Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent

ABSTRACT The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilep...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 521; no. 18; pp. 4145 - 4162
Main Author Ding, Song-Lin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 15.12.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145–4162, 2013. © 2013 Wiley Periodicals, Inc. Based on conserved gene expression patterns, and other anatomical features, the author compares five subicular regions in human, monkey and rodent. Previously ignored rodent prosubiculum, and modified subiculum (Sub') and prosubiculum (ProS') in the three species were identified. These findings will make data comparison and analysis much easier across species.
AbstractList The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub.
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145-4162, 2013. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub.The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub.
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145–4162, 2013. © 2013 Wiley Periodicals, Inc.
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145-4162, 2013. [copy 2013 Wiley Periodicals, Inc. Based on conserved gene expression patterns, and other anatomical features, the author compares five subicular regions in human, monkey and rodent. Previously ignored rodent prosubiculum, and modified subiculum (Sub') and prosubiculum (ProS') in the three species were identified. These findings will make data comparison and analysis much easier across species.
ABSTRACT The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145–4162, 2013. © 2013 Wiley Periodicals, Inc. Based on conserved gene expression patterns, and other anatomical features, the author compares five subicular regions in human, monkey and rodent. Previously ignored rodent prosubiculum, and modified subiculum (Sub') and prosubiculum (ProS') in the three species were identified. These findings will make data comparison and analysis much easier across species.
Author Ding, Song-Lin
Author_xml – sequence: 1
  givenname: Song-Lin
  surname: Ding
  fullname: Ding, Song-Lin
  email: songd@alleninstitute.org
  organization: Allen Institute for Brain Science, Washington, 98103, Seattle
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23839777$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFvFCEYxYmpsdvqwX_AkHjRpNPCwDBw1E3d1TTrwRqPhJ35SKedgS0wtnvyX5d1282micYTfPB7LzzeETpw3gFCryk5pYSUZ42D05JxKp6hCSVKFEoKeoAm-Y4WSon6EB3FeE0IUYrJF-iwZJKpuq4n6NfUDysTTOp-AjbOJD-ssbc4XQFeBR_HZdeM_Tic4L3tKsD-5GPaG41r8cZxd4Q7h6_GwbgTPHh3A-stE3wLLr1Ez63pI7x6WI_R90_nl9N5cfF19nn64aJouCKiKCVpYSmYaHkOWhnLpSFqWZnSthQq0VgpbN1aK5SURlIDnAkFqqSqlKVl7Bi92_rmULcjxKSHLjbQ98aBH6OmXPCKElb_D8prSoTiPKNvn6DXfgwuB9lQFc8PLkmm3jxQ43KAVq9CN5iw1o8tZOD9Fmjyj8cAdodQojcN69yw_tNwZs-esE2Xcn3epWC6_l-Ku66H9d-t9XRx_qgotoouJrjfKUy40aJmdaV_LGb6G_34ZX45X-gZ-w3Pm8Zi
CitedBy_id crossref_primary_10_1002_cne_25002
crossref_primary_10_1002_cne_25243
crossref_primary_10_1111_ene_15531
crossref_primary_10_7554_eLife_57013
crossref_primary_10_1007_s11682_024_00952_0
crossref_primary_10_1007_s12264_020_00592_6
crossref_primary_10_1002_alz_14355
crossref_primary_10_1016_j_neuroimage_2020_116932
crossref_primary_10_1016_j_neures_2014_09_004
crossref_primary_10_1038_s41583_019_0125_5
crossref_primary_10_1523_JNEUROSCI_0760_24_2024
crossref_primary_10_1016_j_nic_2022_04_012
crossref_primary_10_1016_j_tics_2018_06_008
crossref_primary_10_3389_fnins_2023_929461
crossref_primary_10_1038_s41467_017_01908_3
crossref_primary_10_3390_biomedicines9101454
crossref_primary_10_1515_revneuro_2020_0091
crossref_primary_10_1016_j_cell_2020_04_007
crossref_primary_10_1016_j_neuroimage_2017_11_054
crossref_primary_10_1523_JNEUROSCI_0796_19_2019
crossref_primary_10_3389_fnins_2023_1194299
crossref_primary_10_1523_JNEUROSCI_2938_20_2021
crossref_primary_10_1111_jsr_14134
crossref_primary_10_3389_fnana_2023_1114757
crossref_primary_10_1111_ejn_14395
crossref_primary_10_1016_j_aanat_2015_10_005
crossref_primary_10_1016_j_celrep_2020_107648
crossref_primary_10_1093_cercor_bhv019
crossref_primary_10_1016_j_nicl_2023_103374
crossref_primary_10_1080_1028415X_2024_2371256
crossref_primary_10_7554_eLife_14592
crossref_primary_10_1002_hipo_22809
crossref_primary_10_1038_s41598_020_74243_1
crossref_primary_10_32345_USMYJ_1_136__2023_30_59
crossref_primary_10_1016_j_neuroscience_2018_10_029
crossref_primary_10_1002_cne_24773
crossref_primary_10_1038_nrn_2015_24
crossref_primary_10_1002_cne_25346
crossref_primary_10_3389_fnsys_2020_00022
crossref_primary_10_1159_000381142
crossref_primary_10_1016_j_jchemneu_2020_101745
crossref_primary_10_3390_ijms242417377
crossref_primary_10_1016_j_cortex_2015_09_002
crossref_primary_10_1523_JNEUROSCI_1814_17_2018
crossref_primary_10_1016_j_nicl_2015_07_005
crossref_primary_10_3233_JAD_220538
crossref_primary_10_1162_imag_a_00105
crossref_primary_10_1007_s00429_020_02096_5
crossref_primary_10_3389_fnagi_2018_00320
crossref_primary_10_1016_j_pneurobio_2021_102029
crossref_primary_10_1016_j_cortex_2016_10_018
crossref_primary_10_1007_s00429_021_02415_4
crossref_primary_10_1016_j_neuroimage_2017_06_008
crossref_primary_10_3389_fnana_2022_1070035
crossref_primary_10_1016_j_semcdb_2022_03_001
crossref_primary_10_1016_j_neuroscience_2016_09_027
crossref_primary_10_1093_braincomms_fcae296
crossref_primary_10_1016_j_neures_2019_02_001
crossref_primary_10_1212_WNL_0000000000009362
crossref_primary_10_1111_ejn_14696
crossref_primary_10_1002_hipo_23641
crossref_primary_10_1093_cercor_bhw010
crossref_primary_10_1007_s00441_018_2841_y
crossref_primary_10_1007_s00441_018_2848_4
crossref_primary_10_3389_fnana_2017_00084
crossref_primary_10_1016_j_celrep_2020_107747
crossref_primary_10_1002_hipo_23638
crossref_primary_10_1038_s41598_023_32903_y
crossref_primary_10_1038_s41598_021_81362_w
crossref_primary_10_1016_j_neuroimage_2022_119096
crossref_primary_10_1007_s00276_017_1843_x
crossref_primary_10_1016_j_nbd_2023_106007
crossref_primary_10_1038_s41593_018_0241_y
crossref_primary_10_1002_cne_25047
crossref_primary_10_1002_cne_25446
crossref_primary_10_1002_cne_23786
crossref_primary_10_1002_cne_25604
crossref_primary_10_1093_cercor_bhv079
crossref_primary_10_1523_JNEUROSCI_2363_17_2017
crossref_primary_10_1016_j_neuroimage_2020_117700
crossref_primary_10_1111_ejn_14341
crossref_primary_10_1093_jnen_73_2_136
crossref_primary_10_1016_j_neures_2018_08_002
crossref_primary_10_1016_j_neuroimage_2020_117542
crossref_primary_10_1016_j_neurobiolaging_2015_05_022
crossref_primary_10_3233_JAD_160289
crossref_primary_10_1002_cne_24080
crossref_primary_10_1016_j_cobeha_2017_06_001
crossref_primary_10_1016_j_bpsc_2022_06_011
crossref_primary_10_1002_hbm_23042
crossref_primary_10_3389_fnana_2020_605021
crossref_primary_10_1002_cne_24760
crossref_primary_10_1016_j_neuroimage_2019_116328
crossref_primary_10_3390_genes12050683
crossref_primary_10_1016_j_nicl_2018_101632
crossref_primary_10_3389_fncir_2020_605332
crossref_primary_10_3389_fnana_2017_00106
crossref_primary_10_1038_s41398_023_02429_y
crossref_primary_10_7554_eLife_67007
crossref_primary_10_1152_physrev_00042_2020
crossref_primary_10_1007_s00429_016_1204_2
crossref_primary_10_7554_eLife_13503
crossref_primary_10_1038_s41467_022_32742_x
crossref_primary_10_1016_j_neuron_2017_06_004
crossref_primary_10_1093_cercor_bhae174
crossref_primary_10_3389_fnsys_2017_00020
crossref_primary_10_1002_hipo_23172
crossref_primary_10_3389_fvets_2019_00358
crossref_primary_10_1111_nyas_15233
crossref_primary_10_3389_fnins_2021_772016
crossref_primary_10_1111_bpa_13074
crossref_primary_10_1016_j_cortex_2022_03_009
crossref_primary_10_1016_j_neuroscience_2022_06_019
crossref_primary_10_1007_s12640_017_9828_4
crossref_primary_10_1016_j_neuropsychologia_2023_108783
crossref_primary_10_3389_fnana_2019_00021
crossref_primary_10_3389_fnbeh_2022_1010321
crossref_primary_10_1016_j_cortex_2014_10_010
crossref_primary_10_1523_JNEUROSCI_2639_15_2015
crossref_primary_10_1016_j_cell_2017_07_013
crossref_primary_10_1016_j_cell_2018_03_031
crossref_primary_10_1111_ene_15918
crossref_primary_10_1093_ijnp_pyw039
crossref_primary_10_1038_s41593_020_00761_w
crossref_primary_10_1111_ejn_13208
crossref_primary_10_1007_s11055_020_00928_9
crossref_primary_10_1016_j_pneurobio_2019_101693
crossref_primary_10_1016_j_neuropsychologia_2023_108656
crossref_primary_10_1089_can_2017_0047
crossref_primary_10_1523_JNEUROSCI_3749_15_2016
crossref_primary_10_1007_s00429_019_02022_4
crossref_primary_10_1016_j_neubiorev_2021_05_032
crossref_primary_10_1016_j_nicl_2017_05_022
crossref_primary_10_1093_schbul_sbz076
crossref_primary_10_1093_cercor_bhab113
crossref_primary_10_1172_JCI157002
Cites_doi 10.1002/cne.902710202
10.1002/cne.10883
10.1016/j.pnpbp.2009.03.040
10.1126/science.6474172
10.1523/JNEUROSCI.11-04-01095.1991
10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K
10.1007/s00221-005-2361-3
10.1093/cercor/10.3.220
10.1016/j.tics.2010.01.001
10.1016/j.cub.2012.05.030
10.1002/cne.902360407
10.1002/cne.902560108
10.1002/cne.903230304
10.1002/hipo.20931
10.1002/cne.902200205
10.1111/j.1535-7511.2005.00049.x
10.1093/cercor/9.3.232
10.1016/0006-8993(75)90206-1
10.1002/cne.20093
10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
10.1046/j.1365-2826.2002.00861.x
10.1002/cne.902620208
10.1016/0306-4522(85)90002-8
10.1016/j.nbd.2010.09.011
10.1002/cne.903070308
10.1002/cne.903000412
10.1002/cne.901720409
10.1002/cne.1195
10.1016/0006-8993(90)90824-U
10.1002/cne.902850403
10.1002/cne.902860303
10.1002/cne.903630408
10.1007/BF00340489
10.1093/cercor/bhp213
10.1016/0006-8993(79)91069-2
10.1093/cercor/10.2.192
10.1016/0168-0102(89)90044-8
10.1002/cne.10516
10.1016/0006-8993(77)90880-0
10.1146/annurev.neuro.29.051605.112854
10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9
10.1016/j.neures.2005.06.002
10.1002/cne.901720104
10.1002/cne.903120404
10.1002/cne.901890406
10.1002/cne.901050305
10.1016/0168-0102(94)90065-5
10.1002/cne.902170109
10.1002/cne.903080411
10.1016/S0079-6123(08)61268-6
10.1016/j.bbr.2006.06.022
10.1002/cne.902160207
10.1002/hipo.450050604
10.1002/(SICI)1096-9861(19990503)407:2<183::AID-CNE3>3.0.CO;2-N
10.1016/S0079-6123(08)61241-8
10.1002/cne.20342
10.1002/cne.903240204
10.1016/0361-9230(94)90126-0
10.1007/BF00237497
10.1016/0006-8993(75)90204-8
10.1007/s00429-007-0150-4
10.1126/science.109926
10.1016/j.bbr.2006.05.035
10.1002/(SICI)1096-9861(20000403)419:2<205::AID-CNE5>3.0.CO;2-0
10.1002/cne.21564
10.1016/0006-8993(91)90620-B
10.1016/0166-2236(82)90201-6
10.1126/science.49928
10.1002/cne.22053
10.1016/0006-8993(75)90662-9
10.1016/0306-4522(82)90198-1
10.1002/hipo.450010410
10.1016/S0361-9230(01)00465-8
10.1126/science.410102
10.1016/0168-0102(95)00882-T
10.1016/0006-8993(83)90144-0
10.1002/cne.901950309
10.1146/annurev.neuro.27.070203.144130
10.1016/0306-4522(84)90166-0
10.1002/cne.10757
10.1002/cne.903320102
10.1016/0006-8993(79)90499-2
10.1016/0006-8993(83)90987-3
10.1152/jn.01306.2006
10.1002/cne.22336
10.1002/cne.903280109
10.1002/cne.902710203
10.1002/1096-9861(20000724)423:2<282::AID-CNE7>3.0.CO;2-Z
10.1016/0006-8993(90)90976-I
10.1016/0306-4522(93)90132-Y
10.1046/j.1460-9568.1999.00672.x
10.1002/cne.10472
10.1002/cne.903520407
10.1016/j.neubiorev.2011.09.005
10.1002/cne.903580411
10.1002/cne.21679
10.1016/0014-4886(77)90074-7
10.1046/j.0953-816x.2001.01662.x
10.1007/978-1-4615-6616-8_9
10.1016/j.cub.2012.05.029
10.1002/cne.903240310
10.1002/cne.20919
10.1093/cercor/bhq239
10.1002/hipo.450050504
10.1002/cne.21135
10.1002/1096-9861(20001002)425:4<510::AID-CNE4>3.0.CO;2-R
10.1002/cne.902430310
10.1002/hbm.20940
10.1016/0006-8993(94)90512-6
10.1111/j.1460-9568.2006.05113.x
10.1002/cne.903380209
10.1111/j.1460-9568.2005.04450.x
10.1016/j.neuroscience.2005.11.010
10.1007/s002210100778
10.1002/cne.903240203
10.1007/BF00301824
10.1016/j.bbr.2006.08.018
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/cne.23416
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 4162
ExternalDocumentID 3110180371
23839777
10_1002_cne_23416
CNE23416
ark_67375_WNG_S1BJHTHN_G
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
YQT
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
ACRPL
ACYXJ
ADNMO
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4906-280deb636d42345af48a09b5a2fd1e56cf86f7dff6988a81ae4369e9219282f33
IEDL.DBID DR2
ISSN 0021-9967
1096-9861
IngestDate Fri Jul 11 06:40:58 EDT 2025
Fri Jul 11 02:41:35 EDT 2025
Fri Jul 25 10:24:33 EDT 2025
Wed Feb 19 01:54:03 EST 2025
Tue Jul 01 03:55:24 EDT 2025
Thu Apr 24 22:55:56 EDT 2025
Wed Jan 22 16:53:00 EST 2025
Wed Oct 30 09:52:27 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords subicular complex
mouse brain
neurochemistry
neural connectivity
area prostriata
gene expression
hippocampal head
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4906-280deb636d42345af48a09b5a2fd1e56cf86f7dff6988a81ae4369e9219282f33
Notes istex:F0C60E7D86C3DC18F544316DB4A594FCF0616CED
ark:/67375/WNG-S1BJHTHN-G
ArticleID:CNE23416
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23839777
PQID 1445463620
PQPubID 1006438
PageCount 18
ParticipantIDs proquest_miscellaneous_1464510373
proquest_miscellaneous_1447106944
proquest_journals_1445463620
pubmed_primary_23839777
crossref_primary_10_1002_cne_23416
crossref_citationtrail_10_1002_cne_23416
wiley_primary_10_1002_cne_23416_CNE23416
istex_primary_ark_67375_WNG_S1BJHTHN_G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 December 2013
PublicationDateYYYYMMDD 2013-12-15
PublicationDate_xml – month: 12
  year: 2013
  text: 15 December 2013
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Wright NF, Erichsen JT, Vann SD, O'Mara SM, Aggleton JP. 2010. Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. J Comp Neurol 518:2334-2354.
Arikuni T, Sako H, Murata A. 1994. Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neurosci Res 21:19-39.
Condé F, Maire-Lepoivre E, Audinat E, Crépel F. 1995. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567-593.
Krayniak PF, Siegel A, Meibach RC, Fruchtman D, Scrimenti M. 1979. Origin of the fornix system in the squirrel monkey. Brain Res 160:401-411.
Stafstrom CE. 2005. The role of the subiculum in epilepsy and epileptogenesis. Epilepsy Curr 5:121-129.
Kobayashi Y, Amaral DG. 2003. Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48-79.
Aggleton JP, Desimone R, Mishkin M. 1986. The origin, course, and termination of the hippocampothalamic projections in the macaque. J Comp Neurol 243:409-421.
Canteras NS, Simerly RB, Swanson LW. 1992. Connections of the posterior nucleus of the amygdala. J Comp Neurol 424:143-179.
Ding SL, Van Hoesen G, Rockland KS. 2000. Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510-530.
Vogt BA, Pandya DN. 1987. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271-289.
Taube JS. 2007. The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181-207.
Morán MA, Mufson EJ, Mesulam MM. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256:88-103.
Van Groen T, Wyss JM. 2003. Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol 463:249-263.
Hoover WB, Vertes RP. 2007. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149-179.
Howell GA, Perez-Clausell J, Frederickson CJ. 1991. Zinc containing projections to the bed nucleus of the stria terminalis. Brain Res 562:181-189.
Herman JP, Mueller NK. 2006. Role of the ventral subiculum in stress integration. Behav Brain Res 174:215-224.
Kishi T, Tsumori T, Ono K, Yokota S, Ishino H, Yasui Y. 2000. Topographical organization of projections from the subiculum to the hypothalamus in the rat. J Comp Neurol 419:205-222.
Sikes RW, Chronister RB, White LE Jr. 1977. Origin of the direct hippocampus-anterior thalamic bundle in the rat: a combined horseradish peroxidase-Golgi analysis. Exp Neurol 57:379-395.
Squire LR, Stark CE, Clark RE. 2004. The medial temporal lobe. Annu Rev Neurosci 27:279-306.
Meibach RC, Siegel A. 1975. The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508-512.
Ding SL, Tecedor L, Stein CS, Davidson BL. 2011. A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiol Dis 41:237-248.
Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403:229-260.
Vogt BA, Miller MW. 1983. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 16:192-210.
Saunders RC, Mishkin M, Aggleton JP. 2005. Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1-16.
Van Hoesen GW, Hyman BT. 1990. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. Prog Brain Res 83:445-457.
Wang J, Palkovits M, Usdin TB, Dobolyi A. 2006. Afferent connections of the subparafascicular area in rat. Neuroscience 138:197-220.
Cullinan WE, Herman JP, Watson SJ. 1993. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332:1-20.
Lowry CA. 2002. Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911-923.
Saunders RC, Rosene DL, Van Hoesen GW. 1988. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. J Comp Neurol 271:185-207.
Seltzer B, Van Hoesen GW. 1979. A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res 179:157-161.
Morris R, Pandya DN, Petrides M. 1999b. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J Comp Neurol 407:183-192.
Yu HH, Chaplin TA, Davies AJ, Verma R, Rosa MG. 2012. A specialized area in limbic cortex for fast analysis of peripheral vision. Curr Biol 22:1351-1357.
Amaral DG, Insausti R, Cowan WM. 1983. Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263-277.
Rolls ET, O'Mara SM. 1995. View-responsive neurons in the primate hippocampal complex. Hippocampus 5:409-424.
Van Hoesen G, Pandya DN. 1975a. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1-24.
Ding SL, Van Hoesen GW, Cassell MD, Poremba A. 2009. Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514:595-623.
Fujise N, Hunziker W, Heizmann CW, Kosaka T. 1995. Distribution of the calcium binding proteins, calbindin D-28K and parvalbumin, in the subicular complex of the adult mouse. Neurosci Res 22:89-107.
Ohtake T, Yamada H. 1989. Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L tracing study. Neurosci Res 6:556-568.
Köhler C. 1985. Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504-522.
McKenna JT, Vertes RP. 2001. Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54:619-630.
Goldman-Rakic PS, Selemon LD, Schwartz ML. 1984. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719-743.
Van Hoesen GW, Pandya DN. 1975b. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39-59.
Honda Y, Ishizuka N. 2004. Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex. J Comp Neurol 473:463-484.
Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ. 2006. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768-796.
Kosel KC, Van Hoesen GW, Rosene DL. 1983. A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat. Brain Res 269:347-351.
Sousa AP, Piñon MC, Gattass R, Rosa MG. 1991. Topographic organization of cortical input to striate cortex in the cebus monkey: a fluorescent tracer study. J Comp Neurol 308:665-682.
Ding SL, Van Hoesen GW. 2010. Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359-1379.
Brog JS, Salyapongse A, Deutch AY, Zahm DS. 1993. The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255-278.
Van Hoesen GW. 1982. The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345-350.
Pandya DN, Van Hoesen GW, Mesulam MM. 1981. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319-330.
O'Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O'Hare E. 2009. Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:782-790.
Insausti R, Muñoz M. 2001. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur J Neurosci 14:435-451.
Shibata H. 1989. Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 285:436-452.
Palmer SM, Rosa MG. 2006. A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24:2389-2405.
Phillipson OT, Griffiths AC. 1985. The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275-296.
Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406:299-328.
Slomianka L, Geneser FA. 1991. Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. J Comp Neurol 312:525-536.
Witter MP. 2006. Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res 174:251-264.
Amaral DG, Dolorfo C, Alvarez-Royo P. 1991. Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1:415-435.
Kim Y, Spruston N. 2012. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus 22:693-706, 2012.
Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615-641.
van Groen T, Wyss JM.
2000; 419
2002; 14
2010; 14
1983; 275
2004; 27
1991; 11
2008; 508
2008; 506
2006; 174
2009; 514
1977; 124
1983; 16
1998; 392
1983; 269
2010; 20
2007; 212
2010; 518
2006; 24
1975a; 95
2000; 10
1995; 22
1987
1956; 105
1975; 189
1975; 88
1995; 363
1979; 160
1994; 668
2012; 22
1985; 16
2001; 139
2001; 54
2010; 31
1981; 161
1989; 6
1984; 225
1992; 424
2012; 36
2003; 456
2007; 97
2003; 455
1995; 5
1990c; 300
1993; 56
1991; 562
1986; 243
2005; 5
2003; 466
2003; 463
2001; 435
1977; 198
1987; 262
1977; 172
1991; 312
1993; 328
1988; 271
1999a; 11
2004; 480
1992; 323
1992; 324
2007; 30
1990b; 529
1999; 403
2006; 138
1975b; 95
1990a; 518
2005; 22
2006; 496
1981; 42
1994; 21
2006; 499
1999; 406
1981; 195
1993; 338
1983; 220
1982; 5
1984; 12
1982; 7
2011; 21
1994; 35
2001; 14
1980; 189
1991; 308
1993; 332
1991; 307
1991; 1
1999b; 407
1934; 46
1979; 205
1995; 358
1995; 352
1990; 83
1983; 217
1999; 9
2009; 33
1979; 179
2004; 473
1987; 256
1986; 64
2005; 167
2000; 423
2000; 425
1989; 285
1989; 286
2011; 41
2005; 53
1985; 236
1977; 57
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
Vogt BA (e_1_2_10_110_1) 1983; 16
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
No R (e_1_2_10_57_1) 1934; 46
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_91_1
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_8_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
Canteras NS (e_1_2_10_18_1) 1992; 424
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – reference: Van Groen T, Wyss JM. 1990a. The connections of presubiculum and parasubiculum in the rat. Brain Res 518:227-243.
– reference: Amaral DG, Insausti R, Cowan WM. 1983. Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263-277.
– reference: Ichinohe N, Rockland KS. 2005. Zinc-enriched amygdalo- and hippocampo-cortical connections to the inferotemporal cortices in macaque monkey. Neurosci Res 53:57-68.
– reference: Blatt GJ, Rosene DL. 1998. Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392:92-114.
– reference: Ding SL, Van Hoesen GW. 2010. Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359-1379.
– reference: Arikuni T, Sako H, Murata A. 1994. Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neurosci Res 21:19-39.
– reference: Barbas H. 1993. Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56:841-864.
– reference: Fujise N, Hunziker W, Heizmann CW, Kosaka T. 1995. Distribution of the calcium binding proteins, calbindin D-28K and parvalbumin, in the subicular complex of the adult mouse. Neurosci Res 22:89-107.
– reference: McKinney M, Coyle JT, Hedreen JC. 1983. Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system. J Comp Neurol 217:103-121.
– reference: Krettek JE, Price JL. 1977. Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. J Comp Neurol 172:723-752.
– reference: Ding SL, Van Hoesen GW, Cassell MD, Poremba A. 2009. Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514:595-623.
– reference: Van Groen T, Wyss JM. 2003. Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol 463:249-263.
– reference: Lorente de No R. 1934. Studies on the structure of the cerebral cortex II. Continuation of the study of the ammoninc system. J Psychol Neurol 46:113-177.
– reference: Wang J, Palkovits M, Usdin TB, Dobolyi A. 2006. Afferent connections of the subparafascicular area in rat. Neuroscience 138:197-220.
– reference: Ding SL, Morecraft RJ, Van Hoesen GW. 2003. Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456:184-201.
– reference: Seltzer B, Van Hoesen GW. 1979. A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res 179:157-161.
– reference: Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW. 1983. Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220:168-190.
– reference: Köhler C. 1985. Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504-522.
– reference: Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ. 2006. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768-796.
– reference: Vogt BA, Pandya DN. 1987. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271-289.
– reference: Rockland KS. 2012. Visual system: prostriata-a visual area off the beaten path. Curr Biol 22:R571-R573.
– reference: Meibach RC, Siegel A. 1977. Efferent connections of the hippocampal formation in the rat. Brain Res 124:197-224.
– reference: Van Groen T, Wyss JM. 1992. Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J Comp Neurol 324:427-448.
– reference: McKenna JT, Vertes RP. 2004. Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115-142.
– reference: Aggleton JP. 1986. A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp Brain Res 64:515-526.
– reference: Loy R, Koziell DA, Lindsey JD, Moore RY. 1980. Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699-710.
– reference: Slomianka L, Geneser FA. 1991. Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. J Comp Neurol 312:525-536.
– reference: Kishi T, Tsumori T, Ono K, Yokota S, Ishino H, Yasui Y. 2000. Topographical organization of projections from the subiculum to the hypothalamus in the rat. J Comp Neurol 419:205-222.
– reference: Webster MJ, Ungerleider LG, Bachevalier J. 1991. Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11:1095-1116.
– reference: Kaitz SS, Robertson RT. 1981. Thalamic connections with limbic cortex. II. Corticothalamic projections. J Comp Neurol 195:527-545.
– reference: O'Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O'Hare E. 2009. Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:782-790.
– reference: Amaral DG, Dolorfo C, Alvarez-Royo P. 1991. Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1:415-435.
– reference: Aggleton JP, Vann SD, Saunders RC. 2005. Projections from the hippocampal region to the mammillary bodies in macaque monkeys. Eur J Neurosci 22:2519-2530.
– reference: Köhler C, Chan-Palay V, Steinbusch H. 1981. The distribution and orientation of serotonin fibers in the entorhinal and other retrohippocampal areas. An immunohistochemical study with anti-serotonin antibodies in the rats brain. Anat Embryol 161:237-264.
– reference: Swanson LW, Cowan WM. 1975. Hippocampo-hypothalamic connections: origin in subicular cortex, not Ammon's horn. Science 189:303-304.
– reference: Van Groen T, Wyss JM. 1990c. Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300:593-606.
– reference: Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615-641.
– reference: Brog JS, Salyapongse A, Deutch AY, Zahm DS. 1993. The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255-278.
– reference: Rosene DL, Van Hoesen GW. 1977. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198:315-317.
– reference: Aggleton JP. 2012. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci Biobehav Rev 36:1579-1596.
– reference: Morris R, Pandya DN, Petrides M. 1999b. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J Comp Neurol 407:183-192.
– reference: Taube JS. 2007. The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181-207.
– reference: Kishi T, Tsumori T, Yokota S, Yasui Y. 2006. Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J Comp Neurol 496:349-368.
– reference: Jarsky T, Mady R, Kennedy B, Spruston N. 2008. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. J Comp Neurol 506:535-547.
– reference: Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220-242.
– reference: Burman KJ, Reser DH, Yu HH, Rosa MG. 2011. Cortical input to the frontal pole of the marmoset monkey. Cereb Cortex 21:1712-1737.
– reference: Rockland KS, Van Hoesen GW. 1999. Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb Cortex 9:232-237.
– reference: Yukie M. 2000. Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 423:282-298.
– reference: Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403:229-260.
– reference: Kim Y, Spruston N. 2012. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus 22:693-706, 2012.
– reference: Goldman-Rakic PS, Selemon LD, Schwartz ML. 1984. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719-743.
– reference: Canteras NS, Simerly RB, Swanson LW. 1992. Connections of the posterior nucleus of the amygdala. J Comp Neurol 424:143-179.
– reference: Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C. 1994. Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668:71-79.
– reference: McKenna JT, Vertes RP. 2001. Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54:619-630.
– reference: Van Hoesen GW, Rosene DL, Mesulam MM. 1979. Subicular input from temporal cortex in the rhesus monkey. Science 205:608-610.
– reference: Yu HH, Chaplin TA, Davies AJ, Verma R, Rosa MG. 2012. A specialized area in limbic cortex for fast analysis of peripheral vision. Curr Biol 22:1351-1357.
– reference: Ding SL, Van Hoesen G, Rockland KS. 2000. Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510-530.
– reference: Hoover WB, Vertes RP. 2007. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149-179.
– reference: Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406:299-328.
– reference: Squire LR, Stark CE, Clark RE. 2004. The medial temporal lobe. Annu Rev Neurosci 27:279-306.
– reference: Ding SL, Rockland KS. 2001. Modular organization of the monkey presubiculum. Exp Brain Res 139:255-265.
– reference: Ding SL, Tecedor L, Stein CS, Davidson BL. 2011. A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiol Dis 41:237-248.
– reference: Ohtake T, Yamada H. 1989. Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L tracing study. Neurosci Res 6:556-568.
– reference: Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. 1984. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168-1170.
– reference: Insausti R, Muñoz M. 2001. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur J Neurosci 14:435-451.
– reference: Van Hoesen GW. 1982. The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345-350.
– reference: Kobayashi Y, Amaral DG. 2003. Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48-79.
– reference: Saunders RC, Mishkin M, Aggleton JP. 2005. Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1-16.
– reference: Barbas H, Blatt GJ. 1995. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511-533.
– reference: Herman JP, Mueller NK. 2006. Role of the ventral subiculum in stress integration. Behav Brain Res 174:215-224.
– reference: Honda Y, Ishizuka N. 2004. Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex. J Comp Neurol 473:463-484.
– reference: Glasgow SD, Chapman CA. 2007. Local generation of theta-frequency EEG activity in the parasubiculum. J Neurophysiol 97:3868-3879.
– reference: Palmer SM, Rosa MG. 2006. A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24:2389-2405.
– reference: Morecraft RJ, Rockland KS, Van Hoesen GW. 2000. Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey. Cereb Cortex 10:192-203.
– reference: Lowry CA. 2002. Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911-923.
– reference: Caballero-Bleda M, Witter MP. 1993. Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing study in the rat. J Comp Neurol 328:115-129.
– reference: Shibata H. 1989. Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 285:436-452.
– reference: Falchier A, Schroeder CE, Hackett TA, Lakatos P, Nascimento-Silva S, Ulbert I, Karmos G, Smiley JF. 2010. Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. Cereb Cortex 20:1529-1538.
– reference: Canteras NS, Swanson LW. 1992. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180-194.
– reference: Wolbers T, Hegarty M. 2010. What determines our navigational abilities? Trends Cogn Sci 14:138-146.
– reference: Köhler C. 1990. Subicular projections to the hypothalamus and brainstem: some novel aspects revealed in the rat by the anterograde Phaseolus vulgaris leucoagglutinin (PHA-L) tracing method. Prog Brain Res 83:59-69.
– reference: Blackstad TW. 1956. Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105:417-537.
– reference: Ishizuka N. 2001. Laminar organization of the pyramidal cell layer of the subiculum in the rat. J Comp Neurol 435:89-110.
– reference: Morán MA, Mufson EJ, Mesulam MM. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256:88-103.
– reference: Namura S, Takada M, Kikuchi H, Mizuno N. 1994. Topographical organization of subicular neurons projecting to subcortical regions. Brain Res Bull 35:221-231.
– reference: van Groen T, Wyss JM. 1995. Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat. J Comp Neurol 358:584-604.
– reference: Condé F, Maire-Lepoivre E, Audinat E, Crépel F. 1995. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567-593.
– reference: Witter MP, Amaral DG. 1991. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307:437-459.
– reference: Kosel KC, Van Hoesen GW, Rosene DL. 1983. A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat. Brain Res 269:347-351.
– reference: Allen GV, Hopkins DA. 1989. Mammillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. J Comp Neurol 286:311-336.
– reference: Pandya DN, Van Hoesen GW, Mesulam MM. 1981. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319-330.
– reference: Vertes RP, Hoover WB. 2008. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212-237.
– reference: Phillipson OT, Griffiths AC. 1985. The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275-296.
– reference: Wright NF, Erichsen JT, Vann SD, O'Mara SM, Aggleton JP. 2010. Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. J Comp Neurol 518:2334-2354.
– reference: Morris R, Petrides M, Pandya DN. 1999a. Architecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur J Neurosci 11:2506-2518.
– reference: Van Hoesen G, Pandya DN. 1975a. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1-24.
– reference: Rolls ET, O'Mara SM. 1995. View-responsive neurons in the primate hippocampal complex. Hippocampus 5:409-424.
– reference: Van Hoesen GW, Hyman BT. 1990. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. Prog Brain Res 83:445-457.
– reference: Aggleton JP, Desimone R, Mishkin M. 1986. The origin, course, and termination of the hippocampothalamic projections in the macaque. J Comp Neurol 243:409-421.
– reference: Kelley AE, Domesick VB. 1982. The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321-2335.
– reference: Saunders RC, Rosene DL, Van Hoesen GW. 1988. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. J Comp Neurol 271:185-207.
– reference: Sousa AP, Piñon MC, Gattass R, Rosa MG. 1991. Topographic organization of cortical input to striate cortex in the cebus monkey: a fluorescent tracer study. J Comp Neurol 308:665-682.
– reference: O'Mara S. 2006. Controlling hippocampal output: the central role of subiculum in hippocampal information processing. Behav Brain Res 174:304-312.
– reference: Swanson LW, Cowan WM. 1977. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49-84.
– reference: Witter MP. 2006. Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res 174:251-264.
– reference: Krayniak PF, Siegel A, Meibach RC, Fruchtman D, Scrimenti M. 1979. Origin of the fornix system in the squirrel monkey. Brain Res 160:401-411.
– reference: Vogt BA, Miller MW. 1983. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 16:192-210.
– reference: Cullinan WE, Herman JP, Watson SJ. 1993. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332:1-20.
– reference: Sikes RW, Chronister RB, White LE Jr. 1977. Origin of the direct hippocampus-anterior thalamic bundle in the rat: a combined horseradish peroxidase-Golgi analysis. Exp Neurol 57:379-395.
– reference: Van Groen T, Wyss JM. 1990b. The postsubicular cortex in the rat: caracterization of the fourth region of the subicular cortex and its connections. Brain Res 529:165-177.
– reference: Stafstrom CE. 2005. The role of the subiculum in epilepsy and epileptogenesis. Epilepsy Curr 5:121-129.
– reference: Kloosterman F, Witter MP, Van Haeften T. 2003. Topographical and laminar organization of subicular projections to the parahippocampal region of the rat. J Comp Neurol 455:156-171.
– reference: Morecraft RJ, Geula C, Mesulam MM. 1992. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 323:341-358.
– reference: Saunders RC, Rosene DL. 1988. A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices. J Comp Neurol 271:153-184.
– reference: Van Hoesen GW, Pandya DN. 1975b. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39-59.
– reference: Howell GA, Perez-Clausell J, Frederickson CJ. 1991. Zinc containing projections to the bed nucleus of the stria terminalis. Brain Res 562:181-189.
– reference: Meibach RC, Siegel A. 1975. The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508-512.
– volume: 95
  start-page: 1
  year: 1975a
  end-page: 24
  article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents
  publication-title: Brain Res
– volume: 24
  start-page: 2389
  year: 2006
  end-page: 2405
  article-title: A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision
  publication-title: Eur J Neurosci
– volume: 5
  start-page: 345
  year: 1982
  end-page: 350
  article-title: The parahippocampal gyrus. New observations regarding its cortical connections in the monkey
  publication-title: Trends Neurosci
– volume: 529
  start-page: 165
  year: 1990b
  end-page: 177
  article-title: The postsubicular cortex in the rat: caracterization of the fourth region of the subicular cortex and its connections
  publication-title: Brain Res
– volume: 83
  start-page: 59
  year: 1990
  end-page: 69
  article-title: Subicular projections to the hypothalamus and brainstem: some novel aspects revealed in the rat by the anterograde leucoagglutinin (PHA‐L) tracing method
  publication-title: Prog Brain Res
– volume: 514
  start-page: 595
  year: 2009
  end-page: 623
  article-title: Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers
  publication-title: J Comp Neurol
– volume: 271
  start-page: 185
  year: 1988
  end-page: 207
  article-title: Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non‐reciprocal connections
  publication-title: J Comp Neurol
– volume: 205
  start-page: 608
  year: 1979
  end-page: 610
  article-title: Subicular input from temporal cortex in the rhesus monkey
  publication-title: Science
– volume: 195
  start-page: 527
  year: 1981
  end-page: 545
  article-title: Thalamic connections with limbic cortex. II. Corticothalamic projections
  publication-title: J Comp Neurol
– volume: 27
  start-page: 279
  year: 2004
  end-page: 306
  article-title: The medial temporal lobe
  publication-title: Annu Rev Neurosci
– volume: 167
  start-page: 1
  year: 2005
  end-page: 16
  article-title: Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques
  publication-title: Exp Brain Res
– volume: 407
  start-page: 183
  year: 1999b
  end-page: 192
  article-title: Fiber system linking the mid‐dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey
  publication-title: J Comp Neurol
– volume: 324
  start-page: 427
  year: 1992
  end-page: 448
  article-title: Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat
  publication-title: J Comp Neurol
– volume: 14
  start-page: 911
  year: 2002
  end-page: 923
  article-title: Functional subsets of serotonergic neurones: implications for control of the hypothalamic–pituitary–adrenal axis
  publication-title: J Neuroendocrinol
– volume: 22
  start-page: 1351
  year: 2012
  end-page: 1357
  article-title: A specialized area in limbic cortex for fast analysis of peripheral vision
  publication-title: Curr Biol
– volume: 124
  start-page: 197
  year: 1977
  end-page: 224
  article-title: Efferent connections of the hippocampal formation in the rat
  publication-title: Brain Res
– volume: 332
  start-page: 1
  year: 1993
  end-page: 20
  article-title: Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis
  publication-title: J Comp Neurol
– volume: 562
  start-page: 181
  year: 1991
  end-page: 189
  article-title: Zinc containing projections to the bed nucleus of the stria terminalis
  publication-title: Brain Res
– volume: 424
  start-page: 143
  year: 1992
  end-page: 179
  article-title: Connections of the posterior nucleus of the amygdala
  publication-title: J Comp Neurol
– volume: 30
  start-page: 181
  year: 2007
  end-page: 207
  article-title: The head direction signal: origins and sensory‐motor integration
  publication-title: Annu Rev Neurosci
– volume: 262
  start-page: 271
  year: 1987
  end-page: 289
  article-title: Cingulate cortex of the rhesus monkey: II. Cortical afferents
  publication-title: J Comp Neurol
– volume: 14
  start-page: 138
  year: 2010
  end-page: 146
  article-title: What determines our navigational abilities?
  publication-title: Trends Cogn Sci
– volume: 5
  start-page: 511
  year: 1995
  end-page: 533
  article-title: Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey
  publication-title: Hippocampus
– start-page: 345
  year: 1987
  end-page: 456
– volume: 189
  start-page: 699
  year: 1980
  end-page: 710
  article-title: Noradrenergic innervation of the adult rat hippocampal formation
  publication-title: J Comp Neurol
– volume: 33
  start-page: 782
  year: 2009
  end-page: 790
  article-title: Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour
  publication-title: Prog Neuropsychopharmacol Biol Psychiatry
– volume: 21
  start-page: 1712
  year: 2011
  end-page: 1737
  article-title: Cortical input to the frontal pole of the marmoset monkey
  publication-title: Cereb Cortex
– volume: 217
  start-page: 103
  year: 1983
  end-page: 121
  article-title: Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system
  publication-title: J Comp Neurol
– volume: 53
  start-page: 57
  year: 2005
  end-page: 68
  article-title: Zinc‐enriched amygdalo‐ and hippocampo‐cortical connections to the inferotemporal cortices in macaque monkey
  publication-title: Neurosci Res
– volume: 455
  start-page: 156
  year: 2003
  end-page: 171
  article-title: Topographical and laminar organization of subicular projections to the parahippocampal region of the rat
  publication-title: J Comp Neurol
– volume: 14
  start-page: 435
  year: 2001
  end-page: 451
  article-title: Cortical projections of the non‐entorhinal hippocampal formation in the cynomolgus monkey ( )
  publication-title: Eur J Neurosci
– volume: 518
  start-page: 227
  year: 1990a
  end-page: 243
  article-title: The connections of presubiculum and parasubiculum in the rat
  publication-title: Brain Res
– volume: 54
  start-page: 619
  year: 2001
  end-page: 630
  article-title: Collateral projections from the median raphe nucleus to the medial septum and hippocampus
  publication-title: Brain Res Bull
– volume: 11
  start-page: 1095
  year: 1991
  end-page: 1116
  article-title: Connections of inferior temporal areas TE and TEO with medial temporal‐lobe structures in infant and adult monkeys
  publication-title: J Neurosci
– volume: 160
  start-page: 401
  year: 1979
  end-page: 411
  article-title: Origin of the fornix system in the squirrel monkey
  publication-title: Brain Res
– volume: 11
  start-page: 2506
  year: 1999a
  end-page: 2518
  article-title: Architecture and connections of retrosplenial area 30 in the rhesus monkey ( )
  publication-title: Eur J Neurosci
– volume: 97
  start-page: 3868
  year: 2007
  end-page: 3879
  article-title: Local generation of theta‐frequency EEG activity in the parasubiculum
  publication-title: J Neurophysiol
– volume: 300
  start-page: 593
  year: 1990c
  end-page: 606
  article-title: Connections of the retrosplenial granular a cortex in the rat
  publication-title: J Comp Neurol
– volume: 20
  start-page: 1529
  year: 2010
  end-page: 1538
  article-title: Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey
  publication-title: Cereb Cortex
– volume: 328
  start-page: 115
  year: 1993
  end-page: 129
  article-title: Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing study in the rat
  publication-title: J Comp Neurol
– volume: 46
  start-page: 113
  year: 1934
  end-page: 177
  article-title: Studies on the structure of the cerebral cortex II. Continuation of the study of the ammoninc system
  publication-title: J Psychol Neurol
– volume: 243
  start-page: 409
  year: 1986
  end-page: 421
  article-title: The origin, course, and termination of the hippocampothalamic projections in the macaque
  publication-title: J Comp Neurol
– volume: 508
  start-page: 212
  year: 2008
  end-page: 237
  article-title: Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat
  publication-title: J Comp Neurol
– volume: 358
  start-page: 584
  year: 1995
  end-page: 604
  article-title: Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat
  publication-title: J Comp Neurol
– volume: 668
  start-page: 71
  year: 1994
  end-page: 79
  article-title: Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study
  publication-title: Brain Res
– volume: 435
  start-page: 89
  year: 2001
  end-page: 110
  article-title: Laminar organization of the pyramidal cell layer of the subiculum in the rat
  publication-title: J Comp Neurol
– volume: 35
  start-page: 221
  year: 1994
  end-page: 231
  article-title: Topographical organization of subicular neurons projecting to subcortical regions
  publication-title: Brain Res Bull
– volume: 352
  start-page: 567
  year: 1995
  end-page: 593
  article-title: Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents
  publication-title: J Comp Neurol
– volume: 10
  start-page: 192
  year: 2000
  end-page: 203
  article-title: Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey
  publication-title: Cereb Cortex
– volume: 466
  start-page: 48
  year: 2003
  end-page: 79
  article-title: Macaque monkey retrosplenial cortex: II. Cortical afferents
  publication-title: J Comp Neurol
– volume: 172
  start-page: 723
  year: 1977
  end-page: 752
  article-title: Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat
  publication-title: J Comp Neurol
– volume: 338
  start-page: 255
  year: 1993
  end-page: 278
  article-title: The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro‐gold
  publication-title: J Comp Neurol
– volume: 5
  start-page: 409
  year: 1995
  end-page: 424
  article-title: View‐responsive neurons in the primate hippocampal complex
  publication-title: Hippocampus
– volume: 16
  start-page: 275
  year: 1985
  end-page: 296
  article-title: The topographic order of inputs to nucleus accumbens in the rat
  publication-title: Neuroscience
– volume: 1
  start-page: 415
  year: 1991
  end-page: 435
  article-title: Organization of CA1 projections to the subiculum: a PHA‐L analysis in the rat
  publication-title: Hippocampus
– volume: 16
  start-page: 192
  year: 1983
  end-page: 210
  article-title: Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices
  publication-title: J Comp Neurol
– volume: 21
  start-page: 19
  year: 1994
  end-page: 39
  article-title: Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey
  publication-title: Neurosci Res
– volume: 56
  start-page: 841
  year: 1993
  end-page: 864
  article-title: Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey
  publication-title: Neuroscience
– volume: 57
  start-page: 379
  year: 1977
  end-page: 395
  article-title: Origin of the direct hippocampus‐anterior thalamic bundle in the rat: a combined horseradish peroxidase‐Golgi analysis
  publication-title: Exp Neurol
– volume: 64
  start-page: 515
  year: 1986
  end-page: 526
  article-title: A description of the amygdalo‐hippocampal interconnections in the macaque monkey
  publication-title: Exp Brain Res
– volume: 174
  start-page: 251
  year: 2006
  end-page: 264
  article-title: Connections of the subiculum of the rat: topography in relation to columnar and laminar organization
  publication-title: Behav Brain Res
– volume: 456
  start-page: 184
  year: 2003
  end-page: 201
  article-title: Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey
  publication-title: J Comp Neurol
– volume: 236
  start-page: 504
  year: 1985
  end-page: 522
  article-title: Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex
  publication-title: J Comp Neurol
– volume: 22
  start-page: 89
  year: 1995
  end-page: 107
  article-title: Distribution of the calcium binding proteins, calbindin D‐28K and parvalbumin, in the subicular complex of the adult mouse
  publication-title: Neurosci Res
– volume: 269
  start-page: 347
  year: 1983
  end-page: 351
  article-title: A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat
  publication-title: Brain Res
– volume: 423
  start-page: 282
  year: 2000
  end-page: 298
  article-title: Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey ( )
  publication-title: J Comp Neurol
– volume: 307
  start-page: 437
  year: 1991
  end-page: 459
  article-title: Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex
  publication-title: J Comp Neurol
– volume: 518
  start-page: 2334
  year: 2010
  end-page: 2354
  article-title: Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat
  publication-title: J Comp Neurol
– volume: 271
  start-page: 153
  year: 1988
  end-page: 184
  article-title: A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices
  publication-title: J Comp Neurol
– volume: 174
  start-page: 215
  year: 2006
  end-page: 224
  article-title: Role of the ventral subiculum in stress integration
  publication-title: Behav Brain Res
– volume: 172
  start-page: 49
  year: 1977
  end-page: 84
  article-title: An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat
  publication-title: J Comp Neurol
– volume: 10
  start-page: 220
  year: 2000
  end-page: 242
  article-title: The anatomical connections of the macaque monkey orbitofrontal cortex. A review
  publication-title: Cereb Cortex
– volume: 323
  start-page: 341
  year: 1992
  end-page: 358
  article-title: Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey
  publication-title: J Comp Neurol
– volume: 138
  start-page: 197
  year: 2006
  end-page: 220
  article-title: Afferent connections of the subparafascicular area in rat
  publication-title: Neuroscience
– volume: 95
  start-page: 39
  year: 1975b
  end-page: 59
  article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections
  publication-title: Brain Res
– volume: 473
  start-page: 463
  year: 2004
  end-page: 484
  article-title: Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex
  publication-title: J Comp Neurol
– volume: 189
  start-page: 303
  year: 1975
  end-page: 304
  article-title: Hippocampo‐hypothalamic connections: origin in subicular cortex, not Ammon's horn
  publication-title: Science
– volume: 139
  start-page: 255
  year: 2001
  end-page: 265
  article-title: Modular organization of the monkey presubiculum
  publication-title: Exp Brain Res
– volume: 419
  start-page: 205
  year: 2000
  end-page: 222
  article-title: Topographical organization of projections from the subiculum to the hypothalamus in the rat
  publication-title: J Comp Neurol
– volume: 392
  start-page: 92
  year: 1998
  end-page: 114
  article-title: Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe
  publication-title: J Comp Neurol
– volume: 506
  start-page: 535
  year: 2008
  end-page: 547
  article-title: Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus
  publication-title: J Comp Neurol
– volume: 256
  start-page: 88
  year: 1987
  end-page: 103
  article-title: Neural inputs into the temporopolar cortex of the rhesus monkey
  publication-title: J Comp Neurol
– volume: 22
  start-page: 693
  year: 2012
  end-page: 706
  article-title: Target‐specific output patterns are predicted by the distribution of regular‐spiking and bursting pyramidal neurons in the subiculum
  publication-title: Hippocampus
– volume: 36
  start-page: 1579
  year: 2012
  end-page: 1596
  article-title: Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function
  publication-title: Neurosci Biobehav Rev
– volume: 285
  start-page: 436
  year: 1989
  end-page: 452
  article-title: Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin‐horseradish peroxidase
  publication-title: J Comp Neurol
– volume: 7
  start-page: 2321
  year: 1982
  end-page: 2335
  article-title: The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde‐ and retrograde‐horseradish peroxidase study
  publication-title: Neuroscience
– volume: 9
  start-page: 232
  year: 1999
  end-page: 237
  article-title: Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus
  publication-title: Cereb Cortex
– volume: 406
  start-page: 299
  year: 1999
  end-page: 328
  article-title: Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat
  publication-title: J Comp Neurol
– volume: 42
  start-page: 319
  year: 1981
  end-page: 330
  article-title: Efferent connections of the cingulate gyrus in the rhesus monkey
  publication-title: Exp Brain Res
– volume: 312
  start-page: 525
  year: 1991
  end-page: 536
  article-title: Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus
  publication-title: J Comp Neurol
– volume: 425
  start-page: 510
  year: 2000
  end-page: 530
  article-title: Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas
  publication-title: J Comp Neurol
– volume: 22
  start-page: R571
  year: 2012
  end-page: R573
  article-title: Visual system: prostriata—a visual area off the beaten path
  publication-title: Curr Biol
– volume: 212
  start-page: 149
  year: 2007
  end-page: 179
  article-title: Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat
  publication-title: Brain Struct Funct
– volume: 499
  start-page: 768
  year: 2006
  end-page: 796
  article-title: Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat
  publication-title: J Comp Neurol
– volume: 41
  start-page: 237
  year: 2011
  end-page: 248
  article-title: A knock‐in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures
  publication-title: Neurobiol Dis
– volume: 363
  start-page: 615
  year: 1995
  end-page: 641
  article-title: Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys
  publication-title: J Comp Neurol
– volume: 83
  start-page: 445
  year: 1990
  end-page: 457
  article-title: Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease
  publication-title: Prog Brain Res
– volume: 496
  start-page: 349
  year: 2006
  end-page: 368
  article-title: Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat
  publication-title: J Comp Neurol
– volume: 275
  start-page: 263
  year: 1983
  end-page: 277
  article-title: Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey
  publication-title: Brain Res
– volume: 324
  start-page: 180
  year: 1992
  end-page: 194
  article-title: Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract‐tracing study in the rat
  publication-title: J Comp Neurol
– volume: 161
  start-page: 237
  year: 1981
  end-page: 264
  article-title: The distribution and orientation of serotonin fibers in the entorhinal and other retrohippocampal areas. An immunohistochemical study with anti‐serotonin antibodies in the rats brain
  publication-title: Anat Embryol
– volume: 179
  start-page: 157
  year: 1979
  end-page: 161
  article-title: A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey
  publication-title: Brain Res
– volume: 105
  start-page: 417
  year: 1956
  end-page: 537
  article-title: Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination
  publication-title: J Comp Neurol
– volume: 286
  start-page: 311
  year: 1989
  end-page: 336
  article-title: Mammillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum
  publication-title: J Comp Neurol
– volume: 220
  start-page: 168
  year: 1983
  end-page: 190
  article-title: Afferent connections of the perirhinal cortex in the rat
  publication-title: J Comp Neurol
– volume: 403
  start-page: 229
  year: 1999
  end-page: 260
  article-title: Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat
  publication-title: J Comp Neurol
– volume: 31
  start-page: 1359
  year: 2010
  end-page: 1379
  article-title: Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers
  publication-title: Hum Brain Mapp
– volume: 174
  start-page: 304
  year: 2006
  end-page: 312
  article-title: Controlling hippocampal output: the central role of subiculum in hippocampal information processing
  publication-title: Behav Brain Res
– volume: 308
  start-page: 665
  year: 1991
  end-page: 682
  article-title: Topographic organization of cortical input to striate cortex in the cebus monkey: a fluorescent tracer study
  publication-title: J Comp Neurol
– volume: 463
  start-page: 249
  year: 2003
  end-page: 263
  article-title: Connections of the retrosplenial granular b cortex in the rat
  publication-title: J Comp Neurol
– volume: 22
  start-page: 2519
  year: 2005
  end-page: 2530
  article-title: Projections from the hippocampal region to the mammillary bodies in macaque monkeys
  publication-title: Eur J Neurosci
– volume: 6
  start-page: 556
  year: 1989
  end-page: 568
  article-title: Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA‐L tracing study
  publication-title: Neurosci Res
– volume: 12
  start-page: 719
  year: 1984
  end-page: 743
  article-title: Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey
  publication-title: Neuroscience
– volume: 88
  start-page: 508
  year: 1975
  end-page: 512
  article-title: The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study
  publication-title: Brain Res
– volume: 5
  start-page: 121
  year: 2005
  end-page: 129
  article-title: The role of the subiculum in epilepsy and epileptogenesis
  publication-title: Epilepsy Curr
– volume: 225
  start-page: 1168
  year: 1984
  end-page: 1170
  article-title: Alzheimer's disease: cell‐specific pathology isolates the hippocampal formation
  publication-title: Science
– volume: 198
  start-page: 315
  year: 1977
  end-page: 317
  article-title: Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey
  publication-title: Science
– volume: 480
  start-page: 115
  year: 2004
  end-page: 142
  article-title: Afferent projections to nucleus reuniens of the thalamus
  publication-title: J Comp Neurol
– ident: e_1_2_10_83_1
  doi: 10.1002/cne.902710202
– ident: e_1_2_10_50_1
  doi: 10.1002/cne.10883
– ident: e_1_2_10_73_1
  doi: 10.1016/j.pnpbp.2009.03.040
– ident: e_1_2_10_39_1
  doi: 10.1126/science.6474172
– ident: e_1_2_10_113_1
  doi: 10.1523/JNEUROSCI.11-04-01095.1991
– ident: e_1_2_10_13_1
  doi: 10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K
– ident: e_1_2_10_85_1
  doi: 10.1007/s00221-005-2361-3
– ident: e_1_2_10_20_1
  doi: 10.1093/cercor/10.3.220
– ident: e_1_2_10_116_1
  doi: 10.1016/j.tics.2010.01.001
– ident: e_1_2_10_78_1
  doi: 10.1016/j.cub.2012.05.030
– ident: e_1_2_10_51_1
  doi: 10.1002/cne.902360407
– ident: e_1_2_10_65_1
  doi: 10.1002/cne.902560108
– ident: e_1_2_10_66_1
  doi: 10.1002/cne.903230304
– ident: e_1_2_10_46_1
  doi: 10.1002/hipo.20931
– ident: e_1_2_10_23_1
  doi: 10.1002/cne.902200205
– ident: e_1_2_10_93_1
  doi: 10.1111/j.1535-7511.2005.00049.x
– ident: e_1_2_10_79_1
  doi: 10.1093/cercor/9.3.232
– ident: e_1_2_10_106_1
  doi: 10.1016/0006-8993(75)90206-1
– ident: e_1_2_10_36_1
  doi: 10.1002/cne.20093
– ident: e_1_2_10_77_1
  doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P
– ident: e_1_2_10_58_1
  doi: 10.1046/j.1365-2826.2002.00861.x
– ident: e_1_2_10_111_1
  doi: 10.1002/cne.902620208
– ident: e_1_2_10_76_1
  doi: 10.1016/0306-4522(85)90002-8
– ident: e_1_2_10_29_1
  doi: 10.1016/j.nbd.2010.09.011
– ident: e_1_2_10_114_1
  doi: 10.1002/cne.903070308
– ident: e_1_2_10_99_1
  doi: 10.1002/cne.903000412
– ident: e_1_2_10_56_1
  doi: 10.1002/cne.901720409
– ident: e_1_2_10_42_1
  doi: 10.1002/cne.1195
– ident: e_1_2_10_98_1
  doi: 10.1016/0006-8993(90)90824-U
– ident: e_1_2_10_88_1
  doi: 10.1002/cne.902850403
– ident: e_1_2_10_6_1
  doi: 10.1002/cne.902860303
– ident: e_1_2_10_19_1
  doi: 10.1002/cne.903630408
– ident: e_1_2_10_2_1
  doi: 10.1007/BF00340489
– ident: e_1_2_10_30_1
  doi: 10.1093/cercor/bhp213
– ident: e_1_2_10_55_1
  doi: 10.1016/0006-8993(79)91069-2
– ident: e_1_2_10_67_1
  doi: 10.1093/cercor/10.2.192
– ident: e_1_2_10_71_1
  doi: 10.1016/0168-0102(89)90044-8
– ident: e_1_2_10_27_1
  doi: 10.1002/cne.10516
– ident: e_1_2_10_64_1
  doi: 10.1016/0006-8993(77)90880-0
– ident: e_1_2_10_96_1
  doi: 10.1146/annurev.neuro.29.051605.112854
– ident: e_1_2_10_87_1
  doi: 10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9
– ident: e_1_2_10_40_1
  doi: 10.1016/j.neures.2005.06.002
– ident: e_1_2_10_95_1
  doi: 10.1002/cne.901720104
– ident: e_1_2_10_90_1
  doi: 10.1002/cne.903120404
– ident: e_1_2_10_59_1
  doi: 10.1002/cne.901890406
– ident: e_1_2_10_12_1
  doi: 10.1002/cne.901050305
– ident: e_1_2_10_9_1
  doi: 10.1016/0168-0102(94)90065-5
– ident: e_1_2_10_62_1
  doi: 10.1002/cne.902170109
– ident: e_1_2_10_91_1
  doi: 10.1002/cne.903080411
– ident: e_1_2_10_104_1
  doi: 10.1016/S0079-6123(08)61268-6
– ident: e_1_2_10_115_1
  doi: 10.1016/j.bbr.2006.06.022
– volume: 16
  start-page: 192
  year: 1983
  ident: e_1_2_10_110_1
  article-title: Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902160207
– ident: e_1_2_10_11_1
  doi: 10.1002/hipo.450050604
– ident: e_1_2_10_69_1
  doi: 10.1002/(SICI)1096-9861(19990503)407:2<183::AID-CNE3>3.0.CO;2-N
– ident: e_1_2_10_52_1
  doi: 10.1016/S0079-6123(08)61241-8
– ident: e_1_2_10_61_1
  doi: 10.1002/cne.20342
– ident: e_1_2_10_17_1
  doi: 10.1002/cne.903240204
– ident: e_1_2_10_70_1
  doi: 10.1016/0361-9230(94)90126-0
– ident: e_1_2_10_75_1
  doi: 10.1007/BF00237497
– ident: e_1_2_10_105_1
  doi: 10.1016/0006-8993(75)90204-8
– volume: 46
  start-page: 113
  year: 1934
  ident: e_1_2_10_57_1
  article-title: Studies on the structure of the cerebral cortex II. Continuation of the study of the ammoninc system
  publication-title: J Psychol Neurol
– ident: e_1_2_10_37_1
  doi: 10.1007/s00429-007-0150-4
– ident: e_1_2_10_107_1
  doi: 10.1126/science.109926
– ident: e_1_2_10_35_1
  doi: 10.1016/j.bbr.2006.05.035
– ident: e_1_2_10_47_1
  doi: 10.1002/(SICI)1096-9861(20000403)419:2<205::AID-CNE5>3.0.CO;2-0
– ident: e_1_2_10_43_1
  doi: 10.1002/cne.21564
– ident: e_1_2_10_38_1
  doi: 10.1016/0006-8993(91)90620-B
– ident: e_1_2_10_103_1
  doi: 10.1016/0166-2236(82)90201-6
– ident: e_1_2_10_94_1
  doi: 10.1126/science.49928
– ident: e_1_2_10_28_1
  doi: 10.1002/cne.22053
– ident: e_1_2_10_63_1
  doi: 10.1016/0006-8993(75)90662-9
– ident: e_1_2_10_45_1
  doi: 10.1016/0306-4522(82)90198-1
– ident: e_1_2_10_8_1
  doi: 10.1002/hipo.450010410
– ident: e_1_2_10_60_1
  doi: 10.1016/S0361-9230(01)00465-8
– ident: e_1_2_10_81_1
  doi: 10.1126/science.410102
– ident: e_1_2_10_31_1
  doi: 10.1016/0168-0102(95)00882-T
– ident: e_1_2_10_54_1
  doi: 10.1016/0006-8993(83)90144-0
– ident: e_1_2_10_44_1
  doi: 10.1002/cne.901950309
– ident: e_1_2_10_92_1
  doi: 10.1146/annurev.neuro.27.070203.144130
– ident: e_1_2_10_34_1
  doi: 10.1016/0306-4522(84)90166-0
– ident: e_1_2_10_102_1
  doi: 10.1002/cne.10757
– ident: e_1_2_10_22_1
  doi: 10.1002/cne.903320102
– ident: e_1_2_10_86_1
  doi: 10.1016/0006-8993(79)90499-2
– ident: e_1_2_10_7_1
  doi: 10.1016/0006-8993(83)90987-3
– ident: e_1_2_10_33_1
  doi: 10.1152/jn.01306.2006
– ident: e_1_2_10_117_1
  doi: 10.1002/cne.22336
– ident: e_1_2_10_16_1
  doi: 10.1002/cne.903280109
– ident: e_1_2_10_84_1
  doi: 10.1002/cne.902710203
– ident: e_1_2_10_119_1
  doi: 10.1002/1096-9861(20000724)423:2<282::AID-CNE7>3.0.CO;2-Z
– ident: e_1_2_10_97_1
  doi: 10.1016/0006-8993(90)90976-I
– ident: e_1_2_10_10_1
  doi: 10.1016/0306-4522(93)90132-Y
– ident: e_1_2_10_68_1
  doi: 10.1046/j.1460-9568.1999.00672.x
– ident: e_1_2_10_49_1
  doi: 10.1002/cne.10472
– ident: e_1_2_10_21_1
  doi: 10.1002/cne.903520407
– ident: e_1_2_10_3_1
  doi: 10.1016/j.neubiorev.2011.09.005
– ident: e_1_2_10_101_1
  doi: 10.1002/cne.903580411
– ident: e_1_2_10_108_1
  doi: 10.1002/cne.21679
– ident: e_1_2_10_89_1
  doi: 10.1016/0014-4886(77)90074-7
– ident: e_1_2_10_41_1
  doi: 10.1046/j.0953-816x.2001.01662.x
– ident: e_1_2_10_82_1
  doi: 10.1007/978-1-4615-6616-8_9
– ident: e_1_2_10_118_1
  doi: 10.1016/j.cub.2012.05.029
– ident: e_1_2_10_100_1
  doi: 10.1002/cne.903240310
– ident: e_1_2_10_48_1
  doi: 10.1002/cne.20919
– ident: e_1_2_10_15_1
  doi: 10.1093/cercor/bhq239
– ident: e_1_2_10_80_1
  doi: 10.1002/hipo.450050504
– ident: e_1_2_10_109_1
  doi: 10.1002/cne.21135
– ident: e_1_2_10_26_1
  doi: 10.1002/1096-9861(20001002)425:4<510::AID-CNE4>3.0.CO;2-R
– ident: e_1_2_10_4_1
  doi: 10.1002/cne.902430310
– ident: e_1_2_10_25_1
  doi: 10.1002/hbm.20940
– ident: e_1_2_10_32_1
  doi: 10.1016/0006-8993(94)90512-6
– ident: e_1_2_10_74_1
  doi: 10.1111/j.1460-9568.2006.05113.x
– ident: e_1_2_10_14_1
  doi: 10.1002/cne.903380209
– ident: e_1_2_10_5_1
  doi: 10.1111/j.1460-9568.2005.04450.x
– ident: e_1_2_10_112_1
  doi: 10.1016/j.neuroscience.2005.11.010
– ident: e_1_2_10_24_1
  doi: 10.1007/s002210100778
– volume: 424
  start-page: 143
  year: 1992
  ident: e_1_2_10_18_1
  article-title: Connections of the posterior nucleus of the amygdala
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903240203
– ident: e_1_2_10_53_1
  doi: 10.1007/BF00301824
– ident: e_1_2_10_72_1
  doi: 10.1016/j.bbr.2006.08.018
SSID ssj0009938
Score 2.4838865
SecondaryResourceType review_article
Snippet ABSTRACT The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important...
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4145
SubjectTerms Alzheimer's disease
Anatomy, Comparative
Animals
area prostriata
gene expression
Haplorhini - anatomy & histology
hippocampal head
Hippocampus - anatomy & histology
Humans
mouse brain
neural connectivity
neurochemistry
Primates
Rodentia - anatomy & histology
subicular complex
Title Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent
URI https://api.istex.fr/ark:/67375/WNG-S1BJHTHN-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.23416
https://www.ncbi.nlm.nih.gov/pubmed/23839777
https://www.proquest.com/docview/1445463620
https://www.proquest.com/docview/1447106944
https://www.proquest.com/docview/1464510373
Volume 521
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIvjit3ZrlSgiPnSvu9lsssEnPdoeBe9BWywihCSbgFR3S-8O1Bf_dWeyt3tXqSK-7cfskmRnJr_JTn5DyHNu87oMzIClhZByX9WpdQ4CV68Utw7CbYObk99OxeSEH52WpxvkVb8XpuOHGBbc0DKiv0YDN3a2tyINdY0fMfDBSLeNuVoIiN6tqKNg3u28MKYgKCF7VqGM7Q1PXpqLruGwfrsKaF7GrXHiObhFPvVN7vJNzkaLuR25H7-xOf5nn26Tm0tASl93GnSHbPjmLrn-sY3L7ffIz_GKHpyaBkL0r99pGyjgRgpNmi1st4C4S9cOMbl27aydzddOTVNTfONwiX5uaCwVuEvBJsCpdDLg2WFCvE9ODvaPx5N0WbQhdVxlImVVVnsrClEDUOOlCbwymbKlYaHOfSlcqESQdQhCVZWpcuN5IZRX4Dkh-gtF8YBsNm3jtwjNkMtM5p4J6UGLuPW1DwAvCykdy01IyMv-82m3ZDTHwhpfdMfFzDSMp47jmZBng-h5R-NxldCLqAODhLk4w7w3WeoP00P9Pn9zNDmeTPVhQnZ6JdFLk59BDMWxtIBgWUKeDrfBWPEPjGl8u4gygOiE4vxvMoIjzaEsEvKwU8ChQYCvELBL6HlUoz_3RY-n-_Fg-99FH5EbDIt95CzNyx2yOb9Y-McAueb2SbStX9l6J84
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qWiG4sC-BAgYB4tBME4_jJAcOMF3SLQeYioqLcRJbqloS1MkIyoU_xF_hP_HsLDNFBXHpgVuWpyi23_cW5-V7AM9Y5heBphKRprXLVFS4WZ5j4qrimGU5ptvS_Jy8l_Jkn20fBAcL8KP7F6bhh-g33AwyrL02ADcb0qsz1tC8VAOKRpi3JZU76vQLJmyTV1truLrPKd1YH48St-0p4OYsxuSZRl6hMj7kBcYRLJCaRdKLs0BSXfgq4LmOuA4LrXkcRTLypWJDHqsYgY3JiTbbn2jwl0wHccPUv_Z2RlaFnr6x-6boIeZhx2Pk0dX-Vc94vyWzkF_PC23PRsrW1W1cg5_dJDUVLkeDaZ0N8m-_8Uf-L7N4Ha62MTd53YDkBiyo8iZc-lDZLwq34PtoxoBOZCnr6tMpqTTB0JjgHEymWbNHukLmDk398NxZNannTmVZEPPE_hI5LInthrhCEPZoNxsZdF7o82_D_oWM_g4sllWp7gHxDF1b6CvKQ4VAYZkqlMYIehiGOfWlduBlpy8ib0nbTe-QY9HQTVOB6yfs-jnwtBf93DCVnCf0wipdLyFPjkxpXxiI9-mmeOe_2U7GSSo2HVjutFK0Vm2CaSIz3RM49Rx40t9Ge2Q-MslSVVMrg0Erjxn7mwxnhskxHDpwt9H4_oUwhDQ5SYgjt3r757GIUbpuD-7_u-hjuJyM93bF7la68wCuUNPbxKeuHyzDYn0yVQ8xwqyzRxbYBD5eNAZ-AazChOE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrUBceD8CBQwCxKHZJl7HiQ8cYLfbbQsRglZUXIyT2BIqJFU3KygXfhB_hR_F2Mlmt6ggLj1wy2MUxfY8vnEm3wA8YllYRIYqtDRjfKaTws_yHBNXLQTLcky3lf05-VXKx3tsez_aX4Ifs39hGn6IbsPNWobz19bADwuzPicNzUvdo-iDeVtRuaOPv2C-Nnm2NcTFfUzpaGN3MPbblgJ-zgTmzjQJCp3xPi8QRrBIGZaoQGSRoqYIdcRzk3ATF8ZwkSQqCZVmfS60QLvG3MTY3U_09yuMB8L2iRi-mXNVYaBv3L6teRA8ntEYBXS9e9UTwW_FruPX05DtSaDsIt3oEvyczVFT4HLQm9ZZL__2G33kfzKJl-Fii7jJ88ZErsCSLq_CufeV-55wDb4P5vznRJWqrj4fk8oQBMYEp2AyzZod0jWycGirhxfOqkm9cKrKgtgndpfIx5K4XohrBI0evWYjg6ELI_512DuT0d-A5bIq9S0ggSVri0NNeazRTFimC20QP_fjOKehMh48namLzFvKdts55JNsyKapxPWTbv08eNiJHjY8JacJPXE610moowNb2BdH8l26Kd-GL7bHu-NUbnqwOlNK2fq0CSaJzPZO4DTw4EF3G72R_cSkSl1NnQxCVi4Y-5sMZ5bHMe57cLNR-O6FEEDajCTGkTu1_fNY5CDdcAe3_130Ppx_PRzJl1vpzh24QG1jk5D6YbQKy_XRVN9FeFln95xZE_hw1ibwC4d-g5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+anatomy+of+the+prosubiculum%2C+subiculum%2C+presubiculum%2C+postsubiculum%2C+and+parasubiculum+in+human%2C+monkey%2C+and+rodent&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Ding%2C+Song-Lin&rft.date=2013-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=521&rft.issue=18&rft.spage=4145&rft_id=info:doi/10.1002%2Fcne.23416&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3110180371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon