Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI

A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at t...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 47; no. 1; pp. 149 - 159
Main Authors Steinman, David A., Thomas, Jonathan B., Ladak, Hanif M., Milner, Jaques S., Rutt, Brian K., Spence, J. David
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 01.01.2002
Williams & Wilkins
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
DOI10.1002/mrm.10025

Cover

Abstract A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three‐dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black‐blood magnetic resonance imaging (MRI). Along with time‐varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject‐specific flow patterns and wall shear stresses (WSSs). Results from a 59‐year‐old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23‐year‐old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image‐based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects.
AbstractList A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three‐dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black‐blood magnetic resonance imaging (MRI). Along with time‐varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject‐specific flow patterns and wall shear stresses (WSSs). Results from a 59‐year‐old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23‐year‐old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image‐based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects.
A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three-dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black-blood magnetic resonance imaging (MRI). Along with time-varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject-specific flow patterns and wall shear stresses (WSSs). Results from a 59-year-old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23-year-old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image-based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects.A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three-dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black-blood magnetic resonance imaging (MRI). Along with time-varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject-specific flow patterns and wall shear stresses (WSSs). Results from a 59-year-old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23-year-old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image-based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects.
Author Rutt, Brian K.
Steinman, David A.
Spence, J. David
Milner, Jaques S.
Thomas, Jonathan B.
Ladak, Hanif M.
Author_xml – sequence: 1
  givenname: David A.
  surname: Steinman
  fullname: Steinman, David A.
  email: steinman@irus.rri.ca
  organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada
– sequence: 2
  givenname: Jonathan B.
  surname: Thomas
  fullname: Thomas, Jonathan B.
  organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada
– sequence: 3
  givenname: Hanif M.
  surname: Ladak
  fullname: Ladak, Hanif M.
  organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada
– sequence: 4
  givenname: Jaques S.
  surname: Milner
  fullname: Milner, Jaques S.
  organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada
– sequence: 5
  givenname: Brian K.
  surname: Rutt
  fullname: Rutt, Brian K.
  organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada
– sequence: 6
  givenname: J. David
  surname: Spence
  fullname: Spence, J. David
  organization: Stroke Prevention and Atherosclerosis Research Center, John P. Robarts Research Institute, London, Ontario, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13410186$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/11754454$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFuEzEQhi3UiqYtB14A-QISh6X2rr22jyiCtlJTpIgKbtbEa1NTr53auyp5e5YkLQLBaUaj7_sP8x-jg5iiReglJe8oIfVZn_vtwp-hGeV1XdVcsQM0I4KRqqGKHaHjUr4TQpQS7Dk6olRwxjibofXSmhTLkEcz-BRxcthAToPv8Mq7MRvYnm9tn7pNhN6bgiF2-AFCwMOtN3fRloLH4uM3bFK_HoetAQG7ME4pf1iL5eUpOnQQin2xnyfo5uOHz_OL6urT-eX8_VVlmCK8asGCpHXnJIFmZWirgCvZCg4tcY1gsBKydq4jlnWCWy6JNB1hhgmwElrbnKA3u9x1TvejLYPufTE2BIg2jUUL2jClGJ3AV3twXPW20-vse8gb_fijCXi9B6AYCC5DNL785hpGCZXtxJ3tOJNTKdk6bfzuGUMGHzQl-ldJempru_DJePuX8RT6D3af_uCD3fwf1Ivl4tGodoYvg_3xZEC-061oBNdfrs_11-aCzPlcatX8BCYKtCM
CODEN MRMEEN
CitedBy_id crossref_primary_10_1586_erc_10_172
crossref_primary_10_4015_S1016237219500248
crossref_primary_10_1186_s12938_015_0104_7
crossref_primary_10_1115_1_1632523
crossref_primary_10_1038_nrcardio_2009_246
crossref_primary_10_1088_0031_9155_55_14_004
crossref_primary_10_1016_j_jbiomech_2011_08_017
crossref_primary_10_1016_j_mri_2012_03_004
crossref_primary_10_1097_01_mat_0000201961_97981_e9
crossref_primary_10_1007_s10439_007_9307_9
crossref_primary_10_1096_fj_02_1064com
crossref_primary_10_1161_01_ATV_0000019735_54479_2F
crossref_primary_10_1109_TBME_2014_2310954
crossref_primary_10_1002_jmri_10246
crossref_primary_10_1002_jmri_10243
crossref_primary_10_1007_s12572_016_0161_6
crossref_primary_10_1161_01_ATV_0000147118_97474_4b
crossref_primary_10_1152_ajpheart_00989_2006
crossref_primary_10_3390_jfb13010007
crossref_primary_10_1109_TUFFC_2013_006237
crossref_primary_10_1007_s10554_012_0056_y
crossref_primary_10_1016_j_clinbiomech_2020_105184
crossref_primary_10_1097_01_RVI_0000109204_16955_84
crossref_primary_10_1007_s12591_020_00522_y
crossref_primary_10_1016_j_mri_2013_05_009
crossref_primary_10_1093_cvr_cvt044
crossref_primary_10_1016_j_jbiomech_2007_08_012
crossref_primary_10_1097_RMR_0b013e3181ea2853
crossref_primary_10_1002_jmri_20317
crossref_primary_10_1002_cnm_1446
crossref_primary_10_1007_s13239_017_0307_0
crossref_primary_10_1111_j_1440_1681_2008_05010_x
crossref_primary_10_1097_01_mat_0000170629_92765_bb
crossref_primary_10_4244_EIJV9I5A94
crossref_primary_10_1115_1_4037857
crossref_primary_10_1371_journal_pone_0129952
crossref_primary_10_7498_aps_64_208701
crossref_primary_10_1016_j_jbiomech_2007_11_026
crossref_primary_10_1080_10255842_2012_744396
crossref_primary_10_1371_journal_pone_0092638
crossref_primary_10_1016_j_jbiomech_2016_02_004
crossref_primary_10_1177_0954411920926077
crossref_primary_10_3390_fluids6110378
crossref_primary_10_1002_jmri_23610
crossref_primary_10_1115_1_2354209
crossref_primary_10_1002_mp_17386
crossref_primary_10_1016_j_cmpb_2004_06_002
crossref_primary_10_2463_mrms_mp_2016_0060
crossref_primary_10_3171_jns_2004_100_2_0343
crossref_primary_10_1088_1361_6560_ab1145
crossref_primary_10_1007_s10439_006_9155_z
crossref_primary_10_1016_j_wneu_2019_12_183
crossref_primary_10_1016_j_ultrasmedbio_2007_11_003
crossref_primary_10_1115_1_2165691
crossref_primary_10_1177_0003319716644138
crossref_primary_10_1016_j_jbiomech_2004_06_015
crossref_primary_10_1115_1_2187035
crossref_primary_10_1007_s10237_004_0046_7
crossref_primary_10_1109_TUFFC_2009_1071
crossref_primary_10_1162_leon_2007_40_1_71
crossref_primary_10_1002_mrm_21331
crossref_primary_10_1088_0031_9155_55_7_020
crossref_primary_10_1177_02676591221093195
crossref_primary_10_1016_j_rimni_2015_02_005
crossref_primary_10_1016_j_jbiomech_2003_09_032
crossref_primary_10_1109_TMI_2005_859204
crossref_primary_10_1017_S0962492917000046
crossref_primary_10_3390_app13010617
crossref_primary_10_1115_1_2354212
crossref_primary_10_1016_j_jbiomech_2004_06_022
crossref_primary_10_1007_s11548_006_0004_1
crossref_primary_10_1088_0031_9155_61_23_L48
crossref_primary_10_1115_1_4006681
crossref_primary_10_1007_s10665_022_10250_7
crossref_primary_10_1115_1_4033913
crossref_primary_10_1007_s10439_010_9901_0
crossref_primary_10_1007_s10237_015_0712_y
crossref_primary_10_1002_mrm_20078
crossref_primary_10_1161_01_STR_0000116103_19029_DB
crossref_primary_10_1002_jmri_20849
crossref_primary_10_1007_s10439_020_02607_9
crossref_primary_10_1148_radiol_10100788
crossref_primary_10_1093_bmb_ldw049
crossref_primary_10_1259_bjr_96847348
crossref_primary_10_1134_S0021894424030088
crossref_primary_10_1007_s11517_012_0985_6
crossref_primary_10_3174_ajnr_A6012
crossref_primary_10_1080_00986445_2011_569802
crossref_primary_10_1088_0967_3334_25_6_014
crossref_primary_10_1115_1_2900724
crossref_primary_10_1002_jmri_22266
crossref_primary_10_1016_S0895_6111_02_00020_4
crossref_primary_10_1080_10255842_2023_2275546
crossref_primary_10_1007_s10439_005_5630_1
crossref_primary_10_1002_cnm_3892
crossref_primary_10_1016_j_jbiomech_2009_04_023
crossref_primary_10_1002_nbm_3322
crossref_primary_10_1371_journal_pone_0213107
crossref_primary_10_1529_biophysj_106_100685
crossref_primary_10_1002_fld_2319
crossref_primary_10_3390_diagnostics9040223
crossref_primary_10_1109_MCG_2004_1274065
crossref_primary_10_1007_s40430_020_02608_8
crossref_primary_10_1007_s13239_013_0134_x
crossref_primary_10_1002_mrm_22325
crossref_primary_10_1038_s41598_017_01906_x
crossref_primary_10_1142_S0219519413500012
crossref_primary_10_1002_mrm_24905
crossref_primary_10_1016_j_bbe_2018_01_004
crossref_primary_10_1002_mrm_21758
crossref_primary_10_1109_TMI_2007_901991
crossref_primary_10_1098_rsif_2011_0605
crossref_primary_10_1016_j_ijmecsci_2019_105222
crossref_primary_10_1109_TITB_2012_2201732
crossref_primary_10_1016_j_ijnonlinmec_2012_05_006
crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105503
crossref_primary_10_1080_10255840802356691
crossref_primary_10_1161_01_STR_0000121161_61324_ab
crossref_primary_10_1016_j_atherosclerosis_2007_05_030
crossref_primary_10_1007_s10439_014_1070_0
crossref_primary_10_1109_TMI_2004_826946
crossref_primary_10_1161_01_STR_0000185679_62634_0a
crossref_primary_10_1002_jmri_20513
crossref_primary_10_1007_s13246_010_0050_4
crossref_primary_10_1016_j_cmpb_2022_107174
crossref_primary_10_1002_mp_13905
crossref_primary_10_1186_s12938_016_0133_x
crossref_primary_10_1097_rmr_0b013e3181598dd8
crossref_primary_10_1115_1_2073668
crossref_primary_10_3233_BME_201171
crossref_primary_10_3389_fphys_2018_01528
crossref_primary_10_1002_cnm_2987
crossref_primary_10_1088_0967_3334_36_7_1517
crossref_primary_10_1097_01_mat_0000169117_07070_fb
crossref_primary_10_1109_JBHI_2014_2305575
crossref_primary_10_1016_j_cmpb_2024_108144
crossref_primary_10_1016_j_mri_2004_01_002
crossref_primary_10_1016_j_nic_2015_09_002
crossref_primary_10_1016_j_cmpb_2022_106872
crossref_primary_10_1067_mva_2003_122
crossref_primary_10_1016_j_ijheatmasstransfer_2005_05_004
crossref_primary_10_1016_j_jbiomech_2013_08_003
crossref_primary_10_1007_s10439_005_8772_2
crossref_primary_10_1109_TMI_2003_812261
crossref_primary_10_1186_s41747_018_0058_1
crossref_primary_10_1016_j_ijengsci_2021_103525
crossref_primary_10_1007_s40204_018_0090_5
crossref_primary_10_1111_j_1445_2197_2011_05885_x
crossref_primary_10_1118_1_3284976
crossref_primary_10_1161_STROKEAHA_109_558676
crossref_primary_10_1002_mrm_20724
crossref_primary_10_1016_j_jbiomech_2020_110019
crossref_primary_10_1118_1_3462592
crossref_primary_10_1002_cnm_1384
crossref_primary_10_1088_1757_899X_1128_1_012009
crossref_primary_10_1152_ajpheart_00889_2008
crossref_primary_10_1007_s10439_010_9915_7
crossref_primary_10_1098_rsif_2018_0352
crossref_primary_10_1002_jmri_21582
crossref_primary_10_1088_0967_3334_31_3_002
crossref_primary_10_1002_mrm_10401
crossref_primary_10_1111_exsy_12951
crossref_primary_10_1007_s40997_018_0142_4
crossref_primary_10_1016_S1064_9689_02_00023_5
crossref_primary_10_1161_CIRCIMAGING_110_958504
crossref_primary_10_1118_1_3292631
crossref_primary_10_1007_s10237_019_01282_7
crossref_primary_10_1109_TBME_2011_2164919
crossref_primary_10_1016_j_jbiomech_2005_12_009
crossref_primary_10_1016_j_ijheatmasstransfer_2009_04_040
crossref_primary_10_1088_0967_3334_25_3_009
crossref_primary_10_1002_jmri_10294
crossref_primary_10_1002_jmri_20928
crossref_primary_10_1007_BF02916315
Cites_doi 10.1016/0021-9150(87)90090-6
10.1016/S0021-9290(99)00205-5
10.1016/S0730-725X(00)00157-0
10.1001/jama.282.21.2035
10.3233/BIR-1994-31505
10.1161/01.ATV.13.2.310
10.1002/jmri.1880050410
10.1115/1.2895491
10.1016/0021-9290(93)90611-H
10.1053/ejvs.2000.1221
10.1002/(SICI)1097-0150(1999)4:5<231::AID-IGS1>3.0.CO;2-Z
10.1161/01.CIR.101.25.2956
10.1161/01.ATV.18.12.1877
10.1161/01.RES.53.4.502
10.1063/1.4822390
10.1016/S0741-5214(98)70210-1
10.1115/1.429646
10.1016/0021-9290(95)95273-8
10.1002/(SICI)1522-2594(200004)43:4<565::AID-MRM11>3.0.CO;2-L
10.1002/mrm.1191
10.1053/ejvs.1999.0913
10.1161/01.CIR.101.6.586
10.1161/01.CIR.102.3.e22
10.1161/01.ATV.19.12.2933
10.1115/1.2895733
10.1016/S0021-9290(99)00164-5
10.1161/01.STR.28.5.993
10.1016/0021-9150(86)90008-0
10.1161/01.CIR.94.12.3257
10.1016/0301-5629(94)00090-5
10.1161/01.ATV.5.3.293
10.1115/1.2795948
10.1080/10255849908907986
10.1016/S0021-9290(00)00043-9
10.1002/mrm.1910390417
10.1016/S0741-5214(96)80048-6
10.1118/1.1368125
10.1002/(SICI)1522-2586(200003)11:3<299::AID-JMRI9>3.0.CO;2-M
10.1161/01.ATV.17.10.2061
10.1017/S0022112099008022
10.1114/1.163
10.1111/j.1749-6632.2000.tb06312.x
ContentType Journal Article
Copyright Copyright © 2002 Wiley‐Liss, Inc.
2002 INIST-CNRS
Copyright_xml – notice: Copyright © 2002 Wiley‐Liss, Inc.
– notice: 2002 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/mrm.10025
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 159
ExternalDocumentID 11754454
13410186
10_1002_mrm_10025
MRM10025
ark_67375_WNG_X3H0C5C8_9
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Heart and Stroke Foundation of Ontario
  funderid: T‐3739
– fundername: Ontario Graduate Scholarship in Science and Technology
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4905-6aea812df80a3bc169a598675a60f374ab782ffd0e4d75e5808cd04c47ae8a6e3
IEDL.DBID DR2
ISSN 0740-3194
IngestDate Fri Jul 11 15:45:02 EDT 2025
Wed Feb 19 02:36:38 EST 2025
Mon Jul 21 09:11:53 EDT 2025
Thu Apr 24 22:58:22 EDT 2025
Tue Jul 01 04:19:25 EDT 2025
Wed Jan 22 16:13:52 EST 2025
Wed Oct 30 09:48:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human
Regional blood flow
Carotid bifurcation
Fluid dynamics
Cardiovascular disease
Exploration
Nuclear magnetic resonance imaging
Vascular disease
Thickness
Atherosclerotic plaque
Atherosclerosis
Medical imagery
Evolution
Vascular wall
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4905-6aea812df80a3bc169a598675a60f374ab782ffd0e4d75e5808cd04c47ae8a6e3
Notes istex:73B0D381C6A0BC111F8BFFB4EA5B26425F65EA1C
Ontario Graduate Scholarship in Science and Technology
Heart and Stroke Foundation of Ontario - No. T-3739
ark:/67375/WNG-X3H0C5C8-9
ArticleID:MRM10025
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.10025
PMID 11754454
PQID 71349941
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_71349941
pubmed_primary_11754454
pascalfrancis_primary_13410186
crossref_citationtrail_10_1002_mrm_10025
crossref_primary_10_1002_mrm_10025
wiley_primary_10_1002_mrm_10025_MRM10025
istex_primary_ark_67375_WNG_X3H0C5C8_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2002
PublicationDateYYYYMMDD 2002-01-01
PublicationDate_xml – month: 01
  year: 2002
  text: January 2002
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Baltimore, MD
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2002
Publisher John Wiley & Sons, Inc
Williams & Wilkins
Publisher_xml – name: John Wiley & Sons, Inc
– name: Williams & Wilkins
References Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 1997; 28: 993-998.
van Langenhove G, Wentzel JJ, Krams R, Slager CJ, Hamburger JN, Serruys PW. Helical velocity patterns in a human coronary artery: a three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 2000; 102: E22-E24.
Steinman DA, Ethier CR. The effect of wall distensibility on flow in a two-dimensional end-to- side anastomosis. J Biomech Eng 1994; 116: 294-301.
Friedman MH, Deters OJ, Bargeron CB, Hutchins GM, Mark FF. Shear-dependent thickening of the human arterial intima. Atherosclerosis 1986; 60: 161-171.
Ladak HM, Thomas JB, Mitchell JR, Rutt BK, Steinman DA. A semi-automatic technique for measurement of arterial wall from black blood MRI. Med Phys 2001; 28: 1098-1107.
Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983; 53: 502-514.
Worthley SG, Helft G, Fuster V, Fayad ZA, Rodriguez OJ, Zaman AG, Fallon JT, Badimon JJ. Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 2000; 101: 2956-2961.
Zhao M, Charbel FT, Alperin N, Loth F, Clark ME. Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging 2000; 18: 697-706.
Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282: 2035-2042.
Long Q, Xu XY, Bourne M, Griffith TM. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn Reson Med 2000; 43: 565-576.
Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV, Ariff B, Long Q. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 2000; 33: 975-984.
Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J Vasc Surg 1998; 28: 143-156.
Frayne R, Steinman DA, Ethier CR, Rutt BK. Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 1995; 5: 428-431.
Kornet L, Hoeks AP, Lambregts J, Reneman RS. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1999; 19: 2933-2939.
Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 1995; 28: 845-856.
Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 1987; 68: 27-33.
Lou Z, Yang WJ. A computer simulation of the blood flow at the aortic bifurcation with flexible walls. J Biomech Eng 1993; 115: 306-315.
Ladak HM, Milner JS, Steinman DA. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J Biomech Eng 2000; 122: 96-99.
Lou Z, Yang WJ. A computer simulation of the non-Newtonian blood flow at aortic bifurcation. J Biomech 1993; 26: 37-49.
Thomas JB, Rutt BK, Ladak HM, Steinman DA. The effect of black blood MR image quality on vessel wall segmentation. Magn Reson Med 2001; 46: 299-304.
Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 1996; 94: 3257-3262.
Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 1999; 4: 231-247.
Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Comp Meth Biomech Biomed Eng 1999; 2: 171-185.
Long Q, Xu XY, Ariff B, Thom SA, Hughes AD, Stanton AV. Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J Magn Reson Imaging 2000; 11: 299-311.
Ballyk PD, Steinman DA, Ethier CR. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 1994; 31: 565-586.
Pedersen EM, Oyre S, Agerbaek M, Kristensen IB, Ringgaard S, Boesiger P, Paaske WP. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo. Eur J Vasc Endovasc Surg 1999; 18: 328-333.
Ethier CR, Prakash S, Steinman DA, Leask RL, Couch GG, Ojha M. Steady flow separation patterns in a 45 degree junction. J Fluid Mech 2000; 411: 1-38.
Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 1997; 17: 2061-2065.
Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann NY Acad Sci 2000; 902: 173-186.
Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Comput Physics 1996; 10: 224-232.
Steinman DA. Simulated pathline visualization of computed periodic blood flow patterns. J Biomech 2000; 33: 623-628.
Stokholm R, Oyre S, Ringgaard S, Flaagoy H, Paaske WP, Pedersen EM. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques. Eur J Vasc Endovasc Surg 2000; 20: 427-433.
Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 1993; 13: 310-315.
Moore JA, Steinman DA, Holdsworth DW, Ethier CR. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann Biomed Eng 1999; 27: 32-41.
Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT, Badimon JJ. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 2000; 101: 586-589.
Hansen F, Mangell P, Sonesson B, Lanne T. Diameter and compliance in the human common carotid artery-variations with age and sex. Ultrasound Med Biol 1995; 21: 1-9.
Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger P. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 2000; 33: 137-144.
Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302.
Steinman DA, Rutt BK. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn Reson Med 1998; 39: 635-641.
Wells DR, Archie Jr JP, Kleinstreuer C. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. J Vasc Surg 1996; 23: 667-678.
Kornet L, Lambregts J, Hoeks AP, Reneman RS. Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1998; 18: 1877-1884.
He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 1996; 118: 74-82.
1993; 26
1998; 28
1994; 116
1985; 5
2000; 411
2000; 43
1999; 27
2000; 20
1983; 53
1996; 94
1997; 28
1995
1999; 4
2001; 28
1999; 2
2001; 46
1996; 10
1995; 5
1999
1987; 68
2000; 902
1998; 18
1993; 13
1998; 39
2000; 18
1986; 60
2000; 102
1995; 28
2001
1999; 19
1999; 18
1999; 282
2000; 11
2000; 33
1995; 21
1997; 17
2000; 122
2000; 101
1993; 115
1996; 118
1996; 23
1994; 31
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
Ethier CR (e_1_2_7_29_2) 1999
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_45_2
e_1_2_7_46_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – reference: Thomas JB, Rutt BK, Ladak HM, Steinman DA. The effect of black blood MR image quality on vessel wall segmentation. Magn Reson Med 2001; 46: 299-304.
– reference: Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983; 53: 502-514.
– reference: Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302.
– reference: Lou Z, Yang WJ. A computer simulation of the non-Newtonian blood flow at aortic bifurcation. J Biomech 1993; 26: 37-49.
– reference: Stokholm R, Oyre S, Ringgaard S, Flaagoy H, Paaske WP, Pedersen EM. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques. Eur J Vasc Endovasc Surg 2000; 20: 427-433.
– reference: Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 1996; 94: 3257-3262.
– reference: Ballyk PD, Steinman DA, Ethier CR. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 1994; 31: 565-586.
– reference: Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV, Ariff B, Long Q. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 2000; 33: 975-984.
– reference: Kornet L, Lambregts J, Hoeks AP, Reneman RS. Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1998; 18: 1877-1884.
– reference: Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 1987; 68: 27-33.
– reference: Worthley SG, Helft G, Fuster V, Fayad ZA, Rodriguez OJ, Zaman AG, Fallon JT, Badimon JJ. Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 2000; 101: 2956-2961.
– reference: Ladak HM, Milner JS, Steinman DA. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J Biomech Eng 2000; 122: 96-99.
– reference: Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger P. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 2000; 33: 137-144.
– reference: Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann NY Acad Sci 2000; 902: 173-186.
– reference: Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 1999; 4: 231-247.
– reference: Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 1995; 28: 845-856.
– reference: Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J Vasc Surg 1998; 28: 143-156.
– reference: Pedersen EM, Oyre S, Agerbaek M, Kristensen IB, Ringgaard S, Boesiger P, Paaske WP. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo. Eur J Vasc Endovasc Surg 1999; 18: 328-333.
– reference: Wells DR, Archie Jr JP, Kleinstreuer C. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. J Vasc Surg 1996; 23: 667-678.
– reference: Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT, Badimon JJ. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 2000; 101: 586-589.
– reference: Frayne R, Steinman DA, Ethier CR, Rutt BK. Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 1995; 5: 428-431.
– reference: Steinman DA, Ethier CR. The effect of wall distensibility on flow in a two-dimensional end-to- side anastomosis. J Biomech Eng 1994; 116: 294-301.
– reference: Friedman MH, Deters OJ, Bargeron CB, Hutchins GM, Mark FF. Shear-dependent thickening of the human arterial intima. Atherosclerosis 1986; 60: 161-171.
– reference: Long Q, Xu XY, Ariff B, Thom SA, Hughes AD, Stanton AV. Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J Magn Reson Imaging 2000; 11: 299-311.
– reference: Moore JA, Steinman DA, Holdsworth DW, Ethier CR. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann Biomed Eng 1999; 27: 32-41.
– reference: Zhao M, Charbel FT, Alperin N, Loth F, Clark ME. Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging 2000; 18: 697-706.
– reference: Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282: 2035-2042.
– reference: Kornet L, Hoeks AP, Lambregts J, Reneman RS. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1999; 19: 2933-2939.
– reference: Long Q, Xu XY, Bourne M, Griffith TM. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn Reson Med 2000; 43: 565-576.
– reference: Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 1993; 13: 310-315.
– reference: van Langenhove G, Wentzel JJ, Krams R, Slager CJ, Hamburger JN, Serruys PW. Helical velocity patterns in a human coronary artery: a three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 2000; 102: E22-E24.
– reference: Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Comp Meth Biomech Biomed Eng 1999; 2: 171-185.
– reference: Ladak HM, Thomas JB, Mitchell JR, Rutt BK, Steinman DA. A semi-automatic technique for measurement of arterial wall from black blood MRI. Med Phys 2001; 28: 1098-1107.
– reference: Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 1997; 28: 993-998.
– reference: Steinman DA, Rutt BK. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn Reson Med 1998; 39: 635-641.
– reference: Hansen F, Mangell P, Sonesson B, Lanne T. Diameter and compliance in the human common carotid artery-variations with age and sex. Ultrasound Med Biol 1995; 21: 1-9.
– reference: Ethier CR, Prakash S, Steinman DA, Leask RL, Couch GG, Ojha M. Steady flow separation patterns in a 45 degree junction. J Fluid Mech 2000; 411: 1-38.
– reference: He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 1996; 118: 74-82.
– reference: Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 1997; 17: 2061-2065.
– reference: Lou Z, Yang WJ. A computer simulation of the blood flow at the aortic bifurcation with flexible walls. J Biomech Eng 1993; 115: 306-315.
– reference: Steinman DA. Simulated pathline visualization of computed periodic blood flow patterns. J Biomech 2000; 33: 623-628.
– reference: Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Comput Physics 1996; 10: 224-232.
– volume: 18
  start-page: 328
  year: 1999
  end-page: 333
  article-title: Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo
  publication-title: Eur J Vasc Endovasc Surg
– volume: 68
  start-page: 27
  year: 1987
  end-page: 33
  article-title: Correlation between wall shear and intimal thickness at a coronary artery branch
  publication-title: Atherosclerosis
– volume: 11
  start-page: 299
  year: 2000
  end-page: 311
  article-title: Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study
  publication-title: J Magn Reson Imaging
– volume: 5
  start-page: 428
  year: 1995
  end-page: 431
  article-title: Accuracy of MR phase contrast velocity measurements for unsteady flow
  publication-title: J Magn Reson Imaging
– volume: 122
  start-page: 96
  year: 2000
  end-page: 99
  article-title: Rapid three‐dimensional segmentation of the carotid bifurcation from serial MR images
  publication-title: J Biomech Eng
– volume: 411
  start-page: 1
  year: 2000
  end-page: 38
  article-title: Steady flow separation patterns in a 45 degree junction
  publication-title: J Fluid Mech
– volume: 282
  start-page: 2035
  year: 1999
  end-page: 2042
  article-title: Hemodynamic shear stress and its role in atherosclerosis
  publication-title: JAMA
– volume: 13
  start-page: 310
  year: 1993
  end-page: 315
  article-title: Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries
  publication-title: Arterioscler Thromb
– volume: 116
  start-page: 294
  year: 1994
  end-page: 301
  article-title: The effect of wall distensibility on flow in a two‐dimensional end‐to‐ side anastomosis
  publication-title: J Biomech Eng
– volume: 43
  start-page: 565
  year: 2000
  end-page: 576
  article-title: Numerical study of blood flow in an anatomically realistic aorto‐iliac bifurcation generated from MRI data
  publication-title: Magn Reson Med
– volume: 17
  start-page: 2061
  year: 1997
  end-page: 2065
  article-title: Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 28
  start-page: 143
  year: 1998
  end-page: 156
  article-title: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects
  publication-title: J Vasc Surg
– volume: 27
  start-page: 32
  year: 1999
  end-page: 41
  article-title: Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging
  publication-title: Ann Biomed Eng
– volume: 46
  start-page: 299
  year: 2001
  end-page: 304
  article-title: The effect of black blood MR image quality on vessel wall segmentation
  publication-title: Magn Reson Med
– volume: 115
  start-page: 306
  year: 1993
  end-page: 315
  article-title: A computer simulation of the blood flow at the aortic bifurcation with flexible walls
  publication-title: J Biomech Eng
– volume: 5
  start-page: 293
  year: 1985
  end-page: 302
  article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress
  publication-title: Arteriosclerosis
– volume: 53
  start-page: 502
  year: 1983
  end-page: 514
  article-title: Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress
  publication-title: Circ Res
– volume: 4
  start-page: 231
  year: 1999
  end-page: 247
  article-title: Predictive medicine: computational techniques in therapeutic decision‐making
  publication-title: Comput Aided Surg
– volume: 28
  start-page: 845
  year: 1995
  end-page: 856
  article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
  publication-title: J Biomech
– volume: 33
  start-page: 137
  year: 2000
  end-page: 144
  article-title: Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements
  publication-title: J Biomech
– volume: 28
  start-page: 993
  year: 1997
  end-page: 998
  article-title: In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis
  publication-title: Stroke
– start-page: 852
  year: 1995
  end-page: 857
– volume: 23
  start-page: 667
  year: 1996
  end-page: 678
  article-title: Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients
  publication-title: J Vasc Surg
– volume: 20
  start-page: 427
  year: 2000
  end-page: 433
  article-title: Determination of wall shear rate in the human carotid artery by magnetic resonance techniques
  publication-title: Eur J Vasc Endovasc Surg
– volume: 21
  start-page: 1
  year: 1995
  end-page: 9
  article-title: Diameter and compliance in the human common carotid artery—variations with age and sex
  publication-title: Ultrasound Med Biol
– volume: 101
  start-page: 2956
  year: 2000
  end-page: 2961
  article-title: Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model
  publication-title: Circulation
– volume: 39
  start-page: 635
  year: 1998
  end-page: 641
  article-title: On the nature and reduction of plaque‐mimicking flow artifacts in black blood MRI of the carotid bifurcation
  publication-title: Magn Reson Med
– volume: 31
  start-page: 565
  year: 1994
  end-page: 586
  article-title: Simulation of non‐Newtonian blood flow in an end‐to‐side anastomosis
  publication-title: Biorheology
– volume: 60
  start-page: 161
  year: 1986
  end-page: 171
  article-title: Shear‐dependent thickening of the human arterial intima
  publication-title: Atherosclerosis
– volume: 33
  start-page: 975
  year: 2000
  end-page: 984
  article-title: Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation
  publication-title: J Biomech
– volume: 26
  start-page: 37
  year: 1993
  end-page: 49
  article-title: A computer simulation of the non‐Newtonian blood flow at aortic bifurcation
  publication-title: J Biomech
– volume: 902
  start-page: 173
  year: 2000
  end-page: 186
  article-title: Characterization of atherosclerotic plaques by magnetic resonance imaging
  publication-title: Ann NY Acad Sci
– volume: 118
  start-page: 74
  year: 1996
  end-page: 82
  article-title: Pulsatile flow in the human left coronary artery bifurcation: average conditions
  publication-title: J Biomech Eng
– volume: 2
  start-page: 171
  year: 1999
  end-page: 185
  article-title: Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model
  publication-title: Comp Meth Biomech Biomed Eng
– volume: 102
  start-page: E22
  year: 2000
  end-page: E24
  article-title: Helical velocity patterns in a human coronary artery: a three‐dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness
  publication-title: Circulation
– volume: 101
  start-page: 586
  year: 2000
  end-page: 589
  article-title: Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis
  publication-title: Circulation
– volume: 10
  start-page: 224
  year: 1996
  end-page: 232
  article-title: Computational investigations of vascular disease
  publication-title: Comput Physics
– volume: 18
  start-page: 1877
  year: 1998
  end-page: 1884
  article-title: Differences in near‐wall shear rate in the carotid artery within subjects are associated with different intima‐media thicknesses
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 33
  start-page: 623
  year: 2000
  end-page: 628
  article-title: Simulated pathline visualization of computed periodic blood flow patterns
  publication-title: J Biomech
– volume: 94
  start-page: 3257
  year: 1996
  end-page: 3262
  article-title: Association between intima‐media thickness and wall shear stress in common carotid arteries in healthy male subjects
  publication-title: Circulation
– start-page: 619
  year: 2001
  end-page: 620
– volume: 28
  start-page: 1098
  year: 2001
  end-page: 1107
  article-title: A semi‐automatic technique for measurement of arterial wall from black blood MRI
  publication-title: Med Phys
– volume: 18
  start-page: 697
  year: 2000
  end-page: 706
  article-title: Improved phase‐contrast flow quantification by three‐dimensional vessel localization
  publication-title: Magn Reson Imaging
– volume: 19
  start-page: 2933
  year: 1999
  end-page: 2939
  article-title: In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima‐media thicknesses
  publication-title: Arterioscler Thromb Vasc Biol
– year: 1999
– ident: e_1_2_7_5_2
  doi: 10.1016/0021-9150(87)90090-6
– ident: e_1_2_7_46_2
  doi: 10.1016/S0021-9290(99)00205-5
– ident: e_1_2_7_42_2
  doi: 10.1016/S0730-725X(00)00157-0
– ident: e_1_2_7_6_2
  doi: 10.1001/jama.282.21.2035
– ident: e_1_2_7_41_2
– ident: e_1_2_7_34_2
  doi: 10.3233/BIR-1994-31505
– ident: e_1_2_7_18_2
  doi: 10.1161/01.ATV.13.2.310
– ident: e_1_2_7_27_2
  doi: 10.1002/jmri.1880050410
– ident: e_1_2_7_36_2
  doi: 10.1115/1.2895491
– ident: e_1_2_7_37_2
  doi: 10.1016/0021-9290(93)90611-H
– ident: e_1_2_7_12_2
  doi: 10.1053/ejvs.2000.1221
– ident: e_1_2_7_14_2
  doi: 10.1002/(SICI)1097-0150(1999)4:5<231::AID-IGS1>3.0.CO;2-Z
– ident: e_1_2_7_33_2
  doi: 10.1161/01.CIR.101.25.2956
– ident: e_1_2_7_11_2
  doi: 10.1161/01.ATV.18.12.1877
– ident: e_1_2_7_2_2
  doi: 10.1161/01.RES.53.4.502
– ident: e_1_2_7_13_2
  doi: 10.1063/1.4822390
– ident: e_1_2_7_21_2
  doi: 10.1016/S0741-5214(98)70210-1
– ident: e_1_2_7_25_2
  doi: 10.1115/1.429646
– ident: e_1_2_7_38_2
  doi: 10.1016/0021-9290(95)95273-8
– ident: e_1_2_7_15_2
  doi: 10.1002/(SICI)1522-2594(200004)43:4<565::AID-MRM11>3.0.CO;2-L
– ident: e_1_2_7_43_2
  doi: 10.1002/mrm.1191
– ident: e_1_2_7_7_2
  doi: 10.1053/ejvs.1999.0913
– ident: e_1_2_7_26_2
– ident: e_1_2_7_45_2
  doi: 10.1161/01.CIR.101.6.586
– ident: e_1_2_7_20_2
  doi: 10.1161/01.CIR.102.3.e22
– ident: e_1_2_7_8_2
  doi: 10.1161/01.ATV.19.12.2933
– volume-title: The haemodynamics of arterial organs—comparison of computational predictions with in vivo and in vitro data
  year: 1999
  ident: e_1_2_7_29_2
– ident: e_1_2_7_35_2
  doi: 10.1115/1.2895733
– ident: e_1_2_7_31_2
  doi: 10.1016/S0021-9290(99)00164-5
– ident: e_1_2_7_10_2
  doi: 10.1161/01.STR.28.5.993
– ident: e_1_2_7_4_2
  doi: 10.1016/0021-9150(86)90008-0
– ident: e_1_2_7_9_2
  doi: 10.1161/01.CIR.94.12.3257
– ident: e_1_2_7_24_2
  doi: 10.1016/0301-5629(94)00090-5
– ident: e_1_2_7_3_2
  doi: 10.1161/01.ATV.5.3.293
– ident: e_1_2_7_30_2
  doi: 10.1115/1.2795948
– ident: e_1_2_7_40_2
  doi: 10.1080/10255849908907986
– ident: e_1_2_7_17_2
  doi: 10.1016/S0021-9290(00)00043-9
– ident: e_1_2_7_22_2
  doi: 10.1002/mrm.1910390417
– ident: e_1_2_7_39_2
  doi: 10.1016/S0741-5214(96)80048-6
– ident: e_1_2_7_23_2
  doi: 10.1118/1.1368125
– ident: e_1_2_7_16_2
  doi: 10.1002/(SICI)1522-2586(200003)11:3<299::AID-JMRI9>3.0.CO;2-M
– ident: e_1_2_7_19_2
  doi: 10.1161/01.ATV.17.10.2061
– ident: e_1_2_7_28_2
  doi: 10.1017/S0022112099008022
– ident: e_1_2_7_32_2
  doi: 10.1114/1.163
– ident: e_1_2_7_44_2
  doi: 10.1111/j.1749-6632.2000.tb06312.x
SSID ssj0009974
Score 2.1760554
Snippet A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 149
SubjectTerms Adult
atherosclerosis
Biological and medical sciences
Cardiovascular system
Carotid Arteries - anatomy & histology
carotid artery bifurcation
Cerebrovascular Circulation - physiology
computational fluid dynamics
Female
Hemodynamics
Humans
Image Processing, Computer-Assisted
Imaging, Three-Dimensional
Intracranial Arteriosclerosis - pathology
Investigative techniques, diagnostic techniques (general aspects)
Magnetic Resonance Imaging
Male
Medical sciences
Middle Aged
Radiodiagnosis. Nmr imagery. Nmr spectrometry
wall shear stress
Title Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI
URI https://api.istex.fr/ark:/67375/WNG-X3H0C5C8-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.10025
https://www.ncbi.nlm.nih.gov/pubmed/11754454
https://www.proquest.com/docview/71349941
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIhCXAuWVAsVCCHFJ6yS244gTWigLUnpYUbEHJMtPqHY3W212BeLX40ey0aIiIW4-zESxM-P5Mh5_A8BLF9Oli4M4zagWKbbapEyRPK2UzCTKNSXCX3Cuz-n4An-akukeeNPfhYn8ENuEm_eMsF97BxeyPR1IQxerRRj6C-ZZQT1v_rvJQB1VVZGBucR-n6lwzyqE8tOt5k4suuGX9aevjRStWx4b-1pcBzx3cWwIRGd3wNd-CrH-ZHayWcsT9esPdsf_nONdcNABVPg2WtQ9sGeaQ3Cr7o7gD8HNUDOq2vvgyv-6DgS0cGmhbwK0vtRQXtrNKiYD4XezWOrY976FotHwh5jPoS-zn_ltFvrK-29Qhe4SXWYS2vnGPWVHq558fAAuzt5_Ho3TroFDqnCFSEqFEQ5AaMuQKKTKaCU8HXxJBEW2KLGQDp9Yq5HBuiSGMMSURljhUhgmqCkegv1m2ZjHAGLEpCWUORWFhcgZow7omCxHNtcYlwl43X9Krjp2c99kY84jL3PO3VqGAUnAi63oVaT0uE7oVbCHrYRYzXwNXEn4l_MPfFqM0YiMGK8ScLxjMMMjHT5AGaMJeN5bEHeu689jRGOWm5YHasgKZwl4FA1r0M08LyHBblbBPP7-nrye1GFw9O-iT8Dt0NMmJJKegn1nJ-aZg1ZreRx86Dd8FB9o
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kCbpcuqSbuyREURS9KKFkkqKAXgq3qdNGPhgJ6ktBUFySwLYceEGXry9JSRZcpEDRGw8zhEjNkI_D4RuA125PL9w-SKKYaRkRq03EFU2iTBVxgRPNqPQPnPMB65-RzyM62oJ3zVuYih9iHXDznhHWa-_gPiB92LKGTufT0KQ3YIc4oOGPXh-GLXlUllUczCnxK01GGl4hnByuVTd2ox0_sT98dqRcuAmyVWWL66DnJpINW9HRPfjWDKLKQBkfrJbFgfr1B7_j_47yPtytMSp6XxnVA9gy5S7cyutb-F24GdJG1eIhXPnTa8tBi2YW-TpAy0uNiku7mlfxQHRhpjP9s5RTp4RkqdF3OZkgn2k_9ist8sn350iFAhN1cBLZycr1sqGVD48fwdnRx9NeP6prOESKZJhGTBrpMIS2HMtuoWKWSc8In1LJsO2mRBYOolirsSE6pYZyzJXGRJFUGi6Z6T6G7XJWmqeACOaFpYw7FUWkTDhnDuuYOME20YSkHXjb_EuhaoJzX2djIipq5kS4uQwN2oFXa9GritXjOqE3wSDWEnI-9mlwKRVfB5_EqNvHPdrjIuvA3obFtF06iIBjzjqw35iQcN7rr2RkaWarhQjskBmJO_CksqxWN_bUhJS4UQX7-Pt3inyYh8azfxfdh9v90_xEnBwPvjyHO6HETYgrvYBtZzPmpUNay2IvONRvY1Ujhw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tu2LFhcfyKo9dCyHEJbtOajuOOKFC6QKpUMWKHpAsxw9YtU2rPgTi12M7SaOiRULcfJixYmfG82U8-QbguYvphYuDJIqZlhGx2kRc0STKVBEXONGMSv-Dcz5kgwvyfkzHe_Cq-Rem4ofYJty8Z4Tz2jv4QtuzljR0tpyFIb0GB4Q5JOER0ajljsqyioI5Jf6gyUhDK4STs63qTjA68Pv60xdHypXbH1s1trgKee4C2RCJ-rfga7OGqgBlcrpZF6fq1x_0jv-5yNtws0ao6HVlUndgz5RHcJjXd_BHcD0UjarVXVj4b9eWgRbNLfJdgNaXGhWXdrOssoHou5nNddX4foVkqdEPOZ0iX2c_8ecs8qX335AK7SXq1CSy042bZUcrH53fg4v-28-9QVR3cIgUyTCNmDTSIQhtOZbdQsUsk54PPqWSYdtNiSwcQLFWY0N0Sg3lmCuNiSKpNFwy070P--W8NA8BEcwLSxl3KopImXDOHNIxcYJtoglJO_CyeZVC1fTmvsvGVFTEzIlwexkGtAPPtqKLitPjKqEXwR62EnI58UVwKRVfhu_EuDvAPdrjIuvA8Y7BtFM6gIBjzjpw0liQcL7rL2RkaeablQjckBmJO_CgMqxWN_bEhJS4VQXz-PtzinyUh8Gjfxc9gcNPb_ri4_nww2O4EfrbhKTSE9h3JmOeOpi1Lo6DO_0G454iNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+carotid+bifurcation+hemodynamics+and+wall+thickness+using+computational+fluid+dynamics+and+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Steinman%2C+David+A.&rft.au=Thomas%2C+Jonathan+B.&rft.au=Ladak%2C+Hanif+M.&rft.au=Milner%2C+Jaques+S.&rft.date=2002-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=47&rft.issue=1&rft.spage=149&rft.epage=159&rft_id=info:doi/10.1002%2Fmrm.10025&rft.externalDBID=10.1002%252Fmrm.10025&rft.externalDocID=MRM10025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon