Metabolic analysis of antibody producing CHO cells in fed-batch production
Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lact...
Saved in:
Published in | Biotechnology and bioengineering Vol. 110; no. 6; pp. 1735 - 1747 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc.
In this study Dean and Reddy investigated two mAb producing CHO cell lines with contrasting metabolic and productivity phenotypes using stable isotope metabolic tracers and biochemical methods. The authors found that the low growth mAb production phase of fed batch productions was accompanied by increased glucose incorporation into TCA cycle metabolites, and this shift was more prominent in the CHO cell line with elevated mAb expression. In addition, alternative sources of lactate from those typically reported were observed throughout a fed batch process. |
---|---|
AbstractList | Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth.Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc. In this study Dean and Reddy investigated two mAb producing CHO cell lines with contrasting metabolic and productivity phenotypes using stable isotope metabolic tracers and biochemical methods. The authors found that the low growth mAb production phase of fed batch productions was accompanied by increased glucose incorporation into TCA cycle metabolites, and this shift was more prominent in the CHO cell line with elevated mAb expression. In addition, alternative sources of lactate from those typically reported were observed throughout a fed batch process. Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed‐batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed‐batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. Biotechnol. Bioeng. 2013; 110: 1735–1747. © 2013 Wiley Periodicals, Inc. Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells progress through multiple metabolic stages during fed-batch antibody (mAb) production, including an exponential growth phase accompanied by lactate production, a low growth, or stationary phase when specific mAb production increases, and a decline when cell viability declines. Although media composition and cell lineage have been shown to impact growth and productivity, little is known about the metabolic changes at a molecular level. Better understanding of cellular metabolism will aid in identifying targets for genetic and metabolic engineering to optimize bioprocess and cell engineering. We studied a high expressing recombinant CHO cell line, designated high performer (HP), in fed-batch productions using stable isotope tracers and biochemical methods to determine changes in central metabolism that accompany growth and mAb production. We also compared and contrasted results from HP to a high lactate producing cell line that exhibits poor growth and productivity, designated low performer (LP), to determine intrinsic metabolic profiles linked to their respective phenotypes. Our results reveal alternative metabolic and regulatory pathways for lactate and TCA metabolite production to those reported in the literature. The distribution of key media components into glycolysis, TCA cycle, lactate production, and biosynthetic pathways was shown to shift dramatically between exponential growth and stationary (production) phases. We determined that glutamine is both utilized more efficiently than glucose for anaplerotic replenishment and contributes more significantly to lactate production during the exponential phase. Cells shifted to glucose utilization in the TCA cycle as growth rate decreased. The magnitude of this metabolic switch is important for attaining high viable cell mass and antibody titers. We also found that phosphoenolpyruvate carboxykinase (PEPCK1) and pyruvate kinase (PK) are subject to differential regulation during exponential and stationary phases. The concomitant shifts in enzyme expression and metabolite utilization profiles shed light on the regulatory links between cell metabolism, media metabolites, and cell growth. [PUBLICATION ABSTRACT] |
Author | Reddy, Pranhitha Dean, Jason |
Author_xml | – sequence: 1 givenname: Jason surname: Dean fullname: Dean, Jason organization: Amgen Cell Sciences and Technology, 1201 Amgen Court West, Seattle, Washington 98119; telephone: +1-206-265-2000; fax: +1-425-527-4609 – sequence: 2 givenname: Pranhitha surname: Reddy fullname: Reddy, Pranhitha email: preddy@seagen.com organization: Amgen Cell Sciences and Technology, 1201 Amgen Court West, Seattle, Washington 98119; telephone: +1-206-265-2000; fax: +1-425-527-4609 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23296898$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1LIzEYB_AgLra-HPwCy8Be9DA27zNz3C1qXaoiFIReQpJJNDqduJMM2m-_qa09CLueksDv_-ThefbBbutbA8AxgmcIQjxSLp5hWmK-A4YIVkUOcQV3wRBCyHPCKjwA-yE8pWdRcr4HBpjgipdVOQS_r02UyjdOZ7KVzTK4kHmb7tEpXy-zl87XvXbtQzae3GbaNE3IXJtZU-dKRv24AdH59hB8s7IJ5mhzHoDZxflsPMmnt5dX45_TXNMq9YMLbbllVhqqpGVlUVttEaQSSlqiihmmNbeokERXmjOlcEkNMxrVCmlCyQE4WZdNP__pTYhi4cKqMdka3weBKKEQM4z515RQxhBiiCT64xN98n2XJvKuKGGMYZbU943q1cLU4qVzC9ktxcc8EzhdA935EDpjtwRBsdqVSLsS77tKdvTJahflapKxk675X-LVNWb579Li19XsI5GvEy5E87ZNyO5Z8IIUTNzfXIqbOz4Zz6dTMSd_ARPFsuE |
CODEN | BIBIAU |
CitedBy_id | crossref_primary_10_3390_metabo12030239 crossref_primary_10_1016_j_biologicals_2019_07_003 crossref_primary_10_1002_bit_24983 crossref_primary_10_1002_bit_25951 crossref_primary_10_1002_bit_24858 crossref_primary_10_1002_bit_25705 crossref_primary_10_1002_biot_202000261 crossref_primary_10_3390_life11090945 crossref_primary_10_4155_pbp_15_8 crossref_primary_10_1002_btpr_1907 crossref_primary_10_1002_btpr_2047 crossref_primary_10_1016_j_pep_2015_05_004 crossref_primary_10_1016_j_jbiotec_2013_11_007 crossref_primary_10_3389_fbioe_2024_1347138 crossref_primary_10_1002_btpr_2043 crossref_primary_10_1016_j_bej_2023_108836 crossref_primary_10_1002_biot_202400072 crossref_primary_10_1016_j_bioelechem_2018_07_003 crossref_primary_10_1016_j_ymben_2021_04_004 crossref_primary_10_1186_s40643_015_0072_6 crossref_primary_10_1002_biot_202400624 crossref_primary_10_1016_j_jbiotec_2025_01_008 crossref_primary_10_1002_bit_27993 crossref_primary_10_1021_acs_iecr_4c00701 crossref_primary_10_1002_bit_27115 crossref_primary_10_1002_btpr_2975 crossref_primary_10_1016_j_ymben_2024_07_008 crossref_primary_10_1002_bit_25450 crossref_primary_10_1002_bit_28320 crossref_primary_10_1016_j_ymben_2024_07_009 crossref_primary_10_1002_btpr_2179 crossref_primary_10_1002_bit_28723 crossref_primary_10_1007_s00449_022_02795_9 crossref_primary_10_1016_j_coche_2016_09_008 crossref_primary_10_1002_biot_201400664 crossref_primary_10_1016_j_ymben_2021_09_009 crossref_primary_10_1002_bit_26794 crossref_primary_10_1002_bit_27087 crossref_primary_10_1016_j_coche_2018_10_004 crossref_primary_10_1002_btpr_2108 crossref_primary_10_4155_pbp_14_41 crossref_primary_10_1002_bit_25620 crossref_primary_10_1002_bit_28459 crossref_primary_10_1002_biot_201700499 crossref_primary_10_1080_07388551_2022_2036691 crossref_primary_10_1371_journal_pone_0090832 crossref_primary_10_1002_bit_26828 crossref_primary_10_1007_s00253_021_11755_4 crossref_primary_10_1002_biot_202300397 crossref_primary_10_1371_journal_pone_0136815 crossref_primary_10_1016_j_nbt_2018_05_1267 crossref_primary_10_3390_metabo11120823 crossref_primary_10_1186_s12934_015_0390_6 crossref_primary_10_1016_j_ymben_2020_03_008 crossref_primary_10_1002_btpr_2757 crossref_primary_10_1002_biot_202000629 crossref_primary_10_1186_s43141_023_00474_0 crossref_primary_10_1002_biot_201700227 crossref_primary_10_1002_bit_25117 crossref_primary_10_1016_j_mec_2024_e00232 crossref_primary_10_1016_j_bej_2020_107494 crossref_primary_10_1371_journal_pcbi_1004062 crossref_primary_10_1016_j_jbiosc_2015_04_016 crossref_primary_10_1016_j_jbiotec_2019_04_005 crossref_primary_10_1016_j_jbiosc_2015_12_013 crossref_primary_10_1016_j_cep_2021_108720 crossref_primary_10_3389_fbioe_2021_646363 crossref_primary_10_1002_elsc_202000037 crossref_primary_10_1016_j_cjche_2018_10_009 crossref_primary_10_1002_biot_201500060 crossref_primary_10_1002_bit_25924 crossref_primary_10_1016_j_ymben_2021_03_013 crossref_primary_10_1002_bit_26214 crossref_primary_10_1002_bit_28757 crossref_primary_10_3390_bioengineering10030357 crossref_primary_10_1016_j_jbiosc_2017_02_010 crossref_primary_10_1016_j_ymben_2018_02_013 crossref_primary_10_3390_cells11121929 crossref_primary_10_1002_btpr_2539 crossref_primary_10_1002_btpr_3507 crossref_primary_10_1016_j_jbiosc_2014_11_022 crossref_primary_10_1002_btpr_3220 crossref_primary_10_1002_bit_28403 crossref_primary_10_1016_j_copbio_2014_06_004 crossref_primary_10_1016_j_procbio_2017_12_014 crossref_primary_10_1016_j_csbj_2016_07_001 crossref_primary_10_1016_j_bej_2018_11_015 crossref_primary_10_1002_bit_27288 crossref_primary_10_1007_s00253_015_6514_4 crossref_primary_10_1002_bit_25266 crossref_primary_10_1002_btpr_2706 crossref_primary_10_1016_j_ymben_2024_02_012 crossref_primary_10_1016_j_jbiotec_2019_06_306 crossref_primary_10_1002_bit_25142 crossref_primary_10_1016_j_dche_2023_100108 crossref_primary_10_1016_j_jbiosc_2014_09_017 crossref_primary_10_1002_btpr_2786 crossref_primary_10_1089_omi_2020_0112 crossref_primary_10_1016_j_tibtech_2023_03_018 crossref_primary_10_1016_j_jbiotec_2018_07_042 crossref_primary_10_1016_j_drudis_2022_103442 crossref_primary_10_1073_pnas_2109430119 crossref_primary_10_1038_s42003_025_07596_w |
Cites_doi | 10.1074/jbc.M706127200 10.1158/0008-5472.CAN-09-4615 10.1038/nrc1804 10.1073/pnas.1016627108 10.1016/j.ymben.2011.07.002 10.1007/BF02922022 10.1126/science.1179689 10.1126/scisignal.2000431 10.1002/bit.24389 10.1074/jbc.M407120200 10.1016/j.cmet.2009.04.008 10.1002/(SICI)1097-0290(1999)66:4<238::AID-BIT5>3.0.CO;2-6 10.1002/bit.21460 10.1002/bit.22890 10.1021/ac00267a049 10.1073/pnas.0709747104 10.1021/bp990124j 10.1016/j.jbiotec.2010.09.944 10.1523/JNEUROSCI.3404-07.2007 10.1007/978-1-59745-399-8_14 10.1074/jbc.M109.049478 10.1126/science.123.3191.309 10.1002/btpr.436 10.1074/jbc.M302932200 10.1023/A:1008052908496 10.1038/nature06667 10.1021/bp0498138 10.1002/bit.22269 10.1152/ajpendo.1998.274.5.E843 10.1016/j.addr.2005.12.006 10.1128/MCB.20.17.6508-6517.2000 10.1016/j.ymben.2009.10.007 10.1016/j.ymben.2011.08.002 10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3 10.1002/bit.23072 10.1002/biot.200800143 10.1007/s00253-007-1041-6 10.1038/nbt1026 10.1016/j.cmet.2011.12.009 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Wiley Periodicals, Inc. Copyright John Wiley and Sons, Limited Jun 2013 |
Copyright_xml | – notice: Copyright © 2013 Wiley Periodicals, Inc. – notice: Copyright John Wiley and Sons, Limited Jun 2013 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/bit.24826 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Materials Research Database Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 1747 |
ExternalDocumentID | 2953307241 23296898 10_1002_bit_24826 BIT24826 ark_67375_WNG_NQ6HCZLL_Z |
Genre | article Journal Article Feature |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3EH 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7T7 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4906-27cf6f5fae4baf587dfcf104a0a48195e5cc6f17a3c9c65bb284e5ec1db1c343 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 1097-0290 |
IngestDate | Thu Jul 10 23:48:44 EDT 2025 Fri Jul 11 01:15:02 EDT 2025 Sat Jul 05 23:13:09 EDT 2025 Wed Feb 19 01:51:00 EST 2025 Thu Apr 24 22:58:28 EDT 2025 Tue Jul 01 01:08:50 EDT 2025 Wed Jan 22 16:35:58 EST 2025 Wed Oct 30 09:55:14 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4906-27cf6f5fae4baf587dfcf104a0a48195e5cc6f17a3c9c65bb284e5ec1db1c343 |
Notes | ArticleID:BIT24826 The authors declared they have no conflicts of interest. istex:D88153BA4127CAC224C70B12B89B9661A87F4C63 ark:/67375/WNG-NQ6HCZLL-Z SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 23296898 |
PQID | 1344355525 |
PQPubID | 48814 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1434025226 proquest_miscellaneous_1345511513 proquest_journals_1344355525 pubmed_primary_23296898 crossref_primary_10_1002_bit_24826 crossref_citationtrail_10_1002_bit_24826 wiley_primary_10_1002_bit_24826_BIT24826 istex_primary_ark_67375_WNG_NQ6HCZLL_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2013 |
PublicationDateYYYYMMDD | 2013-06-01 |
PublicationDate_xml | – month: 06 year: 2013 text: June 2013 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2013 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. 2000. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 20(17): 6508-6517. Kim SH, Lee GM. 2007. Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Appl Microbiol Biotechnol 76(3): 659-665. Pascoe DE, Arnott D, Papoutsakis ET, Miller WM, Andersen DC. 2007. Proteome analysis of antibody-producing CHO cell lines with different metabolic profiles. Biotechnol Bioeng 98(2): 391-410. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. 2010. Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968): 1000-1004. Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2(97): ra73. DOI: 10.1126/scisignal.2000431. Tserng KY, Gilfillan CA, Kalhan SC. 1984. Determination of carbon-13 labeled lactate in blood by gas chromatography/mass spectrometry. Anal Chem 56(3): 517-523. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184): 181-186. Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11): 1393-1398. Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H. 1996. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31(3): 255-262. Huang YM, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. 2010. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26(5): 1400-1410. Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. 2010. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 70(15): 6368-6376. Kashif Sheikh JF, Lars KNielsen. 2005. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21: 112-121. Zamorano F, Wouwer AV, Bastin G. 2010. A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 150(4): 497-508. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108(21): 8674-8679. Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR, Sherry AD. 2004. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 279(47): 48941-48949. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV. 2012. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1): 110-121. Templeton N, Dean J, Reddy P, Young J. 2012. Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed-batch CHO cell culture. Biotechnol Bioeng (in press). Young JD, Shastri AA, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13(6): 656-665. Gagnon M, Hiller G, Luan YT, Kittredge A, DeFelice J, Drapeau D. 2011. High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108(6): 1328-1337. Bergmeyer HU, Gawehn K, Grassl M. 1974. In: Bergmeyer HU editor. Methods of enzymatic analysis, Vol. 1, 2nd edition. New York, NY: Academic press, Inc; p. 509-510. Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M. 2007. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27(45): 12255-12266. Deshpande R, Yang TH, Heinzle E. 2009. Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4(2): 247-263. Goudar C, Biener R, Piret J, Konstantinov K. 2007. Metabolic flux estimation in mammalian cell cultures. Methods Biotechnol 24: 301-317. Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M. 1998. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am J Physiol 274(5 Pt 1): E843-E851. Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Deliv Rev 58(5-6): 671-685. Hassell T, Gleave S, Butler M. 1991. Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 30(1): 29-41. Altamirano C, Paredes C, Cairo JJ, Godia F. 2000. Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnol Prog 16(1): 69-75. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49): 19345-19350. Irish JM, Kotecha N, Nolan GP. 2006. Mapping normal and cancer cell signalling networks: Towards single-cell proteomics. Nat Rev Cancer 6(2): 146-155. Warburg O. 1956. On the origin of cancer cells. Science 123(3191): 309-314. Goudar C, Biener R, Boisart C, Heidemann R, Piret J, de Graaf A, Konstantinov K. 2010. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Metab Eng 12(2): 138-149. Sengupta N, Rose ST, Morgan JA. 2011. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108(1): 82-92. Dorai H, Kyung YS, Ellis D, Kinney C, Lin C, Jan D, Moore G, Betenbaugh MJ. 2009. Expression of anti-apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture. Biotechnol Bioeng 103(3): 592-608. Irani N, Wirth M, van Den Heuvel J, Wagner R. 1999. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 66(4): 238-246. Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros LG, Cascante M. 2003. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. J Biol Chem 278(31): 28395-28402. Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y, Johnson DH, Wilson DL, Kirwan JP, Kalhan SC, Hanson RW. 2007. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282(45): 32844-32855. Noguchi Y, Young JD, Aleman JO, Hansen ME, Kelleher JK, Stephanopoulos G. 2009. Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. J Biol Chem 284(48): 33425-33436. Ahn WS, Antoniewicz MR. 2011. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13(5): 598-609. Li J, Wong CL, Vijayasankaran N, Hudson T, Amanullah A. 2012. Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance. Biotechnol Bioeng 109(5): 1173-1186. Dean JT, Tran L, Beaven S, Tontonoz P, Reue K, Dipple KM, Liao JC. 2009. Resistance to diet-induced obesity in mice with synthetic glyoxylate shunt. Cell Metab 9(6): 525-536. Rasmussen B, Davis R, Thomas J, Reddy P. 1998. Isolation, characterization and recombinant protein expression in Veggie-CHO: A serum-free CHO host cell line. Cytotechnology 28(1-3): 31-42. 2010; 12 2007; 104 2004; 22 1998; 28 2007; 282 2012 2010; 327 1991; 30 2006; 58 2000; 20 1974 1999; 66 2006; 6 2005; 21 2011; 13 2012; 15 2007; 76 2007; 98 2003; 278 1996; 31 1998; 274 2012; 109 2011; 108 2010; 26 2000; 16 2004; 279 1984; 56 2009; 9 2010; 150 2009; 284 2009; 4 2010; 70 2008; 452 2009; 2 2009; 103 2007; 24 1956; 123 2007; 27 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 Templeton N (e_1_2_7_36_1) 2012 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Bergmeyer HU (e_1_2_7_4_1) 1974 |
References_xml | – reference: Altamirano C, Paredes C, Cairo JJ, Godia F. 2000. Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine. Biotechnol Prog 16(1): 69-75. – reference: Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. 2008. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 452(7184): 181-186. – reference: Kim SH, Lee GM. 2007. Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44). Appl Microbiol Biotechnol 76(3): 659-665. – reference: Hassell T, Gleave S, Butler M. 1991. Growth inhibition in animal cell culture. The effect of lactate and ammonia. Appl Biochem Biotechnol 30(1): 29-41. – reference: Goudar C, Biener R, Boisart C, Heidemann R, Piret J, de Graaf A, Konstantinov K. 2010. Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. Metab Eng 12(2): 138-149. – reference: DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. 2007. Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104(49): 19345-19350. – reference: Pascoe DE, Arnott D, Papoutsakis ET, Miller WM, Andersen DC. 2007. Proteome analysis of antibody-producing CHO cell lines with different metabolic profiles. Biotechnol Bioeng 98(2): 391-410. – reference: Rasmussen B, Davis R, Thomas J, Reddy P. 1998. Isolation, characterization and recombinant protein expression in Veggie-CHO: A serum-free CHO host cell line. Cytotechnology 28(1-3): 31-42. – reference: Zamorano F, Wouwer AV, Bastin G. 2010. A detailed metabolic flux analysis of an underdetermined network of CHO cells. J Biotechnol 150(4): 497-508. – reference: Irish JM, Kotecha N, Nolan GP. 2006. Mapping normal and cancer cell signalling networks: Towards single-cell proteomics. Nat Rev Cancer 6(2): 146-155. – reference: Kashif Sheikh JF, Lars KNielsen. 2005. Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21: 112-121. – reference: Huang YM, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. 2010. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog 26(5): 1400-1410. – reference: Birch JR, Racher AJ. 2006. Antibody production. Adv Drug Deliv Rev 58(5-6): 671-685. – reference: Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. 2010. Regulation of cellular metabolism by protein lysine acetylation. Science 327(5968): 1000-1004. – reference: Deshpande R, Yang TH, Heinzle E. 2009. Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope-based metabolic profiling. Biotechnol J 4(2): 247-263. – reference: Irani N, Wirth M, van Den Heuvel J, Wagner R. 1999. Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction. Biotechnol Bioeng 66(4): 238-246. – reference: Boren J, Lee WN, Bassilian S, Centelles JJ, Lim S, Ahmed S, Boros LG, Cascante M. 2003. The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. J Biol Chem 278(31): 28395-28402. – reference: She P, Shiota M, Shelton KD, Chalkley R, Postic C, Magnuson MA. 2000. Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. Mol Cell Biol 20(17): 6508-6517. – reference: Goudar C, Biener R, Piret J, Konstantinov K. 2007. Metabolic flux estimation in mammalian cell cultures. Methods Biotechnol 24: 301-317. – reference: Ahn WS, Antoniewicz MR. 2011. Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13(5): 598-609. – reference: Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, DeBerardinis RJ. 2011. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci USA 108(21): 8674-8679. – reference: Dorai H, Kyung YS, Ellis D, Kinney C, Lin C, Jan D, Moore G, Betenbaugh MJ. 2009. Expression of anti-apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture. Biotechnol Bioeng 103(3): 592-608. – reference: Gagnon M, Hiller G, Luan YT, Kittredge A, DeFelice J, Drapeau D. 2011. High-end pH-controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed-batch cultures. Biotechnol Bioeng 108(6): 1328-1337. – reference: Dean JT, Tran L, Beaven S, Tontonoz P, Reue K, Dipple KM, Liao JC. 2009. Resistance to diet-induced obesity in mice with synthetic glyoxylate shunt. Cell Metab 9(6): 525-536. – reference: Liu H, Huang D, McArthur DL, Boros LG, Nissen N, Heaney AP. 2010. Fructose induces transketolase flux to promote pancreatic cancer growth. Cancer Res 70(15): 6368-6376. – reference: Tserng KY, Gilfillan CA, Kalhan SC. 1984. Determination of carbon-13 labeled lactate in blood by gas chromatography/mass spectrometry. Anal Chem 56(3): 517-523. – reference: Lovatt D, Sonnewald U, Waagepetersen HS, Schousboe A, He W, Lin JH, Han X, Takano T, Wang S, Sim FJ, Goldman SA, Nedergaard M. 2007. The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex. J Neurosci 27(45): 12255-12266. – reference: Wurm FM. 2004. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22(11): 1393-1398. – reference: Young JD, Shastri AA, Stephanopoulos G, Morgan JA. 2011. Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13(6): 656-665. – reference: Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, Cabrera ME, Hagen DR, Utter CB, Baghdy Y, Johnson DH, Wilson DL, Kirwan JP, Kalhan SC, Hanson RW. 2007. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem 282(45): 32844-32855. – reference: Lee WN, Boros LG, Puigjaner J, Bassilian S, Lim S, Cascante M. 1998. Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2]glucose. Am J Physiol 274(5 Pt 1): E843-E851. – reference: Warburg O. 1956. On the origin of cancer cells. Science 123(3191): 309-314. – reference: Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ, Lorkiewicz PK, Higashi RM, Fan TW, Dang CV. 2012. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab 15(1): 110-121. – reference: Templeton N, Dean J, Reddy P, Young J. 2012. Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed-batch CHO cell culture. Biotechnol Bioeng (in press). – reference: Noguchi Y, Young JD, Aleman JO, Hansen ME, Kelleher JK, Stephanopoulos G. 2009. Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. J Biol Chem 284(48): 33425-33436. – reference: Sengupta N, Rose ST, Morgan JA. 2011. Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108(1): 82-92. – reference: Li J, Wong CL, Vijayasankaran N, Hudson T, Amanullah A. 2012. Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance. Biotechnol Bioeng 109(5): 1173-1186. – reference: Hitosugi T, Kang S, Vander Heiden MG, Chung TW, Elf S, Lythgoe K, Dong S, Lonial S, Wang X, Chen GZ, Xie J, Gu TL, Polakiewicz RD, Roesel JL, Boggon TJ, Khuri FR, Gilliland DG, Cantley LC, Kaufman J, Chen J. 2009. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci Signal 2(97): ra73. DOI: 10.1126/scisignal.2000431. – reference: Burgess SC, Hausler N, Merritt M, Jeffrey FM, Storey C, Milde A, Koshy S, Lindner J, Magnuson MA, Malloy CR, Sherry AD. 2004. Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase. J Biol Chem 279(47): 48941-48949. – reference: Bergmeyer HU, Gawehn K, Grassl M. 1974. In: Bergmeyer HU editor. Methods of enzymatic analysis, Vol. 1, 2nd edition. New York, NY: Academic press, Inc; p. 509-510. – reference: Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H. 1996. Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31(3): 255-262. – volume: 108 start-page: 8674 issue: 21 year: 2011 end-page: 8679 article-title: Pyruvate carboxylase is required for glutamine‐independent growth of tumor cells publication-title: Proc Natl Acad Sci USA – volume: 274 start-page: E843 issue: 5 Pt 1 year: 1998 end-page: E851 article-title: Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2‐ C2]glucose publication-title: Am J Physiol – volume: 6 start-page: 146 issue: 2 year: 2006 end-page: 155 article-title: Mapping normal and cancer cell signalling networks: Towards single‐cell proteomics publication-title: Nat Rev Cancer – volume: 104 start-page: 19345 issue: 49 year: 2007 end-page: 19350 article-title: Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis publication-title: Proc Natl Acad Sci USA – volume: 16 start-page: 69 issue: 1 year: 2000 end-page: 75 article-title: Improvement of CHO cell culture medium formulation: Simultaneous substitution of glucose and glutamine publication-title: Biotechnol Prog – volume: 76 start-page: 659 issue: 3 year: 2007 end-page: 665 article-title: Functional expression of human pyruvate carboxylase for reduced lactic acid formation of Chinese hamster ovary cells (DG44) publication-title: Appl Microbiol Biotechnol – volume: 21 start-page: 112 year: 2005 end-page: 121 article-title: Modeling hybridoma cell metabolism using a generic genome‐scale metabolic model of Mus musculus publication-title: Biotechnol Prog – volume: 123 start-page: 309 issue: 3191 year: 1956 end-page: 314 article-title: On the origin of cancer cells publication-title: Science – start-page: p. 509 year: 1974 end-page: 510 – volume: 109 start-page: 1173 issue: 5 year: 2012 end-page: 1186 article-title: Feeding lactate for CHO cell culture processes: Impact on culture metabolism and performance publication-title: Biotechnol Bioeng – volume: 108 start-page: 82 issue: 1 year: 2011 end-page: 92 article-title: Metabolic flux analysis of CHO cell metabolism in the late non‐growth phase publication-title: Biotechnol Bioeng – volume: 150 start-page: 497 issue: 4 year: 2010 end-page: 508 article-title: A detailed metabolic flux analysis of an underdetermined network of CHO cells publication-title: J Biotechnol – volume: 13 start-page: 598 issue: 5 year: 2011 end-page: 609 article-title: Metabolic flux analysis of CHO cells at growth and non‐growth phases using isotopic tracers and mass spectrometry publication-title: Metab Eng – volume: 4 start-page: 247 issue: 2 year: 2009 end-page: 263 article-title: Towards a metabolic and isotopic steady state in CHO batch cultures for reliable isotope‐based metabolic profiling publication-title: Biotechnol J – volume: 12 start-page: 138 issue: 2 year: 2010 end-page: 149 article-title: Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [ C, 1H] COSY NMR spectroscopy publication-title: Metab Eng – volume: 279 start-page: 48941 issue: 47 year: 2004 end-page: 48949 article-title: Impaired tricarboxylic acid cycle activity in mouse livers lacking cytosolic phosphoenolpyruvate carboxykinase publication-title: J Biol Chem – volume: 284 start-page: 33425 issue: 48 year: 2009 end-page: 33436 article-title: Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis publication-title: J Biol Chem – volume: 70 start-page: 6368 issue: 15 year: 2010 end-page: 6376 article-title: Fructose induces transketolase flux to promote pancreatic cancer growth publication-title: Cancer Res – volume: 15 start-page: 110 issue: 1 year: 2012 end-page: 121 article-title: Glucose‐independent glutamine metabolism via TCA cycling for proliferation and survival in B cells publication-title: Cell Metab – volume: 58 start-page: 671 issue: 5–6 year: 2006 end-page: 685 article-title: Antibody production publication-title: Adv Drug Deliv Rev – volume: 13 start-page: 656 issue: 6 year: 2011 end-page: 665 article-title: Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis publication-title: Metab Eng – volume: 31 start-page: 255 issue: 3 year: 1996 end-page: 262 article-title: Correction of C mass isotopomer distributions for natural stable isotope abundance publication-title: J Mass Spectrom – volume: 66 start-page: 238 issue: 4 year: 1999 end-page: 246 article-title: Improvement of the primary metabolism of cell cultures by introducing a new cytoplasmic pyruvate carboxylase reaction publication-title: Biotechnol Bioeng – volume: 22 start-page: 1393 issue: 11 year: 2004 end-page: 1398 article-title: Production of recombinant protein therapeutics in cultivated mammalian cells publication-title: Nat Biotechnol – volume: 98 start-page: 391 issue: 2 year: 2007 end-page: 410 article-title: Proteome analysis of antibody‐producing CHO cell lines with different metabolic profiles publication-title: Biotechnol Bioeng – volume: 28 start-page: 31 issue: 1–3 year: 1998 end-page: 42 article-title: Isolation, characterization and recombinant protein expression in Veggie‐CHO: A serum‐free CHO host cell line publication-title: Cytotechnology – volume: 103 start-page: 592 issue: 3 year: 2009 end-page: 608 article-title: Expression of anti‐apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture publication-title: Biotechnol Bioeng – volume: 24 start-page: 301 year: 2007 end-page: 317 article-title: Metabolic flux estimation in mammalian cell cultures publication-title: Methods Biotechnol – volume: 452 start-page: 181 issue: 7184 year: 2008 end-page: 186 article-title: Pyruvate kinase M2 is a phosphotyrosine‐binding protein publication-title: Nature – volume: 278 start-page: 28395 issue: 31 year: 2003 end-page: 28402 article-title: The stable isotope‐based dynamic metabolic profile of butyrate‐induced HT29 cell differentiation publication-title: J Biol Chem – volume: 108 start-page: 1328 issue: 6 year: 2011 end-page: 1337 article-title: High‐end pH‐controlled delivery of glucose effectively suppresses lactate accumulation in CHO fed‐batch cultures publication-title: Biotechnol Bioeng – volume: 2 start-page: ra73 issue: 97 year: 2009 article-title: Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth publication-title: Sci Signal – volume: 20 start-page: 6508 issue: 17 year: 2000 end-page: 6517 article-title: Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism publication-title: Mol Cell Biol – year: 2012 article-title: Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed‐batch CHO cell culture publication-title: Biotechnol Bioeng – volume: 27 start-page: 12255 issue: 45 year: 2007 end-page: 12266 article-title: The transcriptome and metabolic gene signature of protoplasmic astrocytes in the adult murine cortex publication-title: J Neurosci – volume: 9 start-page: 525 issue: 6 year: 2009 end-page: 536 article-title: Resistance to diet‐induced obesity in mice with synthetic glyoxylate shunt publication-title: Cell Metab – volume: 282 start-page: 32844 issue: 45 year: 2007 end-page: 32855 article-title: Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse publication-title: J Biol Chem – volume: 30 start-page: 29 issue: 1 year: 1991 end-page: 41 article-title: Growth inhibition in animal cell culture. The effect of lactate and ammonia publication-title: Appl Biochem Biotechnol – volume: 56 start-page: 517 issue: 3 year: 1984 end-page: 523 article-title: Determination of carbon‐13 labeled lactate in blood by gas chromatography/mass spectrometry publication-title: Anal Chem – volume: 327 start-page: 1000 issue: 5968 year: 2010 end-page: 1004 article-title: Regulation of cellular metabolism by protein lysine acetylation publication-title: Science – volume: 26 start-page: 1400 issue: 5 year: 2010 end-page: 1410 article-title: Maximizing productivity of CHO cell‐based fed‐batch culture using chemically defined media conditions and typical manufacturing equipment publication-title: Biotechnol Prog – ident: e_1_2_7_18_1 doi: 10.1074/jbc.M706127200 – ident: e_1_2_7_29_1 doi: 10.1158/0008-5472.CAN-09-4615 – year: 2012 ident: e_1_2_7_36_1 article-title: Oxidative TCA cycle metabolism is associated with peak antibody production in an industrial fed‐batch CHO cell culture publication-title: Biotechnol Bioeng – ident: e_1_2_7_23_1 doi: 10.1038/nrc1804 – ident: e_1_2_7_8_1 doi: 10.1073/pnas.1016627108 – ident: e_1_2_7_2_1 doi: 10.1016/j.ymben.2011.07.002 – ident: e_1_2_7_19_1 doi: 10.1007/BF02922022 – ident: e_1_2_7_42_1 doi: 10.1126/science.1179689 – ident: e_1_2_7_20_1 doi: 10.1126/scisignal.2000431 – ident: e_1_2_7_28_1 doi: 10.1002/bit.24389 – ident: e_1_2_7_7_1 doi: 10.1074/jbc.M407120200 – ident: e_1_2_7_10_1 doi: 10.1016/j.cmet.2009.04.008 – ident: e_1_2_7_22_1 doi: 10.1002/(SICI)1097-0290(1999)66:4<238::AID-BIT5>3.0.CO;2-6 – ident: e_1_2_7_32_1 doi: 10.1002/bit.21460 – ident: e_1_2_7_34_1 doi: 10.1002/bit.22890 – ident: e_1_2_7_37_1 doi: 10.1021/ac00267a049 – ident: e_1_2_7_11_1 doi: 10.1073/pnas.0709747104 – ident: e_1_2_7_3_1 doi: 10.1021/bp990124j – ident: e_1_2_7_41_1 doi: 10.1016/j.jbiotec.2010.09.944 – ident: e_1_2_7_30_1 doi: 10.1523/JNEUROSCI.3404-07.2007 – ident: e_1_2_7_17_1 doi: 10.1007/978-1-59745-399-8_14 – ident: e_1_2_7_31_1 doi: 10.1074/jbc.M109.049478 – ident: e_1_2_7_38_1 doi: 10.1126/science.123.3191.309 – ident: e_1_2_7_21_1 doi: 10.1002/btpr.436 – start-page: p. 509 volume-title: Methods of enzymatic analysis year: 1974 ident: e_1_2_7_4_1 – ident: e_1_2_7_6_1 doi: 10.1074/jbc.M302932200 – ident: e_1_2_7_33_1 doi: 10.1023/A:1008052908496 – ident: e_1_2_7_9_1 doi: 10.1038/nature06667 – ident: e_1_2_7_24_1 doi: 10.1021/bp0498138 – ident: e_1_2_7_13_1 doi: 10.1002/bit.22269 – ident: e_1_2_7_27_1 doi: 10.1152/ajpendo.1998.274.5.E843 – ident: e_1_2_7_5_1 doi: 10.1016/j.addr.2005.12.006 – ident: e_1_2_7_35_1 doi: 10.1128/MCB.20.17.6508-6517.2000 – ident: e_1_2_7_16_1 doi: 10.1016/j.ymben.2009.10.007 – ident: e_1_2_7_40_1 doi: 10.1016/j.ymben.2011.08.002 – ident: e_1_2_7_14_1 doi: 10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3 – ident: e_1_2_7_15_1 doi: 10.1002/bit.23072 – ident: e_1_2_7_12_1 doi: 10.1002/biot.200800143 – ident: e_1_2_7_25_1 doi: 10.1007/s00253-007-1041-6 – ident: e_1_2_7_39_1 doi: 10.1038/nbt1026 – ident: e_1_2_7_26_1 doi: 10.1016/j.cmet.2011.12.009 |
SSID | ssj0007866 |
Score | 2.4307983 |
Snippet | Chinese hamster ovary (CHO) cells are commonly used for industrial production of recombinant proteins in fed batch or alternative production systems. Cells... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1735 |
SubjectTerms | Amino Acids - metabolism Animals Antibodies, Monoclonal - analysis Antibodies, Monoclonal - biosynthesis Antibodies, Monoclonal - chemistry Cell Culture Techniques - methods Cells Chinese hamster ovary cells CHO Cells Cricetinae Cricetulus fed-batch mAb production Genotype & phenotype Glucose - metabolism Industrial production Isotope Labeling Isotopes Lactic Acid - metabolism metabolic flux analysis Metabolism Metabolites Metabolome Phosphoenolpyruvate Carboxykinase (ATP) - metabolism Proteins Pyruvic Acid - metabolism Recombinant Proteins - analysis Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Ribose - metabolism Rodents stable isotope tracers Stable isotopes |
Title | Metabolic analysis of antibody producing CHO cells in fed-batch production |
URI | https://api.istex.fr/ark:/67375/WNG-NQ6HCZLL-Z/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbit.24826 https://www.ncbi.nlm.nih.gov/pubmed/23296898 https://www.proquest.com/docview/1344355525 https://www.proquest.com/docview/1345511513 https://www.proquest.com/docview/1434025226 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5KRdQPvlx9Wa0SRYpf9nqbTfaFfmoP6ynXE-XEUoSQZBM8WvdKbw-sn_wJ_sb-EifZl1qpIn4L7Cwkk5nMM5vZZwCeMyYHsuBJqKTBBEVbFebKFVMZa6WlA5v6ZjB7k2T0gb3Z5_srsNX-C1PzQ3Qf3Jxn-PPaObhUi81z0lA1q_qUITrG89fVajlA9P6cOirN6ntKlzHHPKctq9CAbnZvXohFV5xav14GNC_iVh94dm_Bp3bKdb3JYX9Zqb7-9hub43-u6TbcbAAp2a4t6A6smLIHa9slJuNfTskG8SWi_tt7D67utKNrw7ZRXA9u_MJpuAbjPVOhYR3NNJEN4QmZWxxXMzUvTsmxp5hFUTIcvSXu3mBBZiWxpjj7_kNhYPjciDiLuQvT3ZfT4ShsWjaEmuWoaZpqm1hupWFKWp6lhdUWMz40COZu7AzXOrFRKmOd64QrhdHRcKOjQkU6ZvE9WC3npXkARGrOleEpMyZzBDmKKhPlNuNpYUxkbQAv2r0TuqEzd101jkRNxEwFKlN4ZQbwrBM9rjk8LhPa8AbQSciTQ1f0lnLxcfJKTN4lo-HBeCwOAlhvLUQ0_r4QUcwQd3JOeQBPu8e4D06NsjTzpZdBeIoIK_6LDIsxoXeYOID7tfV1E0LsmydZnuHKvQ39eS1i5_XUDx7-u-gjuE7rTh_hIFqH1epkaR4j3qrUE-9YPwEyLCb5 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2VVqjwwGXLJVDAIFTxku0msXOReGlXlBR2F4EWUVVClu3YYtWSrdqsRHniE_hGvoSxcylFBSHeLGUi2eOZzBl7cgbgKaViIAoW-1JoTFCUkX4mbTGVNkaYcGAS1wxmPInz9_TVHttbguftvzA1P0R34GY9w32vrYPbA-nNM9ZQOav6IUV4fAlWbEdvl1C9OyOPStL6ptLmzBHLwpZXaBBudq-ei0YrVrFfLoKa55GrCz071-FjO-m64uSgv6hkX339jc_xf1d1A641mJRs1UZ0E5Z02YO1rRLz8c-nZIO4KlF3_N6Dy9vtaHXY9orrwdVfaA3XYDTWFdrW4UwR0XCekLnBcTWT8-KUHDmWWRQlw_wNsVcHJ2RWEqOLH9--S4wNnxoRazS3YLrzYjrM_aZrg69ohqoOE2Viw4zQVArD0qQwymDShzZB7aWdZkrFJkhEpDIVMykxQGqmVVDIQEU0ug3L5bzUd4EIxZjULKFap5YjR4ZSB5lJWVJoHRjjwbN287hqGM1tY41DXnMxhxyVyZ0yPXjSiR7VNB4XCW04C-gkxPGBrXtLGP8wecknb-N8uD8a8X0P1lsT4Y3Ln_Agogg9GQuZB4-7x7gPVo2i1POFk0GEiiAr-osMjTCnt7DYgzu1-XUTQvibxWmW4sqdEf15LXx7d-oG9_5d9BGs5tPxiI92J6_vw5WwbvzhD4J1WK6OF_oBwq9KPnRe9hODiisU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxEB2VVtweuKQFAgUMQhUvm2Z37b2IpzYlpJAGioKoqkqW7bVF1LKJ2o1EeeIT-Ea-hLH3UooKQrxZ2lnJHh-vz9izZwCeUSq6ImORJ4XGAEUZ6aXSJlNpY4QJuiZ2xWB2RtHgA329x_YW4EX9L0ypD9EcuNmV4b7XdoHPMrN-JhoqJ0UnoMiOL8ESjbqJhfTW-zPtqDgpLyptyByyNKhlhbrBevPquc1oyfr1y0VM8zxxdTtP_yYc1H0uE04OO_NCdtTX3-Qc_3NQt-BGxUjJRgmh27Cg8xYsb-QYjX8-JWvE5Yi6w_cWXN6sW1d7daW4Flz_RdRwGYY7ukBkHU0UEZXiCZkabBcTOc1OycxpzKIp6Q3eEntxcEImOTE6-_Htu8Sd4VNlYiGzAuP-y3Fv4FU1GzxFU_R0ECsTGWaEplIYlsSZUQZDPkQEtVd2mikVGT8WoUpVxKTE7VEzrfxM-iqk4R1YzKe5vgdEKMakZjHVOrEKOTKQ2k9NwuJMa9-YNjyv546rSs_cltU44qUSc8DRmdw5sw1PG9NZKeJxkdGaA0BjIY4PbdZbzPjH0Ss-2o0Gvf3hkO-3YbVGCK8W_An3Q4rEk7GAteFJ8xjnwbpR5Ho6dzbIT5FihX-xoSFG9JYUt-Fuib6mQ0h-0yhJExy5w9Cfx8I3t8eucf_fTR_DlXdbfT7cHr15ANeCsuqH1_VXYbE4nuuHyL0K-citsZ8D0SnM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolic+analysis+of+antibody+producing+CHO+cells+in+fed-batch+production&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Dean%2C+Jason&rft.au=Reddy%2C+Pranhitha&rft.date=2013-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0006-3592&rft.eissn=1097-0290&rft.volume=110&rft.issue=6&rft.spage=1735&rft.epage=1747&rft_id=info:doi/10.1002%2Fbit.24826&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NQ6HCZLL_Z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |