Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury
ABSTRACT Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized...
Saved in:
Published in | Journal of applied toxicology Vol. 33; no. 8; pp. 700 - 711 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.08.2013
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal‐containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half‐life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real‐life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd.
EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half‐life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg. |
---|---|
AbstractList | Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants).Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). ABSTRACT Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal‐containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half‐life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real‐life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half‐life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg. Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half-life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg. [PUBLICATION ABSTRACT] Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright [copy 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half-life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg. Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal‐containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half‐life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real‐life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants). Copyright © 2013 John Wiley & Sons, Ltd. EtHg toxicity differs from that of meHg, leading to different toxicity risks. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural, and immune cells. However, distinct toxicokinetic profile between meHg and etHg, results in different compartmental distribution and shorter blood half‐life for etHg which can be explained by a faster in vivo dealkylation of etHg than meHg. Immunotoxicity is more pronounced and more common for thimerosal etHg. |
Author | Farina, Marcelo Dórea, José G. Rocha, João B. T. |
Author_xml | – sequence: 1 givenname: José G. surname: Dórea fullname: Dórea, José G. email: Correspondence to: José G. Dórea, C.P. 04322, Faculty of Health Sciences, Universidade de Brasilia, 70919-970 Brasilia, DF, Brazil. , dorea@rudah.com.br organization: Department of Nutrition, Faculty of Health Sciences, Universidade de Brasilia, DF, 70919-970, Brasilia, Brazil – sequence: 2 givenname: Marcelo surname: Farina fullname: Farina, Marcelo organization: Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, SC, 88040-900, Florianópolis, Brazil – sequence: 3 givenname: João B. T. surname: Rocha fullname: Rocha, João B. T. organization: Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Santa Maria, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23401210$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9P2zAUxa2JCUqHtE-AIvECD-mu_ySOeeuqAUPVJk2d2JvlJrbqksTFTgT59hgVGEOgPVlX_t2je87ZRzutazVCnzFMMAD5slbdhBRZ9gGNMAiRYpLTHTQCkkPKKP-zh_ZDWAPEP1Lsoj1CGWCCYYQuF-7OlrYbEmcS3a2GutG-7P2QHKu2ShYrG2cXVH1ymqikdM1GeRtcm9zabpU0Lzc-oY9G1UEfPL5j9Pvs22J2kc5_nn-fTedpyQRkaU5LrU0mNCuY5oQrAVrg5RKUoUxRvqwqaiplciJExTOBDSe0EKAoBYNzTMfoeKu78e6m16GTjQ2lrmvVatcHiVl0R4nI6P9RyjHhgFkR0aNX6Nr1vo1GoiDhRc5pVByjw0eqXza6khtvG-UH-RRoBCZboIypBa-NjOGqzrq288rWEoN8aEzGxuRDY39PfF540nwDTbfora318C4nL6eLf3kbOn33zCt_LaMbnsmrH-dy_qtgX2dXhZzRe2l_sWw |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2019_07_051 crossref_primary_10_3390_ijerph16183425 crossref_primary_10_1007_s00244_018_0550_x crossref_primary_10_1016_j_jtemb_2018_05_010 crossref_primary_10_1080_15376516_2023_2258958 crossref_primary_10_1016_j_bbagen_2018_10_015 crossref_primary_10_1002_jcp_30941 crossref_primary_10_3389_fchem_2023_1238631 crossref_primary_10_1007_s44169_023_00037_x crossref_primary_10_1016_j_taap_2015_05_002 crossref_primary_10_1021_acsmedchemlett_6b00084 crossref_primary_10_1002_elps_201600147 crossref_primary_10_1080_15287394_2014_861335 crossref_primary_10_1016_j_ccr_2017_12_011 crossref_primary_10_1016_j_tox_2016_02_006 crossref_primary_10_1016_j_micpath_2017_11_063 crossref_primary_10_1016_j_jtemb_2014_01_006 crossref_primary_10_1039_C8AY00284C crossref_primary_10_1111_jnc_16076 crossref_primary_10_1016_j_bbagen_2023_130446 crossref_primary_10_1039_C4AY03107E crossref_primary_10_3390_ijerph20021070 crossref_primary_10_3390_molecules26196060 crossref_primary_10_1016_j_aca_2022_339553 crossref_primary_10_3390_ijms22084027 crossref_primary_10_1039_C3MT00337J crossref_primary_10_1039_C5MT00171D crossref_primary_10_1002_jat_4269 crossref_primary_10_1080_10937404_2017_1289834 crossref_primary_10_1016_j_ccr_2016_01_011 crossref_primary_10_3390_ijerph10083771 crossref_primary_10_1016_j_sab_2017_10_011 crossref_primary_10_1016_j_ijheh_2016_05_002 crossref_primary_10_1080_02772248_2013_877246 crossref_primary_10_1016_j_biortech_2024_130831 crossref_primary_10_1016_j_vascn_2021_107088 crossref_primary_10_1007_s00204_016_1690_2 crossref_primary_10_1021_acs_analchem_5b02500 crossref_primary_10_1155_2017_3624015 crossref_primary_10_1016_j_cbpc_2024_110046 crossref_primary_10_1016_j_chemosphere_2024_143870 crossref_primary_10_1016_j_bbagen_2019_01_006 crossref_primary_10_3389_fpubh_2020_00361 crossref_primary_10_1080_24734306_2020_1870077 crossref_primary_10_21307_ane_2019_010 crossref_primary_10_1007_s12640_021_00370_w crossref_primary_10_1016_j_jorganchem_2015_04_014 crossref_primary_10_1016_j_jes_2019_02_018 crossref_primary_10_1016_j_jtemb_2018_06_011 crossref_primary_10_1007_s40489_014_0028_3 crossref_primary_10_1016_j_envres_2016_10_028 crossref_primary_10_1007_s40572_014_0014_z crossref_primary_10_1371_journal_pone_0092705 crossref_primary_10_17221_577_2013_CJFS crossref_primary_10_1016_j_etap_2024_104361 crossref_primary_10_1016_j_trac_2016_02_001 crossref_primary_10_1080_02772248_2015_1028407 crossref_primary_10_1007_s00216_020_02515_w crossref_primary_10_1177_09603271221136206 crossref_primary_10_1155_2018_1206913 crossref_primary_10_3390_ijerph120201295 crossref_primary_10_1007_s12011_020_02026_w crossref_primary_10_1016_j_jhazmat_2024_135548 crossref_primary_10_3390_toxics9120326 crossref_primary_10_1016_j_jpba_2014_09_011 crossref_primary_10_1007_s12011_017_1057_4 crossref_primary_10_1093_mtomcs_mfad013 crossref_primary_10_1016_j_jtemb_2015_06_008 crossref_primary_10_1007_s40828_020_00125_8 crossref_primary_10_1021_acs_est_6b03468 crossref_primary_10_1016_j_jchemneu_2019_101727 crossref_primary_10_1016_j_watres_2024_122167 crossref_primary_10_1007_s00232_016_9933_y crossref_primary_10_1016_j_cbi_2019_108867 crossref_primary_10_1016_j_envres_2016_08_027 crossref_primary_10_1016_j_ccr_2020_213343 crossref_primary_10_1016_j_ejpn_2021_12_011 crossref_primary_10_1080_15287394_2016_1182003 crossref_primary_10_1016_j_envres_2020_109734 crossref_primary_10_1007_s11064_017_2277_x crossref_primary_10_1016_j_cbpc_2021_109216 crossref_primary_10_1007_s00244_014_0103_x crossref_primary_10_1177_0300060517693423 crossref_primary_10_3390_metabo13090975 crossref_primary_10_1016_j_etap_2019_103312 crossref_primary_10_1590_1519_6984_242942 crossref_primary_10_1016_j_ecoenv_2025_118031 crossref_primary_10_1093_toxsci_kfw155 crossref_primary_10_1039_C8MT00268A crossref_primary_10_1016_j_envpol_2014_01_004 crossref_primary_10_3390_ijerph14050519 crossref_primary_10_3390_ijerph14121511 crossref_primary_10_1039_C5MT00186B crossref_primary_10_1111_bcpt_13199 crossref_primary_10_1093_toxsci_kfu259 crossref_primary_10_1289_ehp_123_A156 crossref_primary_10_1289_ehp_1408257 |
Cites_doi | 10.1016/j.toxlet.2009.09.003 10.1016/0009-2797(74)90067-2 10.1016/j.tox.2006.09.006 10.1016/j.tox.2010.04.016 10.1080/10915810601120509 10.1111/j.1600-0773.1989.tb01119.x 10.1258/000456306777695654 10.1016/j.tox.2006.11.062 10.1016/j.neuro.2011.08.003 10.1016/0006-2952(84)90552-5 10.1016/j.neuro.2008.10.009 10.1007/s00431-011-1613-4 10.1111/j.1600-0536.1998.tb05767.x 10.1039/c1mt00043h 10.1016/j.marpolbul.2010.06.045 10.1016/S0140-6736(02)11682-5 10.1016/j.taap.2004.09.007 10.1007/s00216-007-1208-0 10.1155/2012/248764 10.1021/cn1000765 10.1021/pr0700403 10.1155/2012/256965 10.1016/j.chemosphere.2012.01.006 10.1111/j.1600-0773.1996.tb00203.x 10.1542/peds.107.5.1147 10.1007/BF01685785 10.1016/0041-008X(92)90124-B 10.1289/ehp.7712 10.1111/j.1600-0536.1998.tb05860.x 10.1128/MMBR.46.3.281-295.1982 10.1080/19393210.2011.638087 10.1016/j.neuro.2011.07.007 10.1016/0167-4889(82)90038-6 10.1016/j.taap.2011.05.001 10.1016/S0161-813X(01)00067-5 10.1007/s11064-011-0427-0 10.1289/ehp.0900956 10.1093/aje/kwr328 10.1007/BF02307268 10.1016/j.taap.2011.01.010 10.1016/j.tox.2003.09.002 10.1016/S1001-0742(08)62478-X 10.1093/jn/133.5.1539S 10.1542/peds.2006-3363 10.1111/j.1471-4159.2008.05683.x 10.1016/j.talanta.2011.12.029 10.1289/ehp.02110s5689 10.1002/jcp.22010 10.1289/ehp.1104494 10.1039/c0ja00024h 10.1016/j.cca.2011.05.003 10.1111/j.1600-0536.1999.tb05969.x 10.1590/S0100-879X2007000300001 10.1093/toxsci/kfr009 10.1016/0162-0134(83)85006-5 10.1016/0006-8993(90)91546-S 10.1007/BF00312571 10.1053/ajcd.2002.29945 10.1007/BF01054003 10.1039/an9952000721 10.1007/s12011-010-8695-0 10.1080/10408440600845619 10.1073/pnas.0803147105 10.1016/j.lfs.2011.05.019 10.1289/ehp.60-1568568 10.1080/10937401003673750 10.1007/s00431-006-0362-2 10.1080/15287390701551324 10.1046/j.1471-4159.1994.63010383.x 10.1016/j.toxlet.2010.06.015 10.3390/ijerph7062666 10.1016/j.cca.2010.07.008 10.1016/j.taap.2003.09.006 10.1016/0162-0134(86)80092-7 10.1021/tx0503449 10.1093/jpepsy/jsr048 10.1016/j.envres.2011.09.007 10.1002/jat.1272 10.1055/s-2007-982074 10.1289/ehp.1104489 10.1007/s00204-010-0538-4 10.1161/01.CIR.0000038493.65177.94 10.1016/j.taap.2010.04.007 10.1177/1091581811422413 10.1006/enrs.1997.3804 10.1007/s11064-011-0630-z 10.1016/j.toxlet.2004.07.014 10.1016/0378-4274(90)90004-6 10.1080/15555270903143440 10.1016/j.envres.2010.07.001 10.1073/pnas.1120747109 10.1155/2012/132876 10.1007/BF00324789 10.1016/S0300-483X(97)00153-4 10.1016/0006-8993(88)90581-1 10.1016/j.tiv.2009.05.020 10.1177/1091581809338077 10.1016/S0092-1157(79)80018-9 10.1016/j.autrev.2004.12.001 10.1016/S0140-6736(05)74714-0 10.1289/ehp.7719159 |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7ST 7TK 7U7 C1K K9. SOI 7X8 |
DOI | 10.1002/jat.2855 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Environment Abstracts Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1099-1263 |
EndPage | 711 |
ExternalDocumentID | 3054803761 23401210 10_1002_jat_2855 JAT2855 ark_67375_WNG_LR84BCW8_C |
Genre | reviewArticle Comparative Study Review Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EDH EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GWYGA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ UB1 V8K VH1 W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWP WXSBR WYISQ XG1 XPP XV2 YCJ YHZ ZXP ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7ST 7TK 7U7 AAMMB AEFGJ AGXDD AIDQK AIDYY C1K K9. SOI 7X8 |
ID | FETCH-LOGICAL-c4905-63ceef59e484e727a90e91bb0af34a37bdd3fdaf6299d7591f723890a330f1613 |
IEDL.DBID | DR2 |
ISSN | 0260-437X 1099-1263 |
IngestDate | Fri Jul 11 08:12:15 EDT 2025 Fri Jul 11 05:28:51 EDT 2025 Sat Jul 26 02:34:12 EDT 2025 Thu Apr 03 07:05:47 EDT 2025 Tue Jul 01 00:49:57 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Wed Jan 22 16:39:51 EST 2025 Wed Oct 30 09:52:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4905-63ceef59e484e727a90e91bb0af34a37bdd3fdaf6299d7591f723890a330f1613 |
Notes | istex:F5199A99E47001E0F76089F4C4C2AC09452F1FE2 ArticleID:JAT2855 ark:/67375/WNG-LR84BCW8-C ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 ObjectType-Feature-2 |
PMID | 23401210 |
PQID | 1427867395 |
PQPubID | 105373 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1434032953 proquest_miscellaneous_1371270148 proquest_journals_1427867395 pubmed_primary_23401210 crossref_citationtrail_10_1002_jat_2855 crossref_primary_10_1002_jat_2855 wiley_primary_10_1002_jat_2855_JAT2855 istex_primary_ark_67375_WNG_LR84BCW8_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2013 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: August 2013 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationSubtitle | JAT |
PublicationTitle | Journal of applied toxicology |
PublicationTitleAlternate | J. Appl. Toxicol |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Havarinasab S, Hultman P. 2005. Organic mercury compounds and autoimmunity. Autoimmun. Rev. 4: 270-275. WHO. Global Advisory Committee on Vaccine Safety, June 2012. Wkly. Epidemiol. Rec. 2012; 87: 281-287. Dórea JG. 2011. Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines. Neurochem. Res. 36: 927-938. Zareba G, Cernichiari E, Hojo R, Nitt SM, Weiss B, Mumtaz MM, Jones DE, Clarkson TW. 2007. Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury. J. Appl. Toxicol. 27: 511-518. Rabenstein DL, Arnold AP, Guy RD. 1986. 1H NMR study of the removal of methylmercury from intact erythrocytes by sulfhydryl compounds. J. Inorg. Biochem. 28: 279-287. Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1998b. Thimerosal positivities: the rôle of SH groups and divalent ions. Contact Dermatitis 39: 123-126. Marques RC, Dórea JG, Fonseca MF, Bastos WR, Malm O. 2007. Hair mercury in breastfed infants exposed to thimerosal-preserved vaccines. Eur. J. Pediatr. 166: 935-941. Yin Y, Chen B, Mao Y, Wang T, Liu J, Cai Y, Jiang G. 2012. Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere 88: 8-16. Farina M, Rocha JB, Aschner M. 2011b. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 89: 555-563. Ballatori N. 2002. Transport of toxic metals by molecular mimicry. Environ. Health Perspect. 110(Suppl 5): 689-694. Fang SC, Fallin E. 1974. Uptake and subcellular cleavage of organomercury compounds by rat liver and kidney. Chem. Biol. Interact. 9: 57-64. Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL. 2007. Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int. J. Toxicol. 26: 57-69. Bridges CC, Zalups RK. 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204: 274-308. Dórea JG, Bezerra VL, Fajon V, Horvat M. 2011a. Speciation of methyl- and ethyl-mercury in hair of breastfed infants acutely exposed to thimerosal-containing vaccines. Clin. Chim. Acta 412: 1563-1566. Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S. 2012. Evidence on the Human Health Effects of Low Level Methylmercury Exposure. Environ. Health Perspect. 120: 799-806. Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T. 2005. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ. Health Perspect. 113: 1015-1021. Barile JP, Kuperminc GP, Weintraub ES, Mink JW, Thompson WW. 2012. Thimerosal exposure in early life and neuropsychological outcomes 7-10 years later. J. Pediatr. Psychol. 37: 106-118. Kris-Etherton PM, Harris WS, Appel LJ. 2002. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106: 2747-2757. Westermark T, Odsjö T, Johnels AG. 1975. Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture. Ambio 4: 87-92. Harry GJ, Harris MW, Burka LT. 2004. Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicol. Lett. 154: 183-189. Roos DH, Puntel RL, Farina M, Aschner M, Bohrer D, Rocha JB, de Vargas Barbosa NB. 2011. Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicol. Appl. Pharmacol. 252: 28-35. Pichichero ME, Cernichiari E, Lopreiato J, Treanor J. 2002. Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: A descriptive study Lancet 360(9347): 1737-1741. Peltz A, Sherwani SI, Kotha SR, Mazerik JN, O'Connor Butler ES, Kuppusamy ML, Hagele T, Magalang UJ, Kuppusamy P, Marsh CB, Parinandi NL. 2009. Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. Int. J. Toxicol. 28: 190-206. Korbas M, O'Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers GJ, Clarkson TW, George GN. 2010. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem. Neurosci.1: 810-818. Ball LK, Ball R, Pratt RD. 2001. An assessment of thimerosal use in childhood vaccines Pediatrics 107: 1147-1154. Li P, Feng X, Qiu G. 2010. Methylmercury exposure and health effects from rice and fish consumption: a review. Int. J. Environ. Res. Public Health 7: 2666-2691. Suzuki T, Miyama T, Katsunuma H. 1963. Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n-propyl mercury acetates. Jpn. J. Exp. Med. 33: 277-282. Dórea JG, Marques RC, Isejima C. 2012. Neurodevelopment of Amazonian infants: antenatal and postnatal exposure to methyl- and ethylmercury. J. Biomed. Biotechnol. 2012: 132876. Llop S, Guxens M, Murcia M, Lertxundi A, Ramon R, Riaño I, Rebagliato M, Ibarluzea J, Tardon A, Sunyer J, Ballester F; INMA Project. 2012. Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers. Am. J. Epidemiol. 175: 451-465. Chao ES, Gierthy JF, Frenkel GD. 1984. A comparative study of the effects of mercury compounds on cell viability and nucleic acid synthesis in HeLa cells. Biochem. Pharmacol. 33: 1941-1945. Audicana MT, Muñoz D, del Pozo MD, Fernández E, Gastaminza G, Fernández de Corres L. 2002. Allergic contact dermatitis from mercury antiseptics and derivatives: study protocol of tolerance to intramuscular injections of thimerosal. Am. J. Contact Dermat. 13: 3-9. Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609-662. Kawanai T, Satoh M, Murao K, Oyama Y. 2009. Methylmercury elicits intracellular Zn2+ release in rat thymocytes: its relation to methylmercury-induced decrease in cellular thiol content. Toxicol. Lett. 191: 231-235. Roos D, Seeger RL, Puntel R, Barbosa NB. 2012. Role of calcium and mitochondria in MeHg-mediated citotoxicity. J. Biomed. Biotechnol. 2012: 248764. Chmielnicka J, Brzeinicka EA. 1978. The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds. Bull. Environ. Contam. Toxicol. 19: 183-190. Denny MF, Atchison WD. 1996. Mercurial-induced alterations in neuronal divalent cation homeostasis. Neurotoxicology 17: 47-61. Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, Hosokawa T, Okamura K, Sakai T, Kurokawa N, Murata K, Satoh C, Satoh H. 2010. Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ. Res. 110: 699-704. Smith KL, Guentzel JL. 2010. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits. Mar. Pollut. Bull. 60: 1615-1618. Barregard L, Rekić D, Horvat M, Elmberg L, Lundh T, Zachrisson O. 2011. Toxicokinetics of mercury after long-term repeated exposure to thimerosal-containing vaccine. Toxicol. Sci. 120: 499-506. Davidson PW, Cory-Slechta DA, Thurston SW, Huang LS, Shamlaye CF, Gunzler D, Watson G, van Wijngaarden E, Zareba G, Klein JD, Clarkson TW, Strain JJ, Myers GJ. 2011. Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32: 711-717. Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1999. Thimerosal positivities: patch testing to methylmercury chloride in subjects sensitive to ethylmercury chloride. Contact Dermatitis 40: 8-13. Hoffmeyer RE, Singh SP, Doonan CJ, Ross AR, Hughes RJ, Pickering IJ, George GN. 2006. Molecular mimicry in mercury toxicology. Chem. Res. Toxicol. 19: 753-759. Redwood L, Bernard S, Brown D. 2001. Predicted mercury concentrations in hair from infant immunizations: cause for concern. Neurotoxicology 22: 691-697. Aschner M, Clarkson TW. 1988. Uptake of methylmercury in the rat brain: effects of amino acids. Brain Res. 462: 31-39. Jedrychowski W. 2012. Reply to the correspondence letter by M.D. Majewska: Krakow's children and cognitive function: can the study by Jedrychowski et al. show us the bigger picture? Eur. J. Pediatr. 171: 405. Pichichero ME, Gentile A, Giglio N, Umido V, Clarkson T, Cernichiari E, Zareba G, Gotelli C, Gotelli M, Yan L, Treanor J. 2008. Mercury levels in newborns and infants after receipt of thimerosal-containing vaccines. Pediatrics 121: e208-e214. Zhao Y, Zheng J, Fang L, Lin Q, Wu Y, Xue Z, Fu F. 2012. Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 89: 280-285. Lee BE, Ha EH. 2012. Response to commentary "Co-exposure and confounders during neurodevelopment: We need them in the bigger picture of secondhand smoke exposure during pregnancy". Environ. Res. 112: 235. Havarinasab S, Lambertsson L, Qvarnström J, Hultman P. 2004. Dose-response study of thimerosal-induced murine systemic autoimmunity. Toxicol. Appl. Pharmacol. 194: 169-179. Clarkson TW, Strain JJ. 2003. Nutritional factors may modify the toxic action of methyl mercury in fish-eating populations. J. Nutr. 133(5 Suppl 1): 1539S-1543S. Chen JB, Tao R, Sun HY, Tse HF, Lau CP, Li GR. 2010. Multiple Ca2+ signaling pathways regulate intracellular Ca2+ activity in human cardiac fibroblasts. J. Cell. Physiol. 223: 68-75. WHO. 2010. Children's exposure to mercury compounds. World Health Organization, WHO Press, pp. 1-112. Fahrion JK, Komuro Y, Li Y, Ohno N, Littner Y, Raoult E, Galas L, Vaudry D, Komuro H. 2012. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency. Proc. Natl. Acad. Sci. U. S. A. 109: 5057-5062. Alix J 2012; 120 2007; 229 2002; 13 2006; 36 2010; 223 2008; 107 2007; 70 1988; 462 2008; 105 1999; 40 1983; 18 1974; 9 1994; 63 1996; 78 2010; 1 2010; 25 2010; 118 2006; 27 1992; 113 2010; 198 2010; 110 2010b; 246 2007; 6 1982; 131 1995; 120 2010; 7 1990; 50 2011; 120 1979; 7 1996; 17 1990; 521 1989; 65 2000; 355 2005; 113 1973; 34 2007; 166 1962; 19 1982; 720 2012; 37 2011; 4 2001; 22 2011; 3 2008; 121 2012; 109 2011; 252 1982; 46 2004; 154 2012; 112 2009; 191 1998b; 39 2006; 43 2002; 360 1977; 19 1984; 33 2005; 4 1986; 28 1998; 77 2007; 388 2012; 2012 2002; 110 2011b; 89 2011; 13 1985; 60 2001; 107 2010; 60 2011a; 412 2012; 175 2011b; 140 1963; 33 2011a; 256 2012; 171 2002; 106 1998; 50 2007; 24 1975; 4 2007; 26 1985; 57 2007; 27 2009; 23 2010a; 274 2009; 21 2010 1978; 19 2011; 30 2011; 32 2006; 19 2011; 36 2003; 133 2010; 84 2009; 28 1997; 124 2009; 30 1998a; 38 2010; 411 2007; 231 2004; 195 2005; 204 2004; 194 2007; 40 2009; 4 1992; 66 2012; 89 2012; 88 2012; 87 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 Tryphonas L (e_1_2_8_97_1) 1973; 34 e_1_2_8_9_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 WHO (e_1_2_8_106_1) 2010 Yaqob A (e_1_2_8_102_1) 2006; 27 e_1_2_8_91_1 Suzuki T (e_1_2_8_95_1) 1963; 33 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 Lohr JW (e_1_2_8_65_1) 1998; 50 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 WHO (e_1_2_8_107_1) 2012; 87 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_14_1 Denny MF (e_1_2_8_26_1) 1996; 17 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 Blanuša M (e_1_2_8_13_1) 2012; 2012 e_1_2_8_27_1 e_1_2_8_69_1 Clarkson TW (e_1_2_8_22_1) 2003; 133 Levander OA (e_1_2_8_61_1) 1977; 19 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_84_1 e_1_2_8_39_1 e_1_2_8_35_1 Westermark T (e_1_2_8_101_1) 1975; 4 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – reference: Hewett SJ, Atchison WD. 1992. Effects of charge and lipophilicity on mercurial-induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat. Toxicol. Appl. Pharmacol. 113: 267-273. – reference: Suda I, Totoki S, Uchida T, Takahashi H. 1992. Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells. Arch. Toxicol. 66: 40-44. – reference: Migdal C, Tailhardat M, Courtellemont P, Haftek M, Serres M. 2010b. Responsiveness of human monocyte-derived dendritic cells to thimerosal and mercury derivatives. Toxicol. Appl. Pharmacol. 246: 66-73. – reference: Ramanathan G, Atchison WD. 2011. Ca2+ entry pathways in mouse spinal motor neurons in culture following in vitro exposure to methylmercury. Neurotoxicology 32: 742-750. – reference: Westermark T, Odsjö T, Johnels AG. 1975. Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture. Ambio 4: 87-92. – reference: Hashimoto E, Oyama TB, Oyama K, Nishimura Y, Oyama TM, Ueha-Ishibashi T, Okano Y, Oyama Y. 2009. Increase in intracellular Zn2+ concentration by thimerosal in rat thymocytes: intracellular Zn2+ release induced by oxidative stress. Toxicol. In Vitro 23: 1092-1099. – reference: Yole M, Wickstrom M, Blakley B. 2007. Cell death and cytotoxic effects in YAC-1 lymphoma cells following exposure to various forms of mercury. Toxicology 231: 40-57. – reference: Suzuki K, Nakai K, Sugawara T, Nakamura T, Ohba T, Shimada M, Hosokawa T, Okamura K, Sakai T, Kurokawa N, Murata K, Satoh C, Satoh H. 2010. Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development. Environ. Res. 110: 699-704. – reference: Suzuki T, Miyama T, Katsunuma H. 1963. Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n-propyl mercury acetates. Jpn. J. Exp. Med. 33: 277-282. – reference: Gardner RM, Nyland JF, Silbergeld EK. 2010. Differential immunotoxic effects of inorganic and organic mercury species in vitro. Toxicol. Lett. 198: 182-190. – reference: Barregard L, Rekić D, Horvat M, Elmberg L, Lundh T, Zachrisson O. 2011. Toxicokinetics of mercury after long-term repeated exposure to thimerosal-containing vaccine. Toxicol. Sci. 120: 499-506. – reference: Rabenstein DL, Isab AA, Reid RS. 1982. A proton nuclear magnetic resonance study of the binding of methylmercury in human erythrocytes. Biochim. Biophys. Acta 720: 53-64. – reference: Havarinasab S, Björn E, Ekstrand J, Hultman P. 2007. Dose and Hg species determine the T-helper cell activation in murine autoimmunity. Toxicology 229: 23-32. – reference: Ballatori N. 2002. Transport of toxic metals by molecular mimicry. Environ. Health Perspect. 110(Suppl 5): 689-694. – reference: Farina M, Rocha JB, Aschner M. 2011b. Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci. 89: 555-563. – reference: Roos DH, Puntel RL, Farina M, Aschner M, Bohrer D, Rocha JB, de Vargas Barbosa NB. 2011. Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism. Toxicol. Appl. Pharmacol. 252: 28-35. – reference: Park EK, Mak SK, Kültz D, Hammock BD. 2007. Evaluation of cytotoxicity attributed to thimerosal on murine and human kidney cells. J. Toxicol. Environ. Health A 70: 2092-2095. – reference: Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1998b. Thimerosal positivities: the rôle of SH groups and divalent ions. Contact Dermatitis 39: 123-126. – reference: Bridges CC, Zalups RK. 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204: 274-308. – reference: Brzeźnicka EA, Chmielnicka J. 1985. Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite. Environ. Health Perspect.. 60: 423-431. – reference: Migdal C, Foggia L, Tailhardat M, Courtellemont P, Haftek M, Serres M. 2010a. Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling. Toxicology 274: 1-9. – reference: Ulfvarson U. 1962. Distribution and excretion of some mercury compounds after long term exposure. Int. Arch. Gewerbepathol. Gewerbehyg. 19: 412-422. – reference: Grandjean P, Weihe P, White RF, Debes F. 1998. Cognitive performance of children prenatally exposed to "safe" levels of methylmercury. Environ. Res. 77: 165-172. – reference: Hoffmeyer RE, Singh SP, Doonan CJ, Ross AR, Hughes RJ, Pickering IJ, George GN. 2006. Molecular mimicry in mercury toxicology. Chem. Res. Toxicol. 19: 753-759. – reference: Hempel M, Chau YK, Dutka BJ, McInnis R, Kwan KK, Liu D. 1995. Toxicity of organomercury compounds: bioassay results as a basis for risk assessment. Analyst 120: 721-724. – reference: Dórea JG. 2010. Making sense of epidemiological studies of young children exposed to thimerosal in vaccines. Clin. Chim. Acta 411: 1580-1586. – reference: Audicana MT, Muñoz D, del Pozo MD, Fernández E, Gastaminza G, Fernández de Corres L. 2002. Allergic contact dermatitis from mercury antiseptics and derivatives: study protocol of tolerance to intramuscular injections of thimerosal. Am. J. Contact Dermat. 13: 3-9. – reference: Dórea JG. 2011. Integrating experimental (in vitro and in vivo) neurotoxicity studies of low-dose thimerosal relevant to vaccines. Neurochem. Res. 36: 927-938. – reference: Korbas M, O'Donoghue JL, Watson GE, Pickering IJ, Singh SP, Myers GJ, Clarkson TW, George GN. 2010. The chemical nature of mercury in human brain following poisoning or environmental exposure. ACS Chem. Neurosci.1: 810-818. – reference: Dórea JG, Marques RC, Isejima C. 2012. Neurodevelopment of Amazonian infants: antenatal and postnatal exposure to methyl- and ethylmercury. J. Biomed. Biotechnol. 2012: 132876. – reference: Dórea JG, Wimer W, Marques, RC, Shade C. 2011b. Automated speciation of mercury in hair of breastfed infants exposed to ethylmercury from thimerosal-containing vaccines. Biol. Trace Elem. Res. 140: 262-271. – reference: Li Y, Yan XP, Chen C, Xia YL, Jiang Y. 2007. Human serum albumin-mercurial species interactions. J. Proteome Res. 6: 2277-2286. – reference: Zareba G, Cernichiari E, Hojo R, Nitt SM, Weiss B, Mumtaz MM, Jones DE, Clarkson TW. 2007. Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury. J. Appl. Toxicol. 27: 511-518. – reference: Magos L, Clarkson TW. 2006. Overview of the clinical toxicity of mercury. Ann. Clin. Biochem. 43(Pt 4): 257-268. – reference: InSug O, Datar S, Koch CJ, Shapiro IM, Shenker BJ. 1997. Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve. Toxicology 124: 211-224. – reference: Janzen R, Schwarzer M, Sperling M, Vogel M, Schwerdtle T, Karst U. 2011. Adduct formation of Thimerosal with human and rat hemoglobin: a study using liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOF-MS). Metallomics 3: 847-852. – reference: Clements CJ, Ball LK, Ball R, Pratt D. 2000. Thiomersal in vaccines. Lancet 355(9211): 1279-1280. – reference: Bridges CC, Zalups RK. 2011. Transport of inorganic mercury and methylmercury in target tissues and organs. J. Toxicol. Environ. Health B Crit. Rev. 13: 385-410. – reference: Park JS, Jung SY, Son YJ, Kim MS, Kim JG, Park SH, Lee SM, Chae YZ, Kim MY. 2011. Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea. Food Addit. Contam. B Surveill 4: 268-274. – reference: Pichichero ME, Gentile A, Giglio N, Umido V, Clarkson T, Cernichiari E, Zareba G, Gotelli C, Gotelli M, Yan L, Treanor J. 2008. Mercury levels in newborns and infants after receipt of thimerosal-containing vaccines. Pediatrics 121: e208-e214. – reference: Zimmer B, Lee G, Stiegler NV, Meganathan K, Sachinidis A, Studer L, Leist M. 2012. Evaluation of Developmental Toxicants and Signaling Pathways in a Functional Test Based on the Migration of Human Neural Crest Cells. Environ. Health Perspect. 120: 1116-1622. – reference: Blanuša M, Orct T, Vihnanek Lazarus M, Sekovanić A, Piasek M. 2012. Mercury disposition in suckling rats: comparative assessment following parenteral exposure to thiomersal and mercuric chloride. J. Biomed. Biotechnol. 2012: 256965. – reference: Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML, Marsh CB, Kuppusamy P, Parinandi NL. 2007. Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int. J. Toxicol. 26: 57-69. – reference: Rush T, Hjelmhaug J, Lobner D. 2009. Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture. Neurotoxicology 30: 47-51. – reference: Aschner M. 1989. Brain, kidney and liver 203Hg-methyl mercury uptake in the rat: relationship to the neutral amino acid carrier. Pharmacol. Toxicol. 65: 17-20. – reference: Lohr JW, Willsky GR, Acara MA. 1998. Renal drug metabolism. Pharmacol. Rev. 50: 107-141. – reference: Barile JP, Kuperminc GP, Weintraub ES, Mink JW, Thompson WW. 2012. Thimerosal exposure in early life and neuropsychological outcomes 7-10 years later. J. Pediatr. Psychol. 37: 106-118. – reference: Kris-Etherton PM, Harris WS, Appel LJ. 2002. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106: 2747-2757. – reference: Zhao Y, Zheng J, Fang L, Lin Q, Wu Y, Xue Z, Fu F. 2012. Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta 89: 280-285. – reference: Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1998a. Thimerosal positivities: the role of organomercury alkyl compounds. Contact Dermatitis 38: 325-328. – reference: Kawanai T, Satoh M, Murao K, Oyama Y. 2009. Methylmercury elicits intracellular Zn2+ release in rat thymocytes: its relation to methylmercury-induced decrease in cellular thiol content. Toxicol. Lett. 191: 231-235. – reference: Levander OA. 1977. Metabolic interrelationships between arsenic and selenium. Environ. Health Perspect. 19: 159-164. – reference: Fang SC, Fallin E. 1974. Uptake and subcellular cleavage of organomercury compounds by rat liver and kidney. Chem. Biol. Interact. 9: 57-64. – reference: Babich H, Goldstein SH, Borenfreund E. 1990. In vitro cyto and genotoxicity of organomercurials to cells in culture. Toxicol. Lett. 50: 143-149. – reference: Aschner M, Syversen T, Souza DO, Rocha JB, Farina M. 2007. Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity. Braz. J. Med. Biol. Res. 40: 285-291. – reference: Gibicar D, Logar M, Horvat N, Marn-Pernat A, Ponikvar R, Horvat M. 2007. Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n-propyl)borate as derivatizing agent. Anal. Bioanal. Chem. 388: 329-340. – reference: Aschner M, Clarkson TW. 1988. Uptake of methylmercury in the rat brain: effects of amino acids. Brain Res. 462: 31-39. – reference: Denny MF, Atchison WD. 1996. Mercurial-induced alterations in neuronal divalent cation homeostasis. Neurotoxicology 17: 47-61. – reference: Smith KL, Guentzel JL. 2010. Mercury concentrations and omega-3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits. Mar. Pollut. Bull. 60: 1615-1618. – reference: Kakuschke A, Valentine-Thon E, Fonfara S, Kramer K, Prange A. 2009. Effects of methyl-, phenyl-, ethylmercury and mercurychlorid on immune cells of harbor seals (Phoca vitulina). J. Environ. Sci. (China) 21: 1716-1721. – reference: Roos D, Seeger RL, Puntel R, Barbosa NB. 2012. Role of calcium and mitochondria in MeHg-mediated citotoxicity. J. Biomed. Biotechnol. 2012: 248764. – reference: Aschner M, Eberle NB, Goderie S, Kimelberg HK. 1990. Methylmercury uptake in rat primary astrocyte cultures: the role of the neutral amino acid transport system. Brain Res. 521: 221-228. – reference: Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U. 2006. Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. Neuro Endocrinol. Lett. 27: 189-197. – reference: Tryphonas L, Nielsen NO. 1973. Pathology of chronic alkylmercurial poisoning in swine. Am. J. Vet. Res. 34: 379-392. – reference: Chen JB, Tao R, Sun HY, Tse HF, Lau CP, Li GR. 2010. Multiple Ca2+ signaling pathways regulate intracellular Ca2+ activity in human cardiac fibroblasts. J. Cell. Physiol. 223: 68-75. – reference: Fahrion JK, Komuro Y, Li Y, Ohno N, Littner Y, Raoult E, Galas L, Vaudry D, Komuro H. 2012. Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency. Proc. Natl. Acad. Sci. U. S. A. 109: 5057-5062. – reference: Marques RC, Dórea JG, Fonseca MF, Bastos WR, Malm O. 2007. Hair mercury in breastfed infants exposed to thimerosal-preserved vaccines. Eur. J. Pediatr. 166: 935-941. – reference: Alix JH. 1982. Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine. Microbiol. Rev. 46: 281-295. – reference: Ball LK, Ball R, Pratt RD. 2001. An assessment of thimerosal use in childhood vaccines Pediatrics 107: 1147-1154. – reference: Lee BE, Ha EH. 2012. Response to commentary "Co-exposure and confounders during neurodevelopment: We need them in the bigger picture of secondhand smoke exposure during pregnancy". Environ. Res. 112: 235. – reference: Dórea JG. 2007. Exposure to mercury during the first six months via human milk and vaccines: modifying risk factors. Am. J. Perinatol. 24: 387-400. – reference: Li P, Feng X, Qiu G. 2010. Methylmercury exposure and health effects from rice and fish consumption: a review. Int. J. Environ. Res. Public Health 7: 2666-2691. – reference: Secor JD, Kotha SR, Gurney TO, Patel RB, Kefauver NR, Gupta N, Morris AJ, Haley BE, Parinandi NL. 2011. Novel lipid-soluble thiol-redox antioxidant and heavy metal chelator, N,N′-bis(2-mercaptoethyl)isophthalamide (NBMI) and phospholipase D-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) attenuate mercury-induced lipid signaling leading to protection against cytotoxicity in aortic endothelial cells. Int. J. Toxicol.30: 619-638. – reference: Rabenstein DL, Reid RS, Isab AA. 1983. H NMR study of the effectiveness of various thiols for removal of methylmercury from hemolyzed erythrocytes. J. Inorg. Biochem. 18: 241-251. – reference: Chmielnicka J, Brzeinicka EA. 1978. The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds. Bull. Environ. Contam. Toxicol. 19: 183-190. – reference: Korbas M, Blechinger SR, Krone PH, Pickering IJ, George GN. 2008. Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level. Proc. Natl. Acad. Sci. USA 105: 12108-12112. – reference: Magos L, Brown AW, Sparrow S, Bailey E, Snowden RT, Skipp WR. 1985. The comparative toxicology of ethyl and methylmercury. Arch. Toxicol. 57: 260-267. – reference: Ishitobi H, Stern S, Thurston SW, Zareba G, Langdon M, Gelein R, Weiss B. 2010. Organic and inorganic mercury in neonatal rat brain after prenatal exposure to methylmercury and mercury vapor. Environ. Health Perspect.118: 242-248. – reference: Pan-Hou HS, Imura N. 1982. Involvement of mercury methylation in microbial mercury detoxication. Arch. Microbiol. 131: 176-177. – reference: Yin Z, Jiang H, Syversen T, Rocha JB, Farina M, Aschner M. 2008. The methylmercury-L-cysteine conjugate is a substrate for the L-type large neutral amino acid transporter. J. Neurochem. 107: 1083-1090. – reference: Redwood L, Bernard S, Brown D. 2001. Predicted mercury concentrations in hair from infant immunizations: cause for concern. Neurotoxicology 22: 691-697. – reference: Santucci B, Cannistraci C, Cristaudo A, Camera E, Picardo M. 1999. Thimerosal positivities: patch testing to methylmercury chloride in subjects sensitive to ethylmercury chloride. Contact Dermatitis 40: 8-13. – reference: Jedrychowski W. 2012. Reply to the correspondence letter by M.D. Majewska: Krakow's children and cognitive function: can the study by Jedrychowski et al. show us the bigger picture? Eur. J. Pediatr. 171: 405. – reference: Burbacher TM, Shen DD, Liberato N, Grant KS, Cernichiari E, Clarkson T. 2005. Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal. Environ. Health Perspect. 113: 1015-1021. – reference: Peltz A, Sherwani SI, Kotha SR, Mazerik JN, O'Connor Butler ES, Kuppusamy ML, Hagele T, Magalang UJ, Kuppusamy P, Marsh CB, Parinandi NL. 2009. Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. Int. J. Toxicol. 28: 190-206. – reference: Harry GJ, Harris MW, Burka LT. 2004. Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice. Toxicol. Lett. 154: 183-189. – reference: Pichichero ME, Cernichiari E, Lopreiato J, Treanor J. 2002. Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: A descriptive study Lancet 360(9347): 1737-1741. – reference: Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 36: 609-662. – reference: Rodrigues JL, Serpeloni JM, Batista BL, Souza SS, Barbosa F Jr. 2010. Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury. Arch. Toxicol. 84: 891-896. – reference: Denny MF, Atchison WD. 1994. Methylmercury-induced elevations in intrasynaptosomal zinc concentrations: an 19F-NMR study. J. Neurochem. 63: 383-386. – reference: Rabenstein DL, Arnold AP, Guy RD. 1986. 1H NMR study of the removal of methylmercury from intact erythrocytes by sulfhydryl compounds. J. Inorg. Biochem. 28: 279-287. – reference: Clarkson TW, Strain JJ. 2003. Nutritional factors may modify the toxic action of methyl mercury in fish-eating populations. J. Nutr. 133(5 Suppl 1): 1539S-1543S. – reference: Yin Y, Chen B, Mao Y, Wang T, Liu J, Cai Y, Jiang G. 2012. Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere 88: 8-16. – reference: Pinheiro MCN, do Nascimento JLM, Silveira LCL, Rocha JBT, Aschner M. 2009. Mercury and selenium - a review on aspects related to the health of human populations in the Amazon. Environ. Bioindic. 4: 222-245. – reference: Havarinasab S, Lambertsson L, Qvarnström J, Hultman P. 2004. Dose-response study of thimerosal-induced murine systemic autoimmunity. Toxicol. Appl. Pharmacol. 194: 169-179. – reference: Ueha-Ishibashi T, Oyama Y, Nakao H, Umebayashi C, Nishizaki Y, Tatsuishi T, Iwase K, Murao K, Seo H. 2004. Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons. Toxicology 195: 77-84. – reference: Farina M, Aschner M, Rocha JB. 2011a . Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 256: 405-417. – reference: WHO. Global Advisory Committee on Vaccine Safety, June 2012. Wkly. Epidemiol. Rec. 2012; 87: 281-287. – reference: WHO. 2010. Children's exposure to mercury compounds. World Health Organization, WHO Press, pp. 1-112. – reference: Davidson PW, Cory-Slechta DA, Thurston SW, Huang LS, Shamlaye CF, Gunzler D, Watson G, van Wijngaarden E, Zareba G, Klein JD, Clarkson TW, Strain JJ, Myers GJ. 2011. Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study. Neurotoxicology 32: 711-717. – reference: Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S. 2012. Evidence on the Human Health Effects of Low Level Methylmercury Exposure. Environ. Health Perspect. 120: 799-806. – reference: Chao ES, Gierthy JF, Frenkel GD. 1984. A comparative study of the effects of mercury compounds on cell viability and nucleic acid synthesis in HeLa cells. Biochem. Pharmacol. 33: 1941-1945. – reference: Llop S, Guxens M, Murcia M, Lertxundi A, Ramon R, Riaño I, Rebagliato M, Ibarluzea J, Tardon A, Sunyer J, Ballester F; INMA Project. 2012. Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers. Am. J. Epidemiol. 175: 451-465. – reference: Havarinasab S, Hultman P. 2005. Organic mercury compounds and autoimmunity. Autoimmun. Rev. 4: 270-275. – reference: Duszczyk-Budhathoki M, Olczak M, Lehner M, Majewska MD. 2012. Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: Protective role of dehydroepiandrosterone sulfate. Neurochem. Res. 37: 436-447. – reference: Tsoi Y-K, Tam S, Leung KS-Y. 2010. Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase micro-extraction coupled to LC-ICP-MS. J. Anal. At. Spectrom. 25: 1758-1762. – reference: Sakamoto M, Ikegami N, Nakano A. 1996. Protective effects of Ca2+ channel blockers against methyl mercury toxicity. Pharmacol. Toxicol. 78: 193-199. – reference: Möller H, Trofast J. The sensitizing capacity of merthiolate and its methyl analogue. 1979. J. Biol. Stand. 7: 153-155. – reference: Dórea JG, Bezerra VL, Fajon V, Horvat M. 2011a. Speciation of methyl- and ethyl-mercury in hair of breastfed infants acutely exposed to thimerosal-containing vaccines. Clin. Chim. Acta 412: 1563-1566. – volume: 60 start-page: 1615 year: 2010 end-page: 1618 article-title: Mercury concentrations and omega‐3 fatty acids in fish and shrimp: Preferential consumption for maximum health benefits publication-title: Mar. Pollut. Bull. – volume: 229 start-page: 23 year: 2007 end-page: 32 article-title: Dose and Hg species determine the T‐helper cell activation in murine autoimmunity publication-title: Toxicology – volume: 121 start-page: e208 year: 2008 end-page: e214 article-title: Mercury levels in newborns and infants after receipt of thimerosal‐containing vaccines publication-title: Pediatrics – volume: 18 start-page: 241 year: 1983 end-page: 251 article-title: H NMR study of the effectiveness of various thiols for removal of methylmercury from hemolyzed erythrocytes publication-title: J. Inorg. Biochem. – volume: 105 start-page: 12108 year: 2008 end-page: 12112 article-title: Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 57 year: 1974 end-page: 64 article-title: Uptake and subcellular cleavage of organomercury compounds by rat liver and kidney publication-title: Chem. Biol. Interact. – volume: 78 start-page: 193 year: 1996 end-page: 199 article-title: Protective effects of Ca2+ channel blockers against methyl mercury toxicity publication-title: Pharmacol. Toxicol. – volume: 27 start-page: 511 year: 2007 end-page: 518 article-title: Thimerosal distribution and metabolism in neonatal mice: comparison with methyl mercury publication-title: J. Appl. Toxicol. – volume: 36 start-page: 927 year: 2011 end-page: 938 article-title: Integrating experimental (in vitro and in vivo) neurotoxicity studies of low‐dose thimerosal relevant to vaccines publication-title: Neurochem. Res. – volume: 6 start-page: 2277 year: 2007 end-page: 2286 article-title: Human serum albumin‐mercurial species interactions publication-title: J. Proteome Res. – volume: 22 start-page: 691 year: 2001 end-page: 697 article-title: Predicted mercury concentrations in hair from infant immunizations: cause for concern publication-title: Neurotoxicology – volume: 133 start-page: 1539S issue: 5 Suppl 1 year: 2003 end-page: 1543S article-title: Nutritional factors may modify the toxic action of methyl mercury in fish‐eating populations publication-title: J. Nutr. – volume: 107 start-page: 1083 year: 2008 end-page: 1090 article-title: The methylmercury‐L‐cysteine conjugate is a substrate for the L‐type large neutral amino acid transporter publication-title: J. Neurochem. – volume: 89 start-page: 280 year: 2012 end-page: 285 article-title: Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis‐inductively coupled plasma mass spectrometry publication-title: Talanta – volume: 26 start-page: 57 year: 2007 end-page: 69 article-title: Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress publication-title: Int. J. Toxicol. – volume: 2012 start-page: 132876 year: 2012 article-title: Neurodevelopment of Amazonian infants: antenatal and postnatal exposure to methyl‐ and ethylmercury publication-title: J. Biomed. Biotechnol. – volume: 110 start-page: 689 issue: Suppl 5 year: 2002 end-page: 694 article-title: Transport of toxic metals by molecular mimicry publication-title: Environ. Health Perspect. – volume: 24 start-page: 387 year: 2007 end-page: 400 article-title: Exposure to mercury during the first six months via human milk and vaccines: modifying risk factors publication-title: Am. J. Perinatol. – volume: 720 start-page: 53 year: 1982 end-page: 64 article-title: A proton nuclear magnetic resonance study of the binding of methylmercury in human erythrocytes publication-title: Biochim. Biophys. Acta – volume: 223 start-page: 68 year: 2010 end-page: 75 article-title: Multiple Ca2+ signaling pathways regulate intracellular Ca2+ activity in human cardiac fibroblasts publication-title: J. Cell. Physiol. – volume: 131 start-page: 176 year: 1982 end-page: 177 article-title: Involvement of mercury methylation in microbial mercury detoxication publication-title: Arch. Microbiol. – volume: 25 start-page: 1758 year: 2010 end-page: 1762 article-title: Rapid speciation of methylated and ethylated mercury in urine using headspace solid phase micro‐extraction coupled to LC‐ICP‐MS publication-title: J. Anal. At. Spectrom. – volume: 194 start-page: 169 year: 2004 end-page: 179 article-title: Dose‐response study of thimerosal‐induced murine systemic autoimmunity publication-title: Toxicol. Appl. Pharmacol. – volume: 204 start-page: 274 year: 2005 end-page: 308 article-title: Molecular and ionic mimicry and the transport of toxic metals publication-title: Toxicol. Appl. Pharmacol. – volume: 7 start-page: 2666 year: 2010 end-page: 2691 article-title: Methylmercury exposure and health effects from rice and fish consumption: a review publication-title: Int. J. Environ. Res. Public Health – volume: 166 start-page: 935 year: 2007 end-page: 941 article-title: Hair mercury in breastfed infants exposed to thimerosal‐preserved vaccines publication-title: Eur. J. Pediatr. – volume: 521 start-page: 221 year: 1990 end-page: 228 article-title: Methylmercury uptake in rat primary astrocyte cultures: the role of the neutral amino acid transport system publication-title: Brain Res. – volume: 252 start-page: 28 year: 2011 end-page: 35 article-title: Modulation of methylmercury uptake by methionine: prevention of mitochondrial dysfunction in rat liver slices by a mimicry mechanism publication-title: Toxicol. Appl. Pharmacol. – volume: 195 start-page: 77 year: 2004 end-page: 84 article-title: Effect of thimerosal, a preservative in vaccines, on intracellular Ca2+ concentration of rat cerebellar neurons publication-title: Toxicology – volume: 37 start-page: 106 year: 2012 end-page: 118 article-title: Thimerosal exposure in early life and neuropsychological outcomes 7‐10 years later publication-title: J. Pediatr. Psychol. – volume: 113 start-page: 267 year: 1992 end-page: 273 article-title: Effects of charge and lipophilicity on mercurial‐induced reduction of 45Ca2+ uptake in isolated nerve terminals of the rat publication-title: Toxicol. Appl. Pharmacol. – volume: 120 start-page: 799 year: 2012 end-page: 806 article-title: Evidence on the Human Health Effects of Low Level Methylmercury Exposure publication-title: Environ. Health Perspect. – volume: 411 start-page: 1580 year: 2010 end-page: 1586 article-title: Making sense of epidemiological studies of young children exposed to thimerosal in vaccines publication-title: Clin. Chim. Acta – volume: 107 start-page: 1147 year: 2001 end-page: 1154 article-title: An assessment of thimerosal use in childhood vaccines publication-title: Pediatrics – volume: 70 start-page: 2092 year: 2007 end-page: 2095 article-title: Evaluation of cytotoxicity attributed to thimerosal on murine and human kidney cells publication-title: J. Toxicol. Environ. Health A – volume: 88 start-page: 8 year: 2012 end-page: 16 article-title: Possible alkylation of inorganic Hg(II) by photochemical processes in the environment publication-title: Chemosphere – volume: 198 start-page: 182 year: 2010 end-page: 190 article-title: Differential immunotoxic effects of inorganic and organic mercury species in vitro publication-title: Toxicol. Lett. – volume: 84 start-page: 891 year: 2010 end-page: 896 article-title: Identification and distribution of mercury species in rat tissues following administration of thimerosal or methylmercury publication-title: Arch. Toxicol. – volume: 4 start-page: 87 year: 1975 end-page: 92 article-title: Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture publication-title: Ambio – volume: 66 start-page: 40 year: 1992 end-page: 44 article-title: Degradation of methyl and ethyl mercury into inorganic mercury by various phagocytic cells publication-title: Arch. Toxicol. – volume: 4 start-page: 222 year: 2009 end-page: 245 article-title: Mercury and selenium ‐ a review on aspects related to the health of human populations in the Amazon publication-title: Environ. Bioindic. – volume: 120 start-page: 721 year: 1995 end-page: 724 article-title: Toxicity of organomercury compounds: bioassay results as a basis for risk assessment publication-title: Analyst – volume: 19 start-page: 159 year: 1977 end-page: 164 article-title: Metabolic interrelationships between arsenic and selenium publication-title: Environ. Health Perspect. – volume: 50 start-page: 143 year: 1990 end-page: 149 article-title: In vitro cyto and genotoxicity of organomercurials to cells in culture publication-title: Toxicol. Lett. – volume: 50 start-page: 107 year: 1998 end-page: 141 article-title: Renal drug metabolism publication-title: Pharmacol. Rev. – volume: 36 start-page: 609 year: 2006 end-page: 662 article-title: The toxicology of mercury and its chemical compounds publication-title: Crit. Rev. Toxicol. – volume: 3 start-page: 847 year: 2011 end-page: 852 article-title: Adduct formation of Thimerosal with human and rat hemoglobin: a study using liquid chromatography coupled to electrospray time‐of‐flight mass spectrometry (LC/ESI‐TOF‐MS) publication-title: Metallomics – volume: 2012 start-page: 256965 year: 2012 article-title: Mercury disposition in suckling rats: comparative assessment following parenteral exposure to thiomersal and mercuric chloride publication-title: J. Biomed. Biotechnol. – volume: 23 start-page: 1092 year: 2009 end-page: 1099 article-title: Increase in intracellular Zn2+ concentration by thimerosal in rat thymocytes: intracellular Zn2+ release induced by oxidative stress publication-title: Toxicol. In Vitro – volume: 171 start-page: 405 year: 2012 article-title: Reply to the correspondence letter by M.D. Majewska: Krakow's children and cognitive function: can the study by Jedrychowski . show us the bigger picture? publication-title: Eur. J. Pediatr. – volume: 46 start-page: 281 year: 1982 end-page: 295 article-title: Molecular aspects of the in vivo and in vitro effects of ethionine, an analog of methionine publication-title: Microbiol. Rev. – volume: 19 start-page: 183 year: 1978 end-page: 190 article-title: The influence of selenium on the level of mercury and metallothionein in rat kidneys in prolonged exposure to different mercury compounds publication-title: Bull. Environ. Contam. Toxicol. – volume: 412 start-page: 1563 year: 2011a end-page: 1566 article-title: Speciation of methyl‐ and ethyl‐mercury in hair of breastfed infants acutely exposed to thimerosal‐containing vaccines publication-title: Clin. Chim. Acta – volume: 191 start-page: 231 year: 2009 end-page: 235 article-title: Methylmercury elicits intracellular Zn2+ release in rat thymocytes: its relation to methylmercury‐induced decrease in cellular thiol content publication-title: Toxicol. Lett. – volume: 30 start-page: 47 year: 2009 end-page: 51 article-title: Effects of chelators on mercury, iron, and lead neurotoxicity in cortical culture publication-title: Neurotoxicology – volume: 4 start-page: 268 year: 2011 end-page: 274 article-title: Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea publication-title: Food Addit. Contam. B Surveill – start-page: 1 year: 2010 end-page: 112 – volume: 140 start-page: 262 year: 2011b end-page: 271 article-title: Automated speciation of mercury in hair of breastfed infants exposed to ethylmercury from thimerosal‐containing vaccines publication-title: Biol. Trace Elem. Res. – volume: 118 start-page: 242 year: 2010 end-page: 248 article-title: Organic and inorganic mercury in neonatal rat brain after prenatal exposure to methylmercury and mercury vapor publication-title: Environ. Health Perspect. – volume: 124 start-page: 211 year: 1997 end-page: 224 article-title: Mercuric compounds inhibit human monocyte function by inducing apoptosis: evidence for formation of reactive oxygen species, development of mitochondrial membrane permeability transition and loss of reductive reserve publication-title: Toxicology – volume: 63 start-page: 383 year: 1994 end-page: 386 article-title: Methylmercury‐induced elevations in intrasynaptosomal zinc concentrations: an 19F‐NMR study publication-title: J. Neurochem. – volume: 110 start-page: 699 year: 2010 end-page: 704 article-title: Neurobehavioral effects of prenatal exposure to methylmercury and PCBs, and seafood intake: neonatal behavioral assessment scale results of Tohoku study of child development publication-title: Environ. Res. – volume: 60 start-page: 423 year: 1985 end-page: 431 article-title: Interaction of alkylmercuric compounds with sodium selenite. III. Biotransformation, levels of metallothioneinlike proteins and endogenous copper in some tissues of rats exposed to methyl or ethylmercuric chloride with and without sodium selenite publication-title: Environ. Health Perspect. – volume: 112 start-page: 235 year: 2012 article-title: Response to commentary “Co‐exposure and confounders during neurodevelopment: We need them in the bigger picture of secondhand smoke exposure during pregnancy” publication-title: Environ. Res. – volume: 13 start-page: 3 year: 2002 end-page: 9 article-title: Allergic contact dermatitis from mercury antiseptics and derivatives: study protocol of tolerance to intramuscular injections of thimerosal publication-title: Am. J. Contact Dermat. – volume: 33 start-page: 277 year: 1963 end-page: 282 article-title: Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n‐propyl mercury acetates publication-title: Jpn. J. Exp. Med. – volume: 27 start-page: 189 year: 2006 end-page: 197 article-title: Metal‐specific lymphocyte reactivity is downregulated after dental metal replacement publication-title: Neuro Endocrinol. Lett. – volume: 360 start-page: 1737 issue: 9347 year: 2002 end-page: 1741 article-title: Mercury concentrations and metabolism in infants receiving vaccines containing thiomersal: A descriptive study publication-title: Lancet – volume: 57 start-page: 260 year: 1985 end-page: 267 article-title: The comparative toxicology of ethyl and methylmercury publication-title: Arch. Toxicol. – volume: 462 start-page: 31 year: 1988 end-page: 39 article-title: Uptake of methylmercury in the rat brain: effects of amino acids publication-title: Brain Res. – volume: 37 start-page: 436 year: 2012 end-page: 447 article-title: Administration of thimerosal to infant rats increases overflow of glutamate and aspartate in the prefrontal cortex: Protective role of dehydroepiandrosterone sulfate publication-title: Neurochem. Res. – volume: 40 start-page: 285 year: 2007 end-page: 291 article-title: Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity publication-title: Braz. J. Med. Biol. Res. – volume: 231 start-page: 40 year: 2007 end-page: 57 article-title: Cell death and cytotoxic effects in YAC‐1 lymphoma cells following exposure to various forms of mercury publication-title: Toxicology – volume: 13 start-page: 385 year: 2011 end-page: 410 article-title: Transport of inorganic mercury and methylmercury in target tissues and organs publication-title: J. Toxicol. Environ. Health B Crit. Rev. – volume: 109 start-page: 5057 year: 2012 end-page: 5062 article-title: Rescue of neuronal migration deficits in a mouse model of fetal Minamata disease by increasing neuronal Ca2+ spike frequency publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 175 start-page: 451 year: 2012 end-page: 465 article-title: Prenatal exposure to mercury and infant neurodevelopment in a multicenter cohort in Spain: study of potential modifiers publication-title: Am. J. Epidemiol. – volume: 120 start-page: 1116 year: 2012 end-page: 1622 article-title: Evaluation of Developmental Toxicants and Signaling Pathways in a Functional Test Based on the Migration of Human Neural Crest Cells publication-title: Environ. Health Perspect. – volume: 1 start-page: 810 year: 2010 end-page: 818 article-title: The chemical nature of mercury in human brain following poisoning or environmental exposure publication-title: ACS Chem. Neurosci. – volume: 32 start-page: 742 year: 2011 end-page: 750 article-title: Ca2+ entry pathways in mouse spinal motor neurons in culture following in vitro exposure to methylmercury publication-title: Neurotoxicology – volume: 77 start-page: 165 year: 1998 end-page: 172 article-title: Cognitive performance of children prenatally exposed to “safe” levels of methylmercury publication-title: Environ. Res. – volume: 274 start-page: 1 year: 2010a end-page: 9 article-title: Sensitization effect of thimerosal is mediated in vitro via reactive oxygen species and calcium signaling publication-title: Toxicology – volume: 65 start-page: 17 year: 1989 end-page: 20 article-title: Brain, kidney and liver Hg‐methyl mercury uptake in the rat: relationship to the neutral amino acid carrier publication-title: Pharmacol. Toxicol. – volume: 154 start-page: 183 year: 2004 end-page: 189 article-title: Mercury concentrations in brain and kidney following ethylmercury, methylmercury and Thimerosal administration to neonatal mice publication-title: Toxicol. Lett. – volume: 246 start-page: 66 year: 2010b end-page: 73 article-title: Responsiveness of human monocyte‐derived dendritic cells to thimerosal and mercury derivatives publication-title: Toxicol. Appl. Pharmacol. – volume: 33 start-page: 1941 year: 1984 end-page: 1945 article-title: A comparative study of the effects of mercury compounds on cell viability and nucleic acid synthesis in HeLa cells publication-title: Biochem. Pharmacol. – volume: 21 start-page: 1716 year: 2009 end-page: 1721 article-title: Effects of methyl‐, phenyl‐, ethylmercury and mercurychlorid on immune cells of harbor seals (Phoca vitulina) publication-title: J. Environ. Sci. (China) – volume: 89 start-page: 555 year: 2011b end-page: 563 article-title: Mechanisms of methylmercury‐induced neurotoxicity: evidence from experimental studies publication-title: Life Sci. – volume: 43 start-page: 257 issue: Pt 4 year: 2006 end-page: 268 article-title: Overview of the clinical toxicity of mercury publication-title: Ann. Clin. Biochem. – volume: 19 start-page: 412 year: 1962 end-page: 422 article-title: Distribution and excretion of some mercury compounds after long term exposure publication-title: Int. Arch. Gewerbepathol. Gewerbehyg. – volume: 113 start-page: 1015 year: 2005 end-page: 1021 article-title: Comparison of blood and brain mercury levels in infant monkeys exposed to methylmercury or vaccines containing thimerosal publication-title: Environ. Health Perspect. – volume: 256 start-page: 405 year: 2011a end-page: 417 article-title: Oxidative stress in MeHg‐induced neurotoxicity publication-title: Toxicol. Appl. Pharmacol. – volume: 40 start-page: 8 year: 1999 end-page: 13 article-title: Thimerosal positivities: patch testing to methylmercury chloride in subjects sensitive to ethylmercury chloride publication-title: Contact Dermatitis – volume: 38 start-page: 325 year: 1998a end-page: 328 article-title: Thimerosal positivities: the role of organomercury alkyl compounds publication-title: Contact Dermatitis – volume: 39 start-page: 123 year: 1998b end-page: 126 article-title: Thimerosal positivities: the rôle of SH groups and divalent ions publication-title: Contact Dermatitis – volume: 87 start-page: 281 year: 2012 article-title: Global Advisory Committee on Vaccine Safety, June 2012 publication-title: Wkly. Epidemiol. Rec. – volume: 19 start-page: 753 year: 2006 end-page: 759 article-title: Molecular mimicry in mercury toxicology publication-title: Chem. Res. Toxicol. – volume: 32 start-page: 711 year: 2011 end-page: 717 article-title: Fish consumption and prenatal methylmercury exposure: cognitive and behavioral outcomes in the main cohort at 17 years from the Seychelles child development study publication-title: Neurotoxicology – volume: 355 start-page: 1279 issue: 9211 year: 2000 end-page: 1280 article-title: Thiomersal in vaccines publication-title: Lancet – volume: 30 start-page: 619 year: 2011 end-page: 638 article-title: Novel lipid‐soluble thiol‐redox antioxidant and heavy metal chelator, N,N′‐bis(2‐mercaptoethyl)isophthalamide (NBMI) and phospholipase D‐specific inhibitor, 5‐fluoro‐2‐indolyl des‐chlorohalopemide (FIPI) attenuate mercury‐induced lipid signaling leading to protection against cytotoxicity in aortic endothelial cells publication-title: Int. J. Toxicol. – volume: 34 start-page: 379 year: 1973 end-page: 392 article-title: Pathology of chronic alkylmercurial poisoning in swine publication-title: Am. J. Vet. Res. – volume: 388 start-page: 329 year: 2007 end-page: 340 article-title: Simultaneous determination of trace levels of ethylmercury and methylmercury in biological samples and vaccines using sodium tetra(n‐propyl)borate as derivatizing agent publication-title: Anal. Bioanal. Chem. – volume: 28 start-page: 279 year: 1986 end-page: 287 article-title: 1H NMR study of the removal of methylmercury from intact erythrocytes by sulfhydryl compounds publication-title: J. Inorg. Biochem. – volume: 2012 start-page: 248764 year: 2012 article-title: Role of calcium and mitochondria in MeHg‐mediated citotoxicity publication-title: J. Biomed. Biotechnol. – volume: 4 start-page: 270 year: 2005 end-page: 275 article-title: Organic mercury compounds and autoimmunity publication-title: Autoimmun. Rev. – volume: 28 start-page: 190 year: 2009 end-page: 206 article-title: Calcium and calmodulin regulate mercury‐induced phospholipase D activation in vascular endothelial cells publication-title: Int. J. Toxicol. – volume: 120 start-page: 499 year: 2011 end-page: 506 article-title: Toxicokinetics of mercury after long‐term repeated exposure to thimerosal‐containing vaccine publication-title: Toxicol. Sci. – volume: 17 start-page: 47 year: 1996 end-page: 61 article-title: Mercurial‐induced alterations in neuronal divalent cation homeostasis publication-title: Neurotoxicology – volume: 106 start-page: 2747 year: 2002 end-page: 2757 article-title: Fish consumption, fish oil, omega‐3 fatty acids, and cardiovascular disease publication-title: Circulation – volume: 7 start-page: 153 year: 1979 end-page: 155 article-title: The sensitizing capacity of merthiolate and its methyl analogue publication-title: J. Biol. Stand. – ident: e_1_2_8_56_1 doi: 10.1016/j.toxlet.2009.09.003 – volume: 34 start-page: 379 year: 1973 ident: e_1_2_8_97_1 article-title: Pathology of chronic alkylmercurial poisoning in swine publication-title: Am. J. Vet. Res. – ident: e_1_2_8_35_1 doi: 10.1016/0009-2797(74)90067-2 – ident: e_1_2_8_44_1 doi: 10.1016/j.tox.2006.09.006 – ident: e_1_2_8_69_1 doi: 10.1016/j.tox.2010.04.016 – ident: e_1_2_8_41_1 doi: 10.1080/10915810601120509 – volume: 87 start-page: 281 year: 2012 ident: e_1_2_8_107_1 article-title: Global Advisory Committee on Vaccine Safety, June 2012 publication-title: Wkly. Epidemiol. Rec. – volume: 50 start-page: 107 year: 1998 ident: e_1_2_8_65_1 article-title: Renal drug metabolism publication-title: Pharmacol. Rev. – ident: e_1_2_8_3_1 doi: 10.1111/j.1600-0773.1989.tb01119.x – ident: e_1_2_8_67_1 doi: 10.1258/000456306777695654 – ident: e_1_2_8_105_1 doi: 10.1016/j.tox.2006.11.062 – ident: e_1_2_8_24_1 doi: 10.1016/j.neuro.2011.08.003 – ident: e_1_2_8_18_1 doi: 10.1016/0006-2952(84)90552-5 – ident: e_1_2_8_87_1 doi: 10.1016/j.neuro.2008.10.009 – ident: e_1_2_8_53_1 doi: 10.1007/s00431-011-1613-4 – ident: e_1_2_8_89_1 doi: 10.1111/j.1600-0536.1998.tb05767.x – ident: e_1_2_8_52_1 doi: 10.1039/c1mt00043h – ident: e_1_2_8_93_1 doi: 10.1016/j.marpolbul.2010.06.045 – ident: e_1_2_8_76_1 doi: 10.1016/S0140-6736(02)11682-5 – ident: e_1_2_8_14_1 doi: 10.1016/j.taap.2004.09.007 – ident: e_1_2_8_39_1 doi: 10.1007/s00216-007-1208-0 – volume: 27 start-page: 189 year: 2006 ident: e_1_2_8_102_1 article-title: Metal‐specific lymphocyte reactivity is downregulated after dental metal replacement publication-title: Neuro Endocrinol. Lett. – ident: e_1_2_8_86_1 doi: 10.1155/2012/248764 – ident: e_1_2_8_58_1 doi: 10.1021/cn1000765 – ident: e_1_2_8_63_1 doi: 10.1021/pr0700403 – volume: 2012 start-page: 256965 year: 2012 ident: e_1_2_8_13_1 article-title: Mercury disposition in suckling rats: comparative assessment following parenteral exposure to thiomersal and mercuric chloride publication-title: J. Biomed. Biotechnol. doi: 10.1155/2012/256965 – ident: e_1_2_8_103_1 doi: 10.1016/j.chemosphere.2012.01.006 – ident: e_1_2_8_88_1 doi: 10.1111/j.1600-0773.1996.tb00203.x – ident: e_1_2_8_9_1 doi: 10.1542/peds.107.5.1147 – ident: e_1_2_8_20_1 doi: 10.1007/BF01685785 – volume: 4 start-page: 87 year: 1975 ident: e_1_2_8_101_1 article-title: Mercury Content of Bird Feathers before and after Swedish Ban on Alkyl Mercury in Agriculture publication-title: Ambio – ident: e_1_2_8_48_1 doi: 10.1016/0041-008X(92)90124-B – ident: e_1_2_8_17_1 doi: 10.1289/ehp.7712 – ident: e_1_2_8_90_1 doi: 10.1111/j.1600-0536.1998.tb05860.x – ident: e_1_2_8_2_1 doi: 10.1128/MMBR.46.3.281-295.1982 – ident: e_1_2_8_73_1 doi: 10.1080/19393210.2011.638087 – ident: e_1_2_8_82_1 doi: 10.1016/j.neuro.2011.07.007 – ident: e_1_2_8_80_1 doi: 10.1016/0167-4889(82)90038-6 – ident: e_1_2_8_36_1 doi: 10.1016/j.taap.2011.05.001 – ident: e_1_2_8_83_1 doi: 10.1016/S0161-813X(01)00067-5 – ident: e_1_2_8_29_1 doi: 10.1007/s11064-011-0427-0 – ident: e_1_2_8_51_1 doi: 10.1289/ehp.0900956 – ident: e_1_2_8_64_1 doi: 10.1093/aje/kwr328 – ident: e_1_2_8_94_1 doi: 10.1007/BF02307268 – ident: e_1_2_8_85_1 doi: 10.1016/j.taap.2011.01.010 – ident: e_1_2_8_99_1 doi: 10.1016/j.tox.2003.09.002 – ident: e_1_2_8_54_1 doi: 10.1016/S1001-0742(08)62478-X – volume: 133 start-page: 1539S issue: 5 year: 2003 ident: e_1_2_8_22_1 article-title: Nutritional factors may modify the toxic action of methyl mercury in fish‐eating populations publication-title: J. Nutr. doi: 10.1093/jn/133.5.1539S – ident: e_1_2_8_77_1 doi: 10.1542/peds.2006-3363 – ident: e_1_2_8_104_1 doi: 10.1111/j.1471-4159.2008.05683.x – ident: e_1_2_8_109_1 doi: 10.1016/j.talanta.2011.12.029 – ident: e_1_2_8_10_1 doi: 10.1289/ehp.02110s5689 – ident: e_1_2_8_19_1 doi: 10.1002/jcp.22010 – ident: e_1_2_8_55_1 doi: 10.1289/ehp.1104494 – ident: e_1_2_8_98_1 doi: 10.1039/c0ja00024h – volume: 17 start-page: 47 year: 1996 ident: e_1_2_8_26_1 article-title: Mercurial‐induced alterations in neuronal divalent cation homeostasis publication-title: Neurotoxicology – ident: e_1_2_8_30_1 doi: 10.1016/j.cca.2011.05.003 – ident: e_1_2_8_91_1 doi: 10.1111/j.1600-0536.1999.tb05969.x – ident: e_1_2_8_6_1 doi: 10.1590/S0100-879X2007000300001 – ident: e_1_2_8_12_1 doi: 10.1093/toxsci/kfr009 – ident: e_1_2_8_81_1 doi: 10.1016/0162-0134(83)85006-5 – ident: e_1_2_8_5_1 doi: 10.1016/0006-8993(90)91546-S – ident: e_1_2_8_100_1 doi: 10.1007/BF00312571 – ident: e_1_2_8_7_1 doi: 10.1053/ajcd.2002.29945 – ident: e_1_2_8_72_1 doi: 10.1007/BF01054003 – ident: e_1_2_8_47_1 doi: 10.1039/an9952000721 – ident: e_1_2_8_31_1 doi: 10.1007/s12011-010-8695-0 – ident: e_1_2_8_21_1 doi: 10.1080/10408440600845619 – ident: e_1_2_8_57_1 doi: 10.1073/pnas.0803147105 – ident: e_1_2_8_37_1 doi: 10.1016/j.lfs.2011.05.019 – ident: e_1_2_8_16_1 doi: 10.1289/ehp.60-1568568 – ident: e_1_2_8_15_1 doi: 10.1080/10937401003673750 – ident: e_1_2_8_68_1 doi: 10.1007/s00431-006-0362-2 – ident: e_1_2_8_74_1 doi: 10.1080/15287390701551324 – ident: e_1_2_8_25_1 doi: 10.1046/j.1471-4159.1994.63010383.x – ident: e_1_2_8_38_1 doi: 10.1016/j.toxlet.2010.06.015 – ident: e_1_2_8_62_1 doi: 10.3390/ijerph7062666 – start-page: 1 volume-title: Children's exposure to mercury compounds year: 2010 ident: e_1_2_8_106_1 – ident: e_1_2_8_28_1 doi: 10.1016/j.cca.2010.07.008 – ident: e_1_2_8_46_1 doi: 10.1016/j.taap.2003.09.006 – ident: e_1_2_8_79_1 doi: 10.1016/0162-0134(86)80092-7 – ident: e_1_2_8_49_1 doi: 10.1021/tx0503449 – ident: e_1_2_8_11_1 doi: 10.1093/jpepsy/jsr048 – volume: 33 start-page: 277 year: 1963 ident: e_1_2_8_95_1 article-title: Comparative study of bodily distribution of mercury in mice after subcutaneous administration of methyl, ethyl and n‐propyl mercury acetates publication-title: Jpn. J. Exp. Med. – ident: e_1_2_8_60_1 doi: 10.1016/j.envres.2011.09.007 – ident: e_1_2_8_108_1 doi: 10.1002/jat.1272 – ident: e_1_2_8_27_1 doi: 10.1055/s-2007-982074 – ident: e_1_2_8_110_1 doi: 10.1289/ehp.1104489 – ident: e_1_2_8_84_1 doi: 10.1007/s00204-010-0538-4 – ident: e_1_2_8_59_1 doi: 10.1161/01.CIR.0000038493.65177.94 – ident: e_1_2_8_70_1 doi: 10.1016/j.taap.2010.04.007 – ident: e_1_2_8_92_1 doi: 10.1177/1091581811422413 – ident: e_1_2_8_40_1 doi: 10.1006/enrs.1997.3804 – ident: e_1_2_8_33_1 doi: 10.1007/s11064-011-0630-z – ident: e_1_2_8_42_1 doi: 10.1016/j.toxlet.2004.07.014 – ident: e_1_2_8_8_1 doi: 10.1016/0378-4274(90)90004-6 – ident: e_1_2_8_78_1 doi: 10.1080/15555270903143440 – ident: e_1_2_8_96_1 doi: 10.1016/j.envres.2010.07.001 – ident: e_1_2_8_34_1 doi: 10.1073/pnas.1120747109 – ident: e_1_2_8_32_1 doi: 10.1155/2012/132876 – ident: e_1_2_8_66_1 doi: 10.1007/BF00324789 – ident: e_1_2_8_50_1 doi: 10.1016/S0300-483X(97)00153-4 – ident: e_1_2_8_4_1 doi: 10.1016/0006-8993(88)90581-1 – ident: e_1_2_8_43_1 doi: 10.1016/j.tiv.2009.05.020 – ident: e_1_2_8_75_1 doi: 10.1177/1091581809338077 – ident: e_1_2_8_71_1 doi: 10.1016/S0092-1157(79)80018-9 – ident: e_1_2_8_45_1 doi: 10.1016/j.autrev.2004.12.001 – ident: e_1_2_8_23_1 doi: 10.1016/S0140-6736(05)74714-0 – volume: 19 start-page: 159 year: 1977 ident: e_1_2_8_61_1 article-title: Metabolic interrelationships between arsenic and selenium publication-title: Environ. Health Perspect. doi: 10.1289/ehp.7719159 |
SSID | ssj0009928 |
Score | 2.3654592 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of... Ethylmercury (etHg) is derived from the metabolism of thimerosal (o‐carboxyphenyl‐thio‐ethyl‐sodium salt), which is the most widely used form of organic... Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 700 |
SubjectTerms | Animals Disease Models, Animal Ethylmercury Female fish Fishes Half-Life Humans Infant Meat methylmercury Methylmercury Compounds - pharmacokinetics Methylmercury Compounds - toxicity Nervous System - cytology Nervous System - drug effects neurodevelopment Oryza sativa Pregnancy Preservatives, Pharmaceutical - pharmacokinetics Preservatives, Pharmaceutical - toxicity Thimerosal Thimerosal - pharmacokinetics Thimerosal - toxicity Vaccination Vaccines - chemistry |
Title | Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury |
URI | https://api.istex.fr/ark:/67375/WNG-LR84BCW8-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjat.2855 https://www.ncbi.nlm.nih.gov/pubmed/23401210 https://www.proquest.com/docview/1427867395 https://www.proquest.com/docview/1371270148 https://www.proquest.com/docview/1434032953 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF-kvgjiR7V6WmULcio07d5-JFnf9LCWIqWUKz3wYdndbKC2JtK7g9a_3plskrNSS_EphMwm-zGT-e3u7G8IeRO4LbLcyiQXzCeyDD5x4HWSkVNaOl64UWjYPvfT3SO5N1XTNqoSz8JEfoh-wQ0to_lfo4FbN9tekoZ-t0i8qvB8OYZqIR46XDJHad2kVUXGrESKbNrxzjK-3RW84onuYqdeXAczr6LWxu3sPCTfugrHaJPTrcXcbflff3E5_l-LHpEHLRqlH6P6PCZ3QrVKhgeRzvpyk06Wp7Nmm3RID5ZE15er5H5c86PxKNMTsjepL048wHpalzSABmBqFg-DRt_ZqoCXncB9PbNn7z9QS32fAZHiYjD98WeJp-Ro5_NkvJu0uRoSLzVTSSrA25ZKB5nLAJjIahb0yDlmSyGtyFxRiLKwZQrur8iUHpWY7UwzKwQrAXWKNbJS1VV4TiigFg0llBIS4E5mbQDv6hjMpa1IPQ8D8rYbN-NbInPMp3FmIgUzN9CRBjtyQDZ6yZ-RvOMamWEz9L2APT_FYLdMmeP9L-brYS4_jY9zMx6Q9U43TGvnM5g48SxPcbMTvtU_BgvFbRdbhXoBMiLD7X2Yd94gI4VkgmslBuRZ1Lu-QhweIc0b1LTRnn82xcAfHa8vbiv4ktzjTXYPjGdcJyvz80V4BRhr7l431vQbXeIhZw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-N7QNIiMd4FQYYCRWQli2N7SSGT1AxyijVNHVaPyBZduJIYyNBaytt_PXcOU3K0ECIT1Hkc-LHne_n1-8AnrvI5ElqRJDyMAtE4bLAotcJelYqYaPc9pxn-xzFgwOxO5GTFXjT3IWp-SHaBTeyDD9ek4HTgvT2kjX0qyHmVSmvwBoF9Pbzqf0ld5RSPrAqcWYFgieThnk2jLabnBd80Ro169llQPMibvWOZ-cmfGmKXJ83Od6az-xW9uM3Nsf_rNMtuLEApOxtrUG3YcWV69DdqxmtzzfZeHlBa7rJumxvyXV9vg7X62U_Vt9mugO74-rsKENkz6qCOVQCis6SYb-xl6bM8WNH-F5Nzcmr18ywrA2CyGg9mH37NcddONh5P-4PgkW4hiATKpRBzNHhFlI5kQqHsMio0KmetaEpuDA8sXnOi9wUMXrAPJGqV1DAMxUazsMCgSe_B6tlVboHwBC4KMwhJReIeBJjHDpYG-J02vA4i1wHXjQdp7MFlzmF1DjRNQtzpLEhNTVkB561kt9r_o5LZLq-71sBc3pM590SqQ9HH_RwPxXv-oep7ndgo1EOvTD1Kc6doiSNab8T_9Umo5HSzospXTVHGZ7QDj9OPf8iI7gIeaQk78D9WvHaAkWYRExvWFKvPn-sisZBnZ4P_1XwKVwdjD8P9fDj6NMjuBb5YB90vHEDVmenc_cYIdfMPvGm9RNdnSWC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9RAEB-0BRHER32dVl1BToWm3cvuJlm_6dWz1nIc5UoP_LDsJhuorUnp3UHrX-9McslZqSJ-CmFnk33M7Pz29RuAVz60WZxYGSSCp4HMfRo49DpBzyktXZi5nq_YPofRzoHcnajJ4lQl3YWp-SHaBTeyjGq8JgM_zfKtJWnoN0vEq0pdh1UZ8YQ0ent_SR2ldRVXlSizAiniSUM8y8OtJuclV7RKrXp-Fc68DFsrvzO4A1-bEtfHTY435zO3mf74jczx_6p0F24v4Ch7X-vPPbjmizXojmo-64sNNl5ez5pusC4bLZmuL9bgVr3ox-q7TPdhd1yeH6WI61mZM48qQLFZUuw19sYWGX7sCN_LqT15-45ZlrYhEBmtBrPvv-Z4AAeDj-P-TrAI1hCkUnMVRALdba60l4n0CIqs5l73nOM2F9KK2GWZyDObR-j_sljpXk7hzjS3QvAcYad4CCtFWfjHwBC2aMyhlJCId2JrPbpXx3EybUWUhr4Dr5t-M-mCyZwCapyYmoM5NNiQhhqyAy9bydOaveMKmW7V9a2APTum026xMofDT2ZvP5Ef-oeJ6XdgvdENszD0Kc6cwjiJaLcT_9Umo4nSvostfDlHGRHT_j5OPP8iI4XkItRKdOBRrXdtgUJMIp43LGmlPX-sisEhnZ5P_lXwBdwYbQ_M3ufhl6dwM6wifdDZxnVYmZ3N_TPEWzP3vDKsn-6RJDo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toxicity+of+ethylmercury+%28and+Thimerosal%29%3A+a+comparison+with+methylmercury&rft.jtitle=Journal+of+applied+toxicology&rft.au=D%C3%B3rea%2C+Jos%C3%A9+G&rft.au=Farina%2C+Marcelo&rft.au=Rocha%2C+Jo%C3%A3o+B+T&rft.date=2013-08-01&rft.eissn=1099-1263&rft.volume=33&rft.issue=8&rft.spage=700&rft_id=info:doi/10.1002%2Fjat.2855&rft_id=info%3Apmid%2F23401210&rft.externalDocID=23401210 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0260-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0260-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0260-437X&client=summon |