Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury

ABSTRACT Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied toxicology Vol. 33; no. 8; pp. 700 - 711
Main Authors Dórea, José G., Farina, Marcelo, Rocha, João B. T.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.08.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal‐containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half‐life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real‐life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half‐life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg.
AbstractList Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants).Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants).
ABSTRACT Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal‐containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half‐life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real‐life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half‐life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg.
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half-life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg. [PUBLICATION ABSTRACT]
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright [copy 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half-life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg.
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants).
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal‐containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half‐life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real‐life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half‐life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg.
Author Farina, Marcelo
Dórea, José G.
Rocha, João B. T.
Author_xml – sequence: 1
  givenname: José G.
  surname: Dórea
  fullname: Dórea, José G.
  email: Correspondence to: José G. Dórea, C.P. 04322, Faculty of Health Sciences, Universidade de Brasilia, 70919-970 Brasilia, DF, Brazil. , dorea@rudah.com.br
  organization: Department of Nutrition, Faculty of Health Sciences, Universidade de Brasilia, DF, 70919-970, Brasilia, Brazil
– sequence: 2
  givenname: Marcelo
  surname: Farina
  fullname: Farina, Marcelo
  organization: Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, SC, 88040-900, Florianópolis, Brazil
– sequence: 3
  givenname: João B. T.
  surname: Rocha
  fullname: Rocha, João B. T.
  organization: Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Santa Maria, Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23401210$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9P2zAUxa2JCUqHtE-AIvECD-mu_ySOeeuqAUPVJk2d2JvlJrbqksTFTgT59hgVGEOgPVlX_t2je87ZRzutazVCnzFMMAD5slbdhBRZ9gGNMAiRYpLTHTQCkkPKKP-zh_ZDWAPEP1Lsoj1CGWCCYYQuF-7OlrYbEmcS3a2GutG-7P2QHKu2ShYrG2cXVH1ymqikdM1GeRtcm9zabpU0Lzc-oY9G1UEfPL5j9Pvs22J2kc5_nn-fTedpyQRkaU5LrU0mNCuY5oQrAVrg5RKUoUxRvqwqaiplciJExTOBDSe0EKAoBYNzTMfoeKu78e6m16GTjQ2lrmvVatcHiVl0R4nI6P9RyjHhgFkR0aNX6Nr1vo1GoiDhRc5pVByjw0eqXza6khtvG-UH-RRoBCZboIypBa-NjOGqzrq288rWEoN8aEzGxuRDY39PfF540nwDTbfora318C4nL6eLf3kbOn33zCt_LaMbnsmrH-dy_qtgX2dXhZzRe2l_sWw
CitedBy_id crossref_primary_10_1016_j_chemosphere_2019_07_051
crossref_primary_10_3390_ijerph16183425
crossref_primary_10_1007_s00244_018_0550_x
crossref_primary_10_1016_j_jtemb_2018_05_010
crossref_primary_10_1080_15376516_2023_2258958
crossref_primary_10_1016_j_bbagen_2018_10_015
crossref_primary_10_1002_jcp_30941
crossref_primary_10_3389_fchem_2023_1238631
crossref_primary_10_1007_s44169_023_00037_x
crossref_primary_10_1016_j_taap_2015_05_002
crossref_primary_10_1021_acsmedchemlett_6b00084
crossref_primary_10_1002_elps_201600147
crossref_primary_10_1080_15287394_2014_861335
crossref_primary_10_1016_j_ccr_2017_12_011
crossref_primary_10_1016_j_tox_2016_02_006
crossref_primary_10_1016_j_micpath_2017_11_063
crossref_primary_10_1016_j_jtemb_2014_01_006
crossref_primary_10_1039_C8AY00284C
crossref_primary_10_1111_jnc_16076
crossref_primary_10_1016_j_bbagen_2023_130446
crossref_primary_10_1039_C4AY03107E
crossref_primary_10_3390_ijerph20021070
crossref_primary_10_3390_molecules26196060
crossref_primary_10_1016_j_aca_2022_339553
crossref_primary_10_3390_ijms22084027
crossref_primary_10_1039_C3MT00337J
crossref_primary_10_1039_C5MT00171D
crossref_primary_10_1002_jat_4269
crossref_primary_10_1080_10937404_2017_1289834
crossref_primary_10_1016_j_ccr_2016_01_011
crossref_primary_10_3390_ijerph10083771
crossref_primary_10_1016_j_sab_2017_10_011
crossref_primary_10_1016_j_ijheh_2016_05_002
crossref_primary_10_1080_02772248_2013_877246
crossref_primary_10_1016_j_biortech_2024_130831
crossref_primary_10_1016_j_vascn_2021_107088
crossref_primary_10_1007_s00204_016_1690_2
crossref_primary_10_1021_acs_analchem_5b02500
crossref_primary_10_1155_2017_3624015
crossref_primary_10_1016_j_cbpc_2024_110046
crossref_primary_10_1016_j_chemosphere_2024_143870
crossref_primary_10_1016_j_bbagen_2019_01_006
crossref_primary_10_3389_fpubh_2020_00361
crossref_primary_10_1080_24734306_2020_1870077
crossref_primary_10_21307_ane_2019_010
crossref_primary_10_1007_s12640_021_00370_w
crossref_primary_10_1016_j_jorganchem_2015_04_014
crossref_primary_10_1016_j_jes_2019_02_018
crossref_primary_10_1016_j_jtemb_2018_06_011
crossref_primary_10_1007_s40489_014_0028_3
crossref_primary_10_1016_j_envres_2016_10_028
crossref_primary_10_1007_s40572_014_0014_z
crossref_primary_10_1371_journal_pone_0092705
crossref_primary_10_17221_577_2013_CJFS
crossref_primary_10_1016_j_etap_2024_104361
crossref_primary_10_1016_j_trac_2016_02_001
crossref_primary_10_1080_02772248_2015_1028407
crossref_primary_10_1007_s00216_020_02515_w
crossref_primary_10_1177_09603271221136206
crossref_primary_10_1155_2018_1206913
crossref_primary_10_3390_ijerph120201295
crossref_primary_10_1007_s12011_020_02026_w
crossref_primary_10_1016_j_jhazmat_2024_135548
crossref_primary_10_3390_toxics9120326
crossref_primary_10_1016_j_jpba_2014_09_011
crossref_primary_10_1007_s12011_017_1057_4
crossref_primary_10_1093_mtomcs_mfad013
crossref_primary_10_1016_j_jtemb_2015_06_008
crossref_primary_10_1007_s40828_020_00125_8
crossref_primary_10_1021_acs_est_6b03468
crossref_primary_10_1016_j_jchemneu_2019_101727
crossref_primary_10_1016_j_watres_2024_122167
crossref_primary_10_1007_s00232_016_9933_y
crossref_primary_10_1016_j_cbi_2019_108867
crossref_primary_10_1016_j_envres_2016_08_027
crossref_primary_10_1016_j_ccr_2020_213343
crossref_primary_10_1016_j_ejpn_2021_12_011
crossref_primary_10_1080_15287394_2016_1182003
crossref_primary_10_1016_j_envres_2020_109734
crossref_primary_10_1007_s11064_017_2277_x
crossref_primary_10_1016_j_cbpc_2021_109216
crossref_primary_10_1007_s00244_014_0103_x
crossref_primary_10_1177_0300060517693423
crossref_primary_10_3390_metabo13090975
crossref_primary_10_1016_j_etap_2019_103312
crossref_primary_10_1590_1519_6984_242942
crossref_primary_10_1016_j_ecoenv_2025_118031
crossref_primary_10_1093_toxsci_kfw155
crossref_primary_10_1039_C8MT00268A
crossref_primary_10_1016_j_envpol_2014_01_004
crossref_primary_10_3390_ijerph14050519
crossref_primary_10_3390_ijerph14121511
crossref_primary_10_1039_C5MT00186B
crossref_primary_10_1111_bcpt_13199
crossref_primary_10_1093_toxsci_kfu259
crossref_primary_10_1289_ehp_123_A156
crossref_primary_10_1289_ehp_1408257
Cites_doi 10.1016/j.toxlet.2009.09.003
10.1016/0009-2797(74)90067-2
10.1016/j.tox.2006.09.006
10.1016/j.tox.2010.04.016
10.1080/10915810601120509
10.1111/j.1600-0773.1989.tb01119.x
10.1258/000456306777695654
10.1016/j.tox.2006.11.062
10.1016/j.neuro.2011.08.003
10.1016/0006-2952(84)90552-5
10.1016/j.neuro.2008.10.009
10.1007/s00431-011-1613-4
10.1111/j.1600-0536.1998.tb05767.x
10.1039/c1mt00043h
10.1016/j.marpolbul.2010.06.045
10.1016/S0140-6736(02)11682-5
10.1016/j.taap.2004.09.007
10.1007/s00216-007-1208-0
10.1155/2012/248764
10.1021/cn1000765
10.1021/pr0700403
10.1155/2012/256965
10.1016/j.chemosphere.2012.01.006
10.1111/j.1600-0773.1996.tb00203.x
10.1542/peds.107.5.1147
10.1007/BF01685785
10.1016/0041-008X(92)90124-B
10.1289/ehp.7712
10.1111/j.1600-0536.1998.tb05860.x
10.1128/MMBR.46.3.281-295.1982
10.1080/19393210.2011.638087
10.1016/j.neuro.2011.07.007
10.1016/0167-4889(82)90038-6
10.1016/j.taap.2011.05.001
10.1016/S0161-813X(01)00067-5
10.1007/s11064-011-0427-0
10.1289/ehp.0900956
10.1093/aje/kwr328
10.1007/BF02307268
10.1016/j.taap.2011.01.010
10.1016/j.tox.2003.09.002
10.1016/S1001-0742(08)62478-X
10.1093/jn/133.5.1539S
10.1542/peds.2006-3363
10.1111/j.1471-4159.2008.05683.x
10.1016/j.talanta.2011.12.029
10.1289/ehp.02110s5689
10.1002/jcp.22010
10.1289/ehp.1104494
10.1039/c0ja00024h
10.1016/j.cca.2011.05.003
10.1111/j.1600-0536.1999.tb05969.x
10.1590/S0100-879X2007000300001
10.1093/toxsci/kfr009
10.1016/0162-0134(83)85006-5
10.1016/0006-8993(90)91546-S
10.1007/BF00312571
10.1053/ajcd.2002.29945
10.1007/BF01054003
10.1039/an9952000721
10.1007/s12011-010-8695-0
10.1080/10408440600845619
10.1073/pnas.0803147105
10.1016/j.lfs.2011.05.019
10.1289/ehp.60-1568568
10.1080/10937401003673750
10.1007/s00431-006-0362-2
10.1080/15287390701551324
10.1046/j.1471-4159.1994.63010383.x
10.1016/j.toxlet.2010.06.015
10.3390/ijerph7062666
10.1016/j.cca.2010.07.008
10.1016/j.taap.2003.09.006
10.1016/0162-0134(86)80092-7
10.1021/tx0503449
10.1093/jpepsy/jsr048
10.1016/j.envres.2011.09.007
10.1002/jat.1272
10.1055/s-2007-982074
10.1289/ehp.1104489
10.1007/s00204-010-0538-4
10.1161/01.CIR.0000038493.65177.94
10.1016/j.taap.2010.04.007
10.1177/1091581811422413
10.1006/enrs.1997.3804
10.1007/s11064-011-0630-z
10.1016/j.toxlet.2004.07.014
10.1016/0378-4274(90)90004-6
10.1080/15555270903143440
10.1016/j.envres.2010.07.001
10.1073/pnas.1120747109
10.1155/2012/132876
10.1007/BF00324789
10.1016/S0300-483X(97)00153-4
10.1016/0006-8993(88)90581-1
10.1016/j.tiv.2009.05.020
10.1177/1091581809338077
10.1016/S0092-1157(79)80018-9
10.1016/j.autrev.2004.12.001
10.1016/S0140-6736(05)74714-0
10.1289/ehp.7719159
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7TK
7U7
C1K
K9.
SOI
7X8
DOI 10.1002/jat.2855
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environment Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1263
EndPage 711
ExternalDocumentID 3054803761
23401210
10_1002_jat_2855
JAT2855
ark_67375_WNG_LR84BCW8_C
Genre reviewArticle
Comparative Study
Review
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EDH
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GWYGA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
UB1
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWP
WXSBR
WYISQ
XG1
XPP
XV2
YCJ
YHZ
ZXP
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7ST
7TK
7U7
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
K9.
SOI
7X8
ID FETCH-LOGICAL-c4905-63ceef59e484e727a90e91bb0af34a37bdd3fdaf6299d7591f723890a330f1613
IEDL.DBID DR2
ISSN 0260-437X
1099-1263
IngestDate Fri Jul 11 08:12:15 EDT 2025
Fri Jul 11 05:28:51 EDT 2025
Sat Jul 26 02:34:12 EDT 2025
Thu Apr 03 07:05:47 EDT 2025
Tue Jul 01 00:49:57 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Wed Jan 22 16:39:51 EST 2025
Wed Oct 30 09:52:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4905-63ceef59e484e727a90e91bb0af34a37bdd3fdaf6299d7591f723890a330f1613
Notes istex:F5199A99E47001E0F76089F4C4C2AC09452F1FE2
ArticleID:JAT2855
ark:/67375/WNG-LR84BCW8-C
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
ObjectType-Feature-2
PMID 23401210
PQID 1427867395
PQPubID 105373
PageCount 12
ParticipantIDs proquest_miscellaneous_1434032953
proquest_miscellaneous_1371270148
proquest_journals_1427867395
pubmed_primary_23401210
crossref_citationtrail_10_1002_jat_2855
crossref_primary_10_1002_jat_2855
wiley_primary_10_1002_jat_2855_JAT2855
istex_primary_ark_67375_WNG_LR84BCW8_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationSubtitle JAT
PublicationTitle Journal of applied toxicology
PublicationTitleAlternate J. Appl. Toxicol
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Havarinasab S, Hultman P. 2005. Organic mercury compounds and autoimmunity. Autoimmun. Rev. 4: 270-275.
WHO. Global Advisory Committee on Vaccine Safety, June 2012. Wkly. Epidemiol. Rec. 2012; 87: 281-287.
Dórea JG. 2011. Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines. Neurochem. Res. 36: 927-938.
Zareba G, Cernichiari E, Hojo R, Nitt SM, Weiss B, Mumtaz MM, Jones DE, Clarkson TW. 2007. Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury. J. Appl. Toxicol. 27: 511-518.
Rabenstein DL, Arnold AP, Guy RD. 1986. 1H NMR study of the removal of methylmercury from intact erythrocytes by sulfhydryl compounds. J. Inorg. Biochem. 28: 279-287.
Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1998b. Thimerosal positivities: the rôle of SH groups and divalent ions. Contact Dermatitis 39: 123-126.
Marques RC, Dórea JG, Fonseca MF, Bastos WR, Malm O. 2007. Hair mercury in breastfed infants exposed to thimerosal-preserved vaccines. Eur. J. Pediatr. 166: 935-941.
Yin Y, Chen B, Mao Y, Wang T, Liu J, Cai Y, Jiang G. 2012. Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere 88: 8-16.
Farina M, Rocha JB, Aschner M. 2011b. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 89: 555-563.
Ballatori N. 2002. Transport of toxic metals by molecular mimicry. Environ. Health Perspect. 110(Suppl 5): 689-694.
Fang SC, Fallin E. 1974. Uptake and subcellular cleavage of organomercury compounds by rat liver and kidney. Chem. Biol. Interact. 9: 57-64.
Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL. 2007. Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int. J. Toxicol. 26: 57-69.
Bridges CC, Zalups RK. 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204: 274-308.
Dórea JG, Bezerra VL, Fajon V, Horvat M. 2011a. Speciation of methyl- and ethyl-mercury in hair of breastfed infants acutely exposed to thimerosal-containing vaccines. Clin. Chim. Acta 412: 1563-1566.
Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S. 2012. Evidence on the Human Health Effects of Low Level Methylmercury Exposure. Environ. Health Perspect. 120: 799-806.
Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T. 2005. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ. Health Perspect. 113: 1015-1021.
Barile JP, Kuperminc GP, Weintraub ES, Mink JW, Thompson WW. 2012. Thimerosal exposure in early life and neuropsychological outcomes 7-10 years later. J. Pediatr. Psychol. 37: 106-118.
Kris-Etherton PM, Harris WS, Appel LJ. 2002. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106: 2747-2757.
Westermark T, Odsjö T, Johnels AG. 1975. Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture. Ambio 4: 87-92.
Harry GJ, Harris MW, Burka LT. 2004. Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicol. Lett. 154: 183-189.
Roos DH, Puntel RL, Farina M, Aschner M, Bohrer D, Rocha JB, de Vargas Barbosa NB. 2011. Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicol. Appl. Pharmacol. 252: 28-35.
Pichichero ME, Cernichiari E, Lopreiato J, Treanor J. 2002. Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: A descriptive study Lancet 360(9347): 1737-1741.
Peltz A, Sherwani SI, Kotha SR, Mazerik JN, O'Connor Butler ES, Kuppusamy ML, Hagele T, Magalang UJ, Kuppusamy P, Marsh CB, Parinandi NL. 2009. Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. Int. J. Toxicol. 28: 190-206.
Korbas M, O'Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers GJ, Clarkson TW, George GN. 2010. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem. Neurosci.1: 810-818.
Ball LK, Ball R, Pratt RD. 2001. An assessment of thimerosal use in childhood vaccines Pediatrics 107: 1147-1154.
Li P, Feng X, Qiu G. 2010. Methylmercury exposure and health effects from rice and fish consumption: a review. Int. J. Environ. Res. Public Health 7: 2666-2691.
Suzuki T, Miyama T, Katsunuma H. 1963. Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n-propyl mercury acetates. Jpn. J. Exp. Med. 33: 277-282.
Dórea JG, Marques RC, Isejima C. 2012. Neurodevelopment of Amazonian infants: antenatal and postnatal exposure to methyl- and ethylmercury. J. Biomed. Biotechnol. 2012: 132876.
Llop S, Guxens M, Murcia M, Lertxundi A, Ramon R, Riaño I, Rebagliato M, Ibarluzea J, Tardon A, Sunyer J, Ballester F; INMA Project. 2012. Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers. Am. J. Epidemiol. 175: 451-465.
Chao ES, Gierthy JF, Frenkel GD. 1984. A comparative study of the effects of mercury compounds on cell viability and nucleic acid synthesis in HeLa cells. Biochem. Pharmacol. 33: 1941-1945.
Audicana MT, Muñoz D, del Pozo MD, Fernández E, Gastaminza G, Fernández de Corres L. 2002. Allergic contact dermatitis from mercury antiseptics and derivatives: study protocol of tolerance to intramuscular injections of thimerosal. Am. J. Contact Dermat. 13: 3-9.
Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609-662.
Kawanai T, Satoh M, Murao K, Oyama Y. 2009. Methylmercury elicits intracellular Zn2+ release in rat thymocytes: its relation to methylmercury-induced decrease in cellular thiol content. Toxicol. Lett. 191: 231-235.
Roos D, Seeger RL, Puntel R, Barbosa NB. 2012. Role of calcium and mitochondria in MeHg-mediated citotoxicity. J. Biomed. Biotechnol. 2012: 248764.
Chmielnicka J, Brzeinicka EA. 1978. The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds. Bull. Environ. Contam. Toxicol. 19: 183-190.
Denny MF, Atchison WD. 1996. Mercurial-induced alterations in neuronal divalent cation homeostasis. Neurotoxicology 17: 47-61.
Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, Hosokawa T, Okamura K, Sakai T, Kurokawa N, Murata K, Satoh C, Satoh H. 2010. Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ. Res. 110: 699-704.
Smith KL, Guentzel JL. 2010. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits. Mar. Pollut. Bull. 60: 1615-1618.
Barregard L, Rekić D, Horvat M, Elmberg L, Lundh T, Zachrisson O. 2011. Toxicokinetics of mercury after long-term repeated exposure to thimerosal-containing vaccine. Toxicol. Sci. 120: 499-506.
Davidson PW, Cory-Slechta DA, Thurston SW, Huang LS, Shamlaye CF, Gunzler D, Watson G, van Wijngaarden E, Zareba G, Klein JD, Clarkson TW, Strain JJ, Myers GJ. 2011. Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32: 711-717.
Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1999. Thimerosal positivities: patch testing to methylmercury chloride in subjects sensitive to ethylmercury chloride. Contact Dermatitis 40: 8-13.
Hoffmeyer RE, Singh SP, Doonan CJ, Ross AR, Hughes RJ, Pickering IJ, George GN. 2006. Molecular mimicry in mercury toxicology. Chem. Res. Toxicol. 19: 753-759.
Redwood L, Bernard S, Brown D. 2001. Predicted mercury concentrations in hair from infant immunizations: cause for concern. Neurotoxicology 22: 691-697.
Aschner M, Clarkson TW. 1988. Uptake of methylmercury in the rat brain: effects of amino acids. Brain Res. 462: 31-39.
Jedrychowski W. 2012. Reply to the correspondence letter by M.D. Majewska: Krakow's children and cognitive function: can the study by Jedrychowski et al. show us the bigger picture? Eur. J. Pediatr. 171: 405.
Pichichero ME, Gentile A, Giglio N, Umido V, Clarkson T, Cernichiari E, Zareba G, Gotelli C, Gotelli M, Yan L, Treanor J. 2008. Mercury levels in newborns and infants after receipt of thimerosal-containing vaccines. Pediatrics 121: e208-e214.
Zhao Y, Zheng J, Fang L, Lin Q, Wu Y, Xue Z, Fu F. 2012. Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 89: 280-285.
Lee BE, Ha EH. 2012. Response to commentary "Co-exposure and confounders during neurodevelopment: We need them in the bigger picture of secondhand smoke exposure during pregnancy". Environ. Res. 112: 235.
Havarinasab S, Lambertsson L, Qvarnström J, Hultman P. 2004. Dose-response study of thimerosal-induced murine systemic autoimmunity. Toxicol. Appl. Pharmacol. 194: 169-179.
Clarkson TW, Strain JJ. 2003. Nutritional factors may modify the toxic action of methyl mercury in fish-eating populations. J. Nutr. 133(5 Suppl 1): 1539S-1543S.
Chen JB, Tao R, Sun HY, Tse HF, Lau CP, Li GR. 2010. Multiple Ca2+ signaling pathways regulate intracellular Ca2+ activity in human cardiac fibroblasts. J. Cell. Physiol. 223: 68-75.
WHO. 2010. Children's exposure to mercury compounds. World Health Organization, WHO Press, pp. 1-112.
Fahrion JK, Komuro Y, Li Y, Ohno N, Littner Y, Raoult E, Galas L, Vaudry D, Komuro H. 2012. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency. Proc. Natl. Acad. Sci. U. S. A. 109: 5057-5062.
Alix J
2012; 120
2007; 229
2002; 13
2006; 36
2010; 223
2008; 107
2007; 70
1988; 462
2008; 105
1999; 40
1983; 18
1974; 9
1994; 63
1996; 78
2010; 1
2010; 25
2010; 118
2006; 27
1992; 113
2010; 198
2010; 110
2010b; 246
2007; 6
1982; 131
1995; 120
2010; 7
1990; 50
2011; 120
1979; 7
1996; 17
1990; 521
1989; 65
2000; 355
2005; 113
1973; 34
2007; 166
1962; 19
1982; 720
2012; 37
2011; 4
2001; 22
2011; 3
2008; 121
2012; 109
2011; 252
1982; 46
2004; 154
2012; 112
2009; 191
1998b; 39
2006; 43
2002; 360
1977; 19
1984; 33
2005; 4
1986; 28
1998; 77
2007; 388
2012; 2012
2002; 110
2011b; 89
2011; 13
1985; 60
2001; 107
2010; 60
2011a; 412
2012; 175
2011b; 140
1963; 33
2011a; 256
2012; 171
2002; 106
1998; 50
2007; 24
1975; 4
2007; 26
1985; 57
2007; 27
2009; 23
2010a; 274
2009; 21
2010
1978; 19
2011; 30
2011; 32
2006; 19
2011; 36
2003; 133
2010; 84
2009; 28
1997; 124
2009; 30
1998a; 38
2010; 411
2007; 231
2004; 195
2005; 204
2004; 194
2007; 40
2009; 4
1992; 66
2012; 89
2012; 88
2012; 87
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
Tryphonas L (e_1_2_8_97_1) 1973; 34
e_1_2_8_9_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
WHO (e_1_2_8_106_1) 2010
Yaqob A (e_1_2_8_102_1) 2006; 27
e_1_2_8_91_1
Suzuki T (e_1_2_8_95_1) 1963; 33
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
Lohr JW (e_1_2_8_65_1) 1998; 50
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
WHO (e_1_2_8_107_1) 2012; 87
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
Denny MF (e_1_2_8_26_1) 1996; 17
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
Blanuša M (e_1_2_8_13_1) 2012; 2012
e_1_2_8_27_1
e_1_2_8_69_1
Clarkson TW (e_1_2_8_22_1) 2003; 133
Levander OA (e_1_2_8_61_1) 1977; 19
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_84_1
e_1_2_8_39_1
e_1_2_8_35_1
Westermark T (e_1_2_8_101_1) 1975; 4
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – reference: Hewett SJ, Atchison WD. 1992. Effects of charge and lipophilicity on mercurial-induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat. Toxicol. Appl. Pharmacol. 113: 267-273.
– reference: Suda I, Totoki S, Uchida T, Takahashi H. 1992. Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells. Arch. Toxicol. 66: 40-44.
– reference: Migdal C, Tailhardat M, Courtellemont P, Haftek M, Serres M. 2010b. Responsiveness of human monocyte-derived dendritic cells to thimerosal and mercury derivatives. Toxicol. Appl. Pharmacol. 246: 66-73.
– reference: Ramanathan G, Atchison WD. 2011. Ca2+ entry pathways in mouse spinal motor neurons in culture following in vitro exposure to methylmercury. Neurotoxicology 32: 742-750.
– reference: Westermark T, Odsjö T, Johnels AG. 1975. Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture. Ambio 4: 87-92.
– reference: Hashimoto E, Oyama TB, Oyama K, Nishimura Y, Oyama TM, Ueha-Ishibashi T, Okano Y, Oyama Y. 2009. Increase in intracellular Zn2+ concentration by thimerosal in rat thymocytes: intracellular Zn2+ release induced by oxidative stress. Toxicol. In Vitro 23: 1092-1099.
– reference: Yole M, Wickstrom M, Blakley B. 2007. Cell death and cytotoxic effects in YAC-1 lymphoma cells following exposure to various forms of mercury. Toxicology 231: 40-57.
– reference: Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, Hosokawa T, Okamura K, Sakai T, Kurokawa N, Murata K, Satoh C, Satoh H. 2010. Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ. Res. 110: 699-704.
– reference: Suzuki T, Miyama T, Katsunuma H. 1963. Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n-propyl mercury acetates. Jpn. J. Exp. Med. 33: 277-282.
– reference: Gardner RM, Nyland JF, Silbergeld EK. 2010. Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicol. Lett. 198: 182-190.
– reference: Barregard L, Rekić D, Horvat M, Elmberg L, Lundh T, Zachrisson O. 2011. Toxicokinetics of mercury after long-term repeated exposure to thimerosal-containing vaccine. Toxicol. Sci. 120: 499-506.
– reference: Rabenstein DL, Isab AA, Reid RS. 1982. A proton nuclear magnetic resonance study of the binding of methylmercury in human erythrocytes. Biochim. Biophys. Acta 720: 53-64.
– reference: Havarinasab S, Björn E, Ekstrand J, Hultman P. 2007. Dose and Hg species determine the T-helper cell activation in murine autoimmunity. Toxicology 229: 23-32.
– reference: Ballatori N. 2002. Transport of toxic metals by molecular mimicry. Environ. Health Perspect. 110(Suppl 5): 689-694.
– reference: Farina M, Rocha JB, Aschner M. 2011b. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 89: 555-563.
– reference: Roos DH, Puntel RL, Farina M, Aschner M, Bohrer D, Rocha JB, de Vargas Barbosa NB. 2011. Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicol. Appl. Pharmacol. 252: 28-35.
– reference: Park EK, Mak SK, Kültz D, Hammock BD. 2007. Evaluation of cytotoxicity attributed to thimerosal on murine and human kidney cells. J. Toxicol. Environ. Health A 70: 2092-2095.
– reference: Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1998b. Thimerosal positivities: the rôle of SH groups and divalent ions. Contact Dermatitis 39: 123-126.
– reference: Bridges CC, Zalups RK. 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204: 274-308.
– reference: Brzeźnicka EA, Chmielnicka J. 1985. Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite. Environ. Health Perspect.. 60: 423-431.
– reference: Migdal C, Foggia L, Tailhardat M, Courtellemont P, Haftek M, Serres M. 2010a. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling. Toxicology 274: 1-9.
– reference: Ulfvarson U. 1962. Distribution and excretion of some mercury compounds after long term exposure. Int. Arch. Gewerbepathol. Gewerbehyg. 19: 412-422.
– reference: Grandjean P, Weihe P, White RF, Debes F. 1998. Cognitive performance of children prenatally exposed to "safe" levels of methylmercury. Environ. Res. 77: 165-172.
– reference: Hoffmeyer RE, Singh SP, Doonan CJ, Ross AR, Hughes RJ, Pickering IJ, George GN. 2006. Molecular mimicry in mercury toxicology. Chem. Res. Toxicol. 19: 753-759.
– reference: Hempel M, Chau YK, Dutka BJ, McInnis R, Kwan KK, Liu D. 1995. Toxicity of organomercury compounds: bioassay results as a basis for risk assessment. Analyst 120: 721-724.
– reference: Dórea JG. 2010. Making sense of epidemiological studies of young children exposed to thimerosal in vaccines. Clin. Chim. Acta 411: 1580-1586.
– reference: Audicana MT, Muñoz D, del Pozo MD, Fernández E, Gastaminza G, Fernández de Corres L. 2002. Allergic contact dermatitis from mercury antiseptics and derivatives: study protocol of tolerance to intramuscular injections of thimerosal. Am. J. Contact Dermat. 13: 3-9.
– reference: Dórea JG. 2011. Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines. Neurochem. Res. 36: 927-938.
– reference: Korbas M, O'Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers GJ, Clarkson TW, George GN. 2010. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem. Neurosci.1: 810-818.
– reference: Dórea JG, Marques RC, Isejima C. 2012. Neurodevelopment of Amazonian infants: antenatal and postnatal exposure to methyl- and ethylmercury. J. Biomed. Biotechnol. 2012: 132876.
– reference: Dórea JG, Wimer W, Marques, RC, Shade C. 2011b. Automated speciation of mercury in hair of breastfed infants exposed to ethylmercury from thimerosal-containing vaccines. Biol. Trace Elem. Res. 140: 262-271.
– reference: Li Y, Yan XP, Chen C, Xia YL, Jiang Y. 2007. Human serum albumin-mercurial species interactions. J. Proteome Res. 6: 2277-2286.
– reference: Zareba G, Cernichiari E, Hojo R, Nitt SM, Weiss B, Mumtaz MM, Jones DE, Clarkson TW. 2007. Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury. J. Appl. Toxicol. 27: 511-518.
– reference: Magos L, Clarkson TW. 2006. Overview of the clinical toxicity of mercury. Ann. Clin. Biochem. 43(Pt 4): 257-268.
– reference: InSug O, Datar S, Koch CJ, Shapiro IM, Shenker BJ. 1997. Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 124: 211-224.
– reference: Janzen R, Schwarzer M, Sperling M, Vogel M, Schwerdtle T, Karst U. 2011. Adduct formation of Thimerosal with human and rat hemoglobin: a study using liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOF-MS). Metallomics 3: 847-852.
– reference: Clements CJ, Ball LK, Ball R, Pratt D. 2000. Thiomersal in vaccines. Lancet 355(9211): 1279-1280.
– reference: Bridges CC, Zalups RK. 2011. Transport of inorganic mercury and methylmercury in target tissues and organs. J. Toxicol. Environ. Health B Crit. Rev. 13: 385-410.
– reference: Park JS, Jung SY, Son YJ, Kim MS, Kim JG, Park SH, Lee SM, Chae YZ, Kim MY. 2011. Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea. Food Addit. Contam. B Surveill 4: 268-274.
– reference: Pichichero ME, Gentile A, Giglio N, Umido V, Clarkson T, Cernichiari E, Zareba G, Gotelli C, Gotelli M, Yan L, Treanor J. 2008. Mercury levels in newborns and infants after receipt of thimerosal-containing vaccines. Pediatrics 121: e208-e214.
– reference: Zimmer B, Lee G, Stiegler NV, Meganathan K, Sachinidis A, Studer L, Leist M. 2012. Evaluation of Developmental Toxicants and Signaling Pathways in a Functional Test Based on the Migration of Human Neural Crest Cells. Environ. Health Perspect. 120: 1116-1622.
– reference: Blanuša M, Orct T, Vihnanek Lazarus M, Sekovanić A, Piasek M. 2012. Mercury disposition in suckling rats: comparative assessment following parenteral exposure to thiomersal and mercuric chloride. J. Biomed. Biotechnol. 2012: 256965.
– reference: Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL. 2007. Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int. J. Toxicol. 26: 57-69.
– reference: Rush T, Hjelmhaug J, Lobner D. 2009. Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture. Neurotoxicology 30: 47-51.
– reference: Aschner M. 1989. Brain, kidney and liver 203Hg-methyl mercury uptake in the rat: relationship to the neutral amino acid carrier. Pharmacol. Toxicol. 65: 17-20.
– reference: Lohr JW, Willsky GR, Acara MA. 1998. Renal drug metabolism. Pharmacol. Rev. 50: 107-141.
– reference: Barile JP, Kuperminc GP, Weintraub ES, Mink JW, Thompson WW. 2012. Thimerosal exposure in early life and neuropsychological outcomes 7-10 years later. J. Pediatr. Psychol. 37: 106-118.
– reference: Kris-Etherton PM, Harris WS, Appel LJ. 2002. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106: 2747-2757.
– reference: Zhao Y, Zheng J, Fang L, Lin Q, Wu Y, Xue Z, Fu F. 2012. Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 89: 280-285.
– reference: Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1998a. Thimerosal positivities: the role of organomercury alkyl compounds. Contact Dermatitis 38: 325-328.
– reference: Kawanai T, Satoh M, Murao K, Oyama Y. 2009. Methylmercury elicits intracellular Zn2+ release in rat thymocytes: its relation to methylmercury-induced decrease in cellular thiol content. Toxicol. Lett. 191: 231-235.
– reference: Levander OA. 1977. Metabolic interrelationships between arsenic and selenium. Environ. Health Perspect. 19: 159-164.
– reference: Fang SC, Fallin E. 1974. Uptake and subcellular cleavage of organomercury compounds by rat liver and kidney. Chem. Biol. Interact. 9: 57-64.
– reference: Babich H, Goldstein SH, Borenfreund E. 1990. In vitro cyto and genotoxicity of organomercurials to cells in culture. Toxicol. Lett. 50: 143-149.
– reference: Aschner M, Syversen T, Souza DO, Rocha JB, Farina M. 2007. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz. J. Med. Biol. Res. 40: 285-291.
– reference: Gibicar D, Logar M, Horvat N, Marn-Pernat A, Ponikvar R, Horvat M. 2007. Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n-propyl)borate as derivatizing agent. Anal. Bioanal. Chem. 388: 329-340.
– reference: Aschner M, Clarkson TW. 1988. Uptake of methylmercury in the rat brain: effects of amino acids. Brain Res. 462: 31-39.
– reference: Denny MF, Atchison WD. 1996. Mercurial-induced alterations in neuronal divalent cation homeostasis. Neurotoxicology 17: 47-61.
– reference: Smith KL, Guentzel JL. 2010. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits. Mar. Pollut. Bull. 60: 1615-1618.
– reference: Kakuschke A, Valentine-Thon E, Fonfara S, Kramer K, Prange A. 2009. Effects of methyl-, phenyl-, ethylmercury and mercurychlorid on immune cells of harbor seals (Phoca vitulina). J. Environ. Sci. (China) 21: 1716-1721.
– reference: Roos D, Seeger RL, Puntel R, Barbosa NB. 2012. Role of calcium and mitochondria in MeHg-mediated citotoxicity. J. Biomed. Biotechnol. 2012: 248764.
– reference: Aschner M, Eberle NB, Goderie S, Kimelberg HK. 1990. Methylmercury uptake in rat primary astrocyte cultures: the role of the neutral amino acid transport system. Brain Res. 521: 221-228.
– reference: Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U. 2006. Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. Neuro Endocrinol. Lett. 27: 189-197.
– reference: Tryphonas L, Nielsen NO. 1973. Pathology of chronic alkylmercurial poisoning in swine. Am. J. Vet. Res. 34: 379-392.
– reference: Chen JB, Tao R, Sun HY, Tse HF, Lau CP, Li GR. 2010. Multiple Ca2+ signaling pathways regulate intracellular Ca2+ activity in human cardiac fibroblasts. J. Cell. Physiol. 223: 68-75.
– reference: Fahrion JK, Komuro Y, Li Y, Ohno N, Littner Y, Raoult E, Galas L, Vaudry D, Komuro H. 2012. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency. Proc. Natl. Acad. Sci. U. S. A. 109: 5057-5062.
– reference: Marques RC, Dórea JG, Fonseca MF, Bastos WR, Malm O. 2007. Hair mercury in breastfed infants exposed to thimerosal-preserved vaccines. Eur. J. Pediatr. 166: 935-941.
– reference: Alix JH. 1982. Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine. Microbiol. Rev. 46: 281-295.
– reference: Ball LK, Ball R, Pratt RD. 2001. An assessment of thimerosal use in childhood vaccines Pediatrics 107: 1147-1154.
– reference: Lee BE, Ha EH. 2012. Response to commentary "Co-exposure and confounders during neurodevelopment: We need them in the bigger picture of secondhand smoke exposure during pregnancy". Environ. Res. 112: 235.
– reference: Dórea JG. 2007. Exposure to mercury during the first six months via human milk and vaccines: modifying risk factors. Am. J. Perinatol. 24: 387-400.
– reference: Li P, Feng X, Qiu G. 2010. Methylmercury exposure and health effects from rice and fish consumption: a review. Int. J. Environ. Res. Public Health 7: 2666-2691.
– reference: Secor JD, Kotha SR, Gurney TO, Patel RB, Kefauver NR, Gupta N, Morris AJ, Haley BE, Parinandi NL. 2011. Novel lipid-soluble thiol-redox antioxidant and heavy metal chelator, N,N′-bis(2-mercaptoethyl)isophthalamide (NBMI) and phospholipase D-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) attenuate mercury-induced lipid signaling leading to protection against cytotoxicity in aortic endothelial cells. Int. J. Toxicol.30: 619-638.
– reference: Rabenstein DL, Reid RS, Isab AA. 1983. H NMR study of the effectiveness of various thiols for removal of methylmercury from hemolyzed erythrocytes. J. Inorg. Biochem. 18: 241-251.
– reference: Chmielnicka J, Brzeinicka EA. 1978. The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds. Bull. Environ. Contam. Toxicol. 19: 183-190.
– reference: Korbas M, Blechinger SR, Krone PH, Pickering IJ, George GN. 2008. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc. Natl. Acad. Sci. USA 105: 12108-12112.
– reference: Magos L, Brown AW, Sparrow S, Bailey E, Snowden RT, Skipp WR. 1985. The comparative toxicology of ethyl and methylmercury. Arch. Toxicol. 57: 260-267.
– reference: Ishitobi H, Stern S, Thurston SW, Zareba G, Langdon M, Gelein R, Weiss B. 2010. Organic and inorganic mercury in neonatal rat brain after prenatal exposure to methylmercury and mercury vapor. Environ. Health Perspect.118: 242-248.
– reference: Pan-Hou HS, Imura N. 1982. Involvement of mercury methylation in microbial mercury detoxication. Arch. Microbiol. 131: 176-177.
– reference: Yin Z, Jiang H, Syversen T, Rocha JB, Farina M, Aschner M. 2008. The methylmercury-L-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter. J. Neurochem. 107: 1083-1090.
– reference: Redwood L, Bernard S, Brown D. 2001. Predicted mercury concentrations in hair from infant immunizations: cause for concern. Neurotoxicology 22: 691-697.
– reference: Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1999. Thimerosal positivities: patch testing to methylmercury chloride in subjects sensitive to ethylmercury chloride. Contact Dermatitis 40: 8-13.
– reference: Jedrychowski W. 2012. Reply to the correspondence letter by M.D. Majewska: Krakow's children and cognitive function: can the study by Jedrychowski et al. show us the bigger picture? Eur. J. Pediatr. 171: 405.
– reference: Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T. 2005. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ. Health Perspect. 113: 1015-1021.
– reference: Peltz A, Sherwani SI, Kotha SR, Mazerik JN, O'Connor Butler ES, Kuppusamy ML, Hagele T, Magalang UJ, Kuppusamy P, Marsh CB, Parinandi NL. 2009. Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. Int. J. Toxicol. 28: 190-206.
– reference: Harry GJ, Harris MW, Burka LT. 2004. Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicol. Lett. 154: 183-189.
– reference: Pichichero ME, Cernichiari E, Lopreiato J, Treanor J. 2002. Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: A descriptive study Lancet 360(9347): 1737-1741.
– reference: Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609-662.
– reference: Rodrigues JL, Serpeloni JM, Batista BL, Souza SS, Barbosa F Jr. 2010. Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch. Toxicol. 84: 891-896.
– reference: Denny MF, Atchison WD. 1994. Methylmercury-induced elevations in intrasynaptosomal zinc concentrations: an 19F-NMR study. J. Neurochem. 63: 383-386.
– reference: Rabenstein DL, Arnold AP, Guy RD. 1986. 1H NMR study of the removal of methylmercury from intact erythrocytes by sulfhydryl compounds. J. Inorg. Biochem. 28: 279-287.
– reference: Clarkson TW, Strain JJ. 2003. Nutritional factors may modify the toxic action of methyl mercury in fish-eating populations. J. Nutr. 133(5 Suppl 1): 1539S-1543S.
– reference: Yin Y, Chen B, Mao Y, Wang T, Liu J, Cai Y, Jiang G. 2012. Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere 88: 8-16.
– reference: Pinheiro MCN, do Nascimento JLM, Silveira LCL, Rocha JBT, Aschner M. 2009. Mercury and selenium - a review on aspects related to the health of human populations in the Amazon. Environ. Bioindic. 4: 222-245.
– reference: Havarinasab S, Lambertsson L, Qvarnström J, Hultman P. 2004. Dose-response study of thimerosal-induced murine systemic autoimmunity. Toxicol. Appl. Pharmacol. 194: 169-179.
– reference: Ueha-Ishibashi T, Oyama Y, Nakao H, Umebayashi C, Nishizaki Y, Tatsuishi T, Iwase K, Murao K, Seo H. 2004. Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons. Toxicology 195: 77-84.
– reference: Farina M, Aschner M, Rocha JB. 2011a . Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 256: 405-417.
– reference: WHO. Global Advisory Committee on Vaccine Safety, June 2012. Wkly. Epidemiol. Rec. 2012; 87: 281-287.
– reference: WHO. 2010. Children's exposure to mercury compounds. World Health Organization, WHO Press, pp. 1-112.
– reference: Davidson PW, Cory-Slechta DA, Thurston SW, Huang LS, Shamlaye CF, Gunzler D, Watson G, van Wijngaarden E, Zareba G, Klein JD, Clarkson TW, Strain JJ, Myers GJ. 2011. Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32: 711-717.
– reference: Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S. 2012. Evidence on the Human Health Effects of Low Level Methylmercury Exposure. Environ. Health Perspect. 120: 799-806.
– reference: Chao ES, Gierthy JF, Frenkel GD. 1984. A comparative study of the effects of mercury compounds on cell viability and nucleic acid synthesis in HeLa cells. Biochem. Pharmacol. 33: 1941-1945.
– reference: Llop S, Guxens M, Murcia M, Lertxundi A, Ramon R, Riaño I, Rebagliato M, Ibarluzea J, Tardon A, Sunyer J, Ballester F; INMA Project. 2012. Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers. Am. J. Epidemiol. 175: 451-465.
– reference: Havarinasab S, Hultman P. 2005. Organic mercury compounds and autoimmunity. Autoimmun. Rev. 4: 270-275.
– reference: Duszczyk-Budhathoki M, Olczak M, Lehner M, Majewska MD. 2012. Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: Protective role of dehydroepiandrosterone sulfate. Neurochem. Res. 37: 436-447.
– reference: Tsoi Y-K, Tam S, Leung KS-Y. 2010. Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase micro-extraction coupled to LC-ICP-MS. J. Anal. At. Spectrom. 25: 1758-1762.
– reference: Sakamoto M, Ikegami N, Nakano A. 1996. Protective effects of Ca2+ channel blockers against methyl mercury toxicity. Pharmacol. Toxicol. 78: 193-199.
– reference: Möller H, Trofast J. The sensitizing capacity of merthiolate and its methyl analogue. 1979. J. Biol. Stand. 7: 153-155.
– reference: Dórea JG, Bezerra VL, Fajon V, Horvat M. 2011a. Speciation of methyl- and ethyl-mercury in hair of breastfed infants acutely exposed to thimerosal-containing vaccines. Clin. Chim. Acta 412: 1563-1566.
– volume: 60
  start-page: 1615
  year: 2010
  end-page: 1618
  article-title: Mercury concentrations and omega‐3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits
  publication-title: Mar. Pollut. Bull.
– volume: 229
  start-page: 23
  year: 2007
  end-page: 32
  article-title: Dose and Hg species determine the T‐helper cell activation in murine autoimmunity
  publication-title: Toxicology
– volume: 121
  start-page: e208
  year: 2008
  end-page: e214
  article-title: Mercury levels in newborns and infants after receipt of thimerosal‐containing vaccines
  publication-title: Pediatrics
– volume: 18
  start-page: 241
  year: 1983
  end-page: 251
  article-title: H NMR study of the effectiveness of various thiols for removal of methylmercury from hemolyzed erythrocytes
  publication-title: J. Inorg. Biochem.
– volume: 105
  start-page: 12108
  year: 2008
  end-page: 12112
  article-title: Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 57
  year: 1974
  end-page: 64
  article-title: Uptake and subcellular cleavage of organomercury compounds by rat liver and kidney
  publication-title: Chem. Biol. Interact.
– volume: 78
  start-page: 193
  year: 1996
  end-page: 199
  article-title: Protective effects of Ca2+ channel blockers against methyl mercury toxicity
  publication-title: Pharmacol. Toxicol.
– volume: 27
  start-page: 511
  year: 2007
  end-page: 518
  article-title: Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury
  publication-title: J. Appl. Toxicol.
– volume: 36
  start-page: 927
  year: 2011
  end-page: 938
  article-title: Integrating experimental (in vitro and in vivo) neurotoxicity studies of low‐dose thimerosal relevant to vaccines
  publication-title: Neurochem. Res.
– volume: 6
  start-page: 2277
  year: 2007
  end-page: 2286
  article-title: Human serum albumin‐mercurial species interactions
  publication-title: J. Proteome Res.
– volume: 22
  start-page: 691
  year: 2001
  end-page: 697
  article-title: Predicted mercury concentrations in hair from infant immunizations: cause for concern
  publication-title: Neurotoxicology
– volume: 133
  start-page: 1539S
  issue: 5 Suppl 1
  year: 2003
  end-page: 1543S
  article-title: Nutritional factors may modify the toxic action of methyl mercury in fish‐eating populations
  publication-title: J. Nutr.
– volume: 107
  start-page: 1083
  year: 2008
  end-page: 1090
  article-title: The methylmercury‐L‐cysteine conjugate is a substrate for the L‐type large neutral amino acid transporter
  publication-title: J. Neurochem.
– volume: 89
  start-page: 280
  year: 2012
  end-page: 285
  article-title: Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis‐inductively coupled plasma mass spectrometry
  publication-title: Talanta
– volume: 26
  start-page: 57
  year: 2007
  end-page: 69
  article-title: Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress
  publication-title: Int. J. Toxicol.
– volume: 2012
  start-page: 132876
  year: 2012
  article-title: Neurodevelopment of Amazonian infants: antenatal and postnatal exposure to methyl‐ and ethylmercury
  publication-title: J. Biomed. Biotechnol.
– volume: 110
  start-page: 689
  issue: Suppl 5
  year: 2002
  end-page: 694
  article-title: Transport of toxic metals by molecular mimicry
  publication-title: Environ. Health Perspect.
– volume: 24
  start-page: 387
  year: 2007
  end-page: 400
  article-title: Exposure to mercury during the first six months via human milk and vaccines: modifying risk factors
  publication-title: Am. J. Perinatol.
– volume: 720
  start-page: 53
  year: 1982
  end-page: 64
  article-title: A proton nuclear magnetic resonance study of the binding of methylmercury in human erythrocytes
  publication-title: Biochim. Biophys. Acta
– volume: 223
  start-page: 68
  year: 2010
  end-page: 75
  article-title: Multiple Ca2+ signaling pathways regulate intracellular Ca2+ activity in human cardiac fibroblasts
  publication-title: J. Cell. Physiol.
– volume: 131
  start-page: 176
  year: 1982
  end-page: 177
  article-title: Involvement of mercury methylation in microbial mercury detoxication
  publication-title: Arch. Microbiol.
– volume: 25
  start-page: 1758
  year: 2010
  end-page: 1762
  article-title: Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase micro‐extraction coupled to LC‐ICP‐MS
  publication-title: J. Anal. At. Spectrom.
– volume: 194
  start-page: 169
  year: 2004
  end-page: 179
  article-title: Dose‐response study of thimerosal‐induced murine systemic autoimmunity
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 204
  start-page: 274
  year: 2005
  end-page: 308
  article-title: Molecular and ionic mimicry and the transport of toxic metals
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 7
  start-page: 2666
  year: 2010
  end-page: 2691
  article-title: Methylmercury exposure and health effects from rice and fish consumption: a review
  publication-title: Int. J. Environ. Res. Public Health
– volume: 166
  start-page: 935
  year: 2007
  end-page: 941
  article-title: Hair mercury in breastfed infants exposed to thimerosal‐preserved vaccines
  publication-title: Eur. J. Pediatr.
– volume: 521
  start-page: 221
  year: 1990
  end-page: 228
  article-title: Methylmercury uptake in rat primary astrocyte cultures: the role of the neutral amino acid transport system
  publication-title: Brain Res.
– volume: 252
  start-page: 28
  year: 2011
  end-page: 35
  article-title: Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 195
  start-page: 77
  year: 2004
  end-page: 84
  article-title: Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons
  publication-title: Toxicology
– volume: 37
  start-page: 106
  year: 2012
  end-page: 118
  article-title: Thimerosal exposure in early life and neuropsychological outcomes 7‐10 years later
  publication-title: J. Pediatr. Psychol.
– volume: 113
  start-page: 267
  year: 1992
  end-page: 273
  article-title: Effects of charge and lipophilicity on mercurial‐induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 120
  start-page: 799
  year: 2012
  end-page: 806
  article-title: Evidence on the Human Health Effects of Low Level Methylmercury Exposure
  publication-title: Environ. Health Perspect.
– volume: 411
  start-page: 1580
  year: 2010
  end-page: 1586
  article-title: Making sense of epidemiological studies of young children exposed to thimerosal in vaccines
  publication-title: Clin. Chim. Acta
– volume: 107
  start-page: 1147
  year: 2001
  end-page: 1154
  article-title: An assessment of thimerosal use in childhood vaccines
  publication-title: Pediatrics
– volume: 70
  start-page: 2092
  year: 2007
  end-page: 2095
  article-title: Evaluation of cytotoxicity attributed to thimerosal on murine and human kidney cells
  publication-title: J. Toxicol. Environ. Health A
– volume: 88
  start-page: 8
  year: 2012
  end-page: 16
  article-title: Possible alkylation of inorganic Hg(II) by photochemical processes in the environment
  publication-title: Chemosphere
– volume: 198
  start-page: 182
  year: 2010
  end-page: 190
  article-title: Differential immunotoxic effects of inorganic and organic mercury species in vitro
  publication-title: Toxicol. Lett.
– volume: 84
  start-page: 891
  year: 2010
  end-page: 896
  article-title: Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury
  publication-title: Arch. Toxicol.
– volume: 4
  start-page: 87
  year: 1975
  end-page: 92
  article-title: Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture
  publication-title: Ambio
– volume: 66
  start-page: 40
  year: 1992
  end-page: 44
  article-title: Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells
  publication-title: Arch. Toxicol.
– volume: 4
  start-page: 222
  year: 2009
  end-page: 245
  article-title: Mercury and selenium ‐ a review on aspects related to the health of human populations in the Amazon
  publication-title: Environ. Bioindic.
– volume: 120
  start-page: 721
  year: 1995
  end-page: 724
  article-title: Toxicity of organomercury compounds: bioassay results as a basis for risk assessment
  publication-title: Analyst
– volume: 19
  start-page: 159
  year: 1977
  end-page: 164
  article-title: Metabolic interrelationships between arsenic and selenium
  publication-title: Environ. Health Perspect.
– volume: 50
  start-page: 143
  year: 1990
  end-page: 149
  article-title: In vitro cyto and genotoxicity of organomercurials to cells in culture
  publication-title: Toxicol. Lett.
– volume: 50
  start-page: 107
  year: 1998
  end-page: 141
  article-title: Renal drug metabolism
  publication-title: Pharmacol. Rev.
– volume: 36
  start-page: 609
  year: 2006
  end-page: 662
  article-title: The toxicology of mercury and its chemical compounds
  publication-title: Crit. Rev. Toxicol.
– volume: 3
  start-page: 847
  year: 2011
  end-page: 852
  article-title: Adduct formation of Thimerosal with human and rat hemoglobin: a study using liquid chromatography coupled to electrospray time‐of‐flight mass spectrometry (LC/ESI‐TOF‐MS)
  publication-title: Metallomics
– volume: 2012
  start-page: 256965
  year: 2012
  article-title: Mercury disposition in suckling rats: comparative assessment following parenteral exposure to thiomersal and mercuric chloride
  publication-title: J. Biomed. Biotechnol.
– volume: 23
  start-page: 1092
  year: 2009
  end-page: 1099
  article-title: Increase in intracellular Zn2+ concentration by thimerosal in rat thymocytes: intracellular Zn2+ release induced by oxidative stress
  publication-title: Toxicol. In Vitro
– volume: 171
  start-page: 405
  year: 2012
  article-title: Reply to the correspondence letter by M.D. Majewska: Krakow's children and cognitive function: can the study by Jedrychowski . show us the bigger picture?
  publication-title: Eur. J. Pediatr.
– volume: 46
  start-page: 281
  year: 1982
  end-page: 295
  article-title: Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine
  publication-title: Microbiol. Rev.
– volume: 19
  start-page: 183
  year: 1978
  end-page: 190
  article-title: The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds
  publication-title: Bull. Environ. Contam. Toxicol.
– volume: 412
  start-page: 1563
  year: 2011a
  end-page: 1566
  article-title: Speciation of methyl‐ and ethyl‐mercury in hair of breastfed infants acutely exposed to thimerosal‐containing vaccines
  publication-title: Clin. Chim. Acta
– volume: 191
  start-page: 231
  year: 2009
  end-page: 235
  article-title: Methylmercury elicits intracellular Zn2+ release in rat thymocytes: its relation to methylmercury‐induced decrease in cellular thiol content
  publication-title: Toxicol. Lett.
– volume: 30
  start-page: 47
  year: 2009
  end-page: 51
  article-title: Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture
  publication-title: Neurotoxicology
– volume: 4
  start-page: 268
  year: 2011
  end-page: 274
  article-title: Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea
  publication-title: Food Addit. Contam. B Surveill
– start-page: 1
  year: 2010
  end-page: 112
– volume: 140
  start-page: 262
  year: 2011b
  end-page: 271
  article-title: Automated speciation of mercury in hair of breastfed infants exposed to ethylmercury from thimerosal‐containing vaccines
  publication-title: Biol. Trace Elem. Res.
– volume: 118
  start-page: 242
  year: 2010
  end-page: 248
  article-title: Organic and inorganic mercury in neonatal rat brain after prenatal exposure to methylmercury and mercury vapor
  publication-title: Environ. Health Perspect.
– volume: 124
  start-page: 211
  year: 1997
  end-page: 224
  article-title: Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve
  publication-title: Toxicology
– volume: 63
  start-page: 383
  year: 1994
  end-page: 386
  article-title: Methylmercury‐induced elevations in intrasynaptosomal zinc concentrations: an 19F‐NMR study
  publication-title: J. Neurochem.
– volume: 110
  start-page: 699
  year: 2010
  end-page: 704
  article-title: Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development
  publication-title: Environ. Res.
– volume: 60
  start-page: 423
  year: 1985
  end-page: 431
  article-title: Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite
  publication-title: Environ. Health Perspect.
– volume: 112
  start-page: 235
  year: 2012
  article-title: Response to commentary “Co‐exposure and confounders during neurodevelopment: We need them in the bigger picture of secondhand smoke exposure during pregnancy”
  publication-title: Environ. Res.
– volume: 13
  start-page: 3
  year: 2002
  end-page: 9
  article-title: Allergic contact dermatitis from mercury antiseptics and derivatives: study protocol of tolerance to intramuscular injections of thimerosal
  publication-title: Am. J. Contact Dermat.
– volume: 33
  start-page: 277
  year: 1963
  end-page: 282
  article-title: Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n‐propyl mercury acetates
  publication-title: Jpn. J. Exp. Med.
– volume: 27
  start-page: 189
  year: 2006
  end-page: 197
  article-title: Metal‐specific lymphocyte reactivity is downregulated after dental metal replacement
  publication-title: Neuro Endocrinol. Lett.
– volume: 360
  start-page: 1737
  issue: 9347
  year: 2002
  end-page: 1741
  article-title: Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: A descriptive study
  publication-title: Lancet
– volume: 57
  start-page: 260
  year: 1985
  end-page: 267
  article-title: The comparative toxicology of ethyl and methylmercury
  publication-title: Arch. Toxicol.
– volume: 462
  start-page: 31
  year: 1988
  end-page: 39
  article-title: Uptake of methylmercury in the rat brain: effects of amino acids
  publication-title: Brain Res.
– volume: 37
  start-page: 436
  year: 2012
  end-page: 447
  article-title: Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: Protective role of dehydroepiandrosterone sulfate
  publication-title: Neurochem. Res.
– volume: 40
  start-page: 285
  year: 2007
  end-page: 291
  article-title: Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity
  publication-title: Braz. J. Med. Biol. Res.
– volume: 231
  start-page: 40
  year: 2007
  end-page: 57
  article-title: Cell death and cytotoxic effects in YAC‐1 lymphoma cells following exposure to various forms of mercury
  publication-title: Toxicology
– volume: 13
  start-page: 385
  year: 2011
  end-page: 410
  article-title: Transport of inorganic mercury and methylmercury in target tissues and organs
  publication-title: J. Toxicol. Environ. Health B Crit. Rev.
– volume: 109
  start-page: 5057
  year: 2012
  end-page: 5062
  article-title: Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 175
  start-page: 451
  year: 2012
  end-page: 465
  article-title: Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers
  publication-title: Am. J. Epidemiol.
– volume: 120
  start-page: 1116
  year: 2012
  end-page: 1622
  article-title: Evaluation of Developmental Toxicants and Signaling Pathways in a Functional Test Based on the Migration of Human Neural Crest Cells
  publication-title: Environ. Health Perspect.
– volume: 1
  start-page: 810
  year: 2010
  end-page: 818
  article-title: The chemical nature of mercury in human brain following poisoning or environmental exposure
  publication-title: ACS Chem. Neurosci.
– volume: 32
  start-page: 742
  year: 2011
  end-page: 750
  article-title: Ca2+ entry pathways in mouse spinal motor neurons in culture following in vitro exposure to methylmercury
  publication-title: Neurotoxicology
– volume: 77
  start-page: 165
  year: 1998
  end-page: 172
  article-title: Cognitive performance of children prenatally exposed to “safe” levels of methylmercury
  publication-title: Environ. Res.
– volume: 274
  start-page: 1
  year: 2010a
  end-page: 9
  article-title: Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling
  publication-title: Toxicology
– volume: 65
  start-page: 17
  year: 1989
  end-page: 20
  article-title: Brain, kidney and liver Hg‐methyl mercury uptake in the rat: relationship to the neutral amino acid carrier
  publication-title: Pharmacol. Toxicol.
– volume: 154
  start-page: 183
  year: 2004
  end-page: 189
  article-title: Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice
  publication-title: Toxicol. Lett.
– volume: 246
  start-page: 66
  year: 2010b
  end-page: 73
  article-title: Responsiveness of human monocyte‐derived dendritic cells to thimerosal and mercury derivatives
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 33
  start-page: 1941
  year: 1984
  end-page: 1945
  article-title: A comparative study of the effects of mercury compounds on cell viability and nucleic acid synthesis in HeLa cells
  publication-title: Biochem. Pharmacol.
– volume: 21
  start-page: 1716
  year: 2009
  end-page: 1721
  article-title: Effects of methyl‐, phenyl‐, ethylmercury and mercurychlorid on immune cells of harbor seals (Phoca vitulina)
  publication-title: J. Environ. Sci. (China)
– volume: 89
  start-page: 555
  year: 2011b
  end-page: 563
  article-title: Mechanisms of methylmercury‐induced neurotoxicity: evidence from experimental studies
  publication-title: Life Sci.
– volume: 43
  start-page: 257
  issue: Pt 4
  year: 2006
  end-page: 268
  article-title: Overview of the clinical toxicity of mercury
  publication-title: Ann. Clin. Biochem.
– volume: 19
  start-page: 412
  year: 1962
  end-page: 422
  article-title: Distribution and excretion of some mercury compounds after long term exposure
  publication-title: Int. Arch. Gewerbepathol. Gewerbehyg.
– volume: 113
  start-page: 1015
  year: 2005
  end-page: 1021
  article-title: Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal
  publication-title: Environ. Health Perspect.
– volume: 256
  start-page: 405
  year: 2011a
  end-page: 417
  article-title: Oxidative stress in MeHg‐induced neurotoxicity
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 40
  start-page: 8
  year: 1999
  end-page: 13
  article-title: Thimerosal positivities: patch testing to methylmercury chloride in subjects sensitive to ethylmercury chloride
  publication-title: Contact Dermatitis
– volume: 38
  start-page: 325
  year: 1998a
  end-page: 328
  article-title: Thimerosal positivities: the role of organomercury alkyl compounds
  publication-title: Contact Dermatitis
– volume: 39
  start-page: 123
  year: 1998b
  end-page: 126
  article-title: Thimerosal positivities: the rôle of SH groups and divalent ions
  publication-title: Contact Dermatitis
– volume: 87
  start-page: 281
  year: 2012
  article-title: Global Advisory Committee on Vaccine Safety, June 2012
  publication-title: Wkly. Epidemiol. Rec.
– volume: 19
  start-page: 753
  year: 2006
  end-page: 759
  article-title: Molecular mimicry in mercury toxicology
  publication-title: Chem. Res. Toxicol.
– volume: 32
  start-page: 711
  year: 2011
  end-page: 717
  article-title: Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study
  publication-title: Neurotoxicology
– volume: 355
  start-page: 1279
  issue: 9211
  year: 2000
  end-page: 1280
  article-title: Thiomersal in vaccines
  publication-title: Lancet
– volume: 30
  start-page: 619
  year: 2011
  end-page: 638
  article-title: Novel lipid‐soluble thiol‐redox antioxidant and heavy metal chelator, N,N′‐bis(2‐mercaptoethyl)isophthalamide (NBMI) and phospholipase D‐specific inhibitor, 5‐fluoro‐2‐indolyl des‐chlorohalopemide (FIPI) attenuate mercury‐induced lipid signaling leading to protection against cytotoxicity in aortic endothelial cells
  publication-title: Int. J. Toxicol.
– volume: 34
  start-page: 379
  year: 1973
  end-page: 392
  article-title: Pathology of chronic alkylmercurial poisoning in swine
  publication-title: Am. J. Vet. Res.
– volume: 388
  start-page: 329
  year: 2007
  end-page: 340
  article-title: Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n‐propyl)borate as derivatizing agent
  publication-title: Anal. Bioanal. Chem.
– volume: 28
  start-page: 279
  year: 1986
  end-page: 287
  article-title: 1H NMR study of the removal of methylmercury from intact erythrocytes by sulfhydryl compounds
  publication-title: J. Inorg. Biochem.
– volume: 2012
  start-page: 248764
  year: 2012
  article-title: Role of calcium and mitochondria in MeHg‐mediated citotoxicity
  publication-title: J. Biomed. Biotechnol.
– volume: 4
  start-page: 270
  year: 2005
  end-page: 275
  article-title: Organic mercury compounds and autoimmunity
  publication-title: Autoimmun. Rev.
– volume: 28
  start-page: 190
  year: 2009
  end-page: 206
  article-title: Calcium and calmodulin regulate mercury‐induced phospholipase D activation in vascular endothelial cells
  publication-title: Int. J. Toxicol.
– volume: 120
  start-page: 499
  year: 2011
  end-page: 506
  article-title: Toxicokinetics of mercury after long‐term repeated exposure to thimerosal‐containing vaccine
  publication-title: Toxicol. Sci.
– volume: 17
  start-page: 47
  year: 1996
  end-page: 61
  article-title: Mercurial‐induced alterations in neuronal divalent cation homeostasis
  publication-title: Neurotoxicology
– volume: 106
  start-page: 2747
  year: 2002
  end-page: 2757
  article-title: Fish consumption, fish oil, omega‐3 fatty acids, and cardiovascular disease
  publication-title: Circulation
– volume: 7
  start-page: 153
  year: 1979
  end-page: 155
  article-title: The sensitizing capacity of merthiolate and its methyl analogue
  publication-title: J. Biol. Stand.
– ident: e_1_2_8_56_1
  doi: 10.1016/j.toxlet.2009.09.003
– volume: 34
  start-page: 379
  year: 1973
  ident: e_1_2_8_97_1
  article-title: Pathology of chronic alkylmercurial poisoning in swine
  publication-title: Am. J. Vet. Res.
– ident: e_1_2_8_35_1
  doi: 10.1016/0009-2797(74)90067-2
– ident: e_1_2_8_44_1
  doi: 10.1016/j.tox.2006.09.006
– ident: e_1_2_8_69_1
  doi: 10.1016/j.tox.2010.04.016
– ident: e_1_2_8_41_1
  doi: 10.1080/10915810601120509
– volume: 87
  start-page: 281
  year: 2012
  ident: e_1_2_8_107_1
  article-title: Global Advisory Committee on Vaccine Safety, June 2012
  publication-title: Wkly. Epidemiol. Rec.
– volume: 50
  start-page: 107
  year: 1998
  ident: e_1_2_8_65_1
  article-title: Renal drug metabolism
  publication-title: Pharmacol. Rev.
– ident: e_1_2_8_3_1
  doi: 10.1111/j.1600-0773.1989.tb01119.x
– ident: e_1_2_8_67_1
  doi: 10.1258/000456306777695654
– ident: e_1_2_8_105_1
  doi: 10.1016/j.tox.2006.11.062
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuro.2011.08.003
– ident: e_1_2_8_18_1
  doi: 10.1016/0006-2952(84)90552-5
– ident: e_1_2_8_87_1
  doi: 10.1016/j.neuro.2008.10.009
– ident: e_1_2_8_53_1
  doi: 10.1007/s00431-011-1613-4
– ident: e_1_2_8_89_1
  doi: 10.1111/j.1600-0536.1998.tb05767.x
– ident: e_1_2_8_52_1
  doi: 10.1039/c1mt00043h
– ident: e_1_2_8_93_1
  doi: 10.1016/j.marpolbul.2010.06.045
– ident: e_1_2_8_76_1
  doi: 10.1016/S0140-6736(02)11682-5
– ident: e_1_2_8_14_1
  doi: 10.1016/j.taap.2004.09.007
– ident: e_1_2_8_39_1
  doi: 10.1007/s00216-007-1208-0
– volume: 27
  start-page: 189
  year: 2006
  ident: e_1_2_8_102_1
  article-title: Metal‐specific lymphocyte reactivity is downregulated after dental metal replacement
  publication-title: Neuro Endocrinol. Lett.
– ident: e_1_2_8_86_1
  doi: 10.1155/2012/248764
– ident: e_1_2_8_58_1
  doi: 10.1021/cn1000765
– ident: e_1_2_8_63_1
  doi: 10.1021/pr0700403
– volume: 2012
  start-page: 256965
  year: 2012
  ident: e_1_2_8_13_1
  article-title: Mercury disposition in suckling rats: comparative assessment following parenteral exposure to thiomersal and mercuric chloride
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/2012/256965
– ident: e_1_2_8_103_1
  doi: 10.1016/j.chemosphere.2012.01.006
– ident: e_1_2_8_88_1
  doi: 10.1111/j.1600-0773.1996.tb00203.x
– ident: e_1_2_8_9_1
  doi: 10.1542/peds.107.5.1147
– ident: e_1_2_8_20_1
  doi: 10.1007/BF01685785
– volume: 4
  start-page: 87
  year: 1975
  ident: e_1_2_8_101_1
  article-title: Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture
  publication-title: Ambio
– ident: e_1_2_8_48_1
  doi: 10.1016/0041-008X(92)90124-B
– ident: e_1_2_8_17_1
  doi: 10.1289/ehp.7712
– ident: e_1_2_8_90_1
  doi: 10.1111/j.1600-0536.1998.tb05860.x
– ident: e_1_2_8_2_1
  doi: 10.1128/MMBR.46.3.281-295.1982
– ident: e_1_2_8_73_1
  doi: 10.1080/19393210.2011.638087
– ident: e_1_2_8_82_1
  doi: 10.1016/j.neuro.2011.07.007
– ident: e_1_2_8_80_1
  doi: 10.1016/0167-4889(82)90038-6
– ident: e_1_2_8_36_1
  doi: 10.1016/j.taap.2011.05.001
– ident: e_1_2_8_83_1
  doi: 10.1016/S0161-813X(01)00067-5
– ident: e_1_2_8_29_1
  doi: 10.1007/s11064-011-0427-0
– ident: e_1_2_8_51_1
  doi: 10.1289/ehp.0900956
– ident: e_1_2_8_64_1
  doi: 10.1093/aje/kwr328
– ident: e_1_2_8_94_1
  doi: 10.1007/BF02307268
– ident: e_1_2_8_85_1
  doi: 10.1016/j.taap.2011.01.010
– ident: e_1_2_8_99_1
  doi: 10.1016/j.tox.2003.09.002
– ident: e_1_2_8_54_1
  doi: 10.1016/S1001-0742(08)62478-X
– volume: 133
  start-page: 1539S
  issue: 5
  year: 2003
  ident: e_1_2_8_22_1
  article-title: Nutritional factors may modify the toxic action of methyl mercury in fish‐eating populations
  publication-title: J. Nutr.
  doi: 10.1093/jn/133.5.1539S
– ident: e_1_2_8_77_1
  doi: 10.1542/peds.2006-3363
– ident: e_1_2_8_104_1
  doi: 10.1111/j.1471-4159.2008.05683.x
– ident: e_1_2_8_109_1
  doi: 10.1016/j.talanta.2011.12.029
– ident: e_1_2_8_10_1
  doi: 10.1289/ehp.02110s5689
– ident: e_1_2_8_19_1
  doi: 10.1002/jcp.22010
– ident: e_1_2_8_55_1
  doi: 10.1289/ehp.1104494
– ident: e_1_2_8_98_1
  doi: 10.1039/c0ja00024h
– volume: 17
  start-page: 47
  year: 1996
  ident: e_1_2_8_26_1
  article-title: Mercurial‐induced alterations in neuronal divalent cation homeostasis
  publication-title: Neurotoxicology
– ident: e_1_2_8_30_1
  doi: 10.1016/j.cca.2011.05.003
– ident: e_1_2_8_91_1
  doi: 10.1111/j.1600-0536.1999.tb05969.x
– ident: e_1_2_8_6_1
  doi: 10.1590/S0100-879X2007000300001
– ident: e_1_2_8_12_1
  doi: 10.1093/toxsci/kfr009
– ident: e_1_2_8_81_1
  doi: 10.1016/0162-0134(83)85006-5
– ident: e_1_2_8_5_1
  doi: 10.1016/0006-8993(90)91546-S
– ident: e_1_2_8_100_1
  doi: 10.1007/BF00312571
– ident: e_1_2_8_7_1
  doi: 10.1053/ajcd.2002.29945
– ident: e_1_2_8_72_1
  doi: 10.1007/BF01054003
– ident: e_1_2_8_47_1
  doi: 10.1039/an9952000721
– ident: e_1_2_8_31_1
  doi: 10.1007/s12011-010-8695-0
– ident: e_1_2_8_21_1
  doi: 10.1080/10408440600845619
– ident: e_1_2_8_57_1
  doi: 10.1073/pnas.0803147105
– ident: e_1_2_8_37_1
  doi: 10.1016/j.lfs.2011.05.019
– ident: e_1_2_8_16_1
  doi: 10.1289/ehp.60-1568568
– ident: e_1_2_8_15_1
  doi: 10.1080/10937401003673750
– ident: e_1_2_8_68_1
  doi: 10.1007/s00431-006-0362-2
– ident: e_1_2_8_74_1
  doi: 10.1080/15287390701551324
– ident: e_1_2_8_25_1
  doi: 10.1046/j.1471-4159.1994.63010383.x
– ident: e_1_2_8_38_1
  doi: 10.1016/j.toxlet.2010.06.015
– ident: e_1_2_8_62_1
  doi: 10.3390/ijerph7062666
– start-page: 1
  volume-title: Children's exposure to mercury compounds
  year: 2010
  ident: e_1_2_8_106_1
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cca.2010.07.008
– ident: e_1_2_8_46_1
  doi: 10.1016/j.taap.2003.09.006
– ident: e_1_2_8_79_1
  doi: 10.1016/0162-0134(86)80092-7
– ident: e_1_2_8_49_1
  doi: 10.1021/tx0503449
– ident: e_1_2_8_11_1
  doi: 10.1093/jpepsy/jsr048
– volume: 33
  start-page: 277
  year: 1963
  ident: e_1_2_8_95_1
  article-title: Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n‐propyl mercury acetates
  publication-title: Jpn. J. Exp. Med.
– ident: e_1_2_8_60_1
  doi: 10.1016/j.envres.2011.09.007
– ident: e_1_2_8_108_1
  doi: 10.1002/jat.1272
– ident: e_1_2_8_27_1
  doi: 10.1055/s-2007-982074
– ident: e_1_2_8_110_1
  doi: 10.1289/ehp.1104489
– ident: e_1_2_8_84_1
  doi: 10.1007/s00204-010-0538-4
– ident: e_1_2_8_59_1
  doi: 10.1161/01.CIR.0000038493.65177.94
– ident: e_1_2_8_70_1
  doi: 10.1016/j.taap.2010.04.007
– ident: e_1_2_8_92_1
  doi: 10.1177/1091581811422413
– ident: e_1_2_8_40_1
  doi: 10.1006/enrs.1997.3804
– ident: e_1_2_8_33_1
  doi: 10.1007/s11064-011-0630-z
– ident: e_1_2_8_42_1
  doi: 10.1016/j.toxlet.2004.07.014
– ident: e_1_2_8_8_1
  doi: 10.1016/0378-4274(90)90004-6
– ident: e_1_2_8_78_1
  doi: 10.1080/15555270903143440
– ident: e_1_2_8_96_1
  doi: 10.1016/j.envres.2010.07.001
– ident: e_1_2_8_34_1
  doi: 10.1073/pnas.1120747109
– ident: e_1_2_8_32_1
  doi: 10.1155/2012/132876
– ident: e_1_2_8_66_1
  doi: 10.1007/BF00324789
– ident: e_1_2_8_50_1
  doi: 10.1016/S0300-483X(97)00153-4
– ident: e_1_2_8_4_1
  doi: 10.1016/0006-8993(88)90581-1
– ident: e_1_2_8_43_1
  doi: 10.1016/j.tiv.2009.05.020
– ident: e_1_2_8_75_1
  doi: 10.1177/1091581809338077
– ident: e_1_2_8_71_1
  doi: 10.1016/S0092-1157(79)80018-9
– ident: e_1_2_8_45_1
  doi: 10.1016/j.autrev.2004.12.001
– ident: e_1_2_8_23_1
  doi: 10.1016/S0140-6736(05)74714-0
– volume: 19
  start-page: 159
  year: 1977
  ident: e_1_2_8_61_1
  article-title: Metabolic interrelationships between arsenic and selenium
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.7719159
SSID ssj0009928
Score 2.3654592
SecondaryResourceType review_article
Snippet ABSTRACT Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of...
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic...
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 700
SubjectTerms Animals
Disease Models, Animal
Ethylmercury
Female
fish
Fishes
Half-Life
Humans
Infant
Meat
methylmercury
Methylmercury Compounds - pharmacokinetics
Methylmercury Compounds - toxicity
Nervous System - cytology
Nervous System - drug effects
neurodevelopment
Oryza sativa
Pregnancy
Preservatives, Pharmaceutical - pharmacokinetics
Preservatives, Pharmaceutical - toxicity
Thimerosal
Thimerosal - pharmacokinetics
Thimerosal - toxicity
Vaccination
Vaccines - chemistry
Title Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury
URI https://api.istex.fr/ark:/67375/WNG-LR84BCW8-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjat.2855
https://www.ncbi.nlm.nih.gov/pubmed/23401210
https://www.proquest.com/docview/1427867395
https://www.proquest.com/docview/1371270148
https://www.proquest.com/docview/1434032953
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kvgjiR7V6WmULcio07d5-JFnf9LCWIqWUKz3wYdndbKC2JtK7g9a_3plskrNSS_EphMwm-zGT-e3u7G8IeRO4LbLcyiQXzCeyDD5x4HWSkVNaOl64UWjYPvfT3SO5N1XTNqoSz8JEfoh-wQ0to_lfo4FbN9tekoZ-t0i8qvB8OYZqIR46XDJHad2kVUXGrESKbNrxzjK-3RW84onuYqdeXAczr6LWxu3sPCTfugrHaJPTrcXcbflff3E5_l-LHpEHLRqlH6P6PCZ3QrVKhgeRzvpyk06Wp7Nmm3RID5ZE15er5H5c86PxKNMTsjepL048wHpalzSABmBqFg-DRt_ZqoCXncB9PbNn7z9QS32fAZHiYjD98WeJp-Ro5_NkvJu0uRoSLzVTSSrA25ZKB5nLAJjIahb0yDlmSyGtyFxRiLKwZQrur8iUHpWY7UwzKwQrAXWKNbJS1VV4TiigFg0llBIS4E5mbQDv6hjMpa1IPQ8D8rYbN-NbInPMp3FmIgUzN9CRBjtyQDZ6yZ-RvOMamWEz9L2APT_FYLdMmeP9L-brYS4_jY9zMx6Q9U43TGvnM5g48SxPcbMTvtU_BgvFbRdbhXoBMiLD7X2Yd94gI4VkgmslBuRZ1Lu-QhweIc0b1LTRnn82xcAfHa8vbiv4ktzjTXYPjGdcJyvz80V4BRhr7l431vQbXeIhZw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-N7QNIiMd4FQYYCRWQli2N7SSGT1AxyijVNHVaPyBZduJIYyNBaytt_PXcOU3K0ECIT1Hkc-LHne_n1-8AnrvI5ElqRJDyMAtE4bLAotcJelYqYaPc9pxn-xzFgwOxO5GTFXjT3IWp-SHaBTeyDD9ek4HTgvT2kjX0qyHmVSmvwBoF9Pbzqf0ld5RSPrAqcWYFgieThnk2jLabnBd80Ro169llQPMibvWOZ-cmfGmKXJ83Od6az-xW9uM3Nsf_rNMtuLEApOxtrUG3YcWV69DdqxmtzzfZeHlBa7rJumxvyXV9vg7X62U_Vt9mugO74-rsKENkz6qCOVQCis6SYb-xl6bM8WNH-F5Nzcmr18ywrA2CyGg9mH37NcddONh5P-4PgkW4hiATKpRBzNHhFlI5kQqHsMio0KmetaEpuDA8sXnOi9wUMXrAPJGqV1DAMxUazsMCgSe_B6tlVboHwBC4KMwhJReIeBJjHDpYG-J02vA4i1wHXjQdp7MFlzmF1DjRNQtzpLEhNTVkB561kt9r_o5LZLq-71sBc3pM590SqQ9HH_RwPxXv-oep7ndgo1EOvTD1Kc6doiSNab8T_9Umo5HSzospXTVHGZ7QDj9OPf8iI7gIeaQk78D9WvHaAkWYRExvWFKvPn-sisZBnZ4P_1XwKVwdjD8P9fDj6NMjuBb5YB90vHEDVmenc_cYIdfMPvGm9RNdnSWC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB-0BRHER32dVl1BToWm3cvuJlm_6dWz1nIc5UoP_LDsJhuorUnp3UHrX-9McslZqSJ-CmFnk33M7Pz29RuAVz60WZxYGSSCp4HMfRo49DpBzyktXZi5nq_YPofRzoHcnajJ4lQl3YWp-SHaBTeyjGq8JgM_zfKtJWnoN0vEq0pdh1UZ8YQ0ent_SR2ldRVXlSizAiniSUM8y8OtJuclV7RKrXp-Fc68DFsrvzO4A1-bEtfHTY435zO3mf74jczx_6p0F24v4Ch7X-vPPbjmizXojmo-64sNNl5ez5pusC4bLZmuL9bgVr3ox-q7TPdhd1yeH6WI61mZM48qQLFZUuw19sYWGX7sCN_LqT15-45ZlrYhEBmtBrPvv-Z4AAeDj-P-TrAI1hCkUnMVRALdba60l4n0CIqs5l73nOM2F9KK2GWZyDObR-j_sljpXk7hzjS3QvAcYad4CCtFWfjHwBC2aMyhlJCId2JrPbpXx3EybUWUhr4Dr5t-M-mCyZwCapyYmoM5NNiQhhqyAy9bydOaveMKmW7V9a2APTum026xMofDT2ZvP5Ef-oeJ6XdgvdENszD0Kc6cwjiJaLcT_9Umo4nSvostfDlHGRHT_j5OPP8iI4XkItRKdOBRrXdtgUJMIp43LGmlPX-sisEhnZ5P_lXwBdwYbQ_M3ufhl6dwM6wifdDZxnVYmZ3N_TPEWzP3vDKsn-6RJDo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxicity+of+ethylmercury+%28and+Thimerosal%29%3A+a+comparison+with+methylmercury&rft.jtitle=Journal+of+applied+toxicology&rft.au=D%C3%B3rea%2C+Jos%C3%A9+G&rft.au=Farina%2C+Marcelo&rft.au=Rocha%2C+Jo%C3%A3o+B+T&rft.date=2013-08-01&rft.eissn=1099-1263&rft.volume=33&rft.issue=8&rft.spage=700&rft_id=info:doi/10.1002%2Fjat.2855&rft_id=info%3Apmid%2F23401210&rft.externalDocID=23401210
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-437X&client=summon