Metabolic analysis of antibody producing CHO cells in fed-batch production

Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lact...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 110; no. 6; pp. 1735 - 1747
Main Authors Dean, Jason, Reddy, Pranhitha
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc. In this study Dean and Reddy investigated two mAb producing CHO cell lines with contrasting metabolic and productivity phenotypes using stable isotope metabolic tracers and biochemical methods. The authors found that the low growth mAb production phase of fed batch productions was accompanied by increased glucose incorporation into TCA cycle metabolites, and this shift was more prominent in the CHO cell line with elevated mAb expression. In addition, alternative sources of lactate from those typically reported were observed throughout a fed batch process.
AbstractList Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth.
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth.Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth.
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc. In this study Dean and Reddy investigated two mAb producing CHO cell lines with contrasting metabolic and productivity phenotypes using stable isotope metabolic tracers and biochemical methods. The authors found that the low growth mAb production phase of fed batch productions was accompanied by increased glucose incorporation into TCA cycle metabolites, and this shift was more prominent in the CHO cell line with elevated mAb expression. In addition, alternative sources of lactate from those typically reported were observed throughout a fed batch process.
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc.
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. [PUBLICATION ABSTRACT]
Author Reddy, Pranhitha
Dean, Jason
Author_xml – sequence: 1
  givenname: Jason
  surname: Dean
  fullname: Dean, Jason
  organization: Amgen Cell Sciences and Technology, 1201 Amgen Court West, Seattle, Washington 98119; telephone: +1-206-265-2000; fax: +1-425-527-4609
– sequence: 2
  givenname: Pranhitha
  surname: Reddy
  fullname: Reddy, Pranhitha
  email: preddy@seagen.com
  organization: Amgen Cell Sciences and Technology, 1201 Amgen Court West, Seattle, Washington 98119; telephone: +1-206-265-2000; fax: +1-425-527-4609
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23296898$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1LIzEYB_AgLra-HPwCy8Be9DA27zNz3C1qXaoiFIReQpJJNDqduJMM2m-_qa09CLueksDv_-ThefbBbutbA8AxgmcIQjxSLp5hWmK-A4YIVkUOcQV3wRBCyHPCKjwA-yE8pWdRcr4HBpjgipdVOQS_r02UyjdOZ7KVzTK4kHmb7tEpXy-zl87XvXbtQzae3GbaNE3IXJtZU-dKRv24AdH59hB8s7IJ5mhzHoDZxflsPMmnt5dX45_TXNMq9YMLbbllVhqqpGVlUVttEaQSSlqiihmmNbeokERXmjOlcEkNMxrVCmlCyQE4WZdNP__pTYhi4cKqMdka3weBKKEQM4z515RQxhBiiCT64xN98n2XJvKuKGGMYZbU943q1cLU4qVzC9ktxcc8EzhdA935EDpjtwRBsdqVSLsS77tKdvTJahflapKxk675X-LVNWb579Li19XsI5GvEy5E87ZNyO5Z8IIUTNzfXIqbOz4Zz6dTMSd_ARPFsuE
CODEN BIBIAU
CitedBy_id crossref_primary_10_3390_metabo12030239
crossref_primary_10_1016_j_biologicals_2019_07_003
crossref_primary_10_1002_bit_24983
crossref_primary_10_1002_bit_25951
crossref_primary_10_1002_bit_24858
crossref_primary_10_1002_bit_25705
crossref_primary_10_1002_biot_202000261
crossref_primary_10_3390_life11090945
crossref_primary_10_4155_pbp_15_8
crossref_primary_10_1002_btpr_1907
crossref_primary_10_1002_btpr_2047
crossref_primary_10_1016_j_pep_2015_05_004
crossref_primary_10_1016_j_jbiotec_2013_11_007
crossref_primary_10_3389_fbioe_2024_1347138
crossref_primary_10_1002_btpr_2043
crossref_primary_10_1016_j_bej_2023_108836
crossref_primary_10_1002_biot_202400072
crossref_primary_10_1016_j_bioelechem_2018_07_003
crossref_primary_10_1016_j_ymben_2021_04_004
crossref_primary_10_1186_s40643_015_0072_6
crossref_primary_10_1002_biot_202400624
crossref_primary_10_1016_j_jbiotec_2025_01_008
crossref_primary_10_1002_bit_27993
crossref_primary_10_1021_acs_iecr_4c00701
crossref_primary_10_1002_bit_27115
crossref_primary_10_1002_btpr_2975
crossref_primary_10_1016_j_ymben_2024_07_008
crossref_primary_10_1002_bit_25450
crossref_primary_10_1002_bit_28320
crossref_primary_10_1016_j_ymben_2024_07_009
crossref_primary_10_1002_btpr_2179
crossref_primary_10_1002_bit_28723
crossref_primary_10_1007_s00449_022_02795_9
crossref_primary_10_1016_j_coche_2016_09_008
crossref_primary_10_1002_biot_201400664
crossref_primary_10_1016_j_ymben_2021_09_009
crossref_primary_10_1002_bit_26794
crossref_primary_10_1002_bit_27087
crossref_primary_10_1016_j_coche_2018_10_004
crossref_primary_10_1002_btpr_2108
crossref_primary_10_4155_pbp_14_41
crossref_primary_10_1002_bit_25620
crossref_primary_10_1002_bit_28459
crossref_primary_10_1002_biot_201700499
crossref_primary_10_1080_07388551_2022_2036691
crossref_primary_10_1371_journal_pone_0090832
crossref_primary_10_1002_bit_26828
crossref_primary_10_1007_s00253_021_11755_4
crossref_primary_10_1002_biot_202300397
crossref_primary_10_1371_journal_pone_0136815
crossref_primary_10_1016_j_nbt_2018_05_1267
crossref_primary_10_3390_metabo11120823
crossref_primary_10_1186_s12934_015_0390_6
crossref_primary_10_1016_j_ymben_2020_03_008
crossref_primary_10_1002_btpr_2757
crossref_primary_10_1002_biot_202000629
crossref_primary_10_1186_s43141_023_00474_0
crossref_primary_10_1002_biot_201700227
crossref_primary_10_1002_bit_25117
crossref_primary_10_1016_j_mec_2024_e00232
crossref_primary_10_1016_j_bej_2020_107494
crossref_primary_10_1371_journal_pcbi_1004062
crossref_primary_10_1016_j_jbiosc_2015_04_016
crossref_primary_10_1016_j_jbiotec_2019_04_005
crossref_primary_10_1016_j_jbiosc_2015_12_013
crossref_primary_10_1016_j_cep_2021_108720
crossref_primary_10_3389_fbioe_2021_646363
crossref_primary_10_1002_elsc_202000037
crossref_primary_10_1016_j_cjche_2018_10_009
crossref_primary_10_1002_biot_201500060
crossref_primary_10_1002_bit_25924
crossref_primary_10_1016_j_ymben_2021_03_013
crossref_primary_10_1002_bit_26214
crossref_primary_10_1002_bit_28757
crossref_primary_10_3390_bioengineering10030357
crossref_primary_10_1016_j_jbiosc_2017_02_010
crossref_primary_10_1016_j_ymben_2018_02_013
crossref_primary_10_3390_cells11121929
crossref_primary_10_1002_btpr_2539
crossref_primary_10_1002_btpr_3507
crossref_primary_10_1016_j_jbiosc_2014_11_022
crossref_primary_10_1002_btpr_3220
crossref_primary_10_1002_bit_28403
crossref_primary_10_1016_j_copbio_2014_06_004
crossref_primary_10_1016_j_procbio_2017_12_014
crossref_primary_10_1016_j_csbj_2016_07_001
crossref_primary_10_1016_j_bej_2018_11_015
crossref_primary_10_1002_bit_27288
crossref_primary_10_1007_s00253_015_6514_4
crossref_primary_10_1002_bit_25266
crossref_primary_10_1002_btpr_2706
crossref_primary_10_1016_j_ymben_2024_02_012
crossref_primary_10_1016_j_jbiotec_2019_06_306
crossref_primary_10_1002_bit_25142
crossref_primary_10_1016_j_dche_2023_100108
crossref_primary_10_1016_j_jbiosc_2014_09_017
crossref_primary_10_1002_btpr_2786
crossref_primary_10_1089_omi_2020_0112
crossref_primary_10_1016_j_tibtech_2023_03_018
crossref_primary_10_1016_j_jbiotec_2018_07_042
crossref_primary_10_1016_j_drudis_2022_103442
crossref_primary_10_1073_pnas_2109430119
crossref_primary_10_1038_s42003_025_07596_w
Cites_doi 10.1074/jbc.M706127200
10.1158/0008-5472.CAN-09-4615
10.1038/nrc1804
10.1073/pnas.1016627108
10.1016/j.ymben.2011.07.002
10.1007/BF02922022
10.1126/science.1179689
10.1126/scisignal.2000431
10.1002/bit.24389
10.1074/jbc.M407120200
10.1016/j.cmet.2009.04.008
10.1002/(SICI)1097-0290(1999)66:4<238::AID-BIT5>3.0.CO;2-6
10.1002/bit.21460
10.1002/bit.22890
10.1021/ac00267a049
10.1073/pnas.0709747104
10.1021/bp990124j
10.1016/j.jbiotec.2010.09.944
10.1523/JNEUROSCI.3404-07.2007
10.1007/978-1-59745-399-8_14
10.1074/jbc.M109.049478
10.1126/science.123.3191.309
10.1002/btpr.436
10.1074/jbc.M302932200
10.1023/A:1008052908496
10.1038/nature06667
10.1021/bp0498138
10.1002/bit.22269
10.1152/ajpendo.1998.274.5.E843
10.1016/j.addr.2005.12.006
10.1128/MCB.20.17.6508-6517.2000
10.1016/j.ymben.2009.10.007
10.1016/j.ymben.2011.08.002
10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3
10.1002/bit.23072
10.1002/biot.200800143
10.1007/s00253-007-1041-6
10.1038/nbt1026
10.1016/j.cmet.2011.12.009
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
Copyright John Wiley and Sons, Limited Jun 2013
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
– notice: Copyright John Wiley and Sons, Limited Jun 2013
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1002/bit.24826
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

CrossRef
Materials Research Database
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 1747
ExternalDocumentID 2953307241
23296898
10_1002_bit_24826
BIT24826
ark_67375_WNG_NQ6HCZLL_Z
Genre article
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7T7
7TA
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c4906-27cf6f5fae4baf587dfcf104a0a48195e5cc6f17a3c9c65bb284e5ec1db1c343
IEDL.DBID DR2
ISSN 0006-3592
1097-0290
IngestDate Thu Jul 10 23:48:44 EDT 2025
Fri Jul 11 01:15:02 EDT 2025
Sat Jul 05 23:13:09 EDT 2025
Wed Feb 19 01:51:00 EST 2025
Thu Apr 24 22:58:28 EDT 2025
Tue Jul 01 01:08:50 EDT 2025
Wed Jan 22 16:35:58 EST 2025
Wed Oct 30 09:55:14 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4906-27cf6f5fae4baf587dfcf104a0a48195e5cc6f17a3c9c65bb284e5ec1db1c343
Notes ArticleID:BIT24826
The authors declared they have no conflicts of interest.
istex:D88153BA4127CAC224C70B12B89B9661A87F4C63
ark:/67375/WNG-NQ6HCZLL-Z
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 23296898
PQID 1344355525
PQPubID 48814
PageCount 13
ParticipantIDs proquest_miscellaneous_1434025226
proquest_miscellaneous_1345511513
proquest_journals_1344355525
pubmed_primary_23296898
crossref_primary_10_1002_bit_24826
crossref_citationtrail_10_1002_bit_24826
wiley_primary_10_1002_bit_24826_BIT24826
istex_primary_ark_67375_WNG_NQ6HCZLL_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2013
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: June 2013
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2013
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. 2000. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 20(17): 6508-6517.
Kim SH, Lee GM. 2007. Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Appl Microbiol Biotechnol 76(3): 659-665.
Pascoe DE, Arnott D, Papoutsakis ET, Miller WM, Andersen DC. 2007. Proteome analysis of antibody-producing CHO cell lines with different metabolic profiles. Biotechnol Bioeng 98(2): 391-410.
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. 2010. Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968): 1000-1004.
Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2(97): ra73. DOI: 10.1126/scisignal.2000431.
Tserng KY, Gilfillan CA, Kalhan SC. 1984. Determination of carbon-13 labeled lactate in blood by gas chromatography/mass spectrometry. Anal Chem 56(3): 517-523.
Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184): 181-186.
Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11): 1393-1398.
Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H. 1996. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31(3): 255-262.
Huang YM, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. 2010. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26(5): 1400-1410.
Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. 2010. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 70(15): 6368-6376.
Kashif Sheikh JF, Lars KNielsen. 2005. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21: 112-121.
Zamorano F, Wouwer AV, Bastin G. 2010. A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 150(4): 497-508.
Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108(21): 8674-8679.
Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR, Sherry AD. 2004. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 279(47): 48941-48949.
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV. 2012. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1): 110-121.
Templeton N, Dean J, Reddy P, Young J. 2012. Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed-batch CHO cell culture. Biotechnol Bioeng (in press).
Young JD, Shastri AA, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13(6): 656-665.
Gagnon M, Hiller G, Luan YT, Kittredge A, DeFelice J, Drapeau D. 2011. High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108(6): 1328-1337.
Bergmeyer HU, Gawehn K, Grassl M. 1974. In: Bergmeyer HU editor. Methods of enzymatic analysis, Vol. 1, 2nd edition. New York, NY: Academic press, Inc; p. 509-510.
Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M. 2007. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27(45): 12255-12266.
Deshpande R, Yang TH, Heinzle E. 2009. Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4(2): 247-263.
Goudar C, Biener R, Piret J, Konstantinov K. 2007. Metabolic flux estimation in mammalian cell cultures. Methods Biotechnol 24: 301-317.
Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M. 1998. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am J Physiol 274(5 Pt 1): E843-E851.
Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Deliv Rev 58(5-6): 671-685.
Hassell T, Gleave S, Butler M. 1991. Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 30(1): 29-41.
Altamirano C, Paredes C, Cairo JJ, Godia F. 2000. Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnol Prog 16(1): 69-75.
DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49): 19345-19350.
Irish JM, Kotecha N, Nolan GP. 2006. Mapping normal and cancer cell signalling networks: Towards single-cell proteomics. Nat Rev Cancer 6(2): 146-155.
Warburg O. 1956. On the origin of cancer cells. Science 123(3191): 309-314.
Goudar C, Biener R, Boisart C, Heidemann R, Piret J, de Graaf A, Konstantinov K. 2010. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Metab Eng 12(2): 138-149.
Sengupta N, Rose ST, Morgan JA. 2011. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108(1): 82-92.
Dorai H, Kyung YS, Ellis D, Kinney C, Lin C, Jan D, Moore G, Betenbaugh MJ. 2009. Expression of anti-apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture. Biotechnol Bioeng 103(3): 592-608.
Irani N, Wirth M, van Den Heuvel J, Wagner R. 1999. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 66(4): 238-246.
Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros LG, Cascante M. 2003. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. J Biol Chem 278(31): 28395-28402.
Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y, Johnson DH, Wilson DL, Kirwan JP, Kalhan SC, Hanson RW. 2007. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282(45): 32844-32855.
Noguchi Y, Young JD, Aleman JO, Hansen ME, Kelleher JK, Stephanopoulos G. 2009. Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. J Biol Chem 284(48): 33425-33436.
Ahn WS, Antoniewicz MR. 2011. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13(5): 598-609.
Li J, Wong CL, Vijayasankaran N, Hudson T, Amanullah A. 2012. Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance. Biotechnol Bioeng 109(5): 1173-1186.
Dean JT, Tran L, Beaven S, Tontonoz P, Reue K, Dipple KM, Liao JC. 2009. Resistance to diet-induced obesity in mice with synthetic glyoxylate shunt. Cell Metab 9(6): 525-536.
Rasmussen B, Davis R, Thomas J, Reddy P. 1998. Isolation, characterization and recombinant protein expression in Veggie-CHO: A serum-free CHO host cell line. Cytotechnology 28(1-3): 31-42.
2010; 12
2007; 104
2004; 22
1998; 28
2007; 282
2012
2010; 327
1991; 30
2006; 58
2000; 20
1974
1999; 66
2006; 6
2005; 21
2011; 13
2012; 15
2007; 76
2007; 98
2003; 278
1996; 31
1998; 274
2012; 109
2011; 108
2010; 26
2000; 16
2004; 279
1984; 56
2009; 9
2010; 150
2009; 284
2009; 4
2010; 70
2008; 452
2009; 2
2009; 103
2007; 24
1956; 123
2007; 27
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
Templeton N (e_1_2_7_36_1) 2012
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Bergmeyer HU (e_1_2_7_4_1) 1974
References_xml – reference: Altamirano C, Paredes C, Cairo JJ, Godia F. 2000. Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnol Prog 16(1): 69-75.
– reference: Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184): 181-186.
– reference: Kim SH, Lee GM. 2007. Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Appl Microbiol Biotechnol 76(3): 659-665.
– reference: Hassell T, Gleave S, Butler M. 1991. Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 30(1): 29-41.
– reference: Goudar C, Biener R, Boisart C, Heidemann R, Piret J, de Graaf A, Konstantinov K. 2010. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Metab Eng 12(2): 138-149.
– reference: DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49): 19345-19350.
– reference: Pascoe DE, Arnott D, Papoutsakis ET, Miller WM, Andersen DC. 2007. Proteome analysis of antibody-producing CHO cell lines with different metabolic profiles. Biotechnol Bioeng 98(2): 391-410.
– reference: Rasmussen B, Davis R, Thomas J, Reddy P. 1998. Isolation, characterization and recombinant protein expression in Veggie-CHO: A serum-free CHO host cell line. Cytotechnology 28(1-3): 31-42.
– reference: Zamorano F, Wouwer AV, Bastin G. 2010. A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 150(4): 497-508.
– reference: Irish JM, Kotecha N, Nolan GP. 2006. Mapping normal and cancer cell signalling networks: Towards single-cell proteomics. Nat Rev Cancer 6(2): 146-155.
– reference: Kashif Sheikh JF, Lars KNielsen. 2005. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21: 112-121.
– reference: Huang YM, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. 2010. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26(5): 1400-1410.
– reference: Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Deliv Rev 58(5-6): 671-685.
– reference: Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. 2010. Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968): 1000-1004.
– reference: Deshpande R, Yang TH, Heinzle E. 2009. Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4(2): 247-263.
– reference: Irani N, Wirth M, van Den Heuvel J, Wagner R. 1999. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 66(4): 238-246.
– reference: Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros LG, Cascante M. 2003. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. J Biol Chem 278(31): 28395-28402.
– reference: She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. 2000. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 20(17): 6508-6517.
– reference: Goudar C, Biener R, Piret J, Konstantinov K. 2007. Metabolic flux estimation in mammalian cell cultures. Methods Biotechnol 24: 301-317.
– reference: Ahn WS, Antoniewicz MR. 2011. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13(5): 598-609.
– reference: Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108(21): 8674-8679.
– reference: Dorai H, Kyung YS, Ellis D, Kinney C, Lin C, Jan D, Moore G, Betenbaugh MJ. 2009. Expression of anti-apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture. Biotechnol Bioeng 103(3): 592-608.
– reference: Gagnon M, Hiller G, Luan YT, Kittredge A, DeFelice J, Drapeau D. 2011. High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108(6): 1328-1337.
– reference: Dean JT, Tran L, Beaven S, Tontonoz P, Reue K, Dipple KM, Liao JC. 2009. Resistance to diet-induced obesity in mice with synthetic glyoxylate shunt. Cell Metab 9(6): 525-536.
– reference: Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. 2010. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 70(15): 6368-6376.
– reference: Tserng KY, Gilfillan CA, Kalhan SC. 1984. Determination of carbon-13 labeled lactate in blood by gas chromatography/mass spectrometry. Anal Chem 56(3): 517-523.
– reference: Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M. 2007. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27(45): 12255-12266.
– reference: Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11): 1393-1398.
– reference: Young JD, Shastri AA, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13(6): 656-665.
– reference: Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y, Johnson DH, Wilson DL, Kirwan JP, Kalhan SC, Hanson RW. 2007. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282(45): 32844-32855.
– reference: Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M. 1998. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am J Physiol 274(5 Pt 1): E843-E851.
– reference: Warburg O. 1956. On the origin of cancer cells. Science 123(3191): 309-314.
– reference: Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV. 2012. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1): 110-121.
– reference: Templeton N, Dean J, Reddy P, Young J. 2012. Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed-batch CHO cell culture. Biotechnol Bioeng (in press).
– reference: Noguchi Y, Young JD, Aleman JO, Hansen ME, Kelleher JK, Stephanopoulos G. 2009. Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. J Biol Chem 284(48): 33425-33436.
– reference: Sengupta N, Rose ST, Morgan JA. 2011. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108(1): 82-92.
– reference: Li J, Wong CL, Vijayasankaran N, Hudson T, Amanullah A. 2012. Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance. Biotechnol Bioeng 109(5): 1173-1186.
– reference: Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2(97): ra73. DOI: 10.1126/scisignal.2000431.
– reference: Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR, Sherry AD. 2004. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 279(47): 48941-48949.
– reference: Bergmeyer HU, Gawehn K, Grassl M. 1974. In: Bergmeyer HU editor. Methods of enzymatic analysis, Vol. 1, 2nd edition. New York, NY: Academic press, Inc; p. 509-510.
– reference: Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H. 1996. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31(3): 255-262.
– volume: 108
  start-page: 8674
  issue: 21
  year: 2011
  end-page: 8679
  article-title: Pyruvate carboxylase is required for glutamine‐independent growth of tumor cells
  publication-title: Proc Natl Acad Sci USA
– volume: 274
  start-page: E843
  issue: 5 Pt 1
  year: 1998
  end-page: E851
  article-title: Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2‐ C2]glucose
  publication-title: Am J Physiol
– volume: 6
  start-page: 146
  issue: 2
  year: 2006
  end-page: 155
  article-title: Mapping normal and cancer cell signalling networks: Towards single‐cell proteomics
  publication-title: Nat Rev Cancer
– volume: 104
  start-page: 19345
  issue: 49
  year: 2007
  end-page: 19350
  article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
  publication-title: Proc Natl Acad Sci USA
– volume: 16
  start-page: 69
  issue: 1
  year: 2000
  end-page: 75
  article-title: Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine
  publication-title: Biotechnol Prog
– volume: 76
  start-page: 659
  issue: 3
  year: 2007
  end-page: 665
  article-title: Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44)
  publication-title: Appl Microbiol Biotechnol
– volume: 21
  start-page: 112
  year: 2005
  end-page: 121
  article-title: Modeling hybridoma cell metabolism using a generic genome‐scale metabolic model of Mus musculus
  publication-title: Biotechnol Prog
– volume: 123
  start-page: 309
  issue: 3191
  year: 1956
  end-page: 314
  article-title: On the origin of cancer cells
  publication-title: Science
– start-page: p. 509
  year: 1974
  end-page: 510
– volume: 109
  start-page: 1173
  issue: 5
  year: 2012
  end-page: 1186
  article-title: Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance
  publication-title: Biotechnol Bioeng
– volume: 108
  start-page: 82
  issue: 1
  year: 2011
  end-page: 92
  article-title: Metabolic flux analysis of CHO cell metabolism in the late non‐growth phase
  publication-title: Biotechnol Bioeng
– volume: 150
  start-page: 497
  issue: 4
  year: 2010
  end-page: 508
  article-title: A detailed metabolic flux analysis of an underdetermined network of CHO cells
  publication-title: J Biotechnol
– volume: 13
  start-page: 598
  issue: 5
  year: 2011
  end-page: 609
  article-title: Metabolic flux analysis of CHO cells at growth and non‐growth phases using isotopic tracers and mass spectrometry
  publication-title: Metab Eng
– volume: 4
  start-page: 247
  issue: 2
  year: 2009
  end-page: 263
  article-title: Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope‐based metabolic profiling
  publication-title: Biotechnol J
– volume: 12
  start-page: 138
  issue: 2
  year: 2010
  end-page: 149
  article-title: Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [ C, 1H] COSY NMR spectroscopy
  publication-title: Metab Eng
– volume: 279
  start-page: 48941
  issue: 47
  year: 2004
  end-page: 48949
  article-title: Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase
  publication-title: J Biol Chem
– volume: 284
  start-page: 33425
  issue: 48
  year: 2009
  end-page: 33436
  article-title: Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis
  publication-title: J Biol Chem
– volume: 70
  start-page: 6368
  issue: 15
  year: 2010
  end-page: 6376
  article-title: Fructose induces transketolase flux to promote pancreatic cancer growth
  publication-title: Cancer Res
– volume: 15
  start-page: 110
  issue: 1
  year: 2012
  end-page: 121
  article-title: Glucose‐independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
  publication-title: Cell Metab
– volume: 58
  start-page: 671
  issue: 5–6
  year: 2006
  end-page: 685
  article-title: Antibody production
  publication-title: Adv Drug Deliv Rev
– volume: 13
  start-page: 656
  issue: 6
  year: 2011
  end-page: 665
  article-title: Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis
  publication-title: Metab Eng
– volume: 31
  start-page: 255
  issue: 3
  year: 1996
  end-page: 262
  article-title: Correction of C mass isotopomer distributions for natural stable isotope abundance
  publication-title: J Mass Spectrom
– volume: 66
  start-page: 238
  issue: 4
  year: 1999
  end-page: 246
  article-title: Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction
  publication-title: Biotechnol Bioeng
– volume: 22
  start-page: 1393
  issue: 11
  year: 2004
  end-page: 1398
  article-title: Production of recombinant protein therapeutics in cultivated mammalian cells
  publication-title: Nat Biotechnol
– volume: 98
  start-page: 391
  issue: 2
  year: 2007
  end-page: 410
  article-title: Proteome analysis of antibody‐producing CHO cell lines with different metabolic profiles
  publication-title: Biotechnol Bioeng
– volume: 28
  start-page: 31
  issue: 1–3
  year: 1998
  end-page: 42
  article-title: Isolation, characterization and recombinant protein expression in Veggie‐CHO: A serum‐free CHO host cell line
  publication-title: Cytotechnology
– volume: 103
  start-page: 592
  issue: 3
  year: 2009
  end-page: 608
  article-title: Expression of anti‐apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture
  publication-title: Biotechnol Bioeng
– volume: 24
  start-page: 301
  year: 2007
  end-page: 317
  article-title: Metabolic flux estimation in mammalian cell cultures
  publication-title: Methods Biotechnol
– volume: 452
  start-page: 181
  issue: 7184
  year: 2008
  end-page: 186
  article-title: Pyruvate kinase M2 is a phosphotyrosine‐binding protein
  publication-title: Nature
– volume: 278
  start-page: 28395
  issue: 31
  year: 2003
  end-page: 28402
  article-title: The stable isotope‐based dynamic metabolic profile of butyrate‐induced HT29 cell differentiation
  publication-title: J Biol Chem
– volume: 108
  start-page: 1328
  issue: 6
  year: 2011
  end-page: 1337
  article-title: High‐end pH‐controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed‐batch cultures
  publication-title: Biotechnol Bioeng
– volume: 2
  start-page: ra73
  issue: 97
  year: 2009
  article-title: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth
  publication-title: Sci Signal
– volume: 20
  start-page: 6508
  issue: 17
  year: 2000
  end-page: 6517
  article-title: Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism
  publication-title: Mol Cell Biol
– year: 2012
  article-title: Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed‐batch CHO cell culture
  publication-title: Biotechnol Bioeng
– volume: 27
  start-page: 12255
  issue: 45
  year: 2007
  end-page: 12266
  article-title: The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex
  publication-title: J Neurosci
– volume: 9
  start-page: 525
  issue: 6
  year: 2009
  end-page: 536
  article-title: Resistance to diet‐induced obesity in mice with synthetic glyoxylate shunt
  publication-title: Cell Metab
– volume: 282
  start-page: 32844
  issue: 45
  year: 2007
  end-page: 32855
  article-title: Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse
  publication-title: J Biol Chem
– volume: 30
  start-page: 29
  issue: 1
  year: 1991
  end-page: 41
  article-title: Growth inhibition in animal cell culture. The effect of lactate and ammonia
  publication-title: Appl Biochem Biotechnol
– volume: 56
  start-page: 517
  issue: 3
  year: 1984
  end-page: 523
  article-title: Determination of carbon‐13 labeled lactate in blood by gas chromatography/mass spectrometry
  publication-title: Anal Chem
– volume: 327
  start-page: 1000
  issue: 5968
  year: 2010
  end-page: 1004
  article-title: Regulation of cellular metabolism by protein lysine acetylation
  publication-title: Science
– volume: 26
  start-page: 1400
  issue: 5
  year: 2010
  end-page: 1410
  article-title: Maximizing productivity of CHO cell‐based fed‐batch culture using chemically defined media conditions and typical manufacturing equipment
  publication-title: Biotechnol Prog
– ident: e_1_2_7_18_1
  doi: 10.1074/jbc.M706127200
– ident: e_1_2_7_29_1
  doi: 10.1158/0008-5472.CAN-09-4615
– year: 2012
  ident: e_1_2_7_36_1
  article-title: Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed‐batch CHO cell culture
  publication-title: Biotechnol Bioeng
– ident: e_1_2_7_23_1
  doi: 10.1038/nrc1804
– ident: e_1_2_7_8_1
  doi: 10.1073/pnas.1016627108
– ident: e_1_2_7_2_1
  doi: 10.1016/j.ymben.2011.07.002
– ident: e_1_2_7_19_1
  doi: 10.1007/BF02922022
– ident: e_1_2_7_42_1
  doi: 10.1126/science.1179689
– ident: e_1_2_7_20_1
  doi: 10.1126/scisignal.2000431
– ident: e_1_2_7_28_1
  doi: 10.1002/bit.24389
– ident: e_1_2_7_7_1
  doi: 10.1074/jbc.M407120200
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cmet.2009.04.008
– ident: e_1_2_7_22_1
  doi: 10.1002/(SICI)1097-0290(1999)66:4<238::AID-BIT5>3.0.CO;2-6
– ident: e_1_2_7_32_1
  doi: 10.1002/bit.21460
– ident: e_1_2_7_34_1
  doi: 10.1002/bit.22890
– ident: e_1_2_7_37_1
  doi: 10.1021/ac00267a049
– ident: e_1_2_7_11_1
  doi: 10.1073/pnas.0709747104
– ident: e_1_2_7_3_1
  doi: 10.1021/bp990124j
– ident: e_1_2_7_41_1
  doi: 10.1016/j.jbiotec.2010.09.944
– ident: e_1_2_7_30_1
  doi: 10.1523/JNEUROSCI.3404-07.2007
– ident: e_1_2_7_17_1
  doi: 10.1007/978-1-59745-399-8_14
– ident: e_1_2_7_31_1
  doi: 10.1074/jbc.M109.049478
– ident: e_1_2_7_38_1
  doi: 10.1126/science.123.3191.309
– ident: e_1_2_7_21_1
  doi: 10.1002/btpr.436
– start-page: p. 509
  volume-title: Methods of enzymatic analysis
  year: 1974
  ident: e_1_2_7_4_1
– ident: e_1_2_7_6_1
  doi: 10.1074/jbc.M302932200
– ident: e_1_2_7_33_1
  doi: 10.1023/A:1008052908496
– ident: e_1_2_7_9_1
  doi: 10.1038/nature06667
– ident: e_1_2_7_24_1
  doi: 10.1021/bp0498138
– ident: e_1_2_7_13_1
  doi: 10.1002/bit.22269
– ident: e_1_2_7_27_1
  doi: 10.1152/ajpendo.1998.274.5.E843
– ident: e_1_2_7_5_1
  doi: 10.1016/j.addr.2005.12.006
– ident: e_1_2_7_35_1
  doi: 10.1128/MCB.20.17.6508-6517.2000
– ident: e_1_2_7_16_1
  doi: 10.1016/j.ymben.2009.10.007
– ident: e_1_2_7_40_1
  doi: 10.1016/j.ymben.2011.08.002
– ident: e_1_2_7_14_1
  doi: 10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3
– ident: e_1_2_7_15_1
  doi: 10.1002/bit.23072
– ident: e_1_2_7_12_1
  doi: 10.1002/biot.200800143
– ident: e_1_2_7_25_1
  doi: 10.1007/s00253-007-1041-6
– ident: e_1_2_7_39_1
  doi: 10.1038/nbt1026
– ident: e_1_2_7_26_1
  doi: 10.1016/j.cmet.2011.12.009
SSID ssj0007866
Score 2.4307983
Snippet Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1735
SubjectTerms Amino Acids - metabolism
Animals
Antibodies, Monoclonal - analysis
Antibodies, Monoclonal - biosynthesis
Antibodies, Monoclonal - chemistry
Cell Culture Techniques - methods
Cells
Chinese hamster ovary cells
CHO Cells
Cricetinae
Cricetulus
fed-batch mAb production
Genotype & phenotype
Glucose - metabolism
Industrial production
Isotope Labeling
Isotopes
Lactic Acid - metabolism
metabolic flux analysis
Metabolism
Metabolites
Metabolome
Phosphoenolpyruvate Carboxykinase (ATP) - metabolism
Proteins
Pyruvic Acid - metabolism
Recombinant Proteins - analysis
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Ribose - metabolism
Rodents
stable isotope tracers
Stable isotopes
Title Metabolic analysis of antibody producing CHO cells in fed-batch production
URI https://api.istex.fr/ark:/67375/WNG-NQ6HCZLL-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.24826
https://www.ncbi.nlm.nih.gov/pubmed/23296898
https://www.proquest.com/docview/1344355525
https://www.proquest.com/docview/1345511513
https://www.proquest.com/docview/1434025226
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5KRdQPvlx9Wa0SRYpf9nqbTfaFfmoP6ynXE-XEUoSQZBM8WvdKbw-sn_wJ_sb-EifZl1qpIn4L7Cwkk5nMM5vZZwCeMyYHsuBJqKTBBEVbFebKFVMZa6WlA5v6ZjB7k2T0gb3Z5_srsNX-C1PzQ3Qf3Jxn-PPaObhUi81z0lA1q_qUITrG89fVajlA9P6cOirN6ntKlzHHPKctq9CAbnZvXohFV5xav14GNC_iVh94dm_Bp3bKdb3JYX9Zqb7-9hub43-u6TbcbAAp2a4t6A6smLIHa9slJuNfTskG8SWi_tt7D67utKNrw7ZRXA9u_MJpuAbjPVOhYR3NNJEN4QmZWxxXMzUvTsmxp5hFUTIcvSXu3mBBZiWxpjj7_kNhYPjciDiLuQvT3ZfT4ShsWjaEmuWoaZpqm1hupWFKWp6lhdUWMz40COZu7AzXOrFRKmOd64QrhdHRcKOjQkU6ZvE9WC3npXkARGrOleEpMyZzBDmKKhPlNuNpYUxkbQAv2r0TuqEzd101jkRNxEwFKlN4ZQbwrBM9rjk8LhPa8AbQSciTQ1f0lnLxcfJKTN4lo-HBeCwOAlhvLUQ0_r4QUcwQd3JOeQBPu8e4D06NsjTzpZdBeIoIK_6LDIsxoXeYOID7tfV1E0LsmydZnuHKvQ39eS1i5_XUDx7-u-gjuE7rTh_hIFqH1epkaR4j3qrUE-9YPwEyLCb5
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVqjwwGXLJVDAIFTxku0msXOReGlXlBR2F4EWUVVClu3YYtWSrdqsRHniE_hGvoSxcylFBSHeLGUi2eOZzBl7cgbgKaViIAoW-1JoTFCUkX4mbTGVNkaYcGAS1wxmPInz9_TVHttbguftvzA1P0R34GY9w32vrYPbA-nNM9ZQOav6IUV4fAlWbEdvl1C9OyOPStL6ptLmzBHLwpZXaBBudq-ei0YrVrFfLoKa55GrCz071-FjO-m64uSgv6hkX339jc_xf1d1A641mJRs1UZ0E5Z02YO1rRLz8c-nZIO4KlF3_N6Dy9vtaHXY9orrwdVfaA3XYDTWFdrW4UwR0XCekLnBcTWT8-KUHDmWWRQlw_wNsVcHJ2RWEqOLH9--S4wNnxoRazS3YLrzYjrM_aZrg69ohqoOE2Viw4zQVArD0qQwymDShzZB7aWdZkrFJkhEpDIVMykxQGqmVVDIQEU0ug3L5bzUd4EIxZjULKFap5YjR4ZSB5lJWVJoHRjjwbN287hqGM1tY41DXnMxhxyVyZ0yPXjSiR7VNB4XCW04C-gkxPGBrXtLGP8wecknb-N8uD8a8X0P1lsT4Y3Ln_Agogg9GQuZB4-7x7gPVo2i1POFk0GEiiAr-osMjTCnt7DYgzu1-XUTQvibxWmW4sqdEf15LXx7d-oG9_5d9BGs5tPxiI92J6_vw5WwbvzhD4J1WK6OF_oBwq9KPnRe9hODiisU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2VVtweuKQFAgUMQhUvm2Z37b2IpzYlpJAGioKoqkqW7bVF1LKJ2o1EeeIT-Ea-hLH3UooKQrxZ2lnJHh-vz9izZwCeUSq6ImORJ4XGAEUZ6aXSJlNpY4QJuiZ2xWB2RtHgA329x_YW4EX9L0ypD9EcuNmV4b7XdoHPMrN-JhoqJ0UnoMiOL8ESjbqJhfTW-zPtqDgpLyptyByyNKhlhbrBevPquc1oyfr1y0VM8zxxdTtP_yYc1H0uE04OO_NCdtTX3-Qc_3NQt-BGxUjJRgmh27Cg8xYsb-QYjX8-JWvE5Yi6w_cWXN6sW1d7daW4Flz_RdRwGYY7ukBkHU0UEZXiCZkabBcTOc1OycxpzKIp6Q3eEntxcEImOTE6-_Htu8Sd4VNlYiGzAuP-y3Fv4FU1GzxFU_R0ECsTGWaEplIYlsSZUQZDPkQEtVd2mikVGT8WoUpVxKTE7VEzrfxM-iqk4R1YzKe5vgdEKMakZjHVOrEKOTKQ2k9NwuJMa9-YNjyv546rSs_cltU44qUSc8DRmdw5sw1PG9NZKeJxkdGaA0BjIY4PbdZbzPjH0Ss-2o0Gvf3hkO-3YbVGCK8W_An3Q4rEk7GAteFJ8xjnwbpR5Ho6dzbIT5FihX-xoSFG9JYUt-Fuib6mQ0h-0yhJExy5w9Cfx8I3t8eucf_fTR_DlXdbfT7cHr15ANeCsuqH1_VXYbE4nuuHyL0K-citsZ8D0SnM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+analysis+of+antibody+producing+CHO+cells+in+fed-batch+production&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Dean%2C+Jason&rft.au=Reddy%2C+Pranhitha&rft.date=2013-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=110&rft.issue=6&rft.spage=1735&rft.epage=1747&rft_id=info:doi/10.1002%2Fbit.24826&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NQ6HCZLL_Z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon