009 Apr;33(3):266-74
19365135 - Hum Hered. 2009;68(2):87-97
3470801 - Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363-7
16252236 - Am J Hum Genet. 2005 Nov;77(5):754-67
15478097 - Am J Hum Genet. 2004 Dec;75(6):1015-31
10712219 - Am J Hum Genet. 2000 Mar;66(3):1076-94
21310274 - Am J Hum Genet. 2011 Feb 11;88(2):173-82
11590549 - Am J Hum Genet. 2001 Nov;69(5):1146-8
18622032 - Genetics. 2008 Jul;179(3):1577-90
1492748 - Ann Hum Genet. 1992 Oct;56(Pt 4):339-46
16565746 - PLoS Genet. 2006 Mar;2(3):e41
8651312 - Am J Hum Genet. 1996 Jun;58(6):1347-63
17851696 - Hum Genet. 2007 Dec;122(5):495-504
20208533 - Nat Genet. 2010 Apr;42(4):348-54
21324875 - Genome Res. 2011 May;21(5):768-74
17924350 - Am J Hum Genet. 2007 Nov;81(5):1104-10
10677322 - Am J Hum Genet. 2000 Feb;66(2):629-50
References_xml – reference: Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG. 2006. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2:e41.
– reference: Hostetler JA. 1974. Hutterite Society. Baltimore: Johns Hopkins University Press.
– reference: Abney M. 2008. Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees. Genetics 179:1577-1590.
– reference: Jacquard A. 1974. The Genetic Structure of Populations. New York: Springer.
– reference: Falchi M, Forabosco P, Mocci E, Borlino CC, Picciau A, Virdis E, Persico I, Parracciani D, Angius A, Pirastu M. 2004. A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low-density lipoprotein cholesterol in two genetically differentiated isolates of sardinia. Am J Hum Genet 75:1015-1031.
– reference: George A, Thompson E. 2003. Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach. Stat Sci 18:515-535.
– reference: Heath SC. 1997. Markov chain monte carlo segregation and linkage analysis for oli- gogenic models. Am J Hum Genet 61:748-760.
– reference: Lander ES, Green P. 1987. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84:2363-2367.
– reference: Browning SR. 2008. Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes. Genetics 178:2123-2132.
– reference: Bellenguez C, Ober C, Bourgain C. 2009b. A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12. Genet Epidemiol 33:207-216.
– reference: McPeek MS, Sun L 2000. Statistical tests for detection of misspecified relationships by use of genome-screen data. Am J Hum Genet 66:1076-1094.
– reference: Browning SR, Browning BL. 2010. High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86:526-539.
– reference: Hastie T, Tibshirani R, Friedman JH. 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd edition. Springer series in statistics. New York, NY: Springer
– reference: Visscher PM, Macgregor S, Benyamin B, Zhu G, Gordon S, Medland S, Hill WG, Hottenga JJ, Willemsen G, Boomsma DI, Liu YZ, Deng HW, Montgomery GW, Martin NG. 2007. Genome partitioning of genetic variation for height from 11,214 sibling pairs. Am J Hum Genet 81:1104-1110.
– reference: Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC. 2007. Plink: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-575.
– reference: Huff CD, Witherspoon DJ, Simonson TS, Xing J, Watkins WS, Zhang Y, Tuohy TM, Neklason DW, Burt RW, Guthery SL, Woodward SR, Jorde LB. 2011. Maximum-likelihood estimation of recent shared ancestry (ersa). Genome Res 21:768-774.
– reference: Chapman NH, Wijsman EM. 2001. Introduction: linkage analyses in the hutterites. Genet Epidemiol 21:S222-S223.
– reference: Keith J, McRae A, Duffy D, Mengersen K, Visscher P. 2008. Calculation of IBD probabilities with dense SNP or sequence data. Genet Epidemiol 32:513-519.
– reference: International HapMap Consortium. 2007. A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851-861.
– reference: Karigl G. 1981. A recursive algorithm for the calculation of identity coefficients. Ann Hum Genet 45:299-305.
– reference: Sobel E, Lange K. 1996. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet 58:1323-1337.
– reference: Sung YJ, Thompson EA, Wijsman EM. 2007. Mcmc-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component. Genet Epidemiol 31:103-114.
– reference: Abney M, McPeek MS, Ober C. 2000. Estimation of variance components of quantitative traits in inbred populations. Am J Hum Genet 66:629-650.
– reference: Gusev A, Lowe JK, Stoffel M, Daly MJ, Altshuler D, Breslow JL, Friedman JM, Pe'er I. 2009. Whole population, genome-wide mapping of hidden relatedness. Genome Res 19:318-326.
– reference: Newman DL, Abney M, McPeek MS, Ober C, Cox NJ. 2001. The importance of genealogy in determining genetic associations with complex traits. Am J Hum Genet 69:1146-1148.
– reference: Abney M. 2009. A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients. Bioinformatics 25:1561-1563.
– reference: Yu Z, Schaid DJ. 2007. Methods to impute missing genotypes for population data. Hum Genet 122:495-504.
– reference: Abney M, Ober C, McPeek MS. 2002. Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the hutterites. Am J Hum Genet 70:920-934.
– reference: Almasy L, Blangero J. 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198-1211.
– reference: Bellenguez C, Ober C, Bourgain C 2009a. Linkage analysis with dense SNP maps in isolated populations. Hum Hered 68:87-97.
– reference: Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E. 2010. Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348-354.
– reference: Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES. 1996. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347-1363.
– reference: Abecasis GR, Wigginton JE 2005. Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers. Am J Hum Genet 77:754-767.
– reference: Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, Olason PI, Ingason A, Steinberg S, Rafna T, Sulem P, Mouy M, Jonsson F, Thorsteinsdottir U, Gudbjartsson DF, Stefansson H, Stefansson K. 2008. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet 40:1068-1075.
– reference: Lange K, Sinsheimer JS. 1992. Calculation of genetic identity coefficients. Ann Hum Genet 4:339-346.
– reference: Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. 2008. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395-1398.
– reference: Ober C, Abney M, McPeek MS. 2001. The genetic dissection of complex traits in a founder population. Am J Hum Genet 69:1068-1079.
– reference: Dyer TD, Blangero J, Williams JT, Göring HH, Mahaney MC. 2001. The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol 21:S236-S243.
– reference: Baum LE. 1972. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities 3:1-8.
– reference: Browning BL, Browning SR. 2011. A fast, powerful method for detecting identity by descent. Am J Hum Genet 88:173-182.
– reference: Abecasis GR, Cherny SS, Cookson WO, Cardon LR. 2002. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 30:97-101
– reference: Albrechtsen A, Sand Korneliussen T, Moltke I, van Overseem Hansen T, Nielsen FC, Nielsen R. 2009. Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium. Genet Epidemiol 33:266-274.
– reference: Kurbasic A, Hossjer O. 2008. A general method for linkage disequilibrium correction for multipoint linkage and association. Genet Epidemiol 32:647-657.
– reference: Liu F, Kirichenko A, Axenovich TI, van Duijn CM, Aulchenko YS. 2008. An approach for cutting large and complex pedigrees for linkage analysis. Eur J Hum Genet 16:854-860.
– volume: 66
  start-page: 1076
  year: 2000
  end-page: 1094
  article-title: Statistical tests for detection of misspecified relationships by use of genome‐screen data
  publication-title: Am J Hum Genet
– volume: 42
  start-page: 348
  year: 2010
  end-page: 354
  article-title: Variance component model to account for sample structure in genome‐wide association studies
  publication-title: Nat Genet
– start-page: 498
  year: 1994
  end-page: 506
– year: 2009
– volume: 31
  start-page: 103
  year: 2007
  end-page: 114
  article-title: Mcmc‐based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two‐locus model and a polygenic component
  publication-title: Genet Epidemiol
– volume: 3
  start-page: 1
  year: 1972
  end-page: 8
  article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
  publication-title: Inequalities
– volume: 40
  start-page: 1068
  year: 2008
  end-page: 1075
  article-title: Detection of sharing by descent, long‐range phasing and haplotype imputation
  publication-title: Nat Genet
– volume: 122
  start-page: 495
  year: 2007
  end-page: 504
  article-title: Methods to impute missing genotypes for population data
  publication-title: Hum Genet
– volume: 75
  start-page: 1015
  year: 2004
  end-page: 1031
  article-title: A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low‐density lipoprotein cholesterol in two genetically differentiated isolates of sardinia
  publication-title: Am J Hum Genet
– volume: 319
  start-page: 1395
  year: 2008
  end-page: 1398
  article-title: High‐resolution mapping of crossovers reveals extensive variation in fine‐scale recombination patterns among humans
  publication-title: Science
– volume: 58
  start-page: 1323
  year: 1996
  end-page: 1337
  article-title: Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker‐sharing statistics
  publication-title: Am J Hum Genet
– volume: 32
  start-page: 513
  year: 2008
  end-page: 519
  article-title: Calculation of IBD probabilities with dense SNP or sequence data
  publication-title: Genet Epidemiol
– volume: 4
  start-page: 339
  year: 1992
  end-page: 346
  article-title: Calculation of genetic identity coefficients
  publication-title: Ann Hum Genet
– volume: 33
  start-page: 266
  year: 2009
  end-page: 274
  article-title: Relatedness mapping and tracts of relatedness for genome‐wide data in the presence of linkage disequilibrium
  publication-title: Genet Epidemiol
– volume: 81
  start-page: 1104
  year: 2007
  end-page: 1110
  article-title: Genome partitioning of genetic variation for height from 11,214 sibling pairs
  publication-title: Am J Hum Genet
– volume: 33
  start-page: 207
  year: 2009b
  end-page: 216
  article-title: A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12
  publication-title: Genet Epidemiol
– volume: 30
  start-page: 97
  year: 2002
  end-page: 101
  article-title: Merlin–rapid analysis of dense genetic maps using sparse gene flow trees
  publication-title: Nat Genet
– volume: 179
  start-page: 1577
  year: 2008
  end-page: 1590
  article-title: Identity‐by‐descent estimation and mapping of qualitative traits in large, complex pedigrees
  publication-title: Genetics
– volume: 449
  start-page: 851
  year: 2007
  end-page: 861
  article-title: A second generation human haplotype map of over 3.1 million SNPs
  publication-title: Nature
– volume: 61
  start-page: 748
  year: 1997
  end-page: 760
  article-title: Markov chain monte carlo segregation and linkage analysis for oli‐ gogenic models
  publication-title: Am J Hum Genet
– volume: 62
  start-page: 1198
  year: 1998
  end-page: 1211
  article-title: Multipoint quantitative‐trait linkage analysis in general pedigrees
  publication-title: Am J Hum Genet
– volume: 45
  start-page: 299
  year: 1981
  end-page: 305
  article-title: A recursive algorithm for the calculation of identity coefficients
  publication-title: Ann Hum Genet
– volume: 81
  start-page: 559
  year: 2007
  end-page: 575
  article-title: Plink: a tool set for whole‐genome association and population‐based linkage analyses
  publication-title: Am J Hum Genet
– volume: 2
  start-page: e41
  year: 2006
  article-title: Assumption‐free estimation of heritability from genome‐wide identity‐by‐descent sharing between full siblings
  publication-title: PLoS Genet
– volume: 25
  start-page: 1561
  year: 2009
  end-page: 1563
  article-title: A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients
  publication-title: Bioinformatics
– volume: 86
  start-page: 526
  year: 2010
  end-page: 539
  article-title: High‐resolution detection of identity by descent in unrelated individuals
  publication-title: Am J Hum Genet
– volume: 32
  start-page: 647
  year: 2008
  end-page: 657
  article-title: A general method for linkage disequilibrium correction for multipoint linkage and association
  publication-title: Genet Epidemiol
– volume: 68
  start-page: 87
  year: 2009a
  end-page: 97
  article-title: Linkage analysis with dense SNP maps in isolated populations
  publication-title: Hum Hered
– volume: 178
  start-page: 2123
  year: 2008
  end-page: 2132
  article-title: Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes
  publication-title: Genetics
– volume: 66
  start-page: 629
  year: 2000
  end-page: 650
  article-title: Estimation of variance components of quantitative traits in inbred populations
  publication-title: Am J Hum Genet
– volume: 58
  start-page: 1347
  year: 1996
  end-page: 1363
  article-title: Parametric and nonparametric linkage analysis: a unified multipoint approach
  publication-title: Am J Hum Genet
– volume: 21
  start-page: S236
  year: 2001
  end-page: S243
  article-title: The effect of pedigree complexity on quantitative trait linkage analysis
  publication-title: Genet Epidemiol
– volume: 88
  start-page: 173
  year: 2011
  end-page: 182
  article-title: A fast, powerful method for detecting identity by descent
  publication-title: Am J Hum Genet
– volume: 19
  start-page: 318
  year: 2009
  end-page: 326
  article-title: Whole population, genome‐wide mapping of hidden relatedness
  publication-title: Genome Res
– volume: 77
  start-page: 754
  year: 2005
  end-page: 767
  article-title: Handling marker‐marker linkage disequilibrium: pedigree analysis with clustered markers
  publication-title: Am J Hum Genet
– volume: 84
  start-page: 2363
  year: 1987
  end-page: 2367
  article-title: Construction of multilocus genetic linkage maps in humans
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 854
  year: 2008
  end-page: 860
  article-title: An approach for cutting large and complex pedigrees for linkage analysis
  publication-title: Eur J Hum Genet
– volume: 70
  start-page: 920
  year: 2002
  end-page: 934
  article-title: Quantitative‐trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum‐insulin level in the hutterites
  publication-title: Am J Hum Genet
– year: 1974
– volume: 18
  start-page: 515
  year: 2003
  end-page: 535
  article-title: Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach
  publication-title: Stat Sci
– volume: 69
  start-page: 1068
  year: 2001
  end-page: 1079
  article-title: The genetic dissection of complex traits in a founder population
  publication-title: Am J Hum Genet
– volume: 21
  start-page: S222
  year: 2001
  end-page: S223
  article-title: Introduction: linkage analyses in the hutterites
  publication-title: Genet Epidemiol
– volume: 69
  start-page: 1146
  year: 2001
  end-page: 1148
  article-title: The importance of genealogy in determining genetic associations with complex traits
  publication-title: Am J Hum Genet
– volume: 21
  start-page: 768
  year: 2011
  end-page: 774
  article-title: Maximum‐likelihood estimation of recent shared ancestry (ersa)
  publication-title: Genome Res
– volume: 319
  start-page: 1395
  year: 2008
  ident: 10.1002/gepi.20606-BIB17|cit17
  article-title: High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans
  publication-title: Science
  doi: 10.1126/science.1151851
– volume: 81
  start-page: 559
  year: 2007
  ident: 10.1002/gepi.20606-BIB40|cit40
  article-title: Plink: a tool set for whole-genome association and population-based linkage analyses
  publication-title: Am J Hum Genet
  doi: 10.1086/519795
– volume: 32
  start-page: 647
  year: 2008
  ident: 10.1002/gepi.20606-BIB33|cit33
  article-title: A general method for linkage disequilibrium correction for multipoint linkage and association
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20339
– volume: 33
  start-page: 207
  year: 2009b
  ident: 10.1002/gepi.20606-BIB11|cit11
  article-title: A multiple splitting approach to linkage analysis in large pedigrees identifies a linkage to asthma on chromosome 12
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20371
– volume: 21
  start-page: 768
  year: 2011
  ident: 10.1002/gepi.20606-BIB25|cit25
  article-title: Maximum-likelihood estimation of recent shared ancestry (ersa)
  publication-title: Genome Res
  doi: 10.1101/gr.115972.110
– volume-title: Hutterite Society
  year: 1974
  ident: 10.1002/gepi.20606-BIB24|cit24
– volume: 122
  start-page: 495
  year: 2007
  ident: 10.1002/gepi.20606-BIB46|cit46
  article-title: Methods to impute missing genotypes for population data
  publication-title: Hum Genet
  doi: 10.1007/s00439-007-0427-y
– volume: 33
  start-page: 266
  year: 2009
  ident: 10.1002/gepi.20606-BIB7|cit7
  article-title: Relatedness mapping and tracts of relatedness for genome-wide data in the presence of linkage disequilibrium
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20378
– volume: 18
  start-page: 515
  year: 2003
  ident: 10.1002/gepi.20606-BIB20|cit20
  article-title: Discovering disease genes: multipoint linkage analyses via a new markov chain monte carlo approach
  publication-title: Stat Sci
  doi: 10.1214/ss/1081443233
– volume: 30
  start-page: 97
  year: 2002
  ident: 10.1002/gepi.20606-BIB1|cit1
  article-title: Merlin-rapid analysis of dense genetic maps using sparse gene flow trees
  publication-title: Nat Genet
  doi: 10.1038/ng786
– volume: 16
  start-page: 854
  year: 2008
  ident: 10.1002/gepi.20606-BIB36|cit36
  article-title: An approach for cutting large and complex pedigrees for linkage analysis
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2008.24
– ident: 10.1002/gepi.20606-BIB12|cit12
– volume: 3
  start-page: 1
  year: 1972
  ident: 10.1002/gepi.20606-BIB9|cit9
  article-title: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes
  publication-title: Inequalities
– volume: 21
  start-page: S222
  year: 2001
  ident: 10.1002/gepi.20606-BIB16|cit16
  article-title: Introduction: linkage analyses in the hutterites
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.2001.21.s1.s222
– volume: 4
  start-page: 339
  year: 1992
  ident: 10.1002/gepi.20606-BIB35|cit35
  article-title: Calculation of genetic identity coefficients
  publication-title: Ann Hum Genet
  doi: 10.1111/j.1469-1809.1992.tb01162.x
– volume: 21
  start-page: S236
  year: 2001
  ident: 10.1002/gepi.20606-BIB18|cit18
  article-title: The effect of pedigree complexity on quantitative trait linkage analysis
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.2001.21.s1.s236
– volume: 75
  start-page: 1015
  year: 2004
  ident: 10.1002/gepi.20606-BIB19|cit19
  article-title: A genomewide search using an original pairwise sampling approach for large genealogies identifies a new locus for total and low-density lipoprotein cholesterol in two genetically differentiated isolates of sardinia
  publication-title: Am J Hum Genet
  doi: 10.1086/426155
– volume: 45
  start-page: 299
  year: 1981
  ident: 10.1002/gepi.20606-BIB29|cit29
  article-title: A recursive algorithm for the calculation of identity coefficients
  publication-title: Ann Hum Genet
  doi: 10.1111/j.1469-1809.1981.tb00341.x
– volume: 31
  start-page: 103
  year: 2007
  ident: 10.1002/gepi.20606-BIB42|cit42
  article-title: Mcmc-based linkage analysis for complex traits on general pedigrees: multipoint analysis with a two-locus model and a polygenic component
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20194
– volume: 40
  start-page: 1068
  year: 2008
  ident: 10.1002/gepi.20606-BIB31|cit31
  article-title: Detection of sharing by descent, long-range phasing and haplotype imputation
  publication-title: Nat Genet
  doi: 10.1038/ng.216
– volume: 84
  start-page: 2363
  year: 1987
  ident: 10.1002/gepi.20606-BIB34|cit34
  article-title: Construction of multilocus genetic linkage maps in humans
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.84.8.2363
– volume: 25
  start-page: 1561
  year: 2009
  ident: 10.1002/gepi.20606-BIB4|cit4
  article-title: A graphical algorithm for fast computation of identity coefficients and generalized kinship coefficients
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp185
– volume: 69
  start-page: 1068
  year: 2001
  ident: 10.1002/gepi.20606-BIB39|cit39
  article-title: The genetic dissection of complex traits in a founder population
  publication-title: Am J Hum Genet
  doi: 10.1086/324025
– volume: 86
  start-page: 526
  year: 2010
  ident: 10.1002/gepi.20606-BIB15|cit15
  article-title: High-resolution detection of identity by descent in unrelated individuals
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2010.02.021
– volume: 77
  start-page: 754
  year: 2005
  ident: 10.1002/gepi.20606-BIB2|cit2
  article-title: Handling marker-marker linkage disequilibrium: pedigree analysis with clustered markers
  publication-title: Am J Hum Genet
  doi: 10.1086/497345
– volume: 70
  start-page: 920
  year: 2002
  ident: 10.1002/gepi.20606-BIB6|cit6
  article-title: Quantitative-trait homozygosity and association mapping and empirical genomewide significance in large, complex pedigrees: fasting serum-insulin level in the hutterites
  publication-title: Am J Hum Genet
  doi: 10.1086/339705
– volume: 58
  start-page: 1347
  year: 1996
  ident: 10.1002/gepi.20606-BIB32|cit32
  article-title: Parametric and nonparametric linkage analysis: a unified multipoint approach
  publication-title: Am J Hum Genet
– volume: 61
  start-page: 748
  year: 1997
  ident: 10.1002/gepi.20606-BIB23|cit23
  article-title: Markov chain monte carlo segregation and linkage analysis for oli- gogenic models
  publication-title: Am J Hum Genet
  doi: 10.1086/515506
– volume: 32
  start-page: 513
  year: 2008
  ident: 10.1002/gepi.20606-BIB30|cit30
  article-title: Calculation of IBD probabilities with dense SNP or sequence data
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.20324
– volume: 2
  start-page: e41
  year: 2006
  ident: 10.1002/gepi.20606-BIB44|cit44
  article-title: Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0020041
– volume: 68
  start-page: 87
  year: 2009a
  ident: 10.1002/gepi.20606-BIB10|cit10
  article-title: Linkage analysis with dense SNP maps in isolated populations
  publication-title: Hum Hered
  doi: 10.1159/000212501
– volume: 62
  start-page: 1198
  year: 1998
  ident: 10.1002/gepi.20606-BIB8|cit8
  article-title: Multipoint quantitative-trait linkage analysis in general pedigrees
  publication-title: Am J Hum Genet
  doi: 10.1086/301844
– volume: 88
  start-page: 173
  year: 2011
  ident: 10.1002/gepi.20606-BIB13|cit13
  article-title: A fast, powerful method for detecting identity by descent
  publication-title: Am J Hum Genet
  doi: 10.1016/j.ajhg.2011.01.010
– volume: 81
  start-page: 1104
  year: 2007
  ident: 10.1002/gepi.20606-BIB45|cit45
  article-title: Genome partitioning of genetic variation for height from 11,214 sibling pairs
  publication-title: Am J Hum Genet
  doi: 10.1086/522934
– volume: 449
  start-page: 851
  year: 2007
  ident: 10.1002/gepi.20606-BIB26|cit26
  article-title: A second generation human haplotype map of over 3.1 million SNPs
  publication-title: Nature
  doi: 10.1038/nature06258
– volume: 66
  start-page: 1076
  year: 2000
  ident: 10.1002/gepi.20606-BIB37|cit37
  article-title: Statistical tests for detection of misspecified relationships by use of genome-screen data
  publication-title: Am J Hum Genet
  doi: 10.1086/302800
– volume: 179
  start-page: 1577
  year: 2008
  ident: 10.1002/gepi.20606-BIB3|cit3
  article-title: Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees
  publication-title: Genetics
  doi: 10.1534/genetics.108.089912
– volume: 69
  start-page: 1146
  year: 2001
  ident: 10.1002/gepi.20606-BIB38|cit38
  article-title: The importance of genealogy in determining genetic associations with complex traits
  publication-title: Am J Hum Genet
  doi: 10.1086/323659
– volume-title: The elements of statistical learning: data mining, inference, and prediction
  year: 2009
  ident: 10.1002/gepi.20606-BIB22|cit22
  doi: 10.1007/978-0-387-84858-7
– start-page: 498
  volume-title: Proceedings of the 1994 Interface Conference
  year: 1994
  ident: 10.1002/gepi.20606-BIB43|cit43
– volume: 178
  start-page: 2123
  year: 2008
  ident: 10.1002/gepi.20606-BIB14|cit14
  article-title: Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes
  publication-title: Genetics
  doi: 10.1534/genetics.107.084624
– volume-title: The Genetic Structure of Populations
  year: 1974
  ident: 10.1002/gepi.20606-BIB27|cit27
  doi: 10.1007/978-3-642-88415-3
– volume: 42
  start-page: 348
  year: 2010
  ident: 10.1002/gepi.20606-BIB28|cit28
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.548
– volume: 58
  start-page: 1323
  year: 1996
  ident: 10.1002/gepi.20606-BIB41|cit41
  article-title: Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics
  publication-title: Am J Hum Genet
– volume: 66
  start-page: 629
  year: 2000
  ident: 10.1002/gepi.20606-BIB5|cit5
  article-title: Estimation of variance components of quantitative traits in inbred populations
  publication-title: Am J Hum Genet
  doi: 10.1086/302759
– volume: 19
  start-page: 318
  year: 2009
  ident: 10.1002/gepi.20606-BIB21|cit21
  article-title: Whole population, genome-wide mapping of hidden relatedness
  publication-title: Genome Res
  doi: 10.1101/gr.081398.108
– reference: 11731797 - Nat Genet. 2002 Jan;30(1):97-101
– reference: 17123301 - Genet Epidemiol. 2007 Feb;31(2):103-14
– reference: 18839415 - Genet Epidemiol. 2009 Apr;33(3):207-16
– reference: 19359355 - Bioinformatics. 2009 Jun 15;25(12):1561-3
– reference: 20208533 - Nat Genet. 2010 Apr;42(4):348-54
– reference: 19165921 - Nat Genet. 2008 Sep;40(9):1068-75
– reference: 8651312 - Am J Hum Genet. 1996 Jun;58(6):1347-63
– reference: 16565746 - PLoS Genet. 2006 Mar;2(3):e41
– reference: 17924350 - Am J Hum Genet. 2007 Nov;81(5):1104-10
– reference: 18357613 - Genet Epidemiol. 2008 Sep;32(6):513-9
– reference: 11880950 - Am J Hum Genet. 2002 Apr;70(4):920-34
– reference: 16252236 - Am J Hum Genet. 2005 Nov;77(5):754-67
– reference: 11590549 - Am J Hum Genet. 2001 Nov;69(5):1146-8
– reference: 10712219 - Am J Hum Genet. 2000 Mar;66(3):1076-94
– reference: 7305283 - Ann Hum Genet. 1981 Jul;45(Pt 3):299-305
– reference: 11793675 - Genet Epidemiol. 2001;21 Suppl 1:S236-43
– reference: 8651310 - Am J Hum Genet. 1996 Jun;58(6):1323-37
– reference: 18239090 - Science. 2008 Mar 7;319(5868):1395-8
– reference: 18301450 - Eur J Hum Genet. 2008 Jul;16(7):854-60
– reference: 15478097 - Am J Hum Genet. 2004 Dec;75(6):1015-31
– reference: 18430938 - Genetics. 2008 Apr;178(4):2123-32
– reference: 19365135 - Hum Hered. 2009;68(2):87-97
– reference: 11858132 - Genet Epidemiol. 2001;21 Suppl 1:S222-3
– reference: 17851696 - Hum Genet. 2007 Dec;122(5):495-504
– reference: 21324875 - Genome Res. 2011 May;21(5):768-74
– reference: 9326339 - Am J Hum Genet. 1997 Sep;61(3):748-60
– reference: 21310274 - Am J Hum Genet. 2011 Feb 11;88(2):173-82
– reference: 3470801 - Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363-7
– reference: 9545414 - Am J Hum Genet. 1998 May;62(5):1198-211
– reference: 1492748 - Ann Hum Genet. 1992 Oct;56(Pt 4):339-46
– reference: 20303063 - Am J Hum Genet. 2010 Apr 9;86(4):526-39
– reference: 17943122 - Nature. 2007 Oct 18;449(7164):851-61
– reference: 18622032 - Genetics. 2008 Jul;179(3):1577-90
– reference: 10677322 - Am J Hum Genet. 2000 Feb;66(2):629-50
– reference: 19025785 - Genet Epidemiol. 2009 Apr;33(3):266-74
– reference: 11590547 - Am J Hum Genet. 2001 Nov;69(5):1068-79
– reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75
– reference: 18481794 - Genet Epidemiol. 2008 Nov;32(7):647-57
– reference: 18971310 - Genome Res. 2009 Feb;19(2):318-26
SSID ssj0011495
Score 2.249105
Snippet We present a novel method, IBDLD, for estimating the probability of identity by descent (IBD) for a pair of related individuals at a locus, given dense...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 557
SubjectTerms Algorithms
Computer programs
Computer Simulation
Data processing
Female
Gene mapping
Genome-Wide Association Study
Genotype
Genotypes
Genotyping
Hidden Markov Models
Humans
IBD
Linkage Disequilibrium
Male
Models, Genetic
Molecular Epidemiology - methods
Oligonucleotide Array Sequence Analysis - methods
Pedigree
pedigrees
Probability
Pruning
Quantitative Trait Loci
relatedness
Reproducibility of Results
Single-nucleotide polymorphism
SNP
software
Title Identity by descent estimation with dense genome-wide genotype data
URI https://api.istex.fr/ark:/67375/WNG-HC6KKHRB-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgepi.20606
https://www.ncbi.nlm.nih.gov/pubmed/21769932
https://www.proquest.com/docview/1017969132
https://www.proquest.com/docview/884846305
https://pubmed.ncbi.nlm.nih.gov/PMC3587128
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1RSxwxEMcHUYSCaGtbXa0lpUWosLqb3c3uQV-qnF4rSBFFX0pINjk91FW8O-z1qR-hn7GfpDPJ3eq1Wqhvt3ezLMlOkv_MTX4BeMejzCRC2NBEOg9xCbBhIylNqCwul0IrFMGuQHZPtA7Tz8fZ8QR8GO2F8XyIOuFGI8PN1zTAle5u3EJDT-xVB-M74XjbVKxFimi_ZkfFJP09g5NqhhpZzSblG7e3jq1GU9Sx3-6Tmn9XTN5Vsm4p2p6Dr6NG-AqUs_V-T6-X3__gOz62lU9hdqhR2UfvVM9gwlbzMO1PrRzMw4xP9TG_g-k5NIebfQdMD5jxeChG8A6_K5JRqhe_r7qWERH2wv768fOmY_wVpYAZlam-gMPt5sFWKxyezhCWaSMSoSbwu03aOhaqSEoUclGqOcf4gyjtVmnFtYpMO44VF4VOYlOYqF3qOG0b1ERJ8hImq8vKLgJTylIYVeQ4uaS8FApVWa6VzQqhS6FNAO9Hb0mWQ3Q5naBxLj10mUvqJum6KYC3te2VB3bca7XqXnZtoq7PqMQtz-TR3o5sbYnd3db-pjwK4M3IGyQOPPo3RVX2st-Vbi4TDYzmA2AP2BRFivoOp9QAFrwD1Q_EUFCgNsSb8zHXqg2I-z3-S9U5dfzvJMMolxcBrDnP-Ucz5U7zyyf3ael_jJfhiU-dUyndK5jsXfftCmqvnn7txthvV54rPA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1tb9MwEMdPaBMCCfEwHhYejUBITMqWOImTvoSpW0ZHhaZN2zvLjl1WbcumtdVWXvER-Ix8Eu7sLKMwkOBdHy6q4pzt_13PvwN4zaPMJELY0EQ6D3ELsGEnqUyoLG6XQisUwa5Ati_KnfTDXrbX1ObQWRjPh2gTbjQz3HpNE5wS0iuX1NDP9mSIAZ4g4PY8tfR2EdVWS4-KSfx7CidVDXWylk7KVy6vndmP5mloz68Sm7_XTP6sZd1mtHbHd1wdOYYh1aAcLE_Gern68gvh8b_v8y7cbmQqe-f96h5cs_UCXPeNK6cLcMtn-5g_xHQfus153ynTU2Y8IYoRv8MfjGSU7cXP65FlBIU9st-_fjsbGv-OssCMKlUfwM5ad3u1DJsGDWGVdiIRamK_22SgY6GKpEItF6WacwxBCNRulVZcq8gM4lhxUegkNoWJBpWO04FBWZQkD2GuPq7tIjClLEVSRY7rS8oroVCY5VrZrBC6EtoE8PbiMcmqoZdTE41D6bnLXNIwSTdMAbxqbU88s-NKqzfuabcm6vSAqtzyTO7212W5Knq9cuu93A3g5YU7SJx79IeKqu3xZCTdciY6GNAHwP5gUxQpSjxcVQN45D2o_UGMBgXKQ7w4n_Gt1oDQ37Pf1MN9hwBPMgx0eRHAknOdv9ymXO9-2nCvHv-L8Qu4UW5_3JSbG_3eE7jpM-lUWfcU5sanE_sMpdhYP3cT7gflQy9X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3bbhMxEIZHVSsQEqJQTsvRCIQE0rZ79DoSN9AmTQmKqoqqvUGWvfZCVNhGbSKaXvUReEaehBk72RIoSHCXTWa1snds_zMZfwZ4lkS5STm3oYl0EeISYMNWWppQWVwuuVYogl2BbJ93d7O3-_n-Arya7YXxfIgm4UYjw83XNMCHplo7h4Z-tMMBxneceNtLGY8E-fTGTgOPikn7ewgnFQ218gZOmqyd3zu3HC1Rz55cpDV_L5n8Wcq6taizDB9mrfAlKAer45FeLU9_ATz-bzOvw7WpSGWvvVfdgAVbr8Alf2zlZAWu-lwf81uYbkJ7utt3wvSEGc-HYkTv8NsiGeV68fv62DJCwn6x38--fR0Yf0U5YEZ1qrdgt9N-v94Np8czhGXWinioifxu00rHXIm0RCUXZTpJMAAhTLtVWiVaRaaKY5VwodPYCBNVpY6zyqAoStPbsFgf1vYuMKUsxVGiwNklS0quUJYVWtlccF1ybQJ4MXtLspyyy-kIjc_SU5cTSd0kXTcF8LSxHXpix4VWz93LbkzU0QHVuBW53Otvyu467_W6O2_kXgBPZt4gceTR3ymqtofjY-kmM97CcD4A9gcbITIUeDinBnDHO1DzQIwFOYpDvLmYc63GgMDf87_Ug08OAJ7mGOYmIoCXznP-0ky52d7ecp_u_YvxY7i8vdGR77b6vftwxafRqazuASyOjsb2IeqwkX7khtsPWk0uDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identity+by+descent+estimation+with+dense+genome-wide+genotype+data&rft.jtitle=Genetic+epidemiology&rft.au=Han%2C+Lide&rft.au=Abney%2C+Mark&rft.date=2011-09-01&rft.issn=0741-0395&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fgepi.20606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_gepi_20606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0741-0395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0741-0395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0741-0395&client=summon