Muscle echo intensity: reliability and conditioning factors

Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods Ultrasonographic scans of the following five muscl...

Full description

Saved in:
Bibliographic Details
Published inClinical physiology and functional imaging Vol. 35; no. 5; pp. 393 - 403
Main Authors Caresio, Cristina, Molinari, Filippo, Emanuel, Giorgio, Minetto, Marco Alessandro
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.09.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. Results We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0·54) to high (ICC: 0·86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0·42) to very high (0·91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. Conclusion The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat.
AbstractList Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. Results We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0·54) to high (ICC: 0·86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0·42) to very high (0·91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. Conclusion The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat.
To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0.54) to high (ICC: 0.86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0.42) to very high (0.91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat.
Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. Results We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0·54) to high (ICC: 0·86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0·42) to very high (0·91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. Conclusion The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat.
To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification.OBJECTIVETo assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification.Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan.METHODSUltrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan.We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0.54) to high (ICC: 0.86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0.42) to very high (0.91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles.RESULTSWe found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0.54) to high (ICC: 0.86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0.42) to very high (0.91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles.The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat.CONCLUSIONThe echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat.
Author Caresio, Cristina
Molinari, Filippo
Emanuel, Giorgio
Minetto, Marco Alessandro
Author_xml – sequence: 1
  givenname: Cristina
  surname: Caresio
  fullname: Caresio, Cristina
  organization: Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
– sequence: 2
  givenname: Filippo
  surname: Molinari
  fullname: Molinari, Filippo
  organization: Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
– sequence: 3
  givenname: Giorgio
  surname: Emanuel
  fullname: Emanuel, Giorgio
  organization: Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
– sequence: 4
  givenname: Marco Alessandro
  surname: Minetto
  fullname: Minetto, Marco Alessandro
  email: Marco Alessandro Minetto, MD, PhD, Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy, marco.minetto@unito.it
  organization: Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24902991$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtv1DAURq2qqC-64A-gSGzoIq2vnYltWKFRH0jlIQRTxMZynBtwydiDnaidf18PM9NFBd7Yls75rv0dkl0fPBLyAugp5HVmF90pMBCTHXIAlZiUVInvu4_nGvbJYUq3lILgldgj-6xSlCkFB-TthzHZHgu0v0Lh_IA-uWH5pojYO9O4Pl8K49vCBt-6wQXv_M-iM3YIMT0nzzrTJzze7Efk28X51-lVef3p8v303XVp85hJCYJVEhmVCCikBRBdHt1IIRuJTYfQKuQGqELorOGytkrJSla85cLipOZH5PU6dxHDnxHToOcuWex74zGMSYOgwKuaSsjoqyfobRijz69bUZRJVjOaqZcbamzm2OpFdHMTl3pbSwbO1oCNIaWInbZuMKvvD9G4XgPVq-J1Ll7_LT4bJ0-Mbei_2E36netx-X9QTz9fbI1ybbg04P2jYeJvXQueyZuPl1p9obPZ7MdUM_4Al7Ke8w
CODEN CPFICA
CitedBy_id crossref_primary_10_1139_apnm_2021_0810
crossref_primary_10_1002_mus_26151
crossref_primary_10_1016_j_jbmt_2020_12_029
crossref_primary_10_1007_s12603_019_1208_8
crossref_primary_10_1139_apnm_2016_0238
crossref_primary_10_1080_09593985_2022_2034076
crossref_primary_10_3233_IES_172194
crossref_primary_10_1589_jpts_34_725
crossref_primary_10_1007_s40618_018_0979_9
crossref_primary_10_3233_BMR_171018
crossref_primary_10_1016_j_jelekin_2023_102811
crossref_primary_10_3390_healthcare10101937
crossref_primary_10_1177_0284185120958405
crossref_primary_10_7759_cureus_69218
crossref_primary_10_1210_jendso_bvad032
crossref_primary_10_1590_1414_431x2024e13968
crossref_primary_10_3390_medicina57050512
crossref_primary_10_1016_j_ultrasmedbio_2021_03_024
crossref_primary_10_3390_jcm11133761
crossref_primary_10_7717_peerj_1721
crossref_primary_10_1371_journal_pone_0243589
crossref_primary_10_1007_s00421_018_3870_7
crossref_primary_10_1139_apnm_2020_0413
crossref_primary_10_1016_j_ultrasmedbio_2019_05_029
crossref_primary_10_1589_rika_36_239
crossref_primary_10_1007_s40477_022_00696_x
crossref_primary_10_3389_fphys_2023_1197503
crossref_primary_10_3390_nu15112438
crossref_primary_10_3390_ijerph20021073
crossref_primary_10_1111_joa_14136
crossref_primary_10_1016_j_msksp_2021_102453
crossref_primary_10_3390_diagnostics11081471
crossref_primary_10_3390_healthcare10030526
crossref_primary_10_1016_j_exger_2017_08_036
crossref_primary_10_1002_jcsm_13572
crossref_primary_10_1016_j_exger_2020_111015
crossref_primary_10_1186_s12998_018_0215_x
crossref_primary_10_3390_ijerph18041983
crossref_primary_10_3390_diagnostics12040897
crossref_primary_10_3390_jcm9082647
crossref_primary_10_3390_diagnostics11101884
crossref_primary_10_1080_15438627_2023_2189114
crossref_primary_10_1016_j_archger_2017_12_012
crossref_primary_10_1519_JSC_0000000000003063
crossref_primary_10_1139_apnm_2024_0256
crossref_primary_10_1111_cpf_12731
crossref_primary_10_3390_diagnostics12112743
crossref_primary_10_1016_j_conctc_2021_100742
crossref_primary_10_20873_abef_2595_0096_v4n1p124133
crossref_primary_10_1038_s41598_019_44896_8
crossref_primary_10_3390_app12115556
crossref_primary_10_3390_biomedicines12061218
crossref_primary_10_1007_s00421_017_3587_z
crossref_primary_10_1016_j_ultrasmedbio_2018_03_026
crossref_primary_10_1002_mus_25470
crossref_primary_10_1016_j_ultrasmedbio_2018_11_012
crossref_primary_10_1080_10749357_2024_2340369
crossref_primary_10_1139_apnm_2019_0601
crossref_primary_10_1016_j_archger_2017_01_014
crossref_primary_10_1249_MSS_0000000000003082
crossref_primary_10_1007_s00421_018_3962_4
crossref_primary_10_1519_JSC_0000000000004044
crossref_primary_10_1080_00140139_2024_2352719
crossref_primary_10_3390_sports11020022
crossref_primary_10_1519_JSC_0000000000003740
crossref_primary_10_1002_mus_26049
crossref_primary_10_1186_s40798_023_00651_y
crossref_primary_10_3390_ijerph18137083
crossref_primary_10_1016_j_exger_2023_112301
crossref_primary_10_1590_1517_869220192506220279
crossref_primary_10_3389_fcvm_2023_1132519
crossref_primary_10_1177_1742271X19853859
crossref_primary_10_1007_s00101_023_01300_5
crossref_primary_10_1139_apnm_2021_0690
crossref_primary_10_2490_jjrmc_61_317
crossref_primary_10_1016_j_arrct_2022_100215
crossref_primary_10_1177_01617346211009788
crossref_primary_10_1298_ptr_E10018
crossref_primary_10_1007_s00421_020_04512_4
crossref_primary_10_1002_ca_22803
crossref_primary_10_1002_mus_26631
crossref_primary_10_3390_jcm13247800
crossref_primary_10_1007_s00421_022_05005_2
crossref_primary_10_1186_s12938_024_01285_1
crossref_primary_10_3389_fendo_2022_801133
crossref_primary_10_3389_fphys_2017_00331
crossref_primary_10_1016_j_ultrasmedbio_2016_08_032
crossref_primary_10_1186_s11556_018_0201_2
crossref_primary_10_1016_j_anireprosci_2024_107518
crossref_primary_10_1080_07435800_2018_1461904
crossref_primary_10_1016_j_clinph_2024_11_008
crossref_primary_10_1183_23120541_00123_2024
crossref_primary_10_1519_JSC_0000000000003764
crossref_primary_10_1016_j_ptsp_2020_05_008
crossref_primary_10_1002_mus_27677
crossref_primary_10_1016_j_ultrasmedbio_2017_08_929
crossref_primary_10_1589_jpts_33_288
crossref_primary_10_2490_jjrmc_58_936
crossref_primary_10_1177_8756479320929030
crossref_primary_10_3390_life14030291
crossref_primary_10_1016_j_pmrj_2015_09_014
crossref_primary_10_1007_s11332_021_00776_1
crossref_primary_10_1016_j_wfumbo_2023_100032
crossref_primary_10_3390_muscles2040031
crossref_primary_10_1016_j_ultrasmedbio_2015_01_017
crossref_primary_10_1111_cpf_12778
crossref_primary_10_15366_rimcafd2022_86_008
crossref_primary_10_1016_j_jocd_2018_10_003
crossref_primary_10_3233_BMR_160663
crossref_primary_10_1177_1534735417712009
crossref_primary_10_1016_j_coph_2021_02_002
crossref_primary_10_23736_S0022_4707_20_10526_7
crossref_primary_10_1111_cpf_12532
crossref_primary_10_1186_s12967_018_1754_6
crossref_primary_10_1002_jcu_23243
crossref_primary_10_1080_02640414_2024_2318540
crossref_primary_10_1016_j_ultrasmedbio_2017_09_013
crossref_primary_10_1002_ajum_12273
crossref_primary_10_1007_s40520_018_0958_1
crossref_primary_10_2490_prm_20220034
crossref_primary_10_1111_sms_13068
crossref_primary_10_1139_apnm_2020_0114
crossref_primary_10_1016_j_jbmt_2021_03_017
crossref_primary_10_1111_cpf_12882
crossref_primary_10_1007_s40477_021_00615_6
crossref_primary_10_3389_fphys_2023_1298317
crossref_primary_10_1016_j_nut_2020_111056
crossref_primary_10_1186_s12891_020_03679_3
crossref_primary_10_1155_2024_3415740
crossref_primary_10_4103_singaporemedj_SMJ_2022_210
crossref_primary_10_3390_diagnostics12061378
crossref_primary_10_1002_mus_25395
crossref_primary_10_3233_NRE_210257
Cites_doi 10.2337/diabetes.51.11.3163
10.1111/cpf.12060
10.1136/bmj.299.6700.663
10.1002/mus.10384
10.1007/s00421-012-2517-3
10.1002/mus.21015
10.1093/gerona/glq118
10.1016/j.ultrasmedbio.2008.10.008
10.1016/j.clinph.2003.10.022
10.1016/S0028-3932(97)00107-3
10.1002/mus.23621
10.1177/0269215511434994
10.1113/jphysiol.1996.sp021685
10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E
10.1212/WNL.0b013e3181eccf8f
10.1016/j.ultrasmedbio.2012.04.016
10.1002/mus.21866
10.1007/s00421-003-0961-9
10.1002/mus.22254
10.1007/s00421-011-1999-8
10.1007/s00421-011-2099-5
10.1002/mus.21458
10.7863/jum.1993.12.2.73
10.1016/j.ultrasmedbio.2006.05.028
10.1111/j.1475-097X.2009.00897.x
10.1007/s00421-010-1648-7
10.1016/j.ultrasmedbio.2008.09.016
10.1007/s004210050677
10.1097/MCO.0b013e328337d826
10.1519/JSC.0b013e31823dae96
10.1016/S0026-0495(00)80010-4
10.1249/01.MSS.0000162691.66162.00
10.7863/jum.2012.31.1.43
10.1111/j.1469-7580.2010.01218.x
10.1002/mus.24061
10.1007/s00421-010-1402-1
ContentType Journal Article
Copyright 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine
Copyright_xml – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd
– notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U5
8FD
K9.
L7M
7X8
DOI 10.1111/cpf.12175
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Physical Education Index
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Solid State and Superconductivity Abstracts
Technology Research Database
Calcium & Calcified Tissue Abstracts
Advanced Technologies Database with Aerospace
Physical Education Index
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1475-097X
EndPage 403
ExternalDocumentID 3764166961
24902991
10_1111_cpf_12175
CPF12175
ark_67375_WNG_9R0VVVZC_2
Genre article
Comparative Study
Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fondazione CARIPLO
– fundername: University of Turin
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OC
29B
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TS
7U5
8FD
K9.
L7M
7X8
ID FETCH-LOGICAL-c4905-17248e208e1e78c117f991b878b8ebfe1d9e3a109e1fca386c9984843d37ce563
IEDL.DBID DR2
ISSN 1475-0961
1475-097X
IngestDate Thu Jul 10 19:23:49 EDT 2025
Fri Jul 25 03:14:07 EDT 2025
Mon Jul 21 06:01:23 EDT 2025
Tue Jul 01 01:42:45 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Wed Jan 22 16:53:13 EST 2025
Wed Oct 30 09:57:24 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords greyscale analysis
muscle thickness
subcutaneous layer thickness
fibrous and adipose tissue content of muscles
region of interest
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4905-17248e208e1e78c117f991b878b8ebfe1d9e3a109e1fca386c9984843d37ce563
Notes University of Turin
istex:604F335A05A55C8D79350719FE77BF96851EEC2A
ark:/67375/WNG-9R0VVVZC-2
Fondazione CARIPLO
ArticleID:CPF12175
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
ORCID 0000-0003-1150-2244
PMID 24902991
PQID 1700282620
PQPubID 1006519
PageCount 11
ParticipantIDs proquest_miscellaneous_1701346081
proquest_journals_1700282620
pubmed_primary_24902991
crossref_citationtrail_10_1111_cpf_12175
crossref_primary_10_1111_cpf_12175
wiley_primary_10_1111_cpf_12175_CPF12175
istex_primary_ark_67375_WNG_9R0VVVZC_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2015
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: September 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Clinical physiology and functional imaging
PublicationTitleAlternate Clin Physiol Funct Imaging
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Gan SK, Samaras K, Thompson CH, Kraegen EW, Carr A, Cooper DA, Chisholm DJ. Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes (2002); 51: 3163-3169.
Cho KH, Lee HJ, Lee WH. Reliability of rehabilitative ultrasound imaging for the medial gastrocnemius muscle in poststroke patients. Clin Physiol Funct Imaging (2014); 34: 26-31.
Fukumoto Y, Ikezoe T, Tateuchi H, Tsukagoshi R, Akiyama H, So K, Kuroda Y, Yoneyama T, Ichihashi N. Muscle mass and composition of the hip, thigh and abdominal muscles in women with and with-out hip osteoarthritis. Ultrasound Med Biol (2012a); 38: 1540-1545.
Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve (2010); 41: 32-41.
Arts IM, Schelhaas HJ, Verrijp KC, Zwarts MJ, Overeem S, van der Laak JA, Lammens MM, Pillen S. Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis. Muscle Nerve (2012); 45: 449-450.
Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, van der Laak JA, Hoogerbrugge PM, van Engelen BG, Verrips A. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol (2009); 35: 443-446.
Noorkoiv M, Nosaka K, Blazevich AJ. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol (2010); 109: 631-639.
Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol (2004); 91: 116-118.
Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care (2010); 13: 260-264.
Nosaka K, Newton M, Sacco P, Chapman D, Lavender A. Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc (2005); 37: 746-753.
Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia (1998); 36: 37-43.
Fujikake T, Hart R, Nosaka K. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med Biol (2009); 35: 687-696.
Nijboer-Oosterveld J, Van Alfen N, Pillen S. New normal values for quantitative muscle ultrasound: obesity increases muscle echo intensity. Muscle Nerve (2011); 43: 142-143.
Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med (1993); 12: 73-77.
Chen HL, Nosaka K, Chen TC. Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur J Appl Physiol (2012); 112: 555-565.
Radaelli R, Bottaro M, Wilhelm EN, Wagner DR, Pinto RS. Time course of strength and echo intensity recovery after resistance exercise in women. J Strength Cond Res (2012); 26: 2577-2584.
Scholten RR, Pillen S, Verrips A, Zwarts MJ. Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve (2003); 27: 693-698.
Chen TC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K. Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. Eur J Appl Physiol (2013); 113: 1005-1015.
Hu CF, Chen CP, Tsai WC, Hu LL, Hsu CC, Tseng ST, Shau YW. Quantification of skeletal muscle fibrosis at different healing stages using sonography: a morphologic and histologic study in an animal model. J Ultrasound Med (2012); 31: 43-48.
O'Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Muscle-tendon structure and dimensions in adults and children. J Anat (2010); 216: 631-642.
Thoirs K, English C. Ultrasound measures of muscle thickness: intra-examiner reliability and influence of body position. Clin Physiol Funct Imaging (2009); 29: 440-446.
Munro BH. Statistical Methods for Health Care Research, 5th edn (2005). Lippincott Williams & Wilkins, Philadelphia, PA.
Chen TC, Lin KY, Chen HL, Lin MJ, Nosaka K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol (2011); 111: 211-223.
Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol (1996); 496: 287-297.
Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, Kimura M, Ichihashi N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol (2012b); 112: 1519-1525.
Walker FO, Cartwright MS, Wiesler ER, Caress J. Ultrasound of nerve and muscle. Clin Neurophysiol (2004); 115: 495-507.
Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve (2008); 37: 679-693.
English C, Fisher L, Thoirs K. Reliability of real-time ultrasound for measuring skeletal muscle size in human limbs in vivo: a systematic review. Clin Rehabil (2012); 26: 934-944.
Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Statist Med (1998); 17: 101-110.
Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism (2000); 49: 467-472.
Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FC, Seynnes OR, Stewart CE, Maganaris CN, Narici MV. Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci (2010); 65: 1215-1219.
Cartwright MS, Demar S, Griffin LP, Balakrishnan N, Harris JM, Walker FO. Validity and reliability of nerve and muscle ultrasound. Muscle Nerve (2013); 47: 515-521.
Chow RS, Medri MK, Martin DC, Leekam RN, Agur AM, McKee NH. Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability. Eur J Appl Physiol (2000); 82: 236-244.
Pillen S, van Keimpema M, Nievelstein RA, Verrips A, van Kruijsbergen-Raijmann W, Zwarts MJ. Skeletal muscle ultrasonography: visual versus quantitative evaluation. Ultrasound Med Biol (2006); 32: 1315-1321.
Day SJ, Graham DF. Sample size and power for comparing two or more treatment groups in clinical trials. BMJ (1989); 299: 663-665.
Rosenberg JG, Ryan ED, Sobolewski EJ, Scharville MJ, Thompson BJ, King GE. Reliability of panoramic ultrasound imaging to simultaneously examine muscle size and quality of the medial gastrocnemius. Muscle Nerve (2014); 49: 736-740.
Wu JS, Darras BT, Rutkove SB. Assessing spinal muscular atrophy with quantitative ultrasound. Neurology (2010); 75: 526-531.
2010; 75
2013; 47
2000; 49
2010; 109
2010; 13
1989; 299
2006; 32
2002; 51
2014; 49
2008; 37
2005
2004; 91
2010; 41
2011; 111
2012; 31
2009; 29
2010; 65
2009; 35
1993; 12
1998; 17
2004; 115
2012; 112
2012a; 38
2010; 216
2012b; 112
2013; 113
2000; 82
2011; 43
2003; 27
1996; 496
2012; 26
2005; 37
2012; 45
2014; 34
1998; 36
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
Munro BH (e_1_2_7_21_1) 2005
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
References_xml – reference: Wu JS, Darras BT, Rutkove SB. Assessing spinal muscular atrophy with quantitative ultrasound. Neurology (2010); 75: 526-531.
– reference: Munro BH. Statistical Methods for Health Care Research, 5th edn (2005). Lippincott Williams & Wilkins, Philadelphia, PA.
– reference: Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol (1996); 496: 287-297.
– reference: Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve (2010); 41: 32-41.
– reference: Chow RS, Medri MK, Martin DC, Leekam RN, Agur AM, McKee NH. Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability. Eur J Appl Physiol (2000); 82: 236-244.
– reference: Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism (2000); 49: 467-472.
– reference: Rosenberg JG, Ryan ED, Sobolewski EJ, Scharville MJ, Thompson BJ, King GE. Reliability of panoramic ultrasound imaging to simultaneously examine muscle size and quality of the medial gastrocnemius. Muscle Nerve (2014); 49: 736-740.
– reference: Fukumoto Y, Ikezoe T, Tateuchi H, Tsukagoshi R, Akiyama H, So K, Kuroda Y, Yoneyama T, Ichihashi N. Muscle mass and composition of the hip, thigh and abdominal muscles in women with and with-out hip osteoarthritis. Ultrasound Med Biol (2012a); 38: 1540-1545.
– reference: Cartwright MS, Demar S, Griffin LP, Balakrishnan N, Harris JM, Walker FO. Validity and reliability of nerve and muscle ultrasound. Muscle Nerve (2013); 47: 515-521.
– reference: Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FC, Seynnes OR, Stewart CE, Maganaris CN, Narici MV. Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci (2010); 65: 1215-1219.
– reference: Nijboer-Oosterveld J, Van Alfen N, Pillen S. New normal values for quantitative muscle ultrasound: obesity increases muscle echo intensity. Muscle Nerve (2011); 43: 142-143.
– reference: Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, van der Laak JA, Hoogerbrugge PM, van Engelen BG, Verrips A. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol (2009); 35: 443-446.
– reference: Nosaka K, Newton M, Sacco P, Chapman D, Lavender A. Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc (2005); 37: 746-753.
– reference: Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med (1993); 12: 73-77.
– reference: Walker FO, Cartwright MS, Wiesler ER, Caress J. Ultrasound of nerve and muscle. Clin Neurophysiol (2004); 115: 495-507.
– reference: Day SJ, Graham DF. Sample size and power for comparing two or more treatment groups in clinical trials. BMJ (1989); 299: 663-665.
– reference: Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve (2008); 37: 679-693.
– reference: Hu CF, Chen CP, Tsai WC, Hu LL, Hsu CC, Tseng ST, Shau YW. Quantification of skeletal muscle fibrosis at different healing stages using sonography: a morphologic and histologic study in an animal model. J Ultrasound Med (2012); 31: 43-48.
– reference: Noorkoiv M, Nosaka K, Blazevich AJ. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol (2010); 109: 631-639.
– reference: Radaelli R, Bottaro M, Wilhelm EN, Wagner DR, Pinto RS. Time course of strength and echo intensity recovery after resistance exercise in women. J Strength Cond Res (2012); 26: 2577-2584.
– reference: Scholten RR, Pillen S, Verrips A, Zwarts MJ. Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve (2003); 27: 693-698.
– reference: Gan SK, Samaras K, Thompson CH, Kraegen EW, Carr A, Cooper DA, Chisholm DJ. Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes (2002); 51: 3163-3169.
– reference: Chen TC, Lin KY, Chen HL, Lin MJ, Nosaka K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol (2011); 111: 211-223.
– reference: Fujikake T, Hart R, Nosaka K. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med Biol (2009); 35: 687-696.
– reference: Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, Kimura M, Ichihashi N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol (2012b); 112: 1519-1525.
– reference: Pillen S, van Keimpema M, Nievelstein RA, Verrips A, van Kruijsbergen-Raijmann W, Zwarts MJ. Skeletal muscle ultrasonography: visual versus quantitative evaluation. Ultrasound Med Biol (2006); 32: 1315-1321.
– reference: Arts IM, Schelhaas HJ, Verrijp KC, Zwarts MJ, Overeem S, van der Laak JA, Lammens MM, Pillen S. Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis. Muscle Nerve (2012); 45: 449-450.
– reference: Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia (1998); 36: 37-43.
– reference: Thoirs K, English C. Ultrasound measures of muscle thickness: intra-examiner reliability and influence of body position. Clin Physiol Funct Imaging (2009); 29: 440-446.
– reference: Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care (2010); 13: 260-264.
– reference: Chen HL, Nosaka K, Chen TC. Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur J Appl Physiol (2012); 112: 555-565.
– reference: Chen TC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K. Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. Eur J Appl Physiol (2013); 113: 1005-1015.
– reference: English C, Fisher L, Thoirs K. Reliability of real-time ultrasound for measuring skeletal muscle size in human limbs in vivo: a systematic review. Clin Rehabil (2012); 26: 934-944.
– reference: O'Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Muscle-tendon structure and dimensions in adults and children. J Anat (2010); 216: 631-642.
– reference: Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Statist Med (1998); 17: 101-110.
– reference: Cho KH, Lee HJ, Lee WH. Reliability of rehabilitative ultrasound imaging for the medial gastrocnemius muscle in poststroke patients. Clin Physiol Funct Imaging (2014); 34: 26-31.
– reference: Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol (2004); 91: 116-118.
– volume: 34
  start-page: 26
  year: 2014
  end-page: 31
  article-title: Reliability of rehabilitative ultrasound imaging for the medial gastrocnemius muscle in poststroke patients
  publication-title: Clin Physiol Funct Imaging
– volume: 12
  start-page: 73
  year: 1993
  end-page: 77
  article-title: Skeletal muscle sonography: a correlative study of echogenicity and morphology
  publication-title: J Ultrasound Med
– volume: 112
  start-page: 555
  year: 2012
  end-page: 565
  article-title: Muscle damage protection by low‐intensity eccentric contractions remains for 2 weeks but not 3 weeks
  publication-title: Eur J Appl Physiol
– volume: 49
  start-page: 736
  year: 2014
  end-page: 740
  article-title: Reliability of panoramic ultrasound imaging to simultaneously examine muscle size and quality of the medial gastrocnemius
  publication-title: Muscle Nerve
– volume: 37
  start-page: 679
  year: 2008
  end-page: 693
  article-title: Muscle ultrasound in neuromuscular disorders
  publication-title: Muscle Nerve
– volume: 26
  start-page: 934
  year: 2012
  end-page: 944
  article-title: Reliability of real‐time ultrasound for measuring skeletal muscle size in human limbs in vivo: a systematic review
  publication-title: Clin Rehabil
– volume: 38
  start-page: 1540
  year: 2012a
  end-page: 1545
  article-title: Muscle mass and composition of the hip, thigh and abdominal muscles in women with and with‐out hip osteoarthritis
  publication-title: Ultrasound Med Biol
– year: 2005
– volume: 82
  start-page: 236
  year: 2000
  end-page: 244
  article-title: Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability
  publication-title: Eur J Appl Physiol
– volume: 299
  start-page: 663
  year: 1989
  end-page: 665
  article-title: Sample size and power for comparing two or more treatment groups in clinical trials
  publication-title: BMJ
– volume: 43
  start-page: 142
  year: 2011
  end-page: 143
  article-title: New normal values for quantitative muscle ultrasound: obesity increases muscle echo intensity
  publication-title: Muscle Nerve
– volume: 45
  start-page: 449
  year: 2012
  end-page: 450
  article-title: Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis
  publication-title: Muscle Nerve
– volume: 216
  start-page: 631
  year: 2010
  end-page: 642
  article-title: Muscle‐tendon structure and dimensions in adults and children
  publication-title: J Anat
– volume: 49
  start-page: 467
  year: 2000
  end-page: 472
  article-title: Intramuscular lipid content is increased in obesity and decreased by weight loss
  publication-title: Metabolism
– volume: 17
  start-page: 101
  year: 1998
  end-page: 110
  article-title: Sample size and optimal designs for reliability studies
  publication-title: Statist Med
– volume: 41
  start-page: 32
  year: 2010
  end-page: 41
  article-title: Normal values for quantitative muscle ultrasonography in adults
  publication-title: Muscle Nerve
– volume: 13
  start-page: 260
  year: 2010
  end-page: 264
  article-title: Epidemiology of myosteatosis
  publication-title: Curr Opin Clin Nutr Metab Care
– volume: 35
  start-page: 443
  year: 2009
  end-page: 446
  article-title: Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity
  publication-title: Ultrasound Med Biol
– volume: 111
  start-page: 211
  year: 2011
  end-page: 223
  article-title: Comparison in eccentric exercise‐induced muscle damage among four limb muscles
  publication-title: Eur J Appl Physiol
– volume: 26
  start-page: 2577
  year: 2012
  end-page: 2584
  article-title: Time course of strength and echo intensity recovery after resistance exercise in women
  publication-title: J Strength Cond Res
– volume: 35
  start-page: 687
  year: 2009
  end-page: 696
  article-title: Changes in B‐mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes
  publication-title: Ultrasound Med Biol
– volume: 112
  start-page: 1519
  year: 2012b
  end-page: 1525
  article-title: Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle‐aged and elderly persons
  publication-title: Eur J Appl Physiol
– volume: 91
  start-page: 116
  year: 2004
  end-page: 118
  article-title: Ultrasonographic assessment of human skeletal muscle size
  publication-title: Eur J Appl Physiol
– volume: 36
  start-page: 37
  year: 1998
  end-page: 43
  article-title: Footedness is a better predictor than is handedness of emotional lateralization
  publication-title: Neuropsychologia
– volume: 496
  start-page: 287
  year: 1996
  end-page: 297
  article-title: In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction
  publication-title: J Physiol
– volume: 27
  start-page: 693
  year: 2003
  end-page: 698
  article-title: Quantitative ultrasonography of skeletal muscles in children: normal values
  publication-title: Muscle Nerve
– volume: 47
  start-page: 515
  year: 2013
  end-page: 521
  article-title: Validity and reliability of nerve and muscle ultrasound
  publication-title: Muscle Nerve
– volume: 51
  start-page: 3163
  year: 2002
  end-page: 3169
  article-title: Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor‐related lipodystrophy
  publication-title: Diabetes
– volume: 31
  start-page: 43
  year: 2012
  end-page: 48
  article-title: Quantification of skeletal muscle fibrosis at different healing stages using sonography: a morphologic and histologic study in an animal model
  publication-title: J Ultrasound Med
– volume: 113
  start-page: 1005
  year: 2013
  end-page: 1015
  article-title: Low‐intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly
  publication-title: Eur J Appl Physiol
– volume: 37
  start-page: 746
  year: 2005
  end-page: 753
  article-title: Partial protection against muscle damage by eccentric actions at short muscle lengths
  publication-title: Med Sci Sports Exerc
– volume: 75
  start-page: 526
  year: 2010
  end-page: 531
  article-title: Assessing spinal muscular atrophy with quantitative ultrasound
  publication-title: Neurology
– volume: 65
  start-page: 1215
  year: 2010
  end-page: 1219
  article-title: Effects of testosterone on skeletal muscle architecture in intermediate‐frail and frail elderly men
  publication-title: J Gerontol A Biol Sci Med Sci
– volume: 115
  start-page: 495
  year: 2004
  end-page: 507
  article-title: Ultrasound of nerve and muscle
  publication-title: Clin Neurophysiol
– volume: 109
  start-page: 631
  year: 2010
  end-page: 639
  article-title: Assessment of quadriceps muscle cross‐sectional area by ultrasound extended‐field‐of‐view imaging
  publication-title: Eur J Appl Physiol
– volume: 32
  start-page: 1315
  year: 2006
  end-page: 1321
  article-title: Skeletal muscle ultrasonography: visual versus quantitative evaluation
  publication-title: Ultrasound Med Biol
– volume: 29
  start-page: 440
  year: 2009
  end-page: 446
  article-title: Ultrasound measures of muscle thickness: intra‐examiner reliability and influence of body position
  publication-title: Clin Physiol Funct Imaging
– ident: e_1_2_7_17_1
  doi: 10.2337/diabetes.51.11.3163
– ident: e_1_2_7_9_1
  doi: 10.1111/cpf.12060
– volume-title: Statistical Methods for Health Care Research
  year: 2005
  ident: e_1_2_7_21_1
– ident: e_1_2_7_11_1
  doi: 10.1136/bmj.299.6700.663
– ident: e_1_2_7_34_1
  doi: 10.1002/mus.10384
– ident: e_1_2_7_8_1
  doi: 10.1007/s00421-012-2517-3
– ident: e_1_2_7_28_1
  doi: 10.1002/mus.21015
– ident: e_1_2_7_4_1
  doi: 10.1093/gerona/glq118
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ultrasmedbio.2008.10.008
– ident: e_1_2_7_36_1
  doi: 10.1016/j.clinph.2003.10.022
– ident: e_1_2_7_12_1
  doi: 10.1016/S0028-3932(97)00107-3
– ident: e_1_2_7_5_1
  doi: 10.1002/mus.23621
– ident: e_1_2_7_13_1
  doi: 10.1177/0269215511434994
– ident: e_1_2_7_22_1
  doi: 10.1113/jphysiol.1996.sp021685
– ident: e_1_2_7_37_1
  doi: 10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E
– ident: e_1_2_7_38_1
  doi: 10.1212/WNL.0b013e3181eccf8f
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ultrasmedbio.2012.04.016
– ident: e_1_2_7_23_1
  doi: 10.1002/mus.21866
– ident: e_1_2_7_31_1
  doi: 10.1007/s00421-003-0961-9
– ident: e_1_2_7_3_1
  doi: 10.1002/mus.22254
– ident: e_1_2_7_7_1
  doi: 10.1007/s00421-011-1999-8
– ident: e_1_2_7_16_1
  doi: 10.1007/s00421-011-2099-5
– ident: e_1_2_7_2_1
  doi: 10.1002/mus.21458
– ident: e_1_2_7_32_1
  doi: 10.7863/jum.1993.12.2.73
– ident: e_1_2_7_27_1
  doi: 10.1016/j.ultrasmedbio.2006.05.028
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1475-097X.2009.00897.x
– ident: e_1_2_7_6_1
  doi: 10.1007/s00421-010-1648-7
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ultrasmedbio.2008.09.016
– ident: e_1_2_7_10_1
  doi: 10.1007/s004210050677
– ident: e_1_2_7_20_1
  doi: 10.1097/MCO.0b013e328337d826
– ident: e_1_2_7_30_1
  doi: 10.1519/JSC.0b013e31823dae96
– ident: e_1_2_7_18_1
  doi: 10.1016/S0026-0495(00)80010-4
– ident: e_1_2_7_25_1
  doi: 10.1249/01.MSS.0000162691.66162.00
– ident: e_1_2_7_19_1
  doi: 10.7863/jum.2012.31.1.43
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1469-7580.2010.01218.x
– ident: e_1_2_7_33_1
  doi: 10.1002/mus.24061
– ident: e_1_2_7_24_1
  doi: 10.1007/s00421-010-1402-1
SSID ssj0017347
Score 2.4584963
Snippet Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape...
To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the...
Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 393
SubjectTerms Adult
Algorithms
Female
fibrous and adipose tissue content of muscles
greyscale analysis
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Male
muscle thickness
Muscle, Skeletal - anatomy & histology
Muscle, Skeletal - diagnostic imaging
region of interest
Reproducibility of Results
Sensitivity and Specificity
Sex Characteristics
subcutaneous layer thickness
Ultrasonography
Title Muscle echo intensity: reliability and conditioning factors
URI https://api.istex.fr/ark:/67375/WNG-9R0VVVZC-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12175
https://www.ncbi.nlm.nih.gov/pubmed/24902991
https://www.proquest.com/docview/1700282620
https://www.proquest.com/docview/1701346081
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEB7EQulLW-1tW5VtKcWXlc0mm2T1SQ4epXCkSD2VUghJdgJiWeVcoPbXN8le0KIgvi1kliSTTPJNMvkG4DPn6EhtXMZzJzJmBGYmR5nljjBbayQ6culNjvnRKft6Vp6twF7_FqblhxgO3IJlxPU6GLg28xtGbq9coEYQ4YF5iNUKgOhkoI4igsbkYoSJMgtpTTpWoRDFM_x5ay96EtT65y6geRu3xo1n_AJ-9U1u400udpYLs2P__sfm-Mg-vYTnHSBN99sZtAYr2KzD00l35f4K9ibLuS9I0a-T6Xkb8L643k1nvqqW4_s61U2der-6Pu9Od9Mui89rOB0ffB8dZV3GhcyyKlCSioJJLHKJBIW0hAjn8aORQhqJxiGpK6Sa5BUSZzWV3HpvjUlGayoslpy-gdXmssF3kGJd1ZJKY3zPGDVcUiy0k1boytfFaALbve6V7ejIQ1aM36p3S7wyVFRGAp8G0auWg-MuoS9xAAcJPbsIQWuiVD-OD1V1kk-n058jVSSw0Y-w6ux1rgJLoXc-eZEn8HEo9pYWrk90g5fLKEMo4x5DJfC2nRlDZd6Jzf3G7ku24_je3041-jaOH-8fLvoBnnmcVrahbRuwupgtcdNjoYXZipP-Hza9Ano
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qC-qL3x-rVVcR6cuWzSabZNUXOT1P7R1S2rMIEpLsBEplW653YP3rTbIfWKkgvi1kliSTTPKbZPIbgOecoyO1cRnPnciYEZiZHGWWO8JsrZHoyKU3nfHJPvt4UB6swev-LUzLDzEcuAXLiOt1MPBwIP2bldsTF7gRRHkJNkJG78Cc_3Z3II8igsb0YoSJMguJTTpeoRDHM_x6bjfaCIr9cRHUPI9c49Yzvg7f-ka3ESdH26ul2bY__-Bz_N9e3YBrHSZN37ST6CasYXMLLk-7W_fb8Gq6OvUFKfqlMj1sY96XZy_Tha-rpfk-S3VTp961rg-7A960S-RzB_bH7_ZGk6xLupBZVgVWUlEwiUUukaCQlhDhPIQ0Ukgj0TgkdYVUk7xC4qymklvvsDHJaE2FxZLTu7DeHDd4H1Ksq1pSaYzvGaOGS4qFdtIKXfm6GE1gq1e-sh0jeUiM8V31nolXhorKSODZIHrS0nBcJPQijuAgoRdHIW5NlOrL7L2qdvP5fP51pIoENvshVp3JnqpAVOj9T17kCTwdir2xhRsU3eDxKsoQyriHUQnca6fGUJn3Y3O_t_uSrTjAf2-nGn0ex48H_y76BK5M9qY7aufD7NNDuOphW9lGum3C-nKxwkceGi3N42gBvwBdtQaW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC8Uvvh-rVVcR6Zctm002ydpPcvWsjztKsWcRIWySCZTK9rjegfWvN8k-sFJB_LYwsySZzCQzyeQ3AC85R0esdhnPnciYFpjpHGWWO8KMrZHUEUtvMuX7R-zDcXm8Brv9W5gWH2I4cAuWEdfrYOBz634zcjN3ARpBlNdgg_G8CnUb9g4H7CgiaKwuRpgos1DXpIMVCmk8w6-XNqONINcfV3malx3XuPOMb8K3vs9twsnpzmqpd8zPP-Ac_3NQt-BG55Gmb1oVug1r2NyBzUl3534Xdierc09I0S-U6Umb8b68eJ0ufFMtyPdFWjc29YG1PemOd9OujM89OBq__Tzaz7qSC5lhVcAkFQWTWOQSCQppCBHOO5BaCqklaofEVkhrkldInKmp5MaHa0wyaqkwWHJ6H9abswYfQoq2spJKrf3IGNVcUixqJ42oK98Wowls97JXpsMjD2Uxvqs-LvHCUFEYCbwYWOctCMdVTK_iBA4c9eI0ZK2JUn2ZvlPVYT6bzb6OVJHAVj_DqjPYcxVgCn30yYs8gecD2ZtauD-pGzxbRR5CvapJksCDVjOGxnwUm_ud3VO24_z-vZ9qdDCOH4_-nfUZbB7sjdWn99OPj-G699nKNs1tC9aXixU-8X7RUj-N-v8LQ20FRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+echo+intensity%3A+reliability+and+conditioning+factors&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Caresio%2C+Cristina&rft.au=Molinari%2C+Filippo&rft.au=Emanuel%2C+Giorgio&rft.au=Minetto%2C+Marco+Alessandro&rft.date=2015-09-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=35&rft.issue=5&rft.spage=393&rft.epage=403&rft_id=info:doi/10.1111%2Fcpf.12175&rft.externalDBID=10.1111%252Fcpf.12175&rft.externalDocID=CPF12175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon