Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI
A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at t...
Saved in:
Published in | Magnetic resonance in medicine Vol. 47; no. 1; pp. 149 - 159 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
01.01.2002
Williams & Wilkins |
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 |
DOI | 10.1002/mrm.10025 |
Cover
Abstract | A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three‐dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black‐blood magnetic resonance imaging (MRI). Along with time‐varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject‐specific flow patterns and wall shear stresses (WSSs). Results from a 59‐year‐old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23‐year‐old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image‐based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects. |
---|---|
AbstractList | A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three‐dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black‐blood magnetic resonance imaging (MRI). Along with time‐varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject‐specific flow patterns and wall shear stresses (WSSs). Results from a 59‐year‐old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23‐year‐old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image‐based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects. A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three-dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black-blood magnetic resonance imaging (MRI). Along with time-varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject-specific flow patterns and wall shear stresses (WSSs). Results from a 59-year-old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23-year-old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image-based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects.A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three-dimensional (3D) models of the lumen and wall boundaries, from which wall thickness can be measured, were reconstructed from black-blood magnetic resonance imaging (MRI). Along with time-varying inlet/outlet flow rates measured via phase contrast (PC) MRI, the lumen boundary was used as input for computational fluid dynamic (CFD) simulation of the subject-specific flow patterns and wall shear stresses (WSSs). Results from a 59-year-old subject with early, asymptomatic carotid artery disease show good agreement between simulated and measured velocities, and demonstrate a correspondence between wall thickening and low and oscillating shear at the carotid bulb. High shear at the distal internal carotid artery (ICA) was also colocalized with higher WSS; however, a quantitative general relationship between WSS and wall thickness was not found. Similar results were obtained from a 23-year-old normal subject. These findings represent the first direct comparison of hemodynamic variables and wall thickness at the carotid bifurcation of human subjects. The noninvasive nature of this image-based modeling approach makes it ideal for carrying out future prospective studies of hemodynamics and plaque development or progression in otherwise healthy subjects. |
Author | Rutt, Brian K. Steinman, David A. Spence, J. David Milner, Jaques S. Thomas, Jonathan B. Ladak, Hanif M. |
Author_xml | – sequence: 1 givenname: David A. surname: Steinman fullname: Steinman, David A. email: steinman@irus.rri.ca organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada – sequence: 2 givenname: Jonathan B. surname: Thomas fullname: Thomas, Jonathan B. organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada – sequence: 3 givenname: Hanif M. surname: Ladak fullname: Ladak, Hanif M. organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada – sequence: 4 givenname: Jaques S. surname: Milner fullname: Milner, Jaques S. organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada – sequence: 5 givenname: Brian K. surname: Rutt fullname: Rutt, Brian K. organization: Imaging Research Labs, John P. Robarts Research Institute, London, Ontario, Canada – sequence: 6 givenname: J. David surname: Spence fullname: Spence, J. David organization: Stroke Prevention and Atherosclerosis Research Center, John P. Robarts Research Institute, London, Ontario, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13410186$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11754454$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcFuEzEQhi3UiqYtB14A-QISh6X2rr22jyiCtlJTpIgKbtbEa1NTr53auyp5e5YkLQLBaUaj7_sP8x-jg5iiReglJe8oIfVZn_vtwp-hGeV1XdVcsQM0I4KRqqGKHaHjUr4TQpQS7Dk6olRwxjibofXSmhTLkEcz-BRxcthAToPv8Mq7MRvYnm9tn7pNhN6bgiF2-AFCwMOtN3fRloLH4uM3bFK_HoetAQG7ME4pf1iL5eUpOnQQin2xnyfo5uOHz_OL6urT-eX8_VVlmCK8asGCpHXnJIFmZWirgCvZCg4tcY1gsBKydq4jlnWCWy6JNB1hhgmwElrbnKA3u9x1TvejLYPufTE2BIg2jUUL2jClGJ3AV3twXPW20-vse8gb_fijCXi9B6AYCC5DNL785hpGCZXtxJ3tOJNTKdk6bfzuGUMGHzQl-ldJempru_DJePuX8RT6D3af_uCD3fwf1Ivl4tGodoYvg_3xZEC-061oBNdfrs_11-aCzPlcatX8BCYKtCM |
CODEN | MRMEEN |
CitedBy_id | crossref_primary_10_1586_erc_10_172 crossref_primary_10_4015_S1016237219500248 crossref_primary_10_1186_s12938_015_0104_7 crossref_primary_10_1115_1_1632523 crossref_primary_10_1038_nrcardio_2009_246 crossref_primary_10_1088_0031_9155_55_14_004 crossref_primary_10_1016_j_jbiomech_2011_08_017 crossref_primary_10_1016_j_mri_2012_03_004 crossref_primary_10_1097_01_mat_0000201961_97981_e9 crossref_primary_10_1007_s10439_007_9307_9 crossref_primary_10_1096_fj_02_1064com crossref_primary_10_1161_01_ATV_0000019735_54479_2F crossref_primary_10_1109_TBME_2014_2310954 crossref_primary_10_1002_jmri_10246 crossref_primary_10_1002_jmri_10243 crossref_primary_10_1007_s12572_016_0161_6 crossref_primary_10_1161_01_ATV_0000147118_97474_4b crossref_primary_10_1152_ajpheart_00989_2006 crossref_primary_10_3390_jfb13010007 crossref_primary_10_1109_TUFFC_2013_006237 crossref_primary_10_1007_s10554_012_0056_y crossref_primary_10_1016_j_clinbiomech_2020_105184 crossref_primary_10_1097_01_RVI_0000109204_16955_84 crossref_primary_10_1007_s12591_020_00522_y crossref_primary_10_1016_j_mri_2013_05_009 crossref_primary_10_1093_cvr_cvt044 crossref_primary_10_1016_j_jbiomech_2007_08_012 crossref_primary_10_1097_RMR_0b013e3181ea2853 crossref_primary_10_1002_jmri_20317 crossref_primary_10_1002_cnm_1446 crossref_primary_10_1007_s13239_017_0307_0 crossref_primary_10_1111_j_1440_1681_2008_05010_x crossref_primary_10_1097_01_mat_0000170629_92765_bb crossref_primary_10_4244_EIJV9I5A94 crossref_primary_10_1115_1_4037857 crossref_primary_10_1371_journal_pone_0129952 crossref_primary_10_7498_aps_64_208701 crossref_primary_10_1016_j_jbiomech_2007_11_026 crossref_primary_10_1080_10255842_2012_744396 crossref_primary_10_1371_journal_pone_0092638 crossref_primary_10_1016_j_jbiomech_2016_02_004 crossref_primary_10_1177_0954411920926077 crossref_primary_10_3390_fluids6110378 crossref_primary_10_1002_jmri_23610 crossref_primary_10_1115_1_2354209 crossref_primary_10_1002_mp_17386 crossref_primary_10_1016_j_cmpb_2004_06_002 crossref_primary_10_2463_mrms_mp_2016_0060 crossref_primary_10_3171_jns_2004_100_2_0343 crossref_primary_10_1088_1361_6560_ab1145 crossref_primary_10_1007_s10439_006_9155_z crossref_primary_10_1016_j_wneu_2019_12_183 crossref_primary_10_1016_j_ultrasmedbio_2007_11_003 crossref_primary_10_1115_1_2165691 crossref_primary_10_1177_0003319716644138 crossref_primary_10_1016_j_jbiomech_2004_06_015 crossref_primary_10_1115_1_2187035 crossref_primary_10_1007_s10237_004_0046_7 crossref_primary_10_1109_TUFFC_2009_1071 crossref_primary_10_1162_leon_2007_40_1_71 crossref_primary_10_1002_mrm_21331 crossref_primary_10_1088_0031_9155_55_7_020 crossref_primary_10_1177_02676591221093195 crossref_primary_10_1016_j_rimni_2015_02_005 crossref_primary_10_1016_j_jbiomech_2003_09_032 crossref_primary_10_1109_TMI_2005_859204 crossref_primary_10_1017_S0962492917000046 crossref_primary_10_3390_app13010617 crossref_primary_10_1115_1_2354212 crossref_primary_10_1016_j_jbiomech_2004_06_022 crossref_primary_10_1007_s11548_006_0004_1 crossref_primary_10_1088_0031_9155_61_23_L48 crossref_primary_10_1115_1_4006681 crossref_primary_10_1007_s10665_022_10250_7 crossref_primary_10_1115_1_4033913 crossref_primary_10_1007_s10439_010_9901_0 crossref_primary_10_1007_s10237_015_0712_y crossref_primary_10_1002_mrm_20078 crossref_primary_10_1161_01_STR_0000116103_19029_DB crossref_primary_10_1002_jmri_20849 crossref_primary_10_1007_s10439_020_02607_9 crossref_primary_10_1148_radiol_10100788 crossref_primary_10_1093_bmb_ldw049 crossref_primary_10_1259_bjr_96847348 crossref_primary_10_1134_S0021894424030088 crossref_primary_10_1007_s11517_012_0985_6 crossref_primary_10_3174_ajnr_A6012 crossref_primary_10_1080_00986445_2011_569802 crossref_primary_10_1088_0967_3334_25_6_014 crossref_primary_10_1115_1_2900724 crossref_primary_10_1002_jmri_22266 crossref_primary_10_1016_S0895_6111_02_00020_4 crossref_primary_10_1080_10255842_2023_2275546 crossref_primary_10_1007_s10439_005_5630_1 crossref_primary_10_1002_cnm_3892 crossref_primary_10_1016_j_jbiomech_2009_04_023 crossref_primary_10_1002_nbm_3322 crossref_primary_10_1371_journal_pone_0213107 crossref_primary_10_1529_biophysj_106_100685 crossref_primary_10_1002_fld_2319 crossref_primary_10_3390_diagnostics9040223 crossref_primary_10_1109_MCG_2004_1274065 crossref_primary_10_1007_s40430_020_02608_8 crossref_primary_10_1007_s13239_013_0134_x crossref_primary_10_1002_mrm_22325 crossref_primary_10_1038_s41598_017_01906_x crossref_primary_10_1142_S0219519413500012 crossref_primary_10_1002_mrm_24905 crossref_primary_10_1016_j_bbe_2018_01_004 crossref_primary_10_1002_mrm_21758 crossref_primary_10_1109_TMI_2007_901991 crossref_primary_10_1098_rsif_2011_0605 crossref_primary_10_1016_j_ijmecsci_2019_105222 crossref_primary_10_1109_TITB_2012_2201732 crossref_primary_10_1016_j_ijnonlinmec_2012_05_006 crossref_primary_10_1016_j_jstrokecerebrovasdis_2020_105503 crossref_primary_10_1080_10255840802356691 crossref_primary_10_1161_01_STR_0000121161_61324_ab crossref_primary_10_1016_j_atherosclerosis_2007_05_030 crossref_primary_10_1007_s10439_014_1070_0 crossref_primary_10_1109_TMI_2004_826946 crossref_primary_10_1161_01_STR_0000185679_62634_0a crossref_primary_10_1002_jmri_20513 crossref_primary_10_1007_s13246_010_0050_4 crossref_primary_10_1016_j_cmpb_2022_107174 crossref_primary_10_1002_mp_13905 crossref_primary_10_1186_s12938_016_0133_x crossref_primary_10_1097_rmr_0b013e3181598dd8 crossref_primary_10_1115_1_2073668 crossref_primary_10_3233_BME_201171 crossref_primary_10_3389_fphys_2018_01528 crossref_primary_10_1002_cnm_2987 crossref_primary_10_1088_0967_3334_36_7_1517 crossref_primary_10_1097_01_mat_0000169117_07070_fb crossref_primary_10_1109_JBHI_2014_2305575 crossref_primary_10_1016_j_cmpb_2024_108144 crossref_primary_10_1016_j_mri_2004_01_002 crossref_primary_10_1016_j_nic_2015_09_002 crossref_primary_10_1016_j_cmpb_2022_106872 crossref_primary_10_1067_mva_2003_122 crossref_primary_10_1016_j_ijheatmasstransfer_2005_05_004 crossref_primary_10_1016_j_jbiomech_2013_08_003 crossref_primary_10_1007_s10439_005_8772_2 crossref_primary_10_1109_TMI_2003_812261 crossref_primary_10_1186_s41747_018_0058_1 crossref_primary_10_1016_j_ijengsci_2021_103525 crossref_primary_10_1007_s40204_018_0090_5 crossref_primary_10_1111_j_1445_2197_2011_05885_x crossref_primary_10_1118_1_3284976 crossref_primary_10_1161_STROKEAHA_109_558676 crossref_primary_10_1002_mrm_20724 crossref_primary_10_1016_j_jbiomech_2020_110019 crossref_primary_10_1118_1_3462592 crossref_primary_10_1002_cnm_1384 crossref_primary_10_1088_1757_899X_1128_1_012009 crossref_primary_10_1152_ajpheart_00889_2008 crossref_primary_10_1007_s10439_010_9915_7 crossref_primary_10_1098_rsif_2018_0352 crossref_primary_10_1002_jmri_21582 crossref_primary_10_1088_0967_3334_31_3_002 crossref_primary_10_1002_mrm_10401 crossref_primary_10_1111_exsy_12951 crossref_primary_10_1007_s40997_018_0142_4 crossref_primary_10_1016_S1064_9689_02_00023_5 crossref_primary_10_1161_CIRCIMAGING_110_958504 crossref_primary_10_1118_1_3292631 crossref_primary_10_1007_s10237_019_01282_7 crossref_primary_10_1109_TBME_2011_2164919 crossref_primary_10_1016_j_jbiomech_2005_12_009 crossref_primary_10_1016_j_ijheatmasstransfer_2009_04_040 crossref_primary_10_1088_0967_3334_25_3_009 crossref_primary_10_1002_jmri_10294 crossref_primary_10_1002_jmri_20928 crossref_primary_10_1007_BF02916315 |
Cites_doi | 10.1016/0021-9150(87)90090-6 10.1016/S0021-9290(99)00205-5 10.1016/S0730-725X(00)00157-0 10.1001/jama.282.21.2035 10.3233/BIR-1994-31505 10.1161/01.ATV.13.2.310 10.1002/jmri.1880050410 10.1115/1.2895491 10.1016/0021-9290(93)90611-H 10.1053/ejvs.2000.1221 10.1002/(SICI)1097-0150(1999)4:5<231::AID-IGS1>3.0.CO;2-Z 10.1161/01.CIR.101.25.2956 10.1161/01.ATV.18.12.1877 10.1161/01.RES.53.4.502 10.1063/1.4822390 10.1016/S0741-5214(98)70210-1 10.1115/1.429646 10.1016/0021-9290(95)95273-8 10.1002/(SICI)1522-2594(200004)43:4<565::AID-MRM11>3.0.CO;2-L 10.1002/mrm.1191 10.1053/ejvs.1999.0913 10.1161/01.CIR.101.6.586 10.1161/01.CIR.102.3.e22 10.1161/01.ATV.19.12.2933 10.1115/1.2895733 10.1016/S0021-9290(99)00164-5 10.1161/01.STR.28.5.993 10.1016/0021-9150(86)90008-0 10.1161/01.CIR.94.12.3257 10.1016/0301-5629(94)00090-5 10.1161/01.ATV.5.3.293 10.1115/1.2795948 10.1080/10255849908907986 10.1016/S0021-9290(00)00043-9 10.1002/mrm.1910390417 10.1016/S0741-5214(96)80048-6 10.1118/1.1368125 10.1002/(SICI)1522-2586(200003)11:3<299::AID-JMRI9>3.0.CO;2-M 10.1161/01.ATV.17.10.2061 10.1017/S0022112099008022 10.1114/1.163 10.1111/j.1749-6632.2000.tb06312.x |
ContentType | Journal Article |
Copyright | Copyright © 2002 Wiley‐Liss, Inc. 2002 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2002 Wiley‐Liss, Inc. – notice: 2002 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/mrm.10025 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 159 |
ExternalDocumentID | 11754454 13410186 10_1002_mrm_10025 MRM10025 ark_67375_WNG_X3H0C5C8_9 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Heart and Stroke Foundation of Ontario funderid: T‐3739 – fundername: Ontario Graduate Scholarship in Science and Technology |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4905-6aea812df80a3bc169a598675a60f374ab782ffd0e4d75e5808cd04c47ae8a6e3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 |
IngestDate | Fri Jul 11 15:45:02 EDT 2025 Wed Feb 19 02:36:38 EST 2025 Mon Jul 21 09:11:53 EDT 2025 Thu Apr 24 22:58:22 EDT 2025 Tue Jul 01 04:19:25 EDT 2025 Wed Jan 22 16:13:52 EST 2025 Wed Oct 30 09:48:27 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Human Regional blood flow Carotid bifurcation Fluid dynamics Cardiovascular disease Exploration Nuclear magnetic resonance imaging Vascular disease Thickness Atherosclerotic plaque Atherosclerosis Medical imagery Evolution Vascular wall |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4905-6aea812df80a3bc169a598675a60f374ab782ffd0e4d75e5808cd04c47ae8a6e3 |
Notes | istex:73B0D381C6A0BC111F8BFFB4EA5B26425F65EA1C Ontario Graduate Scholarship in Science and Technology Heart and Stroke Foundation of Ontario - No. T-3739 ark:/67375/WNG-X3H0C5C8-9 ArticleID:MRM10025 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.10025 |
PMID | 11754454 |
PQID | 71349941 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_71349941 pubmed_primary_11754454 pascalfrancis_primary_13410186 crossref_citationtrail_10_1002_mrm_10025 crossref_primary_10_1002_mrm_10025 wiley_primary_10_1002_mrm_10025_MRM10025 istex_primary_ark_67375_WNG_X3H0C5C8_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2002 |
PublicationDateYYYYMMDD | 2002-01-01 |
PublicationDate_xml | – month: 01 year: 2002 text: January 2002 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Baltimore, MD – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2002 |
Publisher | John Wiley & Sons, Inc Williams & Wilkins |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Williams & Wilkins |
References | Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 1997; 28: 993-998. van Langenhove G, Wentzel JJ, Krams R, Slager CJ, Hamburger JN, Serruys PW. Helical velocity patterns in a human coronary artery: a three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 2000; 102: E22-E24. Steinman DA, Ethier CR. The effect of wall distensibility on flow in a two-dimensional end-to- side anastomosis. J Biomech Eng 1994; 116: 294-301. Friedman MH, Deters OJ, Bargeron CB, Hutchins GM, Mark FF. Shear-dependent thickening of the human arterial intima. Atherosclerosis 1986; 60: 161-171. Ladak HM, Thomas JB, Mitchell JR, Rutt BK, Steinman DA. A semi-automatic technique for measurement of arterial wall from black blood MRI. Med Phys 2001; 28: 1098-1107. Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983; 53: 502-514. Worthley SG, Helft G, Fuster V, Fayad ZA, Rodriguez OJ, Zaman AG, Fallon JT, Badimon JJ. Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 2000; 101: 2956-2961. Zhao M, Charbel FT, Alperin N, Loth F, Clark ME. Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging 2000; 18: 697-706. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282: 2035-2042. Long Q, Xu XY, Bourne M, Griffith TM. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn Reson Med 2000; 43: 565-576. Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV, Ariff B, Long Q. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 2000; 33: 975-984. Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J Vasc Surg 1998; 28: 143-156. Frayne R, Steinman DA, Ethier CR, Rutt BK. Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 1995; 5: 428-431. Kornet L, Hoeks AP, Lambregts J, Reneman RS. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1999; 19: 2933-2939. Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 1995; 28: 845-856. Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 1987; 68: 27-33. Lou Z, Yang WJ. A computer simulation of the blood flow at the aortic bifurcation with flexible walls. J Biomech Eng 1993; 115: 306-315. Ladak HM, Milner JS, Steinman DA. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J Biomech Eng 2000; 122: 96-99. Lou Z, Yang WJ. A computer simulation of the non-Newtonian blood flow at aortic bifurcation. J Biomech 1993; 26: 37-49. Thomas JB, Rutt BK, Ladak HM, Steinman DA. The effect of black blood MR image quality on vessel wall segmentation. Magn Reson Med 2001; 46: 299-304. Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 1996; 94: 3257-3262. Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 1999; 4: 231-247. Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Comp Meth Biomech Biomed Eng 1999; 2: 171-185. Long Q, Xu XY, Ariff B, Thom SA, Hughes AD, Stanton AV. Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J Magn Reson Imaging 2000; 11: 299-311. Ballyk PD, Steinman DA, Ethier CR. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 1994; 31: 565-586. Pedersen EM, Oyre S, Agerbaek M, Kristensen IB, Ringgaard S, Boesiger P, Paaske WP. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo. Eur J Vasc Endovasc Surg 1999; 18: 328-333. Ethier CR, Prakash S, Steinman DA, Leask RL, Couch GG, Ojha M. Steady flow separation patterns in a 45 degree junction. J Fluid Mech 2000; 411: 1-38. Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 1997; 17: 2061-2065. Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann NY Acad Sci 2000; 902: 173-186. Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Comput Physics 1996; 10: 224-232. Steinman DA. Simulated pathline visualization of computed periodic blood flow patterns. J Biomech 2000; 33: 623-628. Stokholm R, Oyre S, Ringgaard S, Flaagoy H, Paaske WP, Pedersen EM. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques. Eur J Vasc Endovasc Surg 2000; 20: 427-433. Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 1993; 13: 310-315. Moore JA, Steinman DA, Holdsworth DW, Ethier CR. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann Biomed Eng 1999; 27: 32-41. Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT, Badimon JJ. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 2000; 101: 586-589. Hansen F, Mangell P, Sonesson B, Lanne T. Diameter and compliance in the human common carotid artery-variations with age and sex. Ultrasound Med Biol 1995; 21: 1-9. Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger P. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 2000; 33: 137-144. Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302. Steinman DA, Rutt BK. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn Reson Med 1998; 39: 635-641. Wells DR, Archie Jr JP, Kleinstreuer C. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. J Vasc Surg 1996; 23: 667-678. Kornet L, Lambregts J, Hoeks AP, Reneman RS. Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1998; 18: 1877-1884. He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 1996; 118: 74-82. 1993; 26 1998; 28 1994; 116 1985; 5 2000; 411 2000; 43 1999; 27 2000; 20 1983; 53 1996; 94 1997; 28 1995 1999; 4 2001; 28 1999; 2 2001; 46 1996; 10 1995; 5 1999 1987; 68 2000; 902 1998; 18 1993; 13 1998; 39 2000; 18 1986; 60 2000; 102 1995; 28 2001 1999; 19 1999; 18 1999; 282 2000; 11 2000; 33 1995; 21 1997; 17 2000; 122 2000; 101 1993; 115 1996; 118 1996; 23 1994; 31 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 Ethier CR (e_1_2_7_29_2) 1999 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_45_2 e_1_2_7_46_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 e_1_2_7_38_2 e_1_2_7_39_2 |
References_xml | – reference: Thomas JB, Rutt BK, Ladak HM, Steinman DA. The effect of black blood MR image quality on vessel wall segmentation. Magn Reson Med 2001; 46: 299-304. – reference: Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 1983; 53: 502-514. – reference: Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 1985; 5: 293-302. – reference: Lou Z, Yang WJ. A computer simulation of the non-Newtonian blood flow at aortic bifurcation. J Biomech 1993; 26: 37-49. – reference: Stokholm R, Oyre S, Ringgaard S, Flaagoy H, Paaske WP, Pedersen EM. Determination of wall shear rate in the human carotid artery by magnetic resonance techniques. Eur J Vasc Endovasc Surg 2000; 20: 427-433. – reference: Gnasso A, Carallo C, Irace C, Spagnuolo V, De Novara G, Mattioli PL, Pujia A. Association between intima-media thickness and wall shear stress in common carotid arteries in healthy male subjects. Circulation 1996; 94: 3257-3262. – reference: Ballyk PD, Steinman DA, Ethier CR. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 1994; 31: 565-586. – reference: Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV, Ariff B, Long Q. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 2000; 33: 975-984. – reference: Kornet L, Lambregts J, Hoeks AP, Reneman RS. Differences in near-wall shear rate in the carotid artery within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1998; 18: 1877-1884. – reference: Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF. Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 1987; 68: 27-33. – reference: Worthley SG, Helft G, Fuster V, Fayad ZA, Rodriguez OJ, Zaman AG, Fallon JT, Badimon JJ. Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 2000; 101: 2956-2961. – reference: Ladak HM, Milner JS, Steinman DA. Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J Biomech Eng 2000; 122: 96-99. – reference: Botnar R, Rappitsch G, Scheidegger MB, Liepsch D, Perktold K, Boesiger P. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J Biomech 2000; 33: 137-144. – reference: Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann NY Acad Sci 2000; 902: 173-186. – reference: Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 1999; 4: 231-247. – reference: Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 1995; 28: 845-856. – reference: Milner JS, Moore JA, Rutt BK, Steinman DA. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J Vasc Surg 1998; 28: 143-156. – reference: Pedersen EM, Oyre S, Agerbaek M, Kristensen IB, Ringgaard S, Boesiger P, Paaske WP. Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo. Eur J Vasc Endovasc Surg 1999; 18: 328-333. – reference: Wells DR, Archie Jr JP, Kleinstreuer C. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. J Vasc Surg 1996; 23: 667-678. – reference: Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT, Badimon JJ. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 2000; 101: 586-589. – reference: Frayne R, Steinman DA, Ethier CR, Rutt BK. Accuracy of MR phase contrast velocity measurements for unsteady flow. J Magn Reson Imaging 1995; 5: 428-431. – reference: Steinman DA, Ethier CR. The effect of wall distensibility on flow in a two-dimensional end-to- side anastomosis. J Biomech Eng 1994; 116: 294-301. – reference: Friedman MH, Deters OJ, Bargeron CB, Hutchins GM, Mark FF. Shear-dependent thickening of the human arterial intima. Atherosclerosis 1986; 60: 161-171. – reference: Long Q, Xu XY, Ariff B, Thom SA, Hughes AD, Stanton AV. Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J Magn Reson Imaging 2000; 11: 299-311. – reference: Moore JA, Steinman DA, Holdsworth DW, Ethier CR. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Ann Biomed Eng 1999; 27: 32-41. – reference: Zhao M, Charbel FT, Alperin N, Loth F, Clark ME. Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging 2000; 18: 697-706. – reference: Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 1999; 282: 2035-2042. – reference: Kornet L, Hoeks AP, Lambregts J, Reneman RS. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 1999; 19: 2933-2939. – reference: Long Q, Xu XY, Bourne M, Griffith TM. Numerical study of blood flow in an anatomically realistic aorto-iliac bifurcation generated from MRI data. Magn Reson Med 2000; 43: 565-576. – reference: Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH. Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb 1993; 13: 310-315. – reference: van Langenhove G, Wentzel JJ, Krams R, Slager CJ, Hamburger JN, Serruys PW. Helical velocity patterns in a human coronary artery: a three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation 2000; 102: E22-E24. – reference: Karner G, Perktold K, Hofer M, Liepsch D. Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Comp Meth Biomech Biomed Eng 1999; 2: 171-185. – reference: Ladak HM, Thomas JB, Mitchell JR, Rutt BK, Steinman DA. A semi-automatic technique for measurement of arterial wall from black blood MRI. Med Phys 2001; 28: 1098-1107. – reference: Gnasso A, Irace C, Carallo C, De Franceschi MS, Motti C, Mattioli PL, Pujia A. In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis. Stroke 1997; 28: 993-998. – reference: Steinman DA, Rutt BK. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn Reson Med 1998; 39: 635-641. – reference: Hansen F, Mangell P, Sonesson B, Lanne T. Diameter and compliance in the human common carotid artery-variations with age and sex. Ultrasound Med Biol 1995; 21: 1-9. – reference: Ethier CR, Prakash S, Steinman DA, Leask RL, Couch GG, Ojha M. Steady flow separation patterns in a 45 degree junction. J Fluid Mech 2000; 411: 1-38. – reference: He X, Ku DN. Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 1996; 118: 74-82. – reference: Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics. Arterioscler Thromb Vasc Biol 1997; 17: 2061-2065. – reference: Lou Z, Yang WJ. A computer simulation of the blood flow at the aortic bifurcation with flexible walls. J Biomech Eng 1993; 115: 306-315. – reference: Steinman DA. Simulated pathline visualization of computed periodic blood flow patterns. J Biomech 2000; 33: 623-628. – reference: Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Comput Physics 1996; 10: 224-232. – volume: 18 start-page: 328 year: 1999 end-page: 333 article-title: Distribution of early atherosclerotic lesions in the human abdominal aorta correlates with wall shear stresses measured in vivo publication-title: Eur J Vasc Endovasc Surg – volume: 68 start-page: 27 year: 1987 end-page: 33 article-title: Correlation between wall shear and intimal thickness at a coronary artery branch publication-title: Atherosclerosis – volume: 11 start-page: 299 year: 2000 end-page: 311 article-title: Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study publication-title: J Magn Reson Imaging – volume: 5 start-page: 428 year: 1995 end-page: 431 article-title: Accuracy of MR phase contrast velocity measurements for unsteady flow publication-title: J Magn Reson Imaging – volume: 122 start-page: 96 year: 2000 end-page: 99 article-title: Rapid three‐dimensional segmentation of the carotid bifurcation from serial MR images publication-title: J Biomech Eng – volume: 411 start-page: 1 year: 2000 end-page: 38 article-title: Steady flow separation patterns in a 45 degree junction publication-title: J Fluid Mech – volume: 282 start-page: 2035 year: 1999 end-page: 2042 article-title: Hemodynamic shear stress and its role in atherosclerosis publication-title: JAMA – volume: 13 start-page: 310 year: 1993 end-page: 315 article-title: Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries publication-title: Arterioscler Thromb – volume: 116 start-page: 294 year: 1994 end-page: 301 article-title: The effect of wall distensibility on flow in a two‐dimensional end‐to‐ side anastomosis publication-title: J Biomech Eng – volume: 43 start-page: 565 year: 2000 end-page: 576 article-title: Numerical study of blood flow in an anatomically realistic aorto‐iliac bifurcation generated from MRI data publication-title: Magn Reson Med – volume: 17 start-page: 2061 year: 1997 end-page: 2065 article-title: Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics publication-title: Arterioscler Thromb Vasc Biol – volume: 28 start-page: 143 year: 1998 end-page: 156 article-title: Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects publication-title: J Vasc Surg – volume: 27 start-page: 32 year: 1999 end-page: 41 article-title: Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging publication-title: Ann Biomed Eng – volume: 46 start-page: 299 year: 2001 end-page: 304 article-title: The effect of black blood MR image quality on vessel wall segmentation publication-title: Magn Reson Med – volume: 115 start-page: 306 year: 1993 end-page: 315 article-title: A computer simulation of the blood flow at the aortic bifurcation with flexible walls publication-title: J Biomech Eng – volume: 5 start-page: 293 year: 1985 end-page: 302 article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress publication-title: Arteriosclerosis – volume: 53 start-page: 502 year: 1983 end-page: 514 article-title: Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress publication-title: Circ Res – volume: 4 start-page: 231 year: 1999 end-page: 247 article-title: Predictive medicine: computational techniques in therapeutic decision‐making publication-title: Comput Aided Surg – volume: 28 start-page: 845 year: 1995 end-page: 856 article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model publication-title: J Biomech – volume: 33 start-page: 137 year: 2000 end-page: 144 article-title: Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements publication-title: J Biomech – volume: 28 start-page: 993 year: 1997 end-page: 998 article-title: In vivo association between low wall shear stress and plaque in subjects with asymmetrical carotid atherosclerosis publication-title: Stroke – start-page: 852 year: 1995 end-page: 857 – volume: 23 start-page: 667 year: 1996 end-page: 678 article-title: Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients publication-title: J Vasc Surg – volume: 20 start-page: 427 year: 2000 end-page: 433 article-title: Determination of wall shear rate in the human carotid artery by magnetic resonance techniques publication-title: Eur J Vasc Endovasc Surg – volume: 21 start-page: 1 year: 1995 end-page: 9 article-title: Diameter and compliance in the human common carotid artery—variations with age and sex publication-title: Ultrasound Med Biol – volume: 101 start-page: 2956 year: 2000 end-page: 2961 article-title: Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model publication-title: Circulation – volume: 39 start-page: 635 year: 1998 end-page: 641 article-title: On the nature and reduction of plaque‐mimicking flow artifacts in black blood MRI of the carotid bifurcation publication-title: Magn Reson Med – volume: 31 start-page: 565 year: 1994 end-page: 586 article-title: Simulation of non‐Newtonian blood flow in an end‐to‐side anastomosis publication-title: Biorheology – volume: 60 start-page: 161 year: 1986 end-page: 171 article-title: Shear‐dependent thickening of the human arterial intima publication-title: Atherosclerosis – volume: 33 start-page: 975 year: 2000 end-page: 984 article-title: Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation publication-title: J Biomech – volume: 26 start-page: 37 year: 1993 end-page: 49 article-title: A computer simulation of the non‐Newtonian blood flow at aortic bifurcation publication-title: J Biomech – volume: 902 start-page: 173 year: 2000 end-page: 186 article-title: Characterization of atherosclerotic plaques by magnetic resonance imaging publication-title: Ann NY Acad Sci – volume: 118 start-page: 74 year: 1996 end-page: 82 article-title: Pulsatile flow in the human left coronary artery bifurcation: average conditions publication-title: J Biomech Eng – volume: 2 start-page: 171 year: 1999 end-page: 185 article-title: Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model publication-title: Comp Meth Biomech Biomed Eng – volume: 102 start-page: E22 year: 2000 end-page: E24 article-title: Helical velocity patterns in a human coronary artery: a three‐dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness publication-title: Circulation – volume: 101 start-page: 586 year: 2000 end-page: 589 article-title: Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis publication-title: Circulation – volume: 10 start-page: 224 year: 1996 end-page: 232 article-title: Computational investigations of vascular disease publication-title: Comput Physics – volume: 18 start-page: 1877 year: 1998 end-page: 1884 article-title: Differences in near‐wall shear rate in the carotid artery within subjects are associated with different intima‐media thicknesses publication-title: Arterioscler Thromb Vasc Biol – volume: 33 start-page: 623 year: 2000 end-page: 628 article-title: Simulated pathline visualization of computed periodic blood flow patterns publication-title: J Biomech – volume: 94 start-page: 3257 year: 1996 end-page: 3262 article-title: Association between intima‐media thickness and wall shear stress in common carotid arteries in healthy male subjects publication-title: Circulation – start-page: 619 year: 2001 end-page: 620 – volume: 28 start-page: 1098 year: 2001 end-page: 1107 article-title: A semi‐automatic technique for measurement of arterial wall from black blood MRI publication-title: Med Phys – volume: 18 start-page: 697 year: 2000 end-page: 706 article-title: Improved phase‐contrast flow quantification by three‐dimensional vessel localization publication-title: Magn Reson Imaging – volume: 19 start-page: 2933 year: 1999 end-page: 2939 article-title: In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima‐media thicknesses publication-title: Arterioscler Thromb Vasc Biol – year: 1999 – ident: e_1_2_7_5_2 doi: 10.1016/0021-9150(87)90090-6 – ident: e_1_2_7_46_2 doi: 10.1016/S0021-9290(99)00205-5 – ident: e_1_2_7_42_2 doi: 10.1016/S0730-725X(00)00157-0 – ident: e_1_2_7_6_2 doi: 10.1001/jama.282.21.2035 – ident: e_1_2_7_41_2 – ident: e_1_2_7_34_2 doi: 10.3233/BIR-1994-31505 – ident: e_1_2_7_18_2 doi: 10.1161/01.ATV.13.2.310 – ident: e_1_2_7_27_2 doi: 10.1002/jmri.1880050410 – ident: e_1_2_7_36_2 doi: 10.1115/1.2895491 – ident: e_1_2_7_37_2 doi: 10.1016/0021-9290(93)90611-H – ident: e_1_2_7_12_2 doi: 10.1053/ejvs.2000.1221 – ident: e_1_2_7_14_2 doi: 10.1002/(SICI)1097-0150(1999)4:5<231::AID-IGS1>3.0.CO;2-Z – ident: e_1_2_7_33_2 doi: 10.1161/01.CIR.101.25.2956 – ident: e_1_2_7_11_2 doi: 10.1161/01.ATV.18.12.1877 – ident: e_1_2_7_2_2 doi: 10.1161/01.RES.53.4.502 – ident: e_1_2_7_13_2 doi: 10.1063/1.4822390 – ident: e_1_2_7_21_2 doi: 10.1016/S0741-5214(98)70210-1 – ident: e_1_2_7_25_2 doi: 10.1115/1.429646 – ident: e_1_2_7_38_2 doi: 10.1016/0021-9290(95)95273-8 – ident: e_1_2_7_15_2 doi: 10.1002/(SICI)1522-2594(200004)43:4<565::AID-MRM11>3.0.CO;2-L – ident: e_1_2_7_43_2 doi: 10.1002/mrm.1191 – ident: e_1_2_7_7_2 doi: 10.1053/ejvs.1999.0913 – ident: e_1_2_7_26_2 – ident: e_1_2_7_45_2 doi: 10.1161/01.CIR.101.6.586 – ident: e_1_2_7_20_2 doi: 10.1161/01.CIR.102.3.e22 – ident: e_1_2_7_8_2 doi: 10.1161/01.ATV.19.12.2933 – volume-title: The haemodynamics of arterial organs—comparison of computational predictions with in vivo and in vitro data year: 1999 ident: e_1_2_7_29_2 – ident: e_1_2_7_35_2 doi: 10.1115/1.2895733 – ident: e_1_2_7_31_2 doi: 10.1016/S0021-9290(99)00164-5 – ident: e_1_2_7_10_2 doi: 10.1161/01.STR.28.5.993 – ident: e_1_2_7_4_2 doi: 10.1016/0021-9150(86)90008-0 – ident: e_1_2_7_9_2 doi: 10.1161/01.CIR.94.12.3257 – ident: e_1_2_7_24_2 doi: 10.1016/0301-5629(94)00090-5 – ident: e_1_2_7_3_2 doi: 10.1161/01.ATV.5.3.293 – ident: e_1_2_7_30_2 doi: 10.1115/1.2795948 – ident: e_1_2_7_40_2 doi: 10.1080/10255849908907986 – ident: e_1_2_7_17_2 doi: 10.1016/S0021-9290(00)00043-9 – ident: e_1_2_7_22_2 doi: 10.1002/mrm.1910390417 – ident: e_1_2_7_39_2 doi: 10.1016/S0741-5214(96)80048-6 – ident: e_1_2_7_23_2 doi: 10.1118/1.1368125 – ident: e_1_2_7_16_2 doi: 10.1002/(SICI)1522-2586(200003)11:3<299::AID-JMRI9>3.0.CO;2-M – ident: e_1_2_7_19_2 doi: 10.1161/01.ATV.17.10.2061 – ident: e_1_2_7_28_2 doi: 10.1017/S0022112099008022 – ident: e_1_2_7_32_2 doi: 10.1114/1.163 – ident: e_1_2_7_44_2 doi: 10.1111/j.1749-6632.2000.tb06312.x |
SSID | ssj0009974 |
Score | 2.1760554 |
Snippet | A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 149 |
SubjectTerms | Adult atherosclerosis Biological and medical sciences Cardiovascular system Carotid Arteries - anatomy & histology carotid artery bifurcation Cerebrovascular Circulation - physiology computational fluid dynamics Female Hemodynamics Humans Image Processing, Computer-Assisted Imaging, Three-Dimensional Intracranial Arteriosclerosis - pathology Investigative techniques, diagnostic techniques (general aspects) Magnetic Resonance Imaging Male Medical sciences Middle Aged Radiodiagnosis. Nmr imagery. Nmr spectrometry wall shear stress |
Title | Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI |
URI | https://api.istex.fr/ark:/67375/WNG-X3H0C5C8-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.10025 https://www.ncbi.nlm.nih.gov/pubmed/11754454 https://www.proquest.com/docview/71349941 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIhCXAuWVAsVCCHFJ6yS244gTWigLUnpYUbEHJMtPqHY3W212BeLX40ey0aIiIW4-zESxM-P5Mh5_A8BLF9Oli4M4zagWKbbapEyRPK2UzCTKNSXCX3Cuz-n4An-akukeeNPfhYn8ENuEm_eMsF97BxeyPR1IQxerRRj6C-ZZQT1v_rvJQB1VVZGBucR-n6lwzyqE8tOt5k4suuGX9aevjRStWx4b-1pcBzx3cWwIRGd3wNd-CrH-ZHayWcsT9esPdsf_nONdcNABVPg2WtQ9sGeaQ3Cr7o7gD8HNUDOq2vvgyv-6DgS0cGmhbwK0vtRQXtrNKiYD4XezWOrY976FotHwh5jPoS-zn_ltFvrK-29Qhe4SXWYS2vnGPWVHq558fAAuzt5_Ho3TroFDqnCFSEqFEQ5AaMuQKKTKaCU8HXxJBEW2KLGQDp9Yq5HBuiSGMMSURljhUhgmqCkegv1m2ZjHAGLEpCWUORWFhcgZow7omCxHNtcYlwl43X9Krjp2c99kY84jL3PO3VqGAUnAi63oVaT0uE7oVbCHrYRYzXwNXEn4l_MPfFqM0YiMGK8ScLxjMMMjHT5AGaMJeN5bEHeu689jRGOWm5YHasgKZwl4FA1r0M08LyHBblbBPP7-nrye1GFw9O-iT8Dt0NMmJJKegn1nJ-aZg1ZreRx86Dd8FB9o |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswEB2kCbpcuqSbuyREURS9KKFkkqKAXgq3qdNGPhgJ6ktBUFySwLYceEGXry9JSRZcpEDRGw8zhEjNkI_D4RuA125PL9w-SKKYaRkRq03EFU2iTBVxgRPNqPQPnPMB65-RzyM62oJ3zVuYih9iHXDznhHWa-_gPiB92LKGTufT0KQ3YIc4oOGPXh-GLXlUllUczCnxK01GGl4hnByuVTd2ox0_sT98dqRcuAmyVWWL66DnJpINW9HRPfjWDKLKQBkfrJbFgfr1B7_j_47yPtytMSp6XxnVA9gy5S7cyutb-F24GdJG1eIhXPnTa8tBi2YW-TpAy0uNiku7mlfxQHRhpjP9s5RTp4RkqdF3OZkgn2k_9ist8sn350iFAhN1cBLZycr1sqGVD48fwdnRx9NeP6prOESKZJhGTBrpMIS2HMtuoWKWSc8In1LJsO2mRBYOolirsSE6pYZyzJXGRJFUGi6Z6T6G7XJWmqeACOaFpYw7FUWkTDhnDuuYOME20YSkHXjb_EuhaoJzX2djIipq5kS4uQwN2oFXa9GritXjOqE3wSDWEnI-9mlwKRVfB5_EqNvHPdrjIuvA3obFtF06iIBjzjqw35iQcN7rr2RkaWarhQjskBmJO_CksqxWN_bUhJS4UQX7-Pt3inyYh8azfxfdh9v90_xEnBwPvjyHO6HETYgrvYBtZzPmpUNay2IvONRvY1Ujhw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tu2LFhcfyKo9dCyHEJbtOajuOOKFC6QKpUMWKHpAsxw9YtU2rPgTi12M7SaOiRULcfJixYmfG82U8-QbguYvphYuDJIqZlhGx2kRc0STKVBEXONGMSv-Dcz5kgwvyfkzHe_Cq-Rem4ofYJty8Z4Tz2jv4QtuzljR0tpyFIb0GB4Q5JOER0ajljsqyioI5Jf6gyUhDK4STs63qTjA68Pv60xdHypXbH1s1trgKee4C2RCJ-rfga7OGqgBlcrpZF6fq1x_0jv-5yNtws0ao6HVlUndgz5RHcJjXd_BHcD0UjarVXVj4b9eWgRbNLfJdgNaXGhWXdrOssoHou5nNddX4foVkqdEPOZ0iX2c_8ecs8qX335AK7SXq1CSy042bZUcrH53fg4v-28-9QVR3cIgUyTCNmDTSIQhtOZbdQsUsk54PPqWSYdtNiSwcQLFWY0N0Sg3lmCuNiSKpNFwy070P--W8NA8BEcwLSxl3KopImXDOHNIxcYJtoglJO_CyeZVC1fTmvsvGVFTEzIlwexkGtAPPtqKLitPjKqEXwR62EnI58UVwKRVfhu_EuDvAPdrjIuvA8Y7BtFM6gIBjzjpw0liQcL7rL2RkaeablQjckBmJO_CgMqxWN_bEhJS4VQXz-PtzinyUh8Gjfxc9gcNPb_ri4_nww2O4EfrbhKTSE9h3JmOeOpi1Lo6DO_0G454iNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+carotid+bifurcation+hemodynamics+and+wall+thickness+using+computational+fluid+dynamics+and+MRI&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Steinman%2C+David+A.&rft.au=Thomas%2C+Jonathan+B.&rft.au=Ladak%2C+Hanif+M.&rft.au=Milner%2C+Jaques+S.&rft.date=2002-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=47&rft.issue=1&rft.spage=149&rft.epage=159&rft_id=info:doi/10.1002%2Fmrm.10025&rft.externalDBID=10.1002%252Fmrm.10025&rft.externalDocID=MRM10025 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |