Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent
ABSTRACT The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilep...
Saved in:
Published in | Journal of comparative neurology (1911) Vol. 521; no. 18; pp. 4145 - 4162 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
15.12.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145–4162, 2013. © 2013 Wiley Periodicals, Inc.
Based on conserved gene expression patterns, and other anatomical features, the author compares five subicular regions in human, monkey and rodent. Previously ignored rodent prosubiculum, and modified subiculum (Sub') and prosubiculum (ProS') in the three species were identified. These findings will make data comparison and analysis much easier across species. |
---|---|
AbstractList | The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145-4162, 2013. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT] The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub.The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145–4162, 2013. © 2013 Wiley Periodicals, Inc. The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145-4162, 2013. [copy 2013 Wiley Periodicals, Inc. Based on conserved gene expression patterns, and other anatomical features, the author compares five subicular regions in human, monkey and rodent. Previously ignored rodent prosubiculum, and modified subiculum (Sub') and prosubiculum (ProS') in the three species were identified. These findings will make data comparison and analysis much easier across species. ABSTRACT The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in the medial temporal memory system and is heavily involved in many neurological diseases such as Alzheimer's disease and epilepsy. In the literature, the ProS (in primate) and PoS (in rodent) are inconstantly identified, making data comparison difficult across species. This review is an attempt to discuss equivalencies and extent of the five subicular components in human, monkey, and rodent based on available information on their cytoarchitecture, chemoarchitecture, molecular signature, and neural connectivity. All five subicular cortices exist in human, monkey, and rodent. In human and monkey, the ProS and Sub extend into the uncal region anteriorly, and the PoS and PaS reach the cingulate isthmus posteriorly. In rodent, most of the typical subicular cortices are located in the dorsal and caudal portions of the hippocampal formation, and the modified version of the ventral ProS and Sub corresponds to the modified description of the uncal ProS and Sub in monkey and human. An interesting triangular region in rodent located at the juncture of the PoS, PaS, retrosplenial cortex, and visual cortex appears to be the equivalent of the monkey area prostriata. Major connections of the five subicular cortices are also summarized based on unified criteria discussed in this review, with distinct connections revealed between the ProS and the Sub. J. Comp. Neurol. 521:4145–4162, 2013. © 2013 Wiley Periodicals, Inc. Based on conserved gene expression patterns, and other anatomical features, the author compares five subicular regions in human, monkey and rodent. Previously ignored rodent prosubiculum, and modified subiculum (Sub') and prosubiculum (ProS') in the three species were identified. These findings will make data comparison and analysis much easier across species. |
Author | Ding, Song-Lin |
Author_xml | – sequence: 1 givenname: Song-Lin surname: Ding fullname: Ding, Song-Lin email: songd@alleninstitute.org organization: Allen Institute for Brain Science, Washington, 98103, Seattle |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23839777$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcFvFCEYxYmpsdvqwX_AkHjRpNPCwDBw1E3d1TTrwRqPhJ35SKedgS0wtnvyX5d1282micYTfPB7LzzeETpw3gFCryk5pYSUZ42D05JxKp6hCSVKFEoKeoAm-Y4WSon6EB3FeE0IUYrJF-iwZJKpuq4n6NfUDysTTOp-AjbOJD-ssbc4XQFeBR_HZdeM_Tic4L3tKsD-5GPaG41r8cZxd4Q7h6_GwbgTPHh3A-stE3wLLr1Ez63pI7x6WI_R90_nl9N5cfF19nn64aJouCKiKCVpYSmYaHkOWhnLpSFqWZnSthQq0VgpbN1aK5SURlIDnAkFqqSqlKVl7Bi92_rmULcjxKSHLjbQ98aBH6OmXPCKElb_D8prSoTiPKNvn6DXfgwuB9lQFc8PLkmm3jxQ43KAVq9CN5iw1o8tZOD9Fmjyj8cAdodQojcN69yw_tNwZs-esE2Xcn3epWC6_l-Ku66H9d-t9XRx_qgotoouJrjfKUy40aJmdaV_LGb6G_34ZX45X-gZ-w3Pm8Zi |
CitedBy_id | crossref_primary_10_1002_cne_25002 crossref_primary_10_1002_cne_25243 crossref_primary_10_1111_ene_15531 crossref_primary_10_7554_eLife_57013 crossref_primary_10_1007_s11682_024_00952_0 crossref_primary_10_1007_s12264_020_00592_6 crossref_primary_10_1002_alz_14355 crossref_primary_10_1016_j_neuroimage_2020_116932 crossref_primary_10_1016_j_neures_2014_09_004 crossref_primary_10_1038_s41583_019_0125_5 crossref_primary_10_1523_JNEUROSCI_0760_24_2024 crossref_primary_10_1016_j_nic_2022_04_012 crossref_primary_10_1016_j_tics_2018_06_008 crossref_primary_10_3389_fnins_2023_929461 crossref_primary_10_1038_s41467_017_01908_3 crossref_primary_10_3390_biomedicines9101454 crossref_primary_10_1515_revneuro_2020_0091 crossref_primary_10_1016_j_cell_2020_04_007 crossref_primary_10_1016_j_neuroimage_2017_11_054 crossref_primary_10_1523_JNEUROSCI_0796_19_2019 crossref_primary_10_3389_fnins_2023_1194299 crossref_primary_10_1523_JNEUROSCI_2938_20_2021 crossref_primary_10_1111_jsr_14134 crossref_primary_10_3389_fnana_2023_1114757 crossref_primary_10_1111_ejn_14395 crossref_primary_10_1016_j_aanat_2015_10_005 crossref_primary_10_1016_j_celrep_2020_107648 crossref_primary_10_1093_cercor_bhv019 crossref_primary_10_1016_j_nicl_2023_103374 crossref_primary_10_1080_1028415X_2024_2371256 crossref_primary_10_7554_eLife_14592 crossref_primary_10_1002_hipo_22809 crossref_primary_10_1038_s41598_020_74243_1 crossref_primary_10_32345_USMYJ_1_136__2023_30_59 crossref_primary_10_1016_j_neuroscience_2018_10_029 crossref_primary_10_1002_cne_24773 crossref_primary_10_1038_nrn_2015_24 crossref_primary_10_1002_cne_25346 crossref_primary_10_3389_fnsys_2020_00022 crossref_primary_10_1159_000381142 crossref_primary_10_1016_j_jchemneu_2020_101745 crossref_primary_10_3390_ijms242417377 crossref_primary_10_1016_j_cortex_2015_09_002 crossref_primary_10_1523_JNEUROSCI_1814_17_2018 crossref_primary_10_1016_j_nicl_2015_07_005 crossref_primary_10_3233_JAD_220538 crossref_primary_10_1162_imag_a_00105 crossref_primary_10_1007_s00429_020_02096_5 crossref_primary_10_3389_fnagi_2018_00320 crossref_primary_10_1016_j_pneurobio_2021_102029 crossref_primary_10_1016_j_cortex_2016_10_018 crossref_primary_10_1007_s00429_021_02415_4 crossref_primary_10_1016_j_neuroimage_2017_06_008 crossref_primary_10_3389_fnana_2022_1070035 crossref_primary_10_1016_j_semcdb_2022_03_001 crossref_primary_10_1016_j_neuroscience_2016_09_027 crossref_primary_10_1093_braincomms_fcae296 crossref_primary_10_1016_j_neures_2019_02_001 crossref_primary_10_1212_WNL_0000000000009362 crossref_primary_10_1111_ejn_14696 crossref_primary_10_1002_hipo_23641 crossref_primary_10_1093_cercor_bhw010 crossref_primary_10_1007_s00441_018_2841_y crossref_primary_10_1007_s00441_018_2848_4 crossref_primary_10_3389_fnana_2017_00084 crossref_primary_10_1016_j_celrep_2020_107747 crossref_primary_10_1002_hipo_23638 crossref_primary_10_1038_s41598_023_32903_y crossref_primary_10_1038_s41598_021_81362_w crossref_primary_10_1016_j_neuroimage_2022_119096 crossref_primary_10_1007_s00276_017_1843_x crossref_primary_10_1016_j_nbd_2023_106007 crossref_primary_10_1038_s41593_018_0241_y crossref_primary_10_1002_cne_25047 crossref_primary_10_1002_cne_25446 crossref_primary_10_1002_cne_23786 crossref_primary_10_1002_cne_25604 crossref_primary_10_1093_cercor_bhv079 crossref_primary_10_1523_JNEUROSCI_2363_17_2017 crossref_primary_10_1016_j_neuroimage_2020_117700 crossref_primary_10_1111_ejn_14341 crossref_primary_10_1093_jnen_73_2_136 crossref_primary_10_1016_j_neures_2018_08_002 crossref_primary_10_1016_j_neuroimage_2020_117542 crossref_primary_10_1016_j_neurobiolaging_2015_05_022 crossref_primary_10_3233_JAD_160289 crossref_primary_10_1002_cne_24080 crossref_primary_10_1016_j_cobeha_2017_06_001 crossref_primary_10_1016_j_bpsc_2022_06_011 crossref_primary_10_1002_hbm_23042 crossref_primary_10_3389_fnana_2020_605021 crossref_primary_10_1002_cne_24760 crossref_primary_10_1016_j_neuroimage_2019_116328 crossref_primary_10_3390_genes12050683 crossref_primary_10_1016_j_nicl_2018_101632 crossref_primary_10_3389_fncir_2020_605332 crossref_primary_10_3389_fnana_2017_00106 crossref_primary_10_1038_s41398_023_02429_y crossref_primary_10_7554_eLife_67007 crossref_primary_10_1152_physrev_00042_2020 crossref_primary_10_1007_s00429_016_1204_2 crossref_primary_10_7554_eLife_13503 crossref_primary_10_1038_s41467_022_32742_x crossref_primary_10_1016_j_neuron_2017_06_004 crossref_primary_10_1093_cercor_bhae174 crossref_primary_10_3389_fnsys_2017_00020 crossref_primary_10_1002_hipo_23172 crossref_primary_10_3389_fvets_2019_00358 crossref_primary_10_1111_nyas_15233 crossref_primary_10_3389_fnins_2021_772016 crossref_primary_10_1111_bpa_13074 crossref_primary_10_1016_j_cortex_2022_03_009 crossref_primary_10_1016_j_neuroscience_2022_06_019 crossref_primary_10_1007_s12640_017_9828_4 crossref_primary_10_1016_j_neuropsychologia_2023_108783 crossref_primary_10_3389_fnana_2019_00021 crossref_primary_10_3389_fnbeh_2022_1010321 crossref_primary_10_1016_j_cortex_2014_10_010 crossref_primary_10_1523_JNEUROSCI_2639_15_2015 crossref_primary_10_1016_j_cell_2017_07_013 crossref_primary_10_1016_j_cell_2018_03_031 crossref_primary_10_1111_ene_15918 crossref_primary_10_1093_ijnp_pyw039 crossref_primary_10_1038_s41593_020_00761_w crossref_primary_10_1111_ejn_13208 crossref_primary_10_1007_s11055_020_00928_9 crossref_primary_10_1016_j_pneurobio_2019_101693 crossref_primary_10_1016_j_neuropsychologia_2023_108656 crossref_primary_10_1089_can_2017_0047 crossref_primary_10_1523_JNEUROSCI_3749_15_2016 crossref_primary_10_1007_s00429_019_02022_4 crossref_primary_10_1016_j_neubiorev_2021_05_032 crossref_primary_10_1016_j_nicl_2017_05_022 crossref_primary_10_1093_schbul_sbz076 crossref_primary_10_1093_cercor_bhab113 crossref_primary_10_1172_JCI157002 |
Cites_doi | 10.1002/cne.902710202 10.1002/cne.10883 10.1016/j.pnpbp.2009.03.040 10.1126/science.6474172 10.1523/JNEUROSCI.11-04-01095.1991 10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K 10.1007/s00221-005-2361-3 10.1093/cercor/10.3.220 10.1016/j.tics.2010.01.001 10.1016/j.cub.2012.05.030 10.1002/cne.902360407 10.1002/cne.902560108 10.1002/cne.903230304 10.1002/hipo.20931 10.1002/cne.902200205 10.1111/j.1535-7511.2005.00049.x 10.1093/cercor/9.3.232 10.1016/0006-8993(75)90206-1 10.1002/cne.20093 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P 10.1046/j.1365-2826.2002.00861.x 10.1002/cne.902620208 10.1016/0306-4522(85)90002-8 10.1016/j.nbd.2010.09.011 10.1002/cne.903070308 10.1002/cne.903000412 10.1002/cne.901720409 10.1002/cne.1195 10.1016/0006-8993(90)90824-U 10.1002/cne.902850403 10.1002/cne.902860303 10.1002/cne.903630408 10.1007/BF00340489 10.1093/cercor/bhp213 10.1016/0006-8993(79)91069-2 10.1093/cercor/10.2.192 10.1016/0168-0102(89)90044-8 10.1002/cne.10516 10.1016/0006-8993(77)90880-0 10.1146/annurev.neuro.29.051605.112854 10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9 10.1016/j.neures.2005.06.002 10.1002/cne.901720104 10.1002/cne.903120404 10.1002/cne.901890406 10.1002/cne.901050305 10.1016/0168-0102(94)90065-5 10.1002/cne.902170109 10.1002/cne.903080411 10.1016/S0079-6123(08)61268-6 10.1016/j.bbr.2006.06.022 10.1002/cne.902160207 10.1002/hipo.450050604 10.1002/(SICI)1096-9861(19990503)407:2<183::AID-CNE3>3.0.CO;2-N 10.1016/S0079-6123(08)61241-8 10.1002/cne.20342 10.1002/cne.903240204 10.1016/0361-9230(94)90126-0 10.1007/BF00237497 10.1016/0006-8993(75)90204-8 10.1007/s00429-007-0150-4 10.1126/science.109926 10.1016/j.bbr.2006.05.035 10.1002/(SICI)1096-9861(20000403)419:2<205::AID-CNE5>3.0.CO;2-0 10.1002/cne.21564 10.1016/0006-8993(91)90620-B 10.1016/0166-2236(82)90201-6 10.1126/science.49928 10.1002/cne.22053 10.1016/0006-8993(75)90662-9 10.1016/0306-4522(82)90198-1 10.1002/hipo.450010410 10.1016/S0361-9230(01)00465-8 10.1126/science.410102 10.1016/0168-0102(95)00882-T 10.1016/0006-8993(83)90144-0 10.1002/cne.901950309 10.1146/annurev.neuro.27.070203.144130 10.1016/0306-4522(84)90166-0 10.1002/cne.10757 10.1002/cne.903320102 10.1016/0006-8993(79)90499-2 10.1016/0006-8993(83)90987-3 10.1152/jn.01306.2006 10.1002/cne.22336 10.1002/cne.903280109 10.1002/cne.902710203 10.1002/1096-9861(20000724)423:2<282::AID-CNE7>3.0.CO;2-Z 10.1016/0006-8993(90)90976-I 10.1016/0306-4522(93)90132-Y 10.1046/j.1460-9568.1999.00672.x 10.1002/cne.10472 10.1002/cne.903520407 10.1016/j.neubiorev.2011.09.005 10.1002/cne.903580411 10.1002/cne.21679 10.1016/0014-4886(77)90074-7 10.1046/j.0953-816x.2001.01662.x 10.1007/978-1-4615-6616-8_9 10.1016/j.cub.2012.05.029 10.1002/cne.903240310 10.1002/cne.20919 10.1093/cercor/bhq239 10.1002/hipo.450050504 10.1002/cne.21135 10.1002/1096-9861(20001002)425:4<510::AID-CNE4>3.0.CO;2-R 10.1002/cne.902430310 10.1002/hbm.20940 10.1016/0006-8993(94)90512-6 10.1111/j.1460-9568.2006.05113.x 10.1002/cne.903380209 10.1111/j.1460-9568.2005.04450.x 10.1016/j.neuroscience.2005.11.010 10.1007/s002210100778 10.1002/cne.903240203 10.1007/BF00301824 10.1016/j.bbr.2006.08.018 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/cne.23416 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 4162 |
ExternalDocumentID | 3110180371 23839777 10_1002_cne_23416 CNE23416 ark_67375_WNG_S1BJHTHN_G |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT AAHQN AAMNL AANHP ACRPL ACYXJ ADNMO ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4906-280deb636d42345af48a09b5a2fd1e56cf86f7dff6988a81ae4369e9219282f33 |
IEDL.DBID | DR2 |
ISSN | 0021-9967 1096-9861 |
IngestDate | Fri Jul 11 06:40:58 EDT 2025 Fri Jul 11 02:41:35 EDT 2025 Fri Jul 25 10:24:33 EDT 2025 Wed Feb 19 01:54:03 EST 2025 Tue Jul 01 03:55:24 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Jan 22 16:53:00 EST 2025 Wed Oct 30 09:52:27 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | subicular complex mouse brain neurochemistry neural connectivity area prostriata gene expression hippocampal head |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4906-280deb636d42345af48a09b5a2fd1e56cf86f7dff6988a81ae4369e9219282f33 |
Notes | istex:F0C60E7D86C3DC18F544316DB4A594FCF0616CED ark:/67375/WNG-S1BJHTHN-G ArticleID:CNE23416 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23839777 |
PQID | 1445463620 |
PQPubID | 1006438 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_1464510373 proquest_miscellaneous_1447106944 proquest_journals_1445463620 pubmed_primary_23839777 crossref_primary_10_1002_cne_23416 crossref_citationtrail_10_1002_cne_23416 wiley_primary_10_1002_cne_23416_CNE23416 istex_primary_ark_67375_WNG_S1BJHTHN_G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 December 2013 |
PublicationDateYYYYMMDD | 2013-12-15 |
PublicationDate_xml | – month: 12 year: 2013 text: 15 December 2013 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J. Comp. Neurol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Wright NF, Erichsen JT, Vann SD, O'Mara SM, Aggleton JP. 2010. Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. J Comp Neurol 518:2334-2354. Arikuni T, Sako H, Murata A. 1994. Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neurosci Res 21:19-39. Condé F, Maire-Lepoivre E, Audinat E, Crépel F. 1995. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567-593. Krayniak PF, Siegel A, Meibach RC, Fruchtman D, Scrimenti M. 1979. Origin of the fornix system in the squirrel monkey. Brain Res 160:401-411. Stafstrom CE. 2005. The role of the subiculum in epilepsy and epileptogenesis. Epilepsy Curr 5:121-129. Kobayashi Y, Amaral DG. 2003. Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48-79. Aggleton JP, Desimone R, Mishkin M. 1986. The origin, course, and termination of the hippocampothalamic projections in the macaque. J Comp Neurol 243:409-421. Canteras NS, Simerly RB, Swanson LW. 1992. Connections of the posterior nucleus of the amygdala. J Comp Neurol 424:143-179. Ding SL, Van Hoesen G, Rockland KS. 2000. Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510-530. Vogt BA, Pandya DN. 1987. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271-289. Taube JS. 2007. The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181-207. Morán MA, Mufson EJ, Mesulam MM. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256:88-103. Van Groen T, Wyss JM. 2003. Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol 463:249-263. Hoover WB, Vertes RP. 2007. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149-179. Howell GA, Perez-Clausell J, Frederickson CJ. 1991. Zinc containing projections to the bed nucleus of the stria terminalis. Brain Res 562:181-189. Herman JP, Mueller NK. 2006. Role of the ventral subiculum in stress integration. Behav Brain Res 174:215-224. Kishi T, Tsumori T, Ono K, Yokota S, Ishino H, Yasui Y. 2000. Topographical organization of projections from the subiculum to the hypothalamus in the rat. J Comp Neurol 419:205-222. Sikes RW, Chronister RB, White LE Jr. 1977. Origin of the direct hippocampus-anterior thalamic bundle in the rat: a combined horseradish peroxidase-Golgi analysis. Exp Neurol 57:379-395. Squire LR, Stark CE, Clark RE. 2004. The medial temporal lobe. Annu Rev Neurosci 27:279-306. Meibach RC, Siegel A. 1975. The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508-512. Ding SL, Tecedor L, Stein CS, Davidson BL. 2011. A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiol Dis 41:237-248. Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403:229-260. Vogt BA, Miller MW. 1983. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 16:192-210. Saunders RC, Mishkin M, Aggleton JP. 2005. Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1-16. Van Hoesen GW, Hyman BT. 1990. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. Prog Brain Res 83:445-457. Wang J, Palkovits M, Usdin TB, Dobolyi A. 2006. Afferent connections of the subparafascicular area in rat. Neuroscience 138:197-220. Cullinan WE, Herman JP, Watson SJ. 1993. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332:1-20. Lowry CA. 2002. Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911-923. Saunders RC, Rosene DL, Van Hoesen GW. 1988. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. J Comp Neurol 271:185-207. Seltzer B, Van Hoesen GW. 1979. A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res 179:157-161. Morris R, Pandya DN, Petrides M. 1999b. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J Comp Neurol 407:183-192. Yu HH, Chaplin TA, Davies AJ, Verma R, Rosa MG. 2012. A specialized area in limbic cortex for fast analysis of peripheral vision. Curr Biol 22:1351-1357. Amaral DG, Insausti R, Cowan WM. 1983. Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263-277. Rolls ET, O'Mara SM. 1995. View-responsive neurons in the primate hippocampal complex. Hippocampus 5:409-424. Van Hoesen G, Pandya DN. 1975a. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1-24. Ding SL, Van Hoesen GW, Cassell MD, Poremba A. 2009. Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514:595-623. Fujise N, Hunziker W, Heizmann CW, Kosaka T. 1995. Distribution of the calcium binding proteins, calbindin D-28K and parvalbumin, in the subicular complex of the adult mouse. Neurosci Res 22:89-107. Ohtake T, Yamada H. 1989. Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L tracing study. Neurosci Res 6:556-568. Köhler C. 1985. Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504-522. McKenna JT, Vertes RP. 2001. Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54:619-630. Goldman-Rakic PS, Selemon LD, Schwartz ML. 1984. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719-743. Van Hoesen GW, Pandya DN. 1975b. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39-59. Honda Y, Ishizuka N. 2004. Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex. J Comp Neurol 473:463-484. Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ. 2006. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768-796. Kosel KC, Van Hoesen GW, Rosene DL. 1983. A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat. Brain Res 269:347-351. Sousa AP, Piñon MC, Gattass R, Rosa MG. 1991. Topographic organization of cortical input to striate cortex in the cebus monkey: a fluorescent tracer study. J Comp Neurol 308:665-682. Ding SL, Van Hoesen GW. 2010. Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359-1379. Brog JS, Salyapongse A, Deutch AY, Zahm DS. 1993. The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255-278. Van Hoesen GW. 1982. The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345-350. Pandya DN, Van Hoesen GW, Mesulam MM. 1981. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319-330. O'Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O'Hare E. 2009. Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:782-790. Insausti R, Muñoz M. 2001. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur J Neurosci 14:435-451. Shibata H. 1989. Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 285:436-452. Palmer SM, Rosa MG. 2006. A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24:2389-2405. Phillipson OT, Griffiths AC. 1985. The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275-296. Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406:299-328. Slomianka L, Geneser FA. 1991. Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. J Comp Neurol 312:525-536. Witter MP. 2006. Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res 174:251-264. Amaral DG, Dolorfo C, Alvarez-Royo P. 1991. Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1:415-435. Kim Y, Spruston N. 2012. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus 22:693-706, 2012. Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615-641. van Groen T, Wyss JM. 2000; 419 2002; 14 2010; 14 1983; 275 2004; 27 1991; 11 2008; 508 2008; 506 2006; 174 2009; 514 1977; 124 1983; 16 1998; 392 1983; 269 2010; 20 2007; 212 2010; 518 2006; 24 1975a; 95 2000; 10 1995; 22 1987 1956; 105 1975; 189 1975; 88 1995; 363 1979; 160 1994; 668 2012; 22 1985; 16 2001; 139 2001; 54 2010; 31 1981; 161 1989; 6 1984; 225 1992; 424 2012; 36 2003; 456 2007; 97 2003; 455 1995; 5 1990c; 300 1993; 56 1991; 562 1986; 243 2005; 5 2003; 466 2003; 463 2001; 435 1977; 198 1987; 262 1977; 172 1991; 312 1993; 328 1988; 271 1999a; 11 2004; 480 1992; 323 1992; 324 2007; 30 1990b; 529 1999; 403 2006; 138 1975b; 95 1990a; 518 2005; 22 2006; 496 1981; 42 1994; 21 2006; 499 1999; 406 1981; 195 1993; 338 1983; 220 1982; 5 1984; 12 1982; 7 2011; 21 1994; 35 2001; 14 1980; 189 1991; 308 1993; 332 1991; 307 1991; 1 1999b; 407 1934; 46 1979; 205 1995; 358 1995; 352 1990; 83 1983; 217 1999; 9 2009; 33 1979; 179 2004; 473 1987; 256 1986; 64 2005; 167 2000; 423 2000; 425 1989; 285 1989; 286 2011; 41 2005; 53 1985; 236 1977; 57 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 Vogt BA (e_1_2_10_110_1) 1983; 16 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 No R (e_1_2_10_57_1) 1934; 46 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 Canteras NS (e_1_2_10_18_1) 1992; 424 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – reference: Van Groen T, Wyss JM. 1990a. The connections of presubiculum and parasubiculum in the rat. Brain Res 518:227-243. – reference: Amaral DG, Insausti R, Cowan WM. 1983. Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey. Brain Res 275:263-277. – reference: Ichinohe N, Rockland KS. 2005. Zinc-enriched amygdalo- and hippocampo-cortical connections to the inferotemporal cortices in macaque monkey. Neurosci Res 53:57-68. – reference: Blatt GJ, Rosene DL. 1998. Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe. J Comp Neurol 392:92-114. – reference: Ding SL, Van Hoesen GW. 2010. Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers. Hum Brain Mapp 31:1359-1379. – reference: Arikuni T, Sako H, Murata A. 1994. Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey. Neurosci Res 21:19-39. – reference: Barbas H. 1993. Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey. Neuroscience 56:841-864. – reference: Fujise N, Hunziker W, Heizmann CW, Kosaka T. 1995. Distribution of the calcium binding proteins, calbindin D-28K and parvalbumin, in the subicular complex of the adult mouse. Neurosci Res 22:89-107. – reference: McKinney M, Coyle JT, Hedreen JC. 1983. Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system. J Comp Neurol 217:103-121. – reference: Krettek JE, Price JL. 1977. Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. J Comp Neurol 172:723-752. – reference: Ding SL, Van Hoesen GW, Cassell MD, Poremba A. 2009. Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol 514:595-623. – reference: Van Groen T, Wyss JM. 2003. Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol 463:249-263. – reference: Lorente de No R. 1934. Studies on the structure of the cerebral cortex II. Continuation of the study of the ammoninc system. J Psychol Neurol 46:113-177. – reference: Wang J, Palkovits M, Usdin TB, Dobolyi A. 2006. Afferent connections of the subparafascicular area in rat. Neuroscience 138:197-220. – reference: Ding SL, Morecraft RJ, Van Hoesen GW. 2003. Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo-parahippocampal isthmus and adjoining retrocalcarine areas in the monkey. J Comp Neurol 456:184-201. – reference: Seltzer B, Van Hoesen GW. 1979. A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey. Brain Res 179:157-161. – reference: Deacon TW, Eichenbaum H, Rosenberg P, Eckmann KW. 1983. Afferent connections of the perirhinal cortex in the rat. J Comp Neurol 220:168-190. – reference: Köhler C. 1985. Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504-522. – reference: Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ. 2006. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499:768-796. – reference: Vogt BA, Pandya DN. 1987. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 262:271-289. – reference: Rockland KS. 2012. Visual system: prostriata-a visual area off the beaten path. Curr Biol 22:R571-R573. – reference: Meibach RC, Siegel A. 1977. Efferent connections of the hippocampal formation in the rat. Brain Res 124:197-224. – reference: Van Groen T, Wyss JM. 1992. Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. J Comp Neurol 324:427-448. – reference: McKenna JT, Vertes RP. 2004. Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480:115-142. – reference: Aggleton JP. 1986. A description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp Brain Res 64:515-526. – reference: Loy R, Koziell DA, Lindsey JD, Moore RY. 1980. Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699-710. – reference: Slomianka L, Geneser FA. 1991. Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus. J Comp Neurol 312:525-536. – reference: Kishi T, Tsumori T, Ono K, Yokota S, Ishino H, Yasui Y. 2000. Topographical organization of projections from the subiculum to the hypothalamus in the rat. J Comp Neurol 419:205-222. – reference: Webster MJ, Ungerleider LG, Bachevalier J. 1991. Connections of inferior temporal areas TE and TEO with medial temporal-lobe structures in infant and adult monkeys. J Neurosci 11:1095-1116. – reference: Kaitz SS, Robertson RT. 1981. Thalamic connections with limbic cortex. II. Corticothalamic projections. J Comp Neurol 195:527-545. – reference: O'Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O'Hare E. 2009. Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuropsychopharmacol Biol Psychiatry 33:782-790. – reference: Amaral DG, Dolorfo C, Alvarez-Royo P. 1991. Organization of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus 1:415-435. – reference: Aggleton JP, Vann SD, Saunders RC. 2005. Projections from the hippocampal region to the mammillary bodies in macaque monkeys. Eur J Neurosci 22:2519-2530. – reference: Köhler C, Chan-Palay V, Steinbusch H. 1981. The distribution and orientation of serotonin fibers in the entorhinal and other retrohippocampal areas. An immunohistochemical study with anti-serotonin antibodies in the rats brain. Anat Embryol 161:237-264. – reference: Swanson LW, Cowan WM. 1975. Hippocampo-hypothalamic connections: origin in subicular cortex, not Ammon's horn. Science 189:303-304. – reference: Van Groen T, Wyss JM. 1990c. Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol 300:593-606. – reference: Carmichael ST, Price JL. 1995. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615-641. – reference: Brog JS, Salyapongse A, Deutch AY, Zahm DS. 1993. The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255-278. – reference: Rosene DL, Van Hoesen GW. 1977. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198:315-317. – reference: Aggleton JP. 2012. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci Biobehav Rev 36:1579-1596. – reference: Morris R, Pandya DN, Petrides M. 1999b. Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey. J Comp Neurol 407:183-192. – reference: Taube JS. 2007. The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181-207. – reference: Kishi T, Tsumori T, Yokota S, Yasui Y. 2006. Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat. J Comp Neurol 496:349-368. – reference: Jarsky T, Mady R, Kennedy B, Spruston N. 2008. Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus. J Comp Neurol 506:535-547. – reference: Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220-242. – reference: Burman KJ, Reser DH, Yu HH, Rosa MG. 2011. Cortical input to the frontal pole of the marmoset monkey. Cereb Cortex 21:1712-1737. – reference: Rockland KS, Van Hoesen GW. 1999. Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus. Cereb Cortex 9:232-237. – reference: Yukie M. 2000. Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata). J Comp Neurol 423:282-298. – reference: Pikkarainen M, Rönkkö S, Savander V, Insausti R, Pitkänen A. 1999. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J Comp Neurol 403:229-260. – reference: Kim Y, Spruston N. 2012. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum. Hippocampus 22:693-706, 2012. – reference: Goldman-Rakic PS, Selemon LD, Schwartz ML. 1984. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience 12:719-743. – reference: Canteras NS, Simerly RB, Swanson LW. 1992. Connections of the posterior nucleus of the amygdala. J Comp Neurol 424:143-179. – reference: Gasbarri A, Verney C, Innocenzi R, Campana E, Pacitti C. 1994. Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study. Brain Res 668:71-79. – reference: McKenna JT, Vertes RP. 2001. Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54:619-630. – reference: Van Hoesen GW, Rosene DL, Mesulam MM. 1979. Subicular input from temporal cortex in the rhesus monkey. Science 205:608-610. – reference: Yu HH, Chaplin TA, Davies AJ, Verma R, Rosa MG. 2012. A specialized area in limbic cortex for fast analysis of peripheral vision. Curr Biol 22:1351-1357. – reference: Ding SL, Van Hoesen G, Rockland KS. 2000. Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas. J Comp Neurol 425:510-530. – reference: Hoover WB, Vertes RP. 2007. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212:149-179. – reference: Shi CJ, Cassell MD. 1999. Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat. J Comp Neurol 406:299-328. – reference: Squire LR, Stark CE, Clark RE. 2004. The medial temporal lobe. Annu Rev Neurosci 27:279-306. – reference: Ding SL, Rockland KS. 2001. Modular organization of the monkey presubiculum. Exp Brain Res 139:255-265. – reference: Ding SL, Tecedor L, Stein CS, Davidson BL. 2011. A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiol Dis 41:237-248. – reference: Ohtake T, Yamada H. 1989. Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA-L tracing study. Neurosci Res 6:556-568. – reference: Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. 1984. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science 225:1168-1170. – reference: Insausti R, Muñoz M. 2001. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis). Eur J Neurosci 14:435-451. – reference: Van Hoesen GW. 1982. The parahippocampal gyrus. New observations regarding its cortical connections in the monkey. Trends Neurosci 5:345-350. – reference: Kobayashi Y, Amaral DG. 2003. Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48-79. – reference: Saunders RC, Mishkin M, Aggleton JP. 2005. Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques. Exp Brain Res 167:1-16. – reference: Barbas H, Blatt GJ. 1995. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511-533. – reference: Herman JP, Mueller NK. 2006. Role of the ventral subiculum in stress integration. Behav Brain Res 174:215-224. – reference: Honda Y, Ishizuka N. 2004. Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex. J Comp Neurol 473:463-484. – reference: Glasgow SD, Chapman CA. 2007. Local generation of theta-frequency EEG activity in the parasubiculum. J Neurophysiol 97:3868-3879. – reference: Palmer SM, Rosa MG. 2006. A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24:2389-2405. – reference: Morecraft RJ, Rockland KS, Van Hoesen GW. 2000. Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey. Cereb Cortex 10:192-203. – reference: Lowry CA. 2002. Functional subsets of serotonergic neurones: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14:911-923. – reference: Caballero-Bleda M, Witter MP. 1993. Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing study in the rat. J Comp Neurol 328:115-129. – reference: Shibata H. 1989. Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 285:436-452. – reference: Falchier A, Schroeder CE, Hackett TA, Lakatos P, Nascimento-Silva S, Ulbert I, Karmos G, Smiley JF. 2010. Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. Cereb Cortex 20:1529-1538. – reference: Canteras NS, Swanson LW. 1992. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180-194. – reference: Wolbers T, Hegarty M. 2010. What determines our navigational abilities? Trends Cogn Sci 14:138-146. – reference: Köhler C. 1990. Subicular projections to the hypothalamus and brainstem: some novel aspects revealed in the rat by the anterograde Phaseolus vulgaris leucoagglutinin (PHA-L) tracing method. Prog Brain Res 83:59-69. – reference: Blackstad TW. 1956. Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination. J Comp Neurol 105:417-537. – reference: Ishizuka N. 2001. Laminar organization of the pyramidal cell layer of the subiculum in the rat. J Comp Neurol 435:89-110. – reference: Morán MA, Mufson EJ, Mesulam MM. 1987. Neural inputs into the temporopolar cortex of the rhesus monkey. J Comp Neurol 256:88-103. – reference: Namura S, Takada M, Kikuchi H, Mizuno N. 1994. Topographical organization of subicular neurons projecting to subcortical regions. Brain Res Bull 35:221-231. – reference: van Groen T, Wyss JM. 1995. Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat. J Comp Neurol 358:584-604. – reference: Condé F, Maire-Lepoivre E, Audinat E, Crépel F. 1995. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352:567-593. – reference: Witter MP, Amaral DG. 1991. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex. J Comp Neurol 307:437-459. – reference: Kosel KC, Van Hoesen GW, Rosene DL. 1983. A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat. Brain Res 269:347-351. – reference: Allen GV, Hopkins DA. 1989. Mammillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum. J Comp Neurol 286:311-336. – reference: Pandya DN, Van Hoesen GW, Mesulam MM. 1981. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res 42:319-330. – reference: Vertes RP, Hoover WB. 2008. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508:212-237. – reference: Phillipson OT, Griffiths AC. 1985. The topographic order of inputs to nucleus accumbens in the rat. Neuroscience 16:275-296. – reference: Wright NF, Erichsen JT, Vann SD, O'Mara SM, Aggleton JP. 2010. Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat. J Comp Neurol 518:2334-2354. – reference: Morris R, Petrides M, Pandya DN. 1999a. Architecture and connections of retrosplenial area 30 in the rhesus monkey (Macaca mulatta). Eur J Neurosci 11:2506-2518. – reference: Van Hoesen G, Pandya DN. 1975a. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1-24. – reference: Rolls ET, O'Mara SM. 1995. View-responsive neurons in the primate hippocampal complex. Hippocampus 5:409-424. – reference: Van Hoesen GW, Hyman BT. 1990. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. Prog Brain Res 83:445-457. – reference: Aggleton JP, Desimone R, Mishkin M. 1986. The origin, course, and termination of the hippocampothalamic projections in the macaque. J Comp Neurol 243:409-421. – reference: Kelley AE, Domesick VB. 1982. The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde- and retrograde-horseradish peroxidase study. Neuroscience 7:2321-2335. – reference: Saunders RC, Rosene DL, Van Hoesen GW. 1988. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections. J Comp Neurol 271:185-207. – reference: Sousa AP, Piñon MC, Gattass R, Rosa MG. 1991. Topographic organization of cortical input to striate cortex in the cebus monkey: a fluorescent tracer study. J Comp Neurol 308:665-682. – reference: O'Mara S. 2006. Controlling hippocampal output: the central role of subiculum in hippocampal information processing. Behav Brain Res 174:304-312. – reference: Swanson LW, Cowan WM. 1977. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neurol 172:49-84. – reference: Witter MP. 2006. Connections of the subiculum of the rat: topography in relation to columnar and laminar organization. Behav Brain Res 174:251-264. – reference: Krayniak PF, Siegel A, Meibach RC, Fruchtman D, Scrimenti M. 1979. Origin of the fornix system in the squirrel monkey. Brain Res 160:401-411. – reference: Vogt BA, Miller MW. 1983. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J Comp Neurol 16:192-210. – reference: Cullinan WE, Herman JP, Watson SJ. 1993. Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis. J Comp Neurol 332:1-20. – reference: Sikes RW, Chronister RB, White LE Jr. 1977. Origin of the direct hippocampus-anterior thalamic bundle in the rat: a combined horseradish peroxidase-Golgi analysis. Exp Neurol 57:379-395. – reference: Van Groen T, Wyss JM. 1990b. The postsubicular cortex in the rat: caracterization of the fourth region of the subicular cortex and its connections. Brain Res 529:165-177. – reference: Stafstrom CE. 2005. The role of the subiculum in epilepsy and epileptogenesis. Epilepsy Curr 5:121-129. – reference: Kloosterman F, Witter MP, Van Haeften T. 2003. Topographical and laminar organization of subicular projections to the parahippocampal region of the rat. J Comp Neurol 455:156-171. – reference: Morecraft RJ, Geula C, Mesulam MM. 1992. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J Comp Neurol 323:341-358. – reference: Saunders RC, Rosene DL. 1988. A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices. J Comp Neurol 271:153-184. – reference: Van Hoesen GW, Pandya DN. 1975b. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res 95:39-59. – reference: Howell GA, Perez-Clausell J, Frederickson CJ. 1991. Zinc containing projections to the bed nucleus of the stria terminalis. Brain Res 562:181-189. – reference: Meibach RC, Siegel A. 1975. The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study. Brain Res 88:508-512. – volume: 95 start-page: 1 year: 1975a end-page: 24 article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents publication-title: Brain Res – volume: 24 start-page: 2389 year: 2006 end-page: 2405 article-title: A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision publication-title: Eur J Neurosci – volume: 5 start-page: 345 year: 1982 end-page: 350 article-title: The parahippocampal gyrus. New observations regarding its cortical connections in the monkey publication-title: Trends Neurosci – volume: 529 start-page: 165 year: 1990b end-page: 177 article-title: The postsubicular cortex in the rat: caracterization of the fourth region of the subicular cortex and its connections publication-title: Brain Res – volume: 83 start-page: 59 year: 1990 end-page: 69 article-title: Subicular projections to the hypothalamus and brainstem: some novel aspects revealed in the rat by the anterograde leucoagglutinin (PHA‐L) tracing method publication-title: Prog Brain Res – volume: 514 start-page: 595 year: 2009 end-page: 623 article-title: Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers publication-title: J Comp Neurol – volume: 271 start-page: 185 year: 1988 end-page: 207 article-title: Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non‐reciprocal connections publication-title: J Comp Neurol – volume: 205 start-page: 608 year: 1979 end-page: 610 article-title: Subicular input from temporal cortex in the rhesus monkey publication-title: Science – volume: 195 start-page: 527 year: 1981 end-page: 545 article-title: Thalamic connections with limbic cortex. II. Corticothalamic projections publication-title: J Comp Neurol – volume: 27 start-page: 279 year: 2004 end-page: 306 article-title: The medial temporal lobe publication-title: Annu Rev Neurosci – volume: 167 start-page: 1 year: 2005 end-page: 16 article-title: Projections from the entorhinal cortex, perirhinal cortex, presubiculum, and parasubiculum to the medial thalamus in macaque monkeys: identifying different pathways using disconnection techniques publication-title: Exp Brain Res – volume: 407 start-page: 183 year: 1999b end-page: 192 article-title: Fiber system linking the mid‐dorsolateral frontal cortex with the retrosplenial/presubicular region in the rhesus monkey publication-title: J Comp Neurol – volume: 324 start-page: 427 year: 1992 end-page: 448 article-title: Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat publication-title: J Comp Neurol – volume: 14 start-page: 911 year: 2002 end-page: 923 article-title: Functional subsets of serotonergic neurones: implications for control of the hypothalamic–pituitary–adrenal axis publication-title: J Neuroendocrinol – volume: 22 start-page: 1351 year: 2012 end-page: 1357 article-title: A specialized area in limbic cortex for fast analysis of peripheral vision publication-title: Curr Biol – volume: 124 start-page: 197 year: 1977 end-page: 224 article-title: Efferent connections of the hippocampal formation in the rat publication-title: Brain Res – volume: 332 start-page: 1 year: 1993 end-page: 20 article-title: Ventral subicular interaction with the hypothalamic paraventricular nucleus: evidence for a relay in the bed nucleus of the stria terminalis publication-title: J Comp Neurol – volume: 562 start-page: 181 year: 1991 end-page: 189 article-title: Zinc containing projections to the bed nucleus of the stria terminalis publication-title: Brain Res – volume: 424 start-page: 143 year: 1992 end-page: 179 article-title: Connections of the posterior nucleus of the amygdala publication-title: J Comp Neurol – volume: 30 start-page: 181 year: 2007 end-page: 207 article-title: The head direction signal: origins and sensory‐motor integration publication-title: Annu Rev Neurosci – volume: 262 start-page: 271 year: 1987 end-page: 289 article-title: Cingulate cortex of the rhesus monkey: II. Cortical afferents publication-title: J Comp Neurol – volume: 14 start-page: 138 year: 2010 end-page: 146 article-title: What determines our navigational abilities? publication-title: Trends Cogn Sci – volume: 5 start-page: 511 year: 1995 end-page: 533 article-title: Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey publication-title: Hippocampus – start-page: 345 year: 1987 end-page: 456 – volume: 189 start-page: 699 year: 1980 end-page: 710 article-title: Noradrenergic innervation of the adult rat hippocampal formation publication-title: J Comp Neurol – volume: 33 start-page: 782 year: 2009 end-page: 790 article-title: Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour publication-title: Prog Neuropsychopharmacol Biol Psychiatry – volume: 21 start-page: 1712 year: 2011 end-page: 1737 article-title: Cortical input to the frontal pole of the marmoset monkey publication-title: Cereb Cortex – volume: 217 start-page: 103 year: 1983 end-page: 121 article-title: Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system publication-title: J Comp Neurol – volume: 53 start-page: 57 year: 2005 end-page: 68 article-title: Zinc‐enriched amygdalo‐ and hippocampo‐cortical connections to the inferotemporal cortices in macaque monkey publication-title: Neurosci Res – volume: 455 start-page: 156 year: 2003 end-page: 171 article-title: Topographical and laminar organization of subicular projections to the parahippocampal region of the rat publication-title: J Comp Neurol – volume: 14 start-page: 435 year: 2001 end-page: 451 article-title: Cortical projections of the non‐entorhinal hippocampal formation in the cynomolgus monkey ( ) publication-title: Eur J Neurosci – volume: 518 start-page: 227 year: 1990a end-page: 243 article-title: The connections of presubiculum and parasubiculum in the rat publication-title: Brain Res – volume: 54 start-page: 619 year: 2001 end-page: 630 article-title: Collateral projections from the median raphe nucleus to the medial septum and hippocampus publication-title: Brain Res Bull – volume: 11 start-page: 1095 year: 1991 end-page: 1116 article-title: Connections of inferior temporal areas TE and TEO with medial temporal‐lobe structures in infant and adult monkeys publication-title: J Neurosci – volume: 160 start-page: 401 year: 1979 end-page: 411 article-title: Origin of the fornix system in the squirrel monkey publication-title: Brain Res – volume: 11 start-page: 2506 year: 1999a end-page: 2518 article-title: Architecture and connections of retrosplenial area 30 in the rhesus monkey ( ) publication-title: Eur J Neurosci – volume: 97 start-page: 3868 year: 2007 end-page: 3879 article-title: Local generation of theta‐frequency EEG activity in the parasubiculum publication-title: J Neurophysiol – volume: 300 start-page: 593 year: 1990c end-page: 606 article-title: Connections of the retrosplenial granular a cortex in the rat publication-title: J Comp Neurol – volume: 20 start-page: 1529 year: 2010 end-page: 1538 article-title: Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey publication-title: Cereb Cortex – volume: 328 start-page: 115 year: 1993 end-page: 129 article-title: Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing study in the rat publication-title: J Comp Neurol – volume: 46 start-page: 113 year: 1934 end-page: 177 article-title: Studies on the structure of the cerebral cortex II. Continuation of the study of the ammoninc system publication-title: J Psychol Neurol – volume: 243 start-page: 409 year: 1986 end-page: 421 article-title: The origin, course, and termination of the hippocampothalamic projections in the macaque publication-title: J Comp Neurol – volume: 508 start-page: 212 year: 2008 end-page: 237 article-title: Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat publication-title: J Comp Neurol – volume: 358 start-page: 584 year: 1995 end-page: 604 article-title: Projections from the anterodorsal and anteroventral nucleus of the thalamus to the limbic cortex in the rat publication-title: J Comp Neurol – volume: 668 start-page: 71 year: 1994 end-page: 79 article-title: Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: a combined retrograde tracing and immunohistochemical study publication-title: Brain Res – volume: 435 start-page: 89 year: 2001 end-page: 110 article-title: Laminar organization of the pyramidal cell layer of the subiculum in the rat publication-title: J Comp Neurol – volume: 35 start-page: 221 year: 1994 end-page: 231 article-title: Topographical organization of subicular neurons projecting to subcortical regions publication-title: Brain Res Bull – volume: 352 start-page: 567 year: 1995 end-page: 593 article-title: Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents publication-title: J Comp Neurol – volume: 10 start-page: 192 year: 2000 end-page: 203 article-title: Localization of area prostriata and its projection to the cingulate motor cortex in the rhesus monkey publication-title: Cereb Cortex – volume: 466 start-page: 48 year: 2003 end-page: 79 article-title: Macaque monkey retrosplenial cortex: II. Cortical afferents publication-title: J Comp Neurol – volume: 172 start-page: 723 year: 1977 end-page: 752 article-title: Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat publication-title: J Comp Neurol – volume: 338 start-page: 255 year: 1993 end-page: 278 article-title: The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported fluoro‐gold publication-title: J Comp Neurol – volume: 5 start-page: 409 year: 1995 end-page: 424 article-title: View‐responsive neurons in the primate hippocampal complex publication-title: Hippocampus – volume: 16 start-page: 275 year: 1985 end-page: 296 article-title: The topographic order of inputs to nucleus accumbens in the rat publication-title: Neuroscience – volume: 1 start-page: 415 year: 1991 end-page: 435 article-title: Organization of CA1 projections to the subiculum: a PHA‐L analysis in the rat publication-title: Hippocampus – volume: 16 start-page: 192 year: 1983 end-page: 210 article-title: Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices publication-title: J Comp Neurol – volume: 21 start-page: 19 year: 1994 end-page: 39 article-title: Ipsilateral connections of the anterior cingulate cortex with the frontal and medial temporal cortices in the macaque monkey publication-title: Neurosci Res – volume: 56 start-page: 841 year: 1993 end-page: 864 article-title: Organization of cortical afferent input to orbitofrontal areas in the rhesus monkey publication-title: Neuroscience – volume: 57 start-page: 379 year: 1977 end-page: 395 article-title: Origin of the direct hippocampus‐anterior thalamic bundle in the rat: a combined horseradish peroxidase‐Golgi analysis publication-title: Exp Neurol – volume: 64 start-page: 515 year: 1986 end-page: 526 article-title: A description of the amygdalo‐hippocampal interconnections in the macaque monkey publication-title: Exp Brain Res – volume: 174 start-page: 251 year: 2006 end-page: 264 article-title: Connections of the subiculum of the rat: topography in relation to columnar and laminar organization publication-title: Behav Brain Res – volume: 456 start-page: 184 year: 2003 end-page: 201 article-title: Topography, cytoarchitecture, and cellular phenotypes of cortical areas that form the cingulo‐parahippocampal isthmus and adjoining retrocalcarine areas in the monkey publication-title: J Comp Neurol – volume: 236 start-page: 504 year: 1985 end-page: 522 article-title: Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex publication-title: J Comp Neurol – volume: 22 start-page: 89 year: 1995 end-page: 107 article-title: Distribution of the calcium binding proteins, calbindin D‐28K and parvalbumin, in the subicular complex of the adult mouse publication-title: Neurosci Res – volume: 269 start-page: 347 year: 1983 end-page: 351 article-title: A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat publication-title: Brain Res – volume: 423 start-page: 282 year: 2000 end-page: 298 article-title: Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey ( ) publication-title: J Comp Neurol – volume: 307 start-page: 437 year: 1991 end-page: 459 article-title: Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex publication-title: J Comp Neurol – volume: 518 start-page: 2334 year: 2010 end-page: 2354 article-title: Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat publication-title: J Comp Neurol – volume: 271 start-page: 153 year: 1988 end-page: 184 article-title: A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices publication-title: J Comp Neurol – volume: 174 start-page: 215 year: 2006 end-page: 224 article-title: Role of the ventral subiculum in stress integration publication-title: Behav Brain Res – volume: 172 start-page: 49 year: 1977 end-page: 84 article-title: An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat publication-title: J Comp Neurol – volume: 10 start-page: 220 year: 2000 end-page: 242 article-title: The anatomical connections of the macaque monkey orbitofrontal cortex. A review publication-title: Cereb Cortex – volume: 323 start-page: 341 year: 1992 end-page: 358 article-title: Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey publication-title: J Comp Neurol – volume: 138 start-page: 197 year: 2006 end-page: 220 article-title: Afferent connections of the subparafascicular area in rat publication-title: Neuroscience – volume: 95 start-page: 39 year: 1975b end-page: 59 article-title: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections publication-title: Brain Res – volume: 473 start-page: 463 year: 2004 end-page: 484 article-title: Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex publication-title: J Comp Neurol – volume: 189 start-page: 303 year: 1975 end-page: 304 article-title: Hippocampo‐hypothalamic connections: origin in subicular cortex, not Ammon's horn publication-title: Science – volume: 139 start-page: 255 year: 2001 end-page: 265 article-title: Modular organization of the monkey presubiculum publication-title: Exp Brain Res – volume: 419 start-page: 205 year: 2000 end-page: 222 article-title: Topographical organization of projections from the subiculum to the hypothalamus in the rat publication-title: J Comp Neurol – volume: 392 start-page: 92 year: 1998 end-page: 114 article-title: Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe publication-title: J Comp Neurol – volume: 506 start-page: 535 year: 2008 end-page: 547 article-title: Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus publication-title: J Comp Neurol – volume: 256 start-page: 88 year: 1987 end-page: 103 article-title: Neural inputs into the temporopolar cortex of the rhesus monkey publication-title: J Comp Neurol – volume: 22 start-page: 693 year: 2012 end-page: 706 article-title: Target‐specific output patterns are predicted by the distribution of regular‐spiking and bursting pyramidal neurons in the subiculum publication-title: Hippocampus – volume: 36 start-page: 1579 year: 2012 end-page: 1596 article-title: Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function publication-title: Neurosci Biobehav Rev – volume: 285 start-page: 436 year: 1989 end-page: 452 article-title: Descending projections to the mammillary nuclei in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin‐horseradish peroxidase publication-title: J Comp Neurol – volume: 7 start-page: 2321 year: 1982 end-page: 2335 article-title: The distribution of the projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde‐ and retrograde‐horseradish peroxidase study publication-title: Neuroscience – volume: 9 start-page: 232 year: 1999 end-page: 237 article-title: Some temporal and parietal cortical connections converge in CA1 of the primate hippocampus publication-title: Cereb Cortex – volume: 406 start-page: 299 year: 1999 end-page: 328 article-title: Perirhinal cortex projections to the amygdaloid complex and hippocampal formation in the rat publication-title: J Comp Neurol – volume: 42 start-page: 319 year: 1981 end-page: 330 article-title: Efferent connections of the cingulate gyrus in the rhesus monkey publication-title: Exp Brain Res – volume: 312 start-page: 525 year: 1991 end-page: 536 article-title: Distribution of acetylcholinesterase in the hippocampal region of the mouse: II. Subiculum and hippocampus publication-title: J Comp Neurol – volume: 425 start-page: 510 year: 2000 end-page: 530 article-title: Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas publication-title: J Comp Neurol – volume: 22 start-page: R571 year: 2012 end-page: R573 article-title: Visual system: prostriata—a visual area off the beaten path publication-title: Curr Biol – volume: 212 start-page: 149 year: 2007 end-page: 179 article-title: Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat publication-title: Brain Struct Funct – volume: 499 start-page: 768 year: 2006 end-page: 796 article-title: Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat publication-title: J Comp Neurol – volume: 41 start-page: 237 year: 2011 end-page: 248 article-title: A knock‐in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures publication-title: Neurobiol Dis – volume: 363 start-page: 615 year: 1995 end-page: 641 article-title: Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys publication-title: J Comp Neurol – volume: 83 start-page: 445 year: 1990 end-page: 457 article-title: Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease publication-title: Prog Brain Res – volume: 496 start-page: 349 year: 2006 end-page: 368 article-title: Topographical projection from the hippocampal formation to the amygdala: a combined anterograde and retrograde tracing study in the rat publication-title: J Comp Neurol – volume: 275 start-page: 263 year: 1983 end-page: 277 article-title: Evidence for a direct projection from the superior temporal gyrus to the entorhinal cortex in the monkey publication-title: Brain Res – volume: 324 start-page: 180 year: 1992 end-page: 194 article-title: Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract‐tracing study in the rat publication-title: J Comp Neurol – volume: 161 start-page: 237 year: 1981 end-page: 264 article-title: The distribution and orientation of serotonin fibers in the entorhinal and other retrohippocampal areas. An immunohistochemical study with anti‐serotonin antibodies in the rats brain publication-title: Anat Embryol – volume: 179 start-page: 157 year: 1979 end-page: 161 article-title: A direct inferior parietal lobule projection to the presubiculum in the rhesus monkey publication-title: Brain Res – volume: 105 start-page: 417 year: 1956 end-page: 537 article-title: Commissural connections of the hippocampal region in the rat, with special reference to their mode of termination publication-title: J Comp Neurol – volume: 286 start-page: 311 year: 1989 end-page: 336 article-title: Mammillary body in the rat: topography and synaptology of projections from the subicular complex, prefrontal cortex, and midbrain tegmentum publication-title: J Comp Neurol – volume: 220 start-page: 168 year: 1983 end-page: 190 article-title: Afferent connections of the perirhinal cortex in the rat publication-title: J Comp Neurol – volume: 403 start-page: 229 year: 1999 end-page: 260 article-title: Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat publication-title: J Comp Neurol – volume: 31 start-page: 1359 year: 2010 end-page: 1379 article-title: Borders, extent, and topography of human perirhinal cortex as revealed using multiple modern neuroanatomical and pathological markers publication-title: Hum Brain Mapp – volume: 174 start-page: 304 year: 2006 end-page: 312 article-title: Controlling hippocampal output: the central role of subiculum in hippocampal information processing publication-title: Behav Brain Res – volume: 308 start-page: 665 year: 1991 end-page: 682 article-title: Topographic organization of cortical input to striate cortex in the cebus monkey: a fluorescent tracer study publication-title: J Comp Neurol – volume: 463 start-page: 249 year: 2003 end-page: 263 article-title: Connections of the retrosplenial granular b cortex in the rat publication-title: J Comp Neurol – volume: 22 start-page: 2519 year: 2005 end-page: 2530 article-title: Projections from the hippocampal region to the mammillary bodies in macaque monkeys publication-title: Eur J Neurosci – volume: 6 start-page: 556 year: 1989 end-page: 568 article-title: Efferent connections of the nucleus reuniens and the rhomboid nucleus in the rat: an anterograde PHA‐L tracing study publication-title: Neurosci Res – volume: 12 start-page: 719 year: 1984 end-page: 743 article-title: Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey publication-title: Neuroscience – volume: 88 start-page: 508 year: 1975 end-page: 512 article-title: The origin of fornix fibers which project to the mammillary bodies in the rat: a horseradish peroxidase study publication-title: Brain Res – volume: 5 start-page: 121 year: 2005 end-page: 129 article-title: The role of the subiculum in epilepsy and epileptogenesis publication-title: Epilepsy Curr – volume: 225 start-page: 1168 year: 1984 end-page: 1170 article-title: Alzheimer's disease: cell‐specific pathology isolates the hippocampal formation publication-title: Science – volume: 198 start-page: 315 year: 1977 end-page: 317 article-title: Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey publication-title: Science – volume: 480 start-page: 115 year: 2004 end-page: 142 article-title: Afferent projections to nucleus reuniens of the thalamus publication-title: J Comp Neurol – ident: e_1_2_10_83_1 doi: 10.1002/cne.902710202 – ident: e_1_2_10_50_1 doi: 10.1002/cne.10883 – ident: e_1_2_10_73_1 doi: 10.1016/j.pnpbp.2009.03.040 – ident: e_1_2_10_39_1 doi: 10.1126/science.6474172 – ident: e_1_2_10_113_1 doi: 10.1523/JNEUROSCI.11-04-01095.1991 – ident: e_1_2_10_13_1 doi: 10.1002/(SICI)1096-9861(19980302)392:1<92::AID-CNE7>3.0.CO;2-K – ident: e_1_2_10_85_1 doi: 10.1007/s00221-005-2361-3 – ident: e_1_2_10_20_1 doi: 10.1093/cercor/10.3.220 – ident: e_1_2_10_116_1 doi: 10.1016/j.tics.2010.01.001 – ident: e_1_2_10_78_1 doi: 10.1016/j.cub.2012.05.030 – ident: e_1_2_10_51_1 doi: 10.1002/cne.902360407 – ident: e_1_2_10_65_1 doi: 10.1002/cne.902560108 – ident: e_1_2_10_66_1 doi: 10.1002/cne.903230304 – ident: e_1_2_10_46_1 doi: 10.1002/hipo.20931 – ident: e_1_2_10_23_1 doi: 10.1002/cne.902200205 – ident: e_1_2_10_93_1 doi: 10.1111/j.1535-7511.2005.00049.x – ident: e_1_2_10_79_1 doi: 10.1093/cercor/9.3.232 – ident: e_1_2_10_106_1 doi: 10.1016/0006-8993(75)90206-1 – ident: e_1_2_10_36_1 doi: 10.1002/cne.20093 – ident: e_1_2_10_77_1 doi: 10.1002/(SICI)1096-9861(19990111)403:2<229::AID-CNE7>3.0.CO;2-P – ident: e_1_2_10_58_1 doi: 10.1046/j.1365-2826.2002.00861.x – ident: e_1_2_10_111_1 doi: 10.1002/cne.902620208 – ident: e_1_2_10_76_1 doi: 10.1016/0306-4522(85)90002-8 – ident: e_1_2_10_29_1 doi: 10.1016/j.nbd.2010.09.011 – ident: e_1_2_10_114_1 doi: 10.1002/cne.903070308 – ident: e_1_2_10_99_1 doi: 10.1002/cne.903000412 – ident: e_1_2_10_56_1 doi: 10.1002/cne.901720409 – ident: e_1_2_10_42_1 doi: 10.1002/cne.1195 – ident: e_1_2_10_98_1 doi: 10.1016/0006-8993(90)90824-U – ident: e_1_2_10_88_1 doi: 10.1002/cne.902850403 – ident: e_1_2_10_6_1 doi: 10.1002/cne.902860303 – ident: e_1_2_10_19_1 doi: 10.1002/cne.903630408 – ident: e_1_2_10_2_1 doi: 10.1007/BF00340489 – ident: e_1_2_10_30_1 doi: 10.1093/cercor/bhp213 – ident: e_1_2_10_55_1 doi: 10.1016/0006-8993(79)91069-2 – ident: e_1_2_10_67_1 doi: 10.1093/cercor/10.2.192 – ident: e_1_2_10_71_1 doi: 10.1016/0168-0102(89)90044-8 – ident: e_1_2_10_27_1 doi: 10.1002/cne.10516 – ident: e_1_2_10_64_1 doi: 10.1016/0006-8993(77)90880-0 – ident: e_1_2_10_96_1 doi: 10.1146/annurev.neuro.29.051605.112854 – ident: e_1_2_10_87_1 doi: 10.1002/(SICI)1096-9861(19990412)406:3<299::AID-CNE2>3.0.CO;2-9 – ident: e_1_2_10_40_1 doi: 10.1016/j.neures.2005.06.002 – ident: e_1_2_10_95_1 doi: 10.1002/cne.901720104 – ident: e_1_2_10_90_1 doi: 10.1002/cne.903120404 – ident: e_1_2_10_59_1 doi: 10.1002/cne.901890406 – ident: e_1_2_10_12_1 doi: 10.1002/cne.901050305 – ident: e_1_2_10_9_1 doi: 10.1016/0168-0102(94)90065-5 – ident: e_1_2_10_62_1 doi: 10.1002/cne.902170109 – ident: e_1_2_10_91_1 doi: 10.1002/cne.903080411 – ident: e_1_2_10_104_1 doi: 10.1016/S0079-6123(08)61268-6 – ident: e_1_2_10_115_1 doi: 10.1016/j.bbr.2006.06.022 – volume: 16 start-page: 192 year: 1983 ident: e_1_2_10_110_1 article-title: Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices publication-title: J Comp Neurol doi: 10.1002/cne.902160207 – ident: e_1_2_10_11_1 doi: 10.1002/hipo.450050604 – ident: e_1_2_10_69_1 doi: 10.1002/(SICI)1096-9861(19990503)407:2<183::AID-CNE3>3.0.CO;2-N – ident: e_1_2_10_52_1 doi: 10.1016/S0079-6123(08)61241-8 – ident: e_1_2_10_61_1 doi: 10.1002/cne.20342 – ident: e_1_2_10_17_1 doi: 10.1002/cne.903240204 – ident: e_1_2_10_70_1 doi: 10.1016/0361-9230(94)90126-0 – ident: e_1_2_10_75_1 doi: 10.1007/BF00237497 – ident: e_1_2_10_105_1 doi: 10.1016/0006-8993(75)90204-8 – volume: 46 start-page: 113 year: 1934 ident: e_1_2_10_57_1 article-title: Studies on the structure of the cerebral cortex II. Continuation of the study of the ammoninc system publication-title: J Psychol Neurol – ident: e_1_2_10_37_1 doi: 10.1007/s00429-007-0150-4 – ident: e_1_2_10_107_1 doi: 10.1126/science.109926 – ident: e_1_2_10_35_1 doi: 10.1016/j.bbr.2006.05.035 – ident: e_1_2_10_47_1 doi: 10.1002/(SICI)1096-9861(20000403)419:2<205::AID-CNE5>3.0.CO;2-0 – ident: e_1_2_10_43_1 doi: 10.1002/cne.21564 – ident: e_1_2_10_38_1 doi: 10.1016/0006-8993(91)90620-B – ident: e_1_2_10_103_1 doi: 10.1016/0166-2236(82)90201-6 – ident: e_1_2_10_94_1 doi: 10.1126/science.49928 – ident: e_1_2_10_28_1 doi: 10.1002/cne.22053 – ident: e_1_2_10_63_1 doi: 10.1016/0006-8993(75)90662-9 – ident: e_1_2_10_45_1 doi: 10.1016/0306-4522(82)90198-1 – ident: e_1_2_10_8_1 doi: 10.1002/hipo.450010410 – ident: e_1_2_10_60_1 doi: 10.1016/S0361-9230(01)00465-8 – ident: e_1_2_10_81_1 doi: 10.1126/science.410102 – ident: e_1_2_10_31_1 doi: 10.1016/0168-0102(95)00882-T – ident: e_1_2_10_54_1 doi: 10.1016/0006-8993(83)90144-0 – ident: e_1_2_10_44_1 doi: 10.1002/cne.901950309 – ident: e_1_2_10_92_1 doi: 10.1146/annurev.neuro.27.070203.144130 – ident: e_1_2_10_34_1 doi: 10.1016/0306-4522(84)90166-0 – ident: e_1_2_10_102_1 doi: 10.1002/cne.10757 – ident: e_1_2_10_22_1 doi: 10.1002/cne.903320102 – ident: e_1_2_10_86_1 doi: 10.1016/0006-8993(79)90499-2 – ident: e_1_2_10_7_1 doi: 10.1016/0006-8993(83)90987-3 – ident: e_1_2_10_33_1 doi: 10.1152/jn.01306.2006 – ident: e_1_2_10_117_1 doi: 10.1002/cne.22336 – ident: e_1_2_10_16_1 doi: 10.1002/cne.903280109 – ident: e_1_2_10_84_1 doi: 10.1002/cne.902710203 – ident: e_1_2_10_119_1 doi: 10.1002/1096-9861(20000724)423:2<282::AID-CNE7>3.0.CO;2-Z – ident: e_1_2_10_97_1 doi: 10.1016/0006-8993(90)90976-I – ident: e_1_2_10_10_1 doi: 10.1016/0306-4522(93)90132-Y – ident: e_1_2_10_68_1 doi: 10.1046/j.1460-9568.1999.00672.x – ident: e_1_2_10_49_1 doi: 10.1002/cne.10472 – ident: e_1_2_10_21_1 doi: 10.1002/cne.903520407 – ident: e_1_2_10_3_1 doi: 10.1016/j.neubiorev.2011.09.005 – ident: e_1_2_10_101_1 doi: 10.1002/cne.903580411 – ident: e_1_2_10_108_1 doi: 10.1002/cne.21679 – ident: e_1_2_10_89_1 doi: 10.1016/0014-4886(77)90074-7 – ident: e_1_2_10_41_1 doi: 10.1046/j.0953-816x.2001.01662.x – ident: e_1_2_10_82_1 doi: 10.1007/978-1-4615-6616-8_9 – ident: e_1_2_10_118_1 doi: 10.1016/j.cub.2012.05.029 – ident: e_1_2_10_100_1 doi: 10.1002/cne.903240310 – ident: e_1_2_10_48_1 doi: 10.1002/cne.20919 – ident: e_1_2_10_15_1 doi: 10.1093/cercor/bhq239 – ident: e_1_2_10_80_1 doi: 10.1002/hipo.450050504 – ident: e_1_2_10_109_1 doi: 10.1002/cne.21135 – ident: e_1_2_10_26_1 doi: 10.1002/1096-9861(20001002)425:4<510::AID-CNE4>3.0.CO;2-R – ident: e_1_2_10_4_1 doi: 10.1002/cne.902430310 – ident: e_1_2_10_25_1 doi: 10.1002/hbm.20940 – ident: e_1_2_10_32_1 doi: 10.1016/0006-8993(94)90512-6 – ident: e_1_2_10_74_1 doi: 10.1111/j.1460-9568.2006.05113.x – ident: e_1_2_10_14_1 doi: 10.1002/cne.903380209 – ident: e_1_2_10_5_1 doi: 10.1111/j.1460-9568.2005.04450.x – ident: e_1_2_10_112_1 doi: 10.1016/j.neuroscience.2005.11.010 – ident: e_1_2_10_24_1 doi: 10.1007/s002210100778 – volume: 424 start-page: 143 year: 1992 ident: e_1_2_10_18_1 article-title: Connections of the posterior nucleus of the amygdala publication-title: J Comp Neurol doi: 10.1002/cne.903240203 – ident: e_1_2_10_53_1 doi: 10.1007/BF00301824 – ident: e_1_2_10_72_1 doi: 10.1016/j.bbr.2006.08.018 |
SSID | ssj0009938 |
Score | 2.4838865 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important... The subicular complex, including the prosubiculum (ProS), subiculum (Sub), presubiculum, postsubiculum (PoS), and parasubiculum (PaS), plays important roles in... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4145 |
SubjectTerms | Alzheimer's disease Anatomy, Comparative Animals area prostriata gene expression Haplorhini - anatomy & histology hippocampal head Hippocampus - anatomy & histology Humans mouse brain neural connectivity neurochemistry Primates Rodentia - anatomy & histology subicular complex |
Title | Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent |
URI | https://api.istex.fr/ark:/67375/WNG-S1BJHTHN-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.23416 https://www.ncbi.nlm.nih.gov/pubmed/23839777 https://www.proquest.com/docview/1445463620 https://www.proquest.com/docview/1447106944 https://www.proquest.com/docview/1464510373 |
Volume | 521 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lIvjit3ZrlSgiPnSvu9lsssEnPdoeBe9BWywihCSbgFR3S-8O1Bf_dWeyt3tXqSK-7cfskmRnJr_JTn5DyHNu87oMzIClhZByX9WpdQ4CV68Utw7CbYObk99OxeSEH52WpxvkVb8XpuOHGBbc0DKiv0YDN3a2tyINdY0fMfDBSLeNuVoIiN6tqKNg3u28MKYgKCF7VqGM7Q1PXpqLruGwfrsKaF7GrXHiObhFPvVN7vJNzkaLuR25H7-xOf5nn26Tm0tASl93GnSHbPjmLrn-sY3L7ffIz_GKHpyaBkL0r99pGyjgRgpNmi1st4C4S9cOMbl27aydzddOTVNTfONwiX5uaCwVuEvBJsCpdDLg2WFCvE9ODvaPx5N0WbQhdVxlImVVVnsrClEDUOOlCbwymbKlYaHOfSlcqESQdQhCVZWpcuN5IZRX4Dkh-gtF8YBsNm3jtwjNkMtM5p4J6UGLuPW1DwAvCykdy01IyMv-82m3ZDTHwhpfdMfFzDSMp47jmZBng-h5R-NxldCLqAODhLk4w7w3WeoP00P9Pn9zNDmeTPVhQnZ6JdFLk59BDMWxtIBgWUKeDrfBWPEPjGl8u4gygOiE4vxvMoIjzaEsEvKwU8ChQYCvELBL6HlUoz_3RY-n-_Fg-99FH5EbDIt95CzNyx2yOb9Y-McAueb2SbStX9l6J84 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH6qWiG4sC-BAgYB4tBME4_jJAcOMF3SLQeYioqLcRJbqloS1MkIyoU_xF_hP_HsLDNFBXHpgVuWpyi23_cW5-V7AM9Y5heBphKRprXLVFS4WZ5j4qrimGU5ptvS_Jy8l_Jkn20fBAcL8KP7F6bhh-g33AwyrL02ADcb0qsz1tC8VAOKRpi3JZU76vQLJmyTV1truLrPKd1YH48St-0p4OYsxuSZRl6hMj7kBcYRLJCaRdKLs0BSXfgq4LmOuA4LrXkcRTLypWJDHqsYgY3JiTbbn2jwl0wHccPUv_Z2RlaFnr6x-6boIeZhx2Pk0dX-Vc94vyWzkF_PC23PRsrW1W1cg5_dJDUVLkeDaZ0N8m-_8Uf-L7N4Ha62MTd53YDkBiyo8iZc-lDZLwq34PtoxoBOZCnr6tMpqTTB0JjgHEymWbNHukLmDk398NxZNannTmVZEPPE_hI5LInthrhCEPZoNxsZdF7o82_D_oWM_g4sllWp7gHxDF1b6CvKQ4VAYZkqlMYIehiGOfWlduBlpy8ib0nbTe-QY9HQTVOB6yfs-jnwtBf93DCVnCf0wipdLyFPjkxpXxiI9-mmeOe_2U7GSSo2HVjutFK0Vm2CaSIz3RM49Rx40t9Ge2Q-MslSVVMrg0Erjxn7mwxnhskxHDpwt9H4_oUwhDQ5SYgjt3r757GIUbpuD-7_u-hjuJyM93bF7la68wCuUNPbxKeuHyzDYn0yVQ8xwqyzRxbYBD5eNAZ-AazChOE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrUBceD8CBQwCxKHZJl7HiQ8cYLfbbQsRglZUXIyT2BIqJFU3KygXfhB_hR_F2Mlmt6ggLj1wy2MUxfY8vnEm3wA8YllYRIYqtDRjfKaTws_yHBNXLQTLcky3lf05-VXKx3tsez_aX4Ifs39hGn6IbsPNWobz19bADwuzPicNzUvdo-iDeVtRuaOPv2C-Nnm2NcTFfUzpaGN3MPbblgJ-zgTmzjQJCp3xPi8QRrBIGZaoQGSRoqYIdcRzk3ATF8ZwkSQqCZVmfS60QLvG3MTY3U_09yuMB8L2iRi-mXNVYaBv3L6teRA8ntEYBXS9e9UTwW_FruPX05DtSaDsIt3oEvyczVFT4HLQm9ZZL__2G33kfzKJl-Fii7jJ88ZErsCSLq_CufeV-55wDb4P5vznRJWqrj4fk8oQBMYEp2AyzZod0jWycGirhxfOqkm9cKrKgtgndpfIx5K4XohrBI0evWYjg6ELI_512DuT0d-A5bIq9S0ggSVri0NNeazRTFimC20QP_fjOKehMh48namLzFvKdts55JNsyKapxPWTbv08eNiJHjY8JacJPXE610moowNb2BdH8l26Kd-GL7bHu-NUbnqwOlNK2fq0CSaJzPZO4DTw4EF3G72R_cSkSl1NnQxCVi4Y-5sMZ5bHMe57cLNR-O6FEEDajCTGkTu1_fNY5CDdcAe3_130Ppx_PRzJl1vpzh24QG1jk5D6YbQKy_XRVN9FeFln95xZE_hw1ibwC4d-g5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+anatomy+of+the+prosubiculum%2C+subiculum%2C+presubiculum%2C+postsubiculum%2C+and+parasubiculum+in+human%2C+monkey%2C+and+rodent&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Ding%2C+Song-Lin&rft.date=2013-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=521&rft.issue=18&rft.spage=4145&rft_id=info:doi/10.1002%2Fcne.23416&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3110180371 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |