The effect of colonic tissue electrical stimulation and celiac branch of the abdominal vagus nerve neuromodulation on colonic motility in anesthetized pigs

Background Knowledge on optimal electrical stimulation (ES) modalities and region‐specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in...

Full description

Saved in:
Bibliographic Details
Published inNeurogastroenterology and motility Vol. 32; no. 11; pp. e13925 - n/a
Main Authors Larauche, Muriel, Wang, Yushan, Wang, Po‐Min, Dubrovsky, Genia, Lo, Yi‐Kai, Hsiang, En‐Lin, Dunn, James C. Y., Taché, Yvette, Liu, Wentai, Million, Mulugeta
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.11.2020
Subjects
Online AccessGet full text
ISSN1350-1925
1365-2982
1365-2982
DOI10.1111/nmo.13925

Cover

Loading…
Abstract Background Knowledge on optimal electrical stimulation (ES) modalities and region‐specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in an anesthetized porcine model. Methods In male Yucatan pigs, direct ES (10 Hz, 2 ms, 15 mA) of proximal (pC), transverse (tC), or distal (dC) colon was done using planar flexible multi‐electrode array panels and CBVN ES (2 Hz, 0.3‐4 ms, 5 mA) using pulse train (PT), continuous (10 min), or square‐wave (SW) modalities, with or without afferent nerve block (200 Hz, 0.1 ms, 2 mA). The regional luminal manometric changes were quantified as area under the curve of contractions (AUC) and luminal pressure maps generated. Contractions frequency power spectral analysis was performed. Contraction propagation was assessed using video animation of motility changes. Key Results Direct colon ES caused visible local circular (pC, tC) or longitudinal (dC) muscle contractions and increased luminal pressure AUC in pC, tC, and dC (143.0 ± 40.7%, 135.8 ± 59.7%, and 142.0 ± 62%, respectively). The colon displayed prominent phasic pressure frequencies ranging from 1 to 12 cpm. Direct pC and tC ES increased the dominant contraction frequency band (1‐6 cpm) power locally. Pulse train CBVN ES (2 Hz, 4 ms, 5 mA) triggered pancolonic contractions, reduced by concurrent afferent block. Colon contractions propagated both orally and aborally in short distances. Conclusion and Inferences In anesthetized pigs, the dominant contraction frequency band is 1‐6 cpm. Direct colonic ES causes primarily local contractions. The CBVN ES‐induced pancolonic contractions involve central neural network. In anesthetized male Yucatan pigs, direct colonic ES causes primarily local contractions while pulse train CBVN ES induces pancolonic contractions involving central neural network. This study provides a foundational basis to guide safe and effective neuromodulation for patients suffering from intractable colonic motility disorders.
AbstractList Background Knowledge on optimal electrical stimulation (ES) modalities and region‐specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in an anesthetized porcine model. Methods In male Yucatan pigs, direct ES (10 Hz, 2 ms, 15 mA) of proximal (pC), transverse (tC), or distal (dC) colon was done using planar flexible multi‐electrode array panels and CBVN ES (2 Hz, 0.3‐4 ms, 5 mA) using pulse train (PT), continuous (10 min), or square‐wave (SW) modalities, with or without afferent nerve block (200 Hz, 0.1 ms, 2 mA). The regional luminal manometric changes were quantified as area under the curve of contractions (AUC) and luminal pressure maps generated. Contractions frequency power spectral analysis was performed. Contraction propagation was assessed using video animation of motility changes. Key Results Direct colon ES caused visible local circular (pC, tC) or longitudinal (dC) muscle contractions and increased luminal pressure AUC in pC, tC, and dC (143.0 ± 40.7%, 135.8 ± 59.7%, and 142.0 ± 62%, respectively). The colon displayed prominent phasic pressure frequencies ranging from 1 to 12 cpm. Direct pC and tC ES increased the dominant contraction frequency band (1‐6 cpm) power locally. Pulse train CBVN ES (2 Hz, 4 ms, 5 mA) triggered pancolonic contractions, reduced by concurrent afferent block. Colon contractions propagated both orally and aborally in short distances. Conclusion and Inferences In anesthetized pigs, the dominant contraction frequency band is 1‐6 cpm. Direct colonic ES causes primarily local contractions. The CBVN ES‐induced pancolonic contractions involve central neural network. In anesthetized male Yucatan pigs, direct colonic ES causes primarily local contractions while pulse train CBVN ES induces pancolonic contractions involving central neural network. This study provides a foundational basis to guide safe and effective neuromodulation for patients suffering from intractable colonic motility disorders.
Knowledge on optimal electrical stimulation (ES) modalities and region-specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in an anesthetized porcine model.BACKGROUNDKnowledge on optimal electrical stimulation (ES) modalities and region-specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in an anesthetized porcine model.In male Yucatan pigs, direct ES (10 Hz, 2 ms, 15 mA) of proximal (pC), transverse (tC), or distal (dC) colon was done using planar flexible multi-electrode array panels and CBVN ES (2 Hz, 0.3-4 ms, 5 mA) using pulse train (PT), continuous (10 min), or square-wave (SW) modalities, with or without afferent nerve block (200 Hz, 0.1 ms, 2 mA). The regional luminal manometric changes were quantified as area under the curve of contractions (AUC) and luminal pressure maps generated. Contractions frequency power spectral analysis was performed. Contraction propagation was assessed using video animation of motility changes.METHODSIn male Yucatan pigs, direct ES (10 Hz, 2 ms, 15 mA) of proximal (pC), transverse (tC), or distal (dC) colon was done using planar flexible multi-electrode array panels and CBVN ES (2 Hz, 0.3-4 ms, 5 mA) using pulse train (PT), continuous (10 min), or square-wave (SW) modalities, with or without afferent nerve block (200 Hz, 0.1 ms, 2 mA). The regional luminal manometric changes were quantified as area under the curve of contractions (AUC) and luminal pressure maps generated. Contractions frequency power spectral analysis was performed. Contraction propagation was assessed using video animation of motility changes.Direct colon ES caused visible local circular (pC, tC) or longitudinal (dC) muscle contractions and increased luminal pressure AUC in pC, tC, and dC (143.0 ± 40.7%, 135.8 ± 59.7%, and 142.0 ± 62%, respectively). The colon displayed prominent phasic pressure frequencies ranging from 1 to 12 cpm. Direct pC and tC ES increased the dominant contraction frequency band (1-6 cpm) power locally. Pulse train CBVN ES (2 Hz, 4 ms, 5 mA) triggered pancolonic contractions, reduced by concurrent afferent block. Colon contractions propagated both orally and aborally in short distances.KEY RESULTSDirect colon ES caused visible local circular (pC, tC) or longitudinal (dC) muscle contractions and increased luminal pressure AUC in pC, tC, and dC (143.0 ± 40.7%, 135.8 ± 59.7%, and 142.0 ± 62%, respectively). The colon displayed prominent phasic pressure frequencies ranging from 1 to 12 cpm. Direct pC and tC ES increased the dominant contraction frequency band (1-6 cpm) power locally. Pulse train CBVN ES (2 Hz, 4 ms, 5 mA) triggered pancolonic contractions, reduced by concurrent afferent block. Colon contractions propagated both orally and aborally in short distances.In anesthetized pigs, the dominant contraction frequency band is 1-6 cpm. Direct colonic ES causes primarily local contractions. The CBVN ES-induced pancolonic contractions involve central neural network.CONCLUSION AND INFERENCESIn anesthetized pigs, the dominant contraction frequency band is 1-6 cpm. Direct colonic ES causes primarily local contractions. The CBVN ES-induced pancolonic contractions involve central neural network.
BackgroundKnowledge on optimal electrical stimulation (ES) modalities and region‐specific functional effects of colonic neuromodulation is lacking. We aimed to map the regional colonic motility in response to ES of (a) the colonic tissue and (b) celiac branch of the abdominal vagus nerve (CBVN) in an anesthetized porcine model.MethodsIn male Yucatan pigs, direct ES (10 Hz, 2 ms, 15 mA) of proximal (pC), transverse (tC), or distal (dC) colon was done using planar flexible multi‐electrode array panels and CBVN ES (2 Hz, 0.3‐4 ms, 5 mA) using pulse train (PT), continuous (10 min), or square‐wave (SW) modalities, with or without afferent nerve block (200 Hz, 0.1 ms, 2 mA). The regional luminal manometric changes were quantified as area under the curve of contractions (AUC) and luminal pressure maps generated. Contractions frequency power spectral analysis was performed. Contraction propagation was assessed using video animation of motility changes.Key ResultsDirect colon ES caused visible local circular (pC, tC) or longitudinal (dC) muscle contractions and increased luminal pressure AUC in pC, tC, and dC (143.0 ± 40.7%, 135.8 ± 59.7%, and 142.0 ± 62%, respectively). The colon displayed prominent phasic pressure frequencies ranging from 1 to 12 cpm. Direct pC and tC ES increased the dominant contraction frequency band (1‐6 cpm) power locally. Pulse train CBVN ES (2 Hz, 4 ms, 5 mA) triggered pancolonic contractions, reduced by concurrent afferent block. Colon contractions propagated both orally and aborally in short distances.Conclusion and InferencesIn anesthetized pigs, the dominant contraction frequency band is 1‐6 cpm. Direct colonic ES causes primarily local contractions. The CBVN ES‐induced pancolonic contractions involve central neural network.
Author Larauche, Muriel
Wang, Po‐Min
Liu, Wentai
Dunn, James C. Y.
Dubrovsky, Genia
Million, Mulugeta
Wang, Yushan
Lo, Yi‐Kai
Hsiang, En‐Lin
Taché, Yvette
AuthorAffiliation 3 Department of Bioengineering, California NanoSystems Institute, UCLA, Los Angeles, CA, USA
1 CURE: Digestive Diseases Research Center (DDRCC), Center for Neurobiology of Stress and Resilience (CNSR), Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
2 VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
4 Department of Surgery, UCLA, Los Angeles, CA, USA
5 Departments of Surgery and Bioengineering, Stanford University, Stanford, CA, USA
AuthorAffiliation_xml – name: 1 CURE: Digestive Diseases Research Center (DDRCC), Center for Neurobiology of Stress and Resilience (CNSR), Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
– name: 3 Department of Bioengineering, California NanoSystems Institute, UCLA, Los Angeles, CA, USA
– name: 4 Department of Surgery, UCLA, Los Angeles, CA, USA
– name: 2 VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
– name: 5 Departments of Surgery and Bioengineering, Stanford University, Stanford, CA, USA
Author_xml – sequence: 1
  givenname: Muriel
  orcidid: 0000-0003-3320-3675
  surname: Larauche
  fullname: Larauche, Muriel
  organization: VA Greater Los Angeles Healthcare System
– sequence: 2
  givenname: Yushan
  surname: Wang
  fullname: Wang, Yushan
  organization: UCLA
– sequence: 3
  givenname: Po‐Min
  surname: Wang
  fullname: Wang, Po‐Min
  organization: UCLA
– sequence: 4
  givenname: Genia
  surname: Dubrovsky
  fullname: Dubrovsky, Genia
  organization: UCLA
– sequence: 5
  givenname: Yi‐Kai
  surname: Lo
  fullname: Lo, Yi‐Kai
  organization: UCLA
– sequence: 6
  givenname: En‐Lin
  surname: Hsiang
  fullname: Hsiang, En‐Lin
  organization: UCLA
– sequence: 7
  givenname: James C. Y.
  surname: Dunn
  fullname: Dunn, James C. Y.
  organization: Stanford University
– sequence: 8
  givenname: Yvette
  surname: Taché
  fullname: Taché, Yvette
  organization: VA Greater Los Angeles Healthcare System
– sequence: 9
  givenname: Wentai
  surname: Liu
  fullname: Liu, Wentai
  email: wentai@ucla.edu
  organization: UCLA
– sequence: 10
  givenname: Mulugeta
  surname: Million
  fullname: Million, Mulugeta
  email: millionmulugeta@mednet.ucla.edu
  organization: VA Greater Los Angeles Healthcare System
BookMark eNp9UV1rFDEUDVKx7eqD_yDgiz5Mm-_ZvAhSrArVvtTnkEkyuymZZE0yK-tf6Z81220FCxouueHec07uxyk4iik6AF5jdIbbOY9TOsNUEv4MnGAqeEfkkhzt3xx1uMWPwWkptwghQZh4AY4p4f2SMnEC7m7WDrpxdKbCNEKTQorewOpLmVsitHj2RgdYqp_moKtPEepooXHBawOHrKNZ76m1CenBpsnHBt_q1VxgdHnr2j3nNCX7SG_2-M-Uqg--7qDfq7rSRKr_5Szc-FV5CZ6POhT36sEvwPfLjzcXn7ur609fLj5cdYZJxDvXE20x4mPPB0dNLzgaJGGUSmTsKJasHy1xw5IOA7GSEYnHnmpBsZXcGqTpArw_6G7mYXLWuFizDmqT_aTzTiXt1d-Z6NdqlbaqF0gwyZrA2weBnH7MrQs1-dIGFFpLaS6KMCwkRbTZArx5Ar1Nc24T26M4o4Qh0jfUuwPK5FRKduOfYjBS-5WrtnJ1v_KGPX-CNb7eD7rV6sP_GD99cLt_S6tvX68PjN_M_cID
CitedBy_id crossref_primary_10_1055_a_2482_5997
crossref_primary_10_1038_s41467_024_52397_0
crossref_primary_10_1016_j_medj_2023_05_007
crossref_primary_10_1038_s41598_022_17549_6
crossref_primary_10_1109_TBCAS_2023_3289768
crossref_primary_10_1016_j_neuroscience_2023_08_026
crossref_primary_10_1038_s42003_023_04478_x
crossref_primary_10_3390_biomedicines12030481
crossref_primary_10_4240_wjgs_v16_i11_3559
Cites_doi 10.1001/archsurg.138.2.206
10.1079/BJN19800074
10.1113/jphysiol.1982.sp014050
10.1111/j.1365-2982.2004.00637.x
10.1002/bdd.2510160502
10.1111/j.1525-1594.2005.29045.x
10.1111/j.1365-2982.2009.01461.x
10.1038/s41575-019-0167-1
10.1111/j.1525-1403.2005.00229.x
10.1111/j.1365-2982.2009.01359.x
10.1007/DCR.0b013e3181a872fb
10.1146/annurev.nu.07.070187.002045
10.1113/jphysiol.1977.sp012028
10.1111/j.1572-0241.2004.04114.x
10.1097/01.sla.0000186281.09475.db
10.1053/j.gastro.2019.10.018
10.1113/jphysiol.1984.sp015097
10.1097/00001574-200403000-00016
10.1111/j.1525-1403.2007.00097.x
10.1111/j.1365-2982.2005.00735.x
10.1152/physrev.1987.67.3.902
10.1111/j.1572-0241.2001.03924.x
10.1196/annals.1334.015
10.1016/j.jneumeth.2019.108325
10.3390/mi9010017
10.1080/08941930390230432
10.1001/archsurg.139.7.775
10.1016/S0016-5085(74)80114-9
10.1038/nrgastro.2012.168
10.1016/0031-9384(92)90332-V
10.1111/nmo.12884
10.1053/rvsc.2001.0486
10.1002/bjs.6455
10.1152/ajpgi.90322.2008
10.1046/j.1365-2982.2002.00304.x
10.1016/j.surg.2008.03.015
10.1023/A:1018858930745
10.1007/978-3-319-27592-5_16
10.1080/17474124.2017.1298441
10.1136/gut.50.4.475
10.1016/S0016-5085(19)30512-8
10.1111/j.1365-2982.2006.00783.x
10.1016/j.jss.2018.11.044
10.1007/s13311-018-00685-1
10.1007/s10350-008-9355-8
10.1111/j.1463-1318.2006.01096.x
10.1111/ner.13035
10.1016/0013-4694(52)90064-3
10.1111/ner.13099
10.1111/ner.12369
10.1152/ajpgi.00114.2001
10.1111/nmo.12185
10.1046/j.1365-2982.2000.00198.x
10.1152/ajpregu.1991.260.1.R200
10.1097/00004836-200101000-00005
10.1111/j.1748-1716.1976.tb10213.x
10.1038/s41575-018-0078-6
10.1007/s11894-018-0655-4
10.1007/s00384-015-2457-6
10.1111/j.1365-2982.2008.01165.x
10.2741/A754
10.1016/0304-3940(86)90005-4
10.1016/0016-5085(90)90849-V
10.1038/ismej.2007.23
10.1053/j.gastro.2018.02.014
10.2340/16501977-0277
10.1007/s00726-017-2497-z
10.1111/nmo.13075
10.1053/j.gastro.2017.12.010
10.1152/physiol.00030.2018
10.5056/jnm19045
10.1007/s10620-006-3162-7
10.1177/1553350614530190
10.2147/JIR.S163248
10.1007/s00464-013-3192-0
10.1016/j.jcmgh.2016.09.003
10.1152/ajpgi.90436.2008
10.1007/s10439-010-9985-6
10.1113/jphysiol.1982.sp014463
10.1007/BF03326434
ContentType Journal Article
Copyright 2020 John Wiley & Sons Ltd
Copyright © 2020 John Wiley & Sons Ltd
2020 John Wiley & Sons Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons Ltd
– notice: Copyright © 2020 John Wiley & Sons Ltd
– notice: 2020 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7TK
K9.
7X8
5PM
DOI 10.1111/nmo.13925
DatabaseName CrossRef
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1365-2982
EndPage n/a
ExternalDocumentID PMC7606494
10_1111_nmo_13925
NMO13925
Genre article
GrantInformation_xml – fundername: U.S. Department of Veterans Affairs
– fundername: NIH Office of the Director
  funderid: 1OT2OD024899
– fundername: National Institute of Diabetes and Digestive and Kidney Diseases
  funderid: P30 DK 41301
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29N
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAKAS
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DTERQ
DU5
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPT
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
YFH
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
ID FETCH-LOGICAL-c4905-e72ad105f75be3c7650b9243390cdf6847fd2eb83bb2d94291f73a631d95dc0a3
IEDL.DBID DR2
ISSN 1350-1925
1365-2982
IngestDate Thu Aug 21 18:32:49 EDT 2025
Fri Jul 11 08:06:48 EDT 2025
Wed Aug 13 09:56:51 EDT 2025
Thu Apr 24 22:56:22 EDT 2025
Tue Jul 01 00:43:35 EDT 2025
Wed Jan 22 16:32:46 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4905-e72ad105f75be3c7650b9243390cdf6847fd2eb83bb2d94291f73a631d95dc0a3
Notes Funding information
Part of the work was presented at the 3rd Meeting of the Federation of Neurogastroenterology and Motility and Postgraduate Course on Gastrointestinal Motility, 29 August‐1 September 2018, Amsterdam The Netherlands and the 11th Congress of International Society for Autonomic Neuroscience, July 25‐27 2019, Los Angeles, CA.
Muriel Larauche and Yushan Wang are Co‐first authors.
This work was supported by NIH OT2 OD024899 (PD/PI Y. Taché, Subaward PI: Million Mulugeta), the CURE: Digestive Diseases Research Center P30 DK 41301 (Animal Model Core; MM, YT, ML) and a VA Senior Research Career Scientist Award (YT). Wentai Liu and his Lab was also partially supported by an endowment fund of Chen Soon‐Shiong Bionic Engineering Center.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contribution
Prof. Wentai Liu, PhD, Department of Bioengineering, California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA. wentai@ucla.edu
ML, PMW, YW, IH, GD, MM performed the experiments; YKL, WL, JD, YT provided key resources; ML, YW, MM, wrote the manuscript; WL, JD, YT did critical revision of the manuscript.
Co-first authors
ORCID 0000-0003-3320-3675
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7606494
PMID 32578346
PQID 2454324027
PQPubID 1006536
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606494
proquest_miscellaneous_2416930330
proquest_journals_2454324027
crossref_primary_10_1111_nmo_13925
crossref_citationtrail_10_1111_nmo_13925
wiley_primary_10_1111_nmo_13925_NMO13925
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2020
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Neurogastroenterology and motility
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 14
2004; 20
1990; 98
2009; 41
2013; 25
2002; 50
2017; 49
1980; 43
1987; 7
2019; 16
2016; 31
2019; 325
2003; 16
2014; 28
2003; 50
2008; 143
1998; 43
2005; 29
1933
1992; 52
2018; 6
2010; 22
2018; 9
2009; 96
2009; 52
2000; 12
1991; 260
1980; 78
2019; 25
2019; 236
2007; 9
2018; 30
1982; 333
2008; 20
2007; 1
2004; 139
2005; 1049
2001; 96
2001; 71
2002; 37
1977; 271
2010; 38
2006; 51
2016; 19
2003; 138
1992; 262
1995; 16
2019; 34
1984; 348
2002; 7
2006; 18
2014; 2014
2017; 29
1982; 322
2009; 296
2002
2007; 10
2008; 51
2018; 20
2004; 99
2018; 155
1976; 96
2018; 154
1987; 67
1974; 66
2016; 2
2005; 242
1986; 63
2002; 283
2020
2017; 11
2005; 8
2015; 22
2019
1952; 4
2016; 891
2020; 158
2016; 28
2018; 11
2005; 17
2008; 295
2001; 32
2012; 9
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Delmas JL (e_1_2_9_54_1) 1933
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_56_1
Maruyama S (e_1_2_9_82_1) 2003; 50
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
McCallum RW (e_1_2_9_18_1) 2013; 25
Larauche PM (e_1_2_9_58_1) 2018; 30
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_2_1
Sarna SK (e_1_2_9_65_1) 2002
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
Camp NV (e_1_2_9_35_1) 2018; 6
e_1_2_9_15_1
Sarna K. Sushil (e_1_2_9_27_1) 2002
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Larauche M (e_1_2_9_63_1) 2020
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
Lo YK (e_1_2_9_60_1) 2014; 2014
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_3_1
Sarna SK (e_1_2_9_77_1) 1992; 262
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 16
  start-page: 289
  year: 2003
  end-page: 297
  article-title: Electrophysiologic identification of the location of the colonic pacemakers in humans: further study
  publication-title: J Invest Surg
– volume: 6
  start-page: 2700507
  year: 2018
  article-title: Accelerometer‐based assessment of intestinal peristalsis: toward miniaturized low‐power solutions for intestinal implants
  publication-title: IEEE J Transl Eng Health Med
– volume: 43
  start-page: 1685
  year: 1998
  end-page: 1689
  article-title: Motor responsiveness of proximal and distal human colonic muscle layers to carbachol and neurotensin
  publication-title: Dig Dis Sci
– volume: 143
  start-page: 723
  year: 2008
  end-page: 731
  article-title: Intra‐abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device
  publication-title: Surgery
– volume: 1
  start-page: 156
  year: 2007
  end-page: 162
  article-title: Inter‐species transplantation of gut microbiota from human to pigs
  publication-title: ISME J
– volume: 138
  start-page: 206
  year: 2003
  end-page: 214
  article-title: Mechanisms and treatment of postoperative ileus
  publication-title: Arch Surg
– year: 1933
– volume: 25
  start-page: 815‐e636
  year: 2013
  article-title: Gastric electrical stimulation with enterra therapy improves symptoms of idiopathic gastroparesis
  publication-title: Neurogastroenterol Motil
– volume: 99
  start-page: 750
  year: 2004
  end-page: 759
  article-title: Epidemiology of constipation in North America: a systematic review
  publication-title: Am J Gastroenterol
– volume: 41
  start-page: 35
  year: 2009
  end-page: 40
  article-title: Relationship between neurogenic bowel dysfunction and health‐related quality of life in persons with spinal cord injury
  publication-title: J Rehabil Med
– volume: 11
  start-page: 407
  year: 2017
  end-page: 418
  article-title: Electrical therapies for gastrointestinal motility disorders
  publication-title: Expert Rev Gastroenterol Hepatol
– volume: 271
  start-page: 847
  year: 1977
  end-page: 862
  article-title: A long‐lasting potentiation of transmitter release related to an increase in transmitter stores in a sympathetic ganglion
  publication-title: J Physiol
– volume: 38
  start-page: 2398
  year: 2010
  end-page: 2405
  article-title: Direct electrical stimulation using a battery‐operated device for induction and modulation of colonic contractions in pigs
  publication-title: Ann Biomed Eng
– volume: 96
  start-page: 433
  year: 1976
  end-page: 442
  article-title: The vagal control of the ileo‐cecal sphincter in the cat
  publication-title: Acta Physiol Scand
– volume: 67
  start-page: 902
  year: 1987
  end-page: 961
  article-title: Extrinsic nervous control of motility of small and large intestines and related sphincters
  publication-title: Physiol Rev
– volume: 9
  start-page: 17
  issue: 1
  year: 2018
  article-title: A wireless implant for gastrointestinal motility disorders
  publication-title: Micromachines (Basel)
– volume: 154
  start-page: 723
  year: 2018
  end-page: 735
  article-title: Functional bowel disorders: a roadmap to guide the next generation of research
  publication-title: Gastroenterology
– year: 2019
  article-title: Electrical colon stimulation reflexively increases colonic activity
  publication-title: Neuromodulation
– volume: 52
  start-page: 1650
  year: 2009
  end-page: 1656
  article-title: Rectal evacuation and antegrade colonic luminal transport by sacral anterior root stimulation in pigs
  publication-title: Dis Colon Rectum
– volume: 63
  start-page: 17
  year: 1986
  end-page: 22
  article-title: Origin of the parasympathetic preganglionic fibers to the distal colon of the rabbit as demonstrated by the horseradish peroxidase method
  publication-title: Neurosci Lett
– volume: 283
  start-page: G544
  year: 2002
  end-page: G552
  article-title: Cholinergic and nitrergic regulation of in vivo giant migrating contractions in rat colon
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 16
  start-page: 89
  year: 2019
  end-page: 105
  article-title: Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 29
  issue: 9
  year: 2017
  article-title: Abdominal vagus nerve stimulation as a new therapeutic approach to prevent postoperative ileus
  publication-title: Neurogastroenterol Motil
– volume: 1049
  start-page: 161
  year: 2005
  end-page: 171
  article-title: The miniature pig as an animal model in biomedical research
  publication-title: Ann N Y Acad Sci
– volume: 25
  start-page: 461
  year: 2019
  end-page: 470
  article-title: Five‐fold gastrointestinal electrical stimulation with electromyography‐based activity analysis: towards multilocular theranostic intestinal implants
  publication-title: J Neurogastroenterol Motil
– volume: 49
  start-page: 2099
  year: 2017
  end-page: 2106
  article-title: Pig models on intestinal development and therapeutics
  publication-title: Amino Acids
– volume: 20
  start-page: 1298
  year: 2008
  end-page: 1305
  article-title: Regional variation in the neurochemical coding of the myenteric plexus of the human colon and changes in patients with slow transit constipation
  publication-title: Neurogastroenterol Motil
– volume: 7
  start-page: 361
  year: 1987
  end-page: 382
  article-title: The pig as a model for human nutrition
  publication-title: Annu Rev Nutr
– volume: 28
  start-page: 691
  year: 2014
  end-page: 697
  article-title: Colonic electrical stimulation for the treatment of slow‐transit constipation: a preliminary pilot study
  publication-title: Surg Endosc
– volume: 32
  start-page: 11
  year: 2001
  end-page: 18
  article-title: Management of the patient with gastroparesis
  publication-title: J Clin Gastroenterol
– volume: 2014
  start-page: 474
  year: 2014
  end-page: 477
  article-title: Bio‐impedance characterization technique with implantable neural stimulator using biphasic current stimulus
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 29
  start-page: 246
  year: 2005
  end-page: 249
  article-title: Electrical stimulation to induce propulsive contractions in the porcine descending colon
  publication-title: Artif Organs
– volume: 348
  start-page: 35
  year: 1984
  end-page: 42
  article-title: Vagal control of colonic motility in the anaesthetized ferret: evidence for a non‐cholinergic excitatory innervation
  publication-title: J Physiol
– volume: 10
  start-page: 85
  year: 2007
  end-page: 99
  article-title: A review of electrical stimulation to treat motility dysfunctions in the digestive tract: effects and stimulation patterns
  publication-title: Neuromodulation
– volume: 22
  start-page: 688
  year: 2010
  end-page: 693
  article-title: Effects of autonomic nerve stimulation on colorectal motility in rats
  publication-title: Neurogastroenterol Motil
– volume: 51
  start-page: 502
  year: 2006
  end-page: 505
  article-title: Colonic electrical stimulation regulates colonic transit via the nitrergic pathway in rats
  publication-title: Dig Dis Sci
– volume: 78
  start-page: 1526
  year: 1980
  end-page: 1536
  article-title: Human colonic electrical control activity (ECA)
  publication-title: Gastroenterology
– volume: 333
  start-page: 451
  year: 1982
  end-page: 461
  article-title: Effect of stimulation of the vagus nerve in bursts on gastric acid secretion and motility in the anaesthetized ferret
  publication-title: J Physiol
– volume: 158
  start-page: 506
  year: 2020
  end-page: 514.e2
  article-title: Gastric electrical stimulation reduces refractory vomiting in a randomized crossover trial
  publication-title: Gastroenterology
– volume: 2
  start-page: 716
  year: 2016
  end-page: 724
  article-title: Large animal models: the key to translational discovery in digestive disease research
  publication-title: Cell Mol Gastroenterol Hepatol
– volume: 18
  start-page: 153
  year: 2006
  end-page: 161
  article-title: Ano‐rectal motility responses to pelvic, hypogastric and pudendal nerve stimulation in the Gottingen minipig
  publication-title: Neurogastroenterol Motil
– year: 2020
  article-title: Electro‐neuromodulation for colonic disorders‐review of meta‐analyses, systematic reviews, and RCTs
  publication-title: Neuromodulation
– volume: 52
  start-page: 471
  year: 1992
  end-page: 474
  article-title: Prolonged ambulatory monitoring of colonic motor activity in the pig
  publication-title: Physiol Behav
– volume: 7
  start-page: b6
  year: 2002
  end-page: 13
  article-title: The motor efficacy of the artificial colonic pacemaker in colonic inertia patients
  publication-title: Front Biosci
– volume: 16
  start-page: 128
  year: 2019
  end-page: 133
  article-title: Invasive neuromodulation for the treatment of pediatric epilepsy
  publication-title: Neurotherapeutics
– volume: 295
  start-page: G614
  year: 2008
  end-page: 620
  article-title: Electroacupuncture improves impaired gastric motility and slow waves induced by rectal distension in dogs
  publication-title: Am J Physiol Gastrointest Liver Physiol
– volume: 16
  start-page: 559
  year: 2019
  end-page: 579
  article-title: First translational consensus on terminology and definitions of colonic motility in animals and humans studied by manometric and other techniques
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 17
  start-page: 376
  year: 2005
  end-page: 387
  article-title: Propulsive activity induced by sequential electrical stimulation in the descending colon of the pig
  publication-title: Neurogastroenterol Motil
– volume: 296
  start-page: G992
  year: 2009
  end-page: G1002
  article-title: Cholinergic giant migrating contractions in conscious mouse colon assessed by using a novel noninvasive solid‐state manometry method: modulation by stressors
  publication-title: Am J Physiol Gastrointest Liver Physiol
– start-page: 1
  year: 2002
  end-page: 18
– volume: 20
  start-page: 143
  year: 2004
  end-page: 145
  article-title: Current update of short‐bowel syndrome
  publication-title: Curr Opin Gastroenterol
– volume: 34
  start-page: 150
  year: 2019
  end-page: 162
  article-title: Electroceutical targeting of the autonomic nervous system
  publication-title: Physiology (Bethesda)
– volume: 262
  start-page: G62
  year: 1992
  end-page: G68
  article-title: Effect of fluid perfusion and cleansing on canine colonic motor activity
  publication-title: Am J Physiol
– volume: 322
  start-page: 469
  year: 1982
  end-page: 483
  article-title: Effects of stimulation of the chorda tympani in bursts on submaxillary responses in the cat
  publication-title: J Physiol
– volume: 37
  start-page: 145
  issue: Suppl 14
  year: 2002
  end-page: 150
  article-title: Exaggerated motility of the descending colon with repetitive distention of the sigmoid colon in patients with irritable bowel syndrome
  publication-title: J Gastroenterol
– volume: 50
  start-page: 475
  year: 2002
  end-page: 479
  article-title: Microprocessor controlled movement of solid colonic content using sequential neural electrical stimulation
  publication-title: Gut
– volume: 891
  start-page: 159
  year: 2016
  end-page: 173
  article-title: Integrated neural and endocrine control of gastrointestinal function
  publication-title: Adv Exp Med Biol
– volume: 236
  start-page: 153
  year: 2019
  end-page: 158
  article-title: Intestinal electrical stimulation to increase the rate of peristalsis
  publication-title: J Surg Res
– volume: 260
  start-page: R200
  year: 1991
  end-page: R207
  article-title: Topography of efferent vagal innervation of the rat gastrointestinal tract
  publication-title: Am J Physiol
– volume: 20
  start-page: 47
  year: 2018
  article-title: Bowel dysfunction in spinal cord injury
  publication-title: Curr Gastroenterol Rep
– volume: 71
  start-page: 93
  year: 2001
  end-page: 100
  article-title: Motility of the large intestine and flow of digesta in pigs
  publication-title: Res Vet Sci
– volume: 16
  start-page: 351
  year: 1995
  end-page: 380
  article-title: Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals
  publication-title: Biopharm Drug Dispos
– volume: 51
  start-page: 1261
  year: 2008
  end-page: 1267
  article-title: Pelvic nerve stimulation evokes nitric oxide mediated distal rectal relaxation in pigs
  publication-title: Dis Colon Rectum
– volume: 31
  start-page: 429
  year: 2016
  end-page: 437
  article-title: Effects of colonic electrical stimulation using different individual parameter patterns and stimulation sites on gastrointestinal transit time, defecation, and food intake
  publication-title: Int J Colorectal Dis
– volume: 66
  start-page: 273
  year: 1974
  end-page: 280
  article-title: Functional importance of extrinsic parasympathetic innervation to the distal colon and rectum in man
  publication-title: Gastroenterology
– volume: 22
  start-page: 70
  year: 2015
  end-page: 76
  article-title: Laparoscopically implanted system for stimulation of the hypogastric plexus induces colonic motility, defecation, and micturition: experimental study
  publication-title: Surg Innov
– volume: 11
  start-page: 203
  year: 2018
  end-page: 213
  article-title: A review of vagus nerve stimulation as a therapeutic intervention
  publication-title: J Inflamm Res
– volume: 14
  start-page: 55
  year: 2002
  end-page: 61
  article-title: Effect of bowel cleansing on colonic transit in constipation due to slow transit or evacuation disorder
  publication-title: Neurogastroenterol Motil
– volume: 19
  start-page: 108
  year: 2016
  end-page: 115
  article-title: Implantable colonic electrical stimulation improves gastrointestinal transit and defecation in a canine constipation model
  publication-title: Neuromodulation
– volume: 96
  start-page: 1838
  year: 2001
  end-page: 1848
  article-title: Prolonged multi‐point recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters
  publication-title: Am J Gastroenterol
– volume: 43
  start-page: 155
  year: 1980
  end-page: 162
  article-title: Motor activity in the large intestine of the pig related to dietary fibre and retention time
  publication-title: Br J Nutr
– year: 2020
– volume: 139
  start-page: 775
  year: 2004
  end-page: 779
  article-title: Colonic pacing: a therapeutic option for the treatment of constipation due to total colonic inertia
  publication-title: Arch Surg
– volume: 9
  start-page: 633
  year: 2012
  end-page: 645
  article-title: Regulation of gastrointestinal motility–insights from smooth muscle biology
  publication-title: Nat Rev Gastroenterol Hepatol
– volume: 242
  start-page: 662
  year: 2005
  end-page: 669
  article-title: Efficacy of sacral nerve stimulation for fecal incontinence: results of a multicenter double‐blind crossover study
  publication-title: Ann Surg
– volume: 22
  start-page: 88
  year: 2010
  end-page: 92
  article-title: Electrical colonic stimulation reduces mean transit time in a porcine model
  publication-title: Neurogastroenterol Motil
– volume: 98
  start-page: 517
  year: 1990
  end-page: 528
  article-title: Central nervous system action of peptides to influence gastrointestinal motor function
  publication-title: Gastroenterology
– volume: 325
  year: 2019
  article-title: Avoiding off‐target effects in electrical stimulation of the cervical vagus nerve: neuroanatomical tracingtechniques to study fascicular anatomy of the vagus nerve
  publication-title: J Neurosci Methods
– volume: 8
  start-page: 131
  year: 2005
  end-page: 140
  article-title: Muscular vs. neural activation in propulsion induced by electrical stimulation in the descending colon of rats
  publication-title: Neuromodulation
– volume: 50
  start-page: 275
  year: 2003
  end-page: 284
  article-title: The role of the rectal branches of pelvic plexus in defecation and colonic motility in a canine model
  publication-title: J Med Dent Sci
– volume: 12
  start-page: 181
  year: 2000
  end-page: 196
  article-title: Slow transit constipation: a model of human gut dysmotility. Review of possible aetiologies
  publication-title: Neurogastroenterol Motil
– volume: 155
  start-page: 1
  year: 2018
  end-page: 4
  article-title: Functional bowel disorders
  publication-title: Gastroenterology
– volume: 30
  start-page: 185
  year: 2018
  article-title: Electroceuticals: porcine model development to study the effect of neuromodulation on colonic motility
  publication-title: Neurogastroenterol Motil
– volume: 9
  start-page: 123
  year: 2007
  end-page: 132
  article-title: Sacral nerve stimulation induces pan‐colonic propagating pressure waves and increases defecation frequency in patients with slow‐transit constipation
  publication-title: Colorectal Dis
– volume: 96
  start-page: 214
  year: 2009
  end-page: 220
  article-title: Electrical stimulation induces propagated colonic contractions in an experimental model
  publication-title: Br J Surg
– volume: 28
  start-page: 1824
  year: 2016
  end-page: 1835
  article-title: High‐resolution colonic motility recordings in vivo compared with ex vivo recordings after colectomy, in patients with slow transit constipation
  publication-title: Neurogastroenterol Motil
– volume: 4
  start-page: 357
  year: 1952
  end-page: 361
  article-title: The effect of vagal afferent stimulation on the EEG pattern of the cat
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 18
  start-page: 647
  year: 2006
  end-page: 653
  article-title: Neural gastrointestinal electrical stimulation enhances colonic motility in a chronic canine model of delayed colonic transit
  publication-title: Neurogastroenterol Motil
– ident: e_1_2_9_75_1
  doi: 10.1001/archsurg.138.2.206
– ident: e_1_2_9_24_1
  doi: 10.1079/BJN19800074
– ident: e_1_2_9_87_1
  doi: 10.1113/jphysiol.1982.sp014050
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1365-2982.2004.00637.x
– ident: e_1_2_9_32_1
  doi: 10.1002/bdd.2510160502
– start-page: 1
  volume-title: Schuster Atlas of Gastrointestinal Motility in Health and Disease
  year: 2002
  ident: e_1_2_9_27_1
– volume: 50
  start-page: 275
  year: 2003
  ident: e_1_2_9_82_1
  article-title: The role of the rectal branches of pelvic plexus in defecation and colonic motility in a canine model
  publication-title: J Med Dent Sci
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1525-1594.2005.29045.x
– ident: e_1_2_9_57_1
  doi: 10.1111/j.1365-2982.2009.01461.x
– ident: e_1_2_9_67_1
  doi: 10.1038/s41575-019-0167-1
– volume: 30
  start-page: 185
  year: 2018
  ident: e_1_2_9_58_1
  article-title: Electroceuticals: porcine model development to study the effect of neuromodulation on colonic motility
  publication-title: Neurogastroenterol Motil
– ident: e_1_2_9_43_1
  doi: 10.1111/j.1525-1403.2005.00229.x
– ident: e_1_2_9_41_1
  doi: 10.1111/j.1365-2982.2009.01359.x
– ident: e_1_2_9_50_1
  doi: 10.1007/DCR.0b013e3181a872fb
– start-page: 1
  volume-title: Atlas of Gastrointestinal Motility in Health and Disease
  year: 2002
  ident: e_1_2_9_65_1
– ident: e_1_2_9_33_1
  doi: 10.1146/annurev.nu.07.070187.002045
– ident: e_1_2_9_89_1
  doi: 10.1113/jphysiol.1977.sp012028
– ident: e_1_2_9_4_1
  doi: 10.1111/j.1572-0241.2004.04114.x
– ident: e_1_2_9_22_1
  doi: 10.1097/01.sla.0000186281.09475.db
– ident: e_1_2_9_19_1
  doi: 10.1053/j.gastro.2019.10.018
– ident: e_1_2_9_55_1
  doi: 10.1113/jphysiol.1984.sp015097
– ident: e_1_2_9_10_1
  doi: 10.1097/00001574-200403000-00016
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1525-1403.2007.00097.x
– ident: e_1_2_9_48_1
  doi: 10.1111/j.1365-2982.2005.00735.x
– ident: e_1_2_9_53_1
  doi: 10.1152/physrev.1987.67.3.902
– ident: e_1_2_9_76_1
  doi: 10.1111/j.1572-0241.2001.03924.x
– ident: e_1_2_9_29_1
  doi: 10.1196/annals.1334.015
– ident: e_1_2_9_90_1
  doi: 10.1016/j.jneumeth.2019.108325
– ident: e_1_2_9_61_1
  doi: 10.3390/mi9010017
– ident: e_1_2_9_28_1
  doi: 10.1080/08941930390230432
– ident: e_1_2_9_21_1
  doi: 10.1001/archsurg.139.7.775
– ident: e_1_2_9_81_1
  doi: 10.1016/S0016-5085(74)80114-9
– ident: e_1_2_9_64_1
  doi: 10.1038/nrgastro.2012.168
– ident: e_1_2_9_68_1
  doi: 10.1016/0031-9384(92)90332-V
– ident: e_1_2_9_73_1
  doi: 10.1111/nmo.12884
– ident: e_1_2_9_74_1
  doi: 10.1053/rvsc.2001.0486
– ident: e_1_2_9_39_1
  doi: 10.1002/bjs.6455
– ident: e_1_2_9_69_1
  doi: 10.1152/ajpgi.90322.2008
– ident: e_1_2_9_78_1
  doi: 10.1046/j.1365-2982.2002.00304.x
– ident: e_1_2_9_17_1
  doi: 10.1016/j.surg.2008.03.015
– ident: e_1_2_9_66_1
  doi: 10.1023/A:1018858930745
– ident: e_1_2_9_14_1
  doi: 10.1007/978-3-319-27592-5_16
– ident: e_1_2_9_11_1
  doi: 10.1080/17474124.2017.1298441
– ident: e_1_2_9_45_1
  doi: 10.1136/gut.50.4.475
– ident: e_1_2_9_70_1
  doi: 10.1016/S0016-5085(19)30512-8
– ident: e_1_2_9_46_1
  doi: 10.1111/j.1365-2982.2006.00783.x
– volume-title: Anatomie médico‐chirurgicale du système nerveux végétatif: (sympathique & parasympathique)
  year: 1933
  ident: e_1_2_9_54_1
– ident: e_1_2_9_59_1
  doi: 10.1016/j.jss.2018.11.044
– ident: e_1_2_9_84_1
  doi: 10.1007/s13311-018-00685-1
– ident: e_1_2_9_49_1
  doi: 10.1007/s10350-008-9355-8
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1463-1318.2006.01096.x
– ident: e_1_2_9_72_1
  doi: 10.1111/ner.13035
– ident: e_1_2_9_86_1
  doi: 10.1016/0013-4694(52)90064-3
– ident: e_1_2_9_15_1
  doi: 10.1111/ner.13099
– ident: e_1_2_9_47_1
  doi: 10.1111/ner.12369
– ident: e_1_2_9_26_1
  doi: 10.1152/ajpgi.00114.2001
– volume: 25
  start-page: 815‐e636
  year: 2013
  ident: e_1_2_9_18_1
  article-title: Gastric electrical stimulation with enterra therapy improves symptoms of idiopathic gastroparesis
  publication-title: Neurogastroenterol Motil
  doi: 10.1111/nmo.12185
– ident: e_1_2_9_5_1
  doi: 10.1046/j.1365-2982.2000.00198.x
– ident: e_1_2_9_79_1
  doi: 10.1152/ajpregu.1991.260.1.R200
– ident: e_1_2_9_6_1
  doi: 10.1097/00004836-200101000-00005
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1748-1716.1976.tb10213.x
– ident: e_1_2_9_16_1
  doi: 10.1038/s41575-018-0078-6
– ident: e_1_2_9_9_1
  doi: 10.1007/s11894-018-0655-4
– ident: e_1_2_9_44_1
  doi: 10.1007/s00384-015-2457-6
– ident: e_1_2_9_52_1
  doi: 10.1111/j.1365-2982.2008.01165.x
– ident: e_1_2_9_71_1
  doi: 10.2741/A754
– ident: e_1_2_9_80_1
  doi: 10.1016/0304-3940(86)90005-4
– ident: e_1_2_9_83_1
  doi: 10.1016/0016-5085(90)90849-V
– ident: e_1_2_9_34_1
  doi: 10.1038/ismej.2007.23
– ident: e_1_2_9_7_1
  doi: 10.1053/j.gastro.2018.02.014
– ident: e_1_2_9_8_1
  doi: 10.2340/16501977-0277
– volume: 2014
  start-page: 474
  year: 2014
  ident: e_1_2_9_60_1
  article-title: Bio‐impedance characterization technique with implantable neural stimulator using biphasic current stimulus
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 262
  start-page: G62
  year: 1992
  ident: e_1_2_9_77_1
  article-title: Effect of fluid perfusion and cleansing on canine colonic motor activity
  publication-title: Am J Physiol
– ident: e_1_2_9_30_1
  doi: 10.1007/s00726-017-2497-z
– ident: e_1_2_9_62_1
  doi: 10.1111/nmo.13075
– ident: e_1_2_9_2_1
  doi: 10.1053/j.gastro.2017.12.010
– ident: e_1_2_9_12_1
  doi: 10.1152/physiol.00030.2018
– ident: e_1_2_9_36_1
  doi: 10.5056/jnm19045
– ident: e_1_2_9_42_1
  doi: 10.1007/s10620-006-3162-7
– ident: e_1_2_9_51_1
  doi: 10.1177/1553350614530190
– ident: e_1_2_9_85_1
  doi: 10.2147/JIR.S163248
– ident: e_1_2_9_20_1
  doi: 10.1007/s00464-013-3192-0
– volume: 6
  start-page: 2700507
  year: 2018
  ident: e_1_2_9_35_1
  article-title: Accelerometer‐based assessment of intestinal peristalsis: toward miniaturized low‐power solutions for intestinal implants
  publication-title: IEEE J Transl Eng Health Med
– ident: e_1_2_9_31_1
  doi: 10.1016/j.jcmgh.2016.09.003
– volume-title: Influence of Direct Colon Tissue Electrical Stimulation on Colonic Motility in Anesthetized Male Yucatan Minipig
  year: 2020
  ident: e_1_2_9_63_1
– ident: e_1_2_9_25_1
  doi: 10.1152/ajpgi.90436.2008
– ident: e_1_2_9_40_1
  doi: 10.1007/s10439-010-9985-6
– ident: e_1_2_9_88_1
  doi: 10.1113/jphysiol.1982.sp014463
– ident: e_1_2_9_3_1
  doi: 10.1007/BF03326434
SSID ssj0006246
Score 2.3569348
Snippet Background Knowledge on optimal electrical stimulation (ES) modalities and region‐specific functional effects of colonic neuromodulation is lacking. We aimed...
BackgroundKnowledge on optimal electrical stimulation (ES) modalities and region‐specific functional effects of colonic neuromodulation is lacking. We aimed to...
Knowledge on optimal electrical stimulation (ES) modalities and region-specific functional effects of colonic neuromodulation is lacking. We aimed to map the...
SourceID pubmedcentral
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e13925
SubjectTerms celiac branch of the abdominal vagus nerve
Colon
Electrical stimuli
electroceuticals
functional mapping
manometry
Motility
Muscle contraction
Neural networks
Neuromodulation
Pressure
Sensory neurons
Vagus nerve
Title The effect of colonic tissue electrical stimulation and celiac branch of the abdominal vagus nerve neuromodulation on colonic motility in anesthetized pigs
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnmo.13925
https://www.proquest.com/docview/2454324027
https://www.proquest.com/docview/2416930330
https://pubmed.ncbi.nlm.nih.gov/PMC7606494
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KH4ovfrSKp7WMIuJLjiS7yd7iUyktRbgKYqEPQtiPpBfqbYqXE-y_4j_rzOajvaIgQgiB7GY3mZnd32xmf8PY21gLlfA8iZQyKhLC6UhZnUSS8AHxGHaLOfOz_PRcfLzILrbYh2EvTMcPMS64kWWE8ZoMXJvVHSP3y2aK8CWlDeYUq0WA6PMtdVSedjuLeBZHiGKynlWIonjGmptz0S3AvB8eeRe2hnnn5BH7OvS4Cze5mq5bM7U398gc__OVHrOHPR6Fw06BnrCt0u-yvUOPvvjyJ7yDECEalt532c68_xG_x36hekEXCwJNBUR97WsLbRAjdLl1SPyAI8iyzxAG2juw2EVtwVA-jwVVRQAK2rgmJBeDH_pyvQJPYZgQqDaXjRuq4zG0QxGE5D9ATU_Fr7ko2_qmdHBdX66esvOT4y9Hp1Gf5yGyQsVZVMpUO8R5lcxMya1E0GjQLeRcxdZVOc6flUtLM-PGpE7hBJpUkuucJ05lzsaaP2PbvvHlcwYcB36uEyEdnoxyM1MJaxOR6FiXuZlN2PtB4oXtSdApF8e3YnCGUAZFkMGEvRmLXnfMH38qtD-oTdEb_6pIRRZ4DlM5Ya_H22i29C8GP0qzpjLEghNzHk-Y3FC3sTEi_t684-tFIACX6HUKJfBlgjb9vXvF2fxTuHjx70VfsgcprSmE_Zb7bLv9vi5fIfBqzUGwsN9-4C5B
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qBfWLL63iadVVRPySI8luklvwSxHLqb0TpIV-kbBv6QW9pHg5wf4V_6wzm5f2ioIIIQSym91kZ3afmcw-A_AyVEJGPI0CKbUMhLAqkEZFQUb4gHgMW2fObJ5Oj8WHk-RkC970e2FafojB4Uaa4edrUnBySF_S8mpZjxG_xMk1uE4Zvb1B9fmCPCqN271FPAkDxDFJxytEcTxD1c3V6AJiXg2QvAxc_cpzcAe-9H1uA06-jteNHpvzK3SO__tSd-F2B0nZfitD92DLVTuwu1-hOb78yV4xHyTqve87cGPW_YvfhV8oYawNB2F1wYj9uioNa_xIsja9DkkAw0lk2SUJY6qyzGAflWGaUnosqCpiUKa0rX1-MfZDna5XrKJITObZNpe17avj0bdDQYRkQrCSnoqfc-Ga8txZdlaeru7D8cG7o7fToEv1EBghwyRwWawsQr0iS7TjJkPcqNEy5FyGxhYpLqGFjZ2ecK1jK3ENjYqMq5RHVibWhIo_gO2qrtxDYBznfq4ikVk8aWknuhDGRCJSoXKpnozgdT_kuel40Ckdx7e8t4dwDHI_BiN4MRQ9a8k__lRor5ebvNP_VR6LxFMdxtkIng-3UXPpdwx-lHpNZYgIJ-Q8HEG2IW9DY8T9vXmnKheeAzxDw1NIgS_jxenv3cvns0_-4tG_F30GN6dHs8P88P3842O4FZOLwW-_3IPt5vvaPUEc1uinXt1-Ay6FMlw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9RAEB5qheIXX1qlp9WuIuKXHEl2k9zST8X2qC93iljoByHsS9ILesnh5QT7V_yzndm8tFcURAghkN3sJjOz-8xm9hmAl74SMuBx4EmppSeEVZ40KvASwgfEY9gs5kym8cmpeHcWnW3AQbcXpuGH6BfcyDLceE0GvrD5NSMv59UQ4UsY3YLbIvZHpNJHn6-4o-Kw2VrEI99DGBO1tEIUxtNXXZ-MrhDmzfjI67jVTTzje_C163ITb_JtuKr10FzcYHP8z3e6D3dbQMoOGw16ABtZuQ07hyU64_Nf7BVzIaJu7X0btibtn_gd-I36xZpgEFbljLivy8Kw2smRNcl1SP4Mh5B5myKMqdIyg11UhmlK6DGjqohAmdK2ctnF2E91vlqykuIwmePanFe2q45H1w6FEJIDwQp6Kn7NWVYXF5lli-J8-RBOx8df3px4baIHzwjpR16WhMoi0MuTSGfcJIgaNfqFnEvf2DzGCTS3YaZHXOvQSpxBgzzhKuaBlZE1vuKPYLOsymwXGMeRn6tAJBZPWtqRzoUxgQiUr7JYjwbwupN4aloWdErG8T3tvCGUQepkMIAXfdFFQ_3xp0J7ndqkrfUv01BEjugwTAbwvL-Ndks_Y_CjVCsqQzQ4Puf-AJI1desbI-bv9TtlMXMM4Am6nUIKfBmnTX_vXjqdfHQXj_-96D5sfToapx_eTt8_gTshrS-4vZd7sFn_WGVPEYTV-pkztkuhijEU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+colonic+tissue+electrical+stimulation+and+celiac+branch+of+the+abdominal+vagus+nerve+neuromodulation+on+colonic+motility+in+anesthetized+pigs&rft.jtitle=Neurogastroenterology+and+motility&rft.au=Larauche%2C+Muriel&rft.au=Wang%2C+Yushan&rft.au=Wang%2C+Po%E2%80%90Min&rft.au=Dubrovsky%2C+Genia&rft.date=2020-11-01&rft.issn=1350-1925&rft.eissn=1365-2982&rft.volume=32&rft.issue=11&rft_id=info:doi/10.1111%2Fnmo.13925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_nmo_13925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-1925&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-1925&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-1925&client=summon