Muscle echo intensity: reliability and conditioning factors
Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods Ultrasonographic scans of the following five muscl...
Saved in:
Published in | Clinical physiology and functional imaging Vol. 35; no. 5; pp. 393 - 403 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.09.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Objective
To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification.
Methods
Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan.
Results
We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0·54) to high (ICC: 0·86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0·42) to very high (0·91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles.
Conclusion
The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat. |
---|---|
AbstractList | Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. Results We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0·54) to high (ICC: 0·86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0·42) to very high (0·91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. Conclusion The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat. To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0.54) to high (ICC: 0.86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0.42) to very high (0.91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat. Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification. Methods Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan. Results We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0·54) to high (ICC: 0·86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0·42) to very high (0·91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles. Conclusion The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat. To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification.OBJECTIVETo assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the region of interest (ROI) used for echo intensity quantification.Ultrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan.METHODSUltrasonographic scans of the following five muscles were acquired in twenty healthy subjects: biceps brachii, rectus femoris, vastus lateralis, tibialis anterior and medial gastrocnemius. Muscle echo intensity was quantified in each scan.We found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0.54) to high (ICC: 0.86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0.42) to very high (0.91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles.RESULTSWe found that the agreement between the different sized ROIs considered in each scan ranged from moderate (ICC: 0.54) to high (ICC: 0.86) and that the echo intensity consistency between equal sized ROIs of the three scans ranged from low (ICC: 0.42) to very high (0.91). The echo intensity of tibialis anterior and rectus femoris was different between different sized, shaped and located ROIs. The echo intensity of biceps brachii and tibialis anterior was higher than that of all other muscles, and females had higher echo intensity than males. Moreover, the muscle echo intensity was positively correlated with the subcutaneous layer thickness in three of five muscles.The echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat.CONCLUSIONThe echo intensity reliability was function of the ROI size. Muscle and gender variability in echo intensity was likely due to differences in fibrous and adipose tissue content and distribution. Possible explanations for the observed correlations between muscle echo intensity and subcutaneous layer thickness include the dependence of both variables on total body adiposity or the direct dependence of the extent of intramuscular fat on the amount of subcutaneous fat. |
Author | Caresio, Cristina Molinari, Filippo Emanuel, Giorgio Minetto, Marco Alessandro |
Author_xml | – sequence: 1 givenname: Cristina surname: Caresio fullname: Caresio, Cristina organization: Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy – sequence: 2 givenname: Filippo surname: Molinari fullname: Molinari, Filippo organization: Biolab, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy – sequence: 3 givenname: Giorgio surname: Emanuel fullname: Emanuel, Giorgio organization: Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy – sequence: 4 givenname: Marco Alessandro surname: Minetto fullname: Minetto, Marco Alessandro email: Marco Alessandro Minetto, MD, PhD, Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy, marco.minetto@unito.it organization: Division of Endocrinology, Diabetology and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24902991$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtv1DAURq2qqC-64A-gSGzoIq2vnYltWKFRH0jlIQRTxMZynBtwydiDnaidf18PM9NFBd7Yls75rv0dkl0fPBLyAugp5HVmF90pMBCTHXIAlZiUVInvu4_nGvbJYUq3lILgldgj-6xSlCkFB-TthzHZHgu0v0Lh_IA-uWH5pojYO9O4Pl8K49vCBt-6wQXv_M-iM3YIMT0nzzrTJzze7Efk28X51-lVef3p8v303XVp85hJCYJVEhmVCCikBRBdHt1IIRuJTYfQKuQGqELorOGytkrJSla85cLipOZH5PU6dxHDnxHToOcuWex74zGMSYOgwKuaSsjoqyfobRijz69bUZRJVjOaqZcbamzm2OpFdHMTl3pbSwbO1oCNIaWInbZuMKvvD9G4XgPVq-J1Ll7_LT4bJ0-Mbei_2E36netx-X9QTz9fbI1ybbg04P2jYeJvXQueyZuPl1p9obPZ7MdUM_4Al7Ke8w |
CODEN | CPFICA |
CitedBy_id | crossref_primary_10_1139_apnm_2021_0810 crossref_primary_10_1002_mus_26151 crossref_primary_10_1016_j_jbmt_2020_12_029 crossref_primary_10_1007_s12603_019_1208_8 crossref_primary_10_1139_apnm_2016_0238 crossref_primary_10_1080_09593985_2022_2034076 crossref_primary_10_3233_IES_172194 crossref_primary_10_1589_jpts_34_725 crossref_primary_10_1007_s40618_018_0979_9 crossref_primary_10_3233_BMR_171018 crossref_primary_10_1016_j_jelekin_2023_102811 crossref_primary_10_3390_healthcare10101937 crossref_primary_10_1177_0284185120958405 crossref_primary_10_7759_cureus_69218 crossref_primary_10_1210_jendso_bvad032 crossref_primary_10_1590_1414_431x2024e13968 crossref_primary_10_3390_medicina57050512 crossref_primary_10_1016_j_ultrasmedbio_2021_03_024 crossref_primary_10_3390_jcm11133761 crossref_primary_10_7717_peerj_1721 crossref_primary_10_1371_journal_pone_0243589 crossref_primary_10_1007_s00421_018_3870_7 crossref_primary_10_1139_apnm_2020_0413 crossref_primary_10_1016_j_ultrasmedbio_2019_05_029 crossref_primary_10_1589_rika_36_239 crossref_primary_10_1007_s40477_022_00696_x crossref_primary_10_3389_fphys_2023_1197503 crossref_primary_10_3390_nu15112438 crossref_primary_10_3390_ijerph20021073 crossref_primary_10_1111_joa_14136 crossref_primary_10_1016_j_msksp_2021_102453 crossref_primary_10_3390_diagnostics11081471 crossref_primary_10_3390_healthcare10030526 crossref_primary_10_1016_j_exger_2017_08_036 crossref_primary_10_1002_jcsm_13572 crossref_primary_10_1016_j_exger_2020_111015 crossref_primary_10_1186_s12998_018_0215_x crossref_primary_10_3390_ijerph18041983 crossref_primary_10_3390_diagnostics12040897 crossref_primary_10_3390_jcm9082647 crossref_primary_10_3390_diagnostics11101884 crossref_primary_10_1080_15438627_2023_2189114 crossref_primary_10_1016_j_archger_2017_12_012 crossref_primary_10_1519_JSC_0000000000003063 crossref_primary_10_1139_apnm_2024_0256 crossref_primary_10_1111_cpf_12731 crossref_primary_10_3390_diagnostics12112743 crossref_primary_10_1016_j_conctc_2021_100742 crossref_primary_10_20873_abef_2595_0096_v4n1p124133 crossref_primary_10_1038_s41598_019_44896_8 crossref_primary_10_3390_app12115556 crossref_primary_10_3390_biomedicines12061218 crossref_primary_10_1007_s00421_017_3587_z crossref_primary_10_1016_j_ultrasmedbio_2018_03_026 crossref_primary_10_1002_mus_25470 crossref_primary_10_1016_j_ultrasmedbio_2018_11_012 crossref_primary_10_1080_10749357_2024_2340369 crossref_primary_10_1139_apnm_2019_0601 crossref_primary_10_1016_j_archger_2017_01_014 crossref_primary_10_1249_MSS_0000000000003082 crossref_primary_10_1007_s00421_018_3962_4 crossref_primary_10_1519_JSC_0000000000004044 crossref_primary_10_1080_00140139_2024_2352719 crossref_primary_10_3390_sports11020022 crossref_primary_10_1519_JSC_0000000000003740 crossref_primary_10_1002_mus_26049 crossref_primary_10_1186_s40798_023_00651_y crossref_primary_10_3390_ijerph18137083 crossref_primary_10_1016_j_exger_2023_112301 crossref_primary_10_1590_1517_869220192506220279 crossref_primary_10_3389_fcvm_2023_1132519 crossref_primary_10_1177_1742271X19853859 crossref_primary_10_1007_s00101_023_01300_5 crossref_primary_10_1139_apnm_2021_0690 crossref_primary_10_2490_jjrmc_61_317 crossref_primary_10_1016_j_arrct_2022_100215 crossref_primary_10_1177_01617346211009788 crossref_primary_10_1298_ptr_E10018 crossref_primary_10_1007_s00421_020_04512_4 crossref_primary_10_1002_ca_22803 crossref_primary_10_1002_mus_26631 crossref_primary_10_3390_jcm13247800 crossref_primary_10_1007_s00421_022_05005_2 crossref_primary_10_1186_s12938_024_01285_1 crossref_primary_10_3389_fendo_2022_801133 crossref_primary_10_3389_fphys_2017_00331 crossref_primary_10_1016_j_ultrasmedbio_2016_08_032 crossref_primary_10_1186_s11556_018_0201_2 crossref_primary_10_1016_j_anireprosci_2024_107518 crossref_primary_10_1080_07435800_2018_1461904 crossref_primary_10_1016_j_clinph_2024_11_008 crossref_primary_10_1183_23120541_00123_2024 crossref_primary_10_1519_JSC_0000000000003764 crossref_primary_10_1016_j_ptsp_2020_05_008 crossref_primary_10_1002_mus_27677 crossref_primary_10_1016_j_ultrasmedbio_2017_08_929 crossref_primary_10_1589_jpts_33_288 crossref_primary_10_2490_jjrmc_58_936 crossref_primary_10_1177_8756479320929030 crossref_primary_10_3390_life14030291 crossref_primary_10_1016_j_pmrj_2015_09_014 crossref_primary_10_1007_s11332_021_00776_1 crossref_primary_10_1016_j_wfumbo_2023_100032 crossref_primary_10_3390_muscles2040031 crossref_primary_10_1016_j_ultrasmedbio_2015_01_017 crossref_primary_10_1111_cpf_12778 crossref_primary_10_15366_rimcafd2022_86_008 crossref_primary_10_1016_j_jocd_2018_10_003 crossref_primary_10_3233_BMR_160663 crossref_primary_10_1177_1534735417712009 crossref_primary_10_1016_j_coph_2021_02_002 crossref_primary_10_23736_S0022_4707_20_10526_7 crossref_primary_10_1111_cpf_12532 crossref_primary_10_1186_s12967_018_1754_6 crossref_primary_10_1002_jcu_23243 crossref_primary_10_1080_02640414_2024_2318540 crossref_primary_10_1016_j_ultrasmedbio_2017_09_013 crossref_primary_10_1002_ajum_12273 crossref_primary_10_1007_s40520_018_0958_1 crossref_primary_10_2490_prm_20220034 crossref_primary_10_1111_sms_13068 crossref_primary_10_1139_apnm_2020_0114 crossref_primary_10_1016_j_jbmt_2021_03_017 crossref_primary_10_1111_cpf_12882 crossref_primary_10_1007_s40477_021_00615_6 crossref_primary_10_3389_fphys_2023_1298317 crossref_primary_10_1016_j_nut_2020_111056 crossref_primary_10_1186_s12891_020_03679_3 crossref_primary_10_1155_2024_3415740 crossref_primary_10_4103_singaporemedj_SMJ_2022_210 crossref_primary_10_3390_diagnostics12061378 crossref_primary_10_1002_mus_25395 crossref_primary_10_3233_NRE_210257 |
Cites_doi | 10.2337/diabetes.51.11.3163 10.1111/cpf.12060 10.1136/bmj.299.6700.663 10.1002/mus.10384 10.1007/s00421-012-2517-3 10.1002/mus.21015 10.1093/gerona/glq118 10.1016/j.ultrasmedbio.2008.10.008 10.1016/j.clinph.2003.10.022 10.1016/S0028-3932(97)00107-3 10.1002/mus.23621 10.1177/0269215511434994 10.1113/jphysiol.1996.sp021685 10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E 10.1212/WNL.0b013e3181eccf8f 10.1016/j.ultrasmedbio.2012.04.016 10.1002/mus.21866 10.1007/s00421-003-0961-9 10.1002/mus.22254 10.1007/s00421-011-1999-8 10.1007/s00421-011-2099-5 10.1002/mus.21458 10.7863/jum.1993.12.2.73 10.1016/j.ultrasmedbio.2006.05.028 10.1111/j.1475-097X.2009.00897.x 10.1007/s00421-010-1648-7 10.1016/j.ultrasmedbio.2008.09.016 10.1007/s004210050677 10.1097/MCO.0b013e328337d826 10.1519/JSC.0b013e31823dae96 10.1016/S0026-0495(00)80010-4 10.1249/01.MSS.0000162691.66162.00 10.7863/jum.2012.31.1.43 10.1111/j.1469-7580.2010.01218.x 10.1002/mus.24061 10.1007/s00421-010-1402-1 |
ContentType | Journal Article |
Copyright | 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
Copyright_xml | – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd – notice: 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. – notice: Copyright © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
DOI | 10.1111/cpf.12175 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Physical Education Index Solid State and Superconductivity Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Solid State and Superconductivity Abstracts Technology Research Database Calcium & Calcified Tissue Abstracts Advanced Technologies Database with Aerospace Physical Education Index MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1475-097X |
EndPage | 403 |
ExternalDocumentID | 3764166961 24902991 10_1111_cpf_12175 CPF12175 ark_67375_WNG_9R0VVVZC_2 |
Genre | article Comparative Study Evaluation Studies Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fondazione CARIPLO – fundername: University of Turin |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29B 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K RJQFR ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7QP 7TS 7U5 8FD K9. L7M 7X8 |
ID | FETCH-LOGICAL-c4905-17248e208e1e78c117f991b878b8ebfe1d9e3a109e1fca386c9984843d37ce563 |
IEDL.DBID | DR2 |
ISSN | 1475-0961 1475-097X |
IngestDate | Thu Jul 10 19:23:49 EDT 2025 Fri Jul 25 03:14:07 EDT 2025 Mon Jul 21 06:01:23 EDT 2025 Tue Jul 01 01:42:45 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Wed Jan 22 16:53:13 EST 2025 Wed Oct 30 09:57:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | greyscale analysis muscle thickness subcutaneous layer thickness fibrous and adipose tissue content of muscles region of interest |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4905-17248e208e1e78c117f991b878b8ebfe1d9e3a109e1fca386c9984843d37ce563 |
Notes | University of Turin istex:604F335A05A55C8D79350719FE77BF96851EEC2A ark:/67375/WNG-9R0VVVZC-2 Fondazione CARIPLO ArticleID:CPF12175 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
ORCID | 0000-0003-1150-2244 |
PMID | 24902991 |
PQID | 1700282620 |
PQPubID | 1006519 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1701346081 proquest_journals_1700282620 pubmed_primary_24902991 crossref_citationtrail_10_1111_cpf_12175 crossref_primary_10_1111_cpf_12175 wiley_primary_10_1111_cpf_12175_CPF12175 istex_primary_ark_67375_WNG_9R0VVVZC_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2015 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: September 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Clinical physiology and functional imaging |
PublicationTitleAlternate | Clin Physiol Funct Imaging |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Gan SK, Samaras K, Thompson CH, Kraegen EW, Carr A, Cooper DA, Chisholm DJ. Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes (2002); 51: 3163-3169. Cho KH, Lee HJ, Lee WH. Reliability of rehabilitative ultrasound imaging for the medial gastrocnemius muscle in poststroke patients. Clin Physiol Funct Imaging (2014); 34: 26-31. Fukumoto Y, Ikezoe T, Tateuchi H, Tsukagoshi R, Akiyama H, So K, Kuroda Y, Yoneyama T, Ichihashi N. Muscle mass and composition of the hip, thigh and abdominal muscles in women with and with-out hip osteoarthritis. Ultrasound Med Biol (2012a); 38: 1540-1545. Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve (2010); 41: 32-41. Arts IM, Schelhaas HJ, Verrijp KC, Zwarts MJ, Overeem S, van der Laak JA, Lammens MM, Pillen S. Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis. Muscle Nerve (2012); 45: 449-450. Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, van der Laak JA, Hoogerbrugge PM, van Engelen BG, Verrips A. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol (2009); 35: 443-446. Noorkoiv M, Nosaka K, Blazevich AJ. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol (2010); 109: 631-639. Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol (2004); 91: 116-118. Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care (2010); 13: 260-264. Nosaka K, Newton M, Sacco P, Chapman D, Lavender A. Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc (2005); 37: 746-753. Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia (1998); 36: 37-43. Fujikake T, Hart R, Nosaka K. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med Biol (2009); 35: 687-696. Nijboer-Oosterveld J, Van Alfen N, Pillen S. New normal values for quantitative muscle ultrasound: obesity increases muscle echo intensity. Muscle Nerve (2011); 43: 142-143. Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med (1993); 12: 73-77. Chen HL, Nosaka K, Chen TC. Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur J Appl Physiol (2012); 112: 555-565. Radaelli R, Bottaro M, Wilhelm EN, Wagner DR, Pinto RS. Time course of strength and echo intensity recovery after resistance exercise in women. J Strength Cond Res (2012); 26: 2577-2584. Scholten RR, Pillen S, Verrips A, Zwarts MJ. Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve (2003); 27: 693-698. Chen TC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K. Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. Eur J Appl Physiol (2013); 113: 1005-1015. Hu CF, Chen CP, Tsai WC, Hu LL, Hsu CC, Tseng ST, Shau YW. Quantification of skeletal muscle fibrosis at different healing stages using sonography: a morphologic and histologic study in an animal model. J Ultrasound Med (2012); 31: 43-48. O'Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Muscle-tendon structure and dimensions in adults and children. J Anat (2010); 216: 631-642. Thoirs K, English C. Ultrasound measures of muscle thickness: intra-examiner reliability and influence of body position. Clin Physiol Funct Imaging (2009); 29: 440-446. Munro BH. Statistical Methods for Health Care Research, 5th edn (2005). Lippincott Williams & Wilkins, Philadelphia, PA. Chen TC, Lin KY, Chen HL, Lin MJ, Nosaka K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol (2011); 111: 211-223. Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol (1996); 496: 287-297. Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, Kimura M, Ichihashi N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol (2012b); 112: 1519-1525. Walker FO, Cartwright MS, Wiesler ER, Caress J. Ultrasound of nerve and muscle. Clin Neurophysiol (2004); 115: 495-507. Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve (2008); 37: 679-693. English C, Fisher L, Thoirs K. Reliability of real-time ultrasound for measuring skeletal muscle size in human limbs in vivo: a systematic review. Clin Rehabil (2012); 26: 934-944. Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Statist Med (1998); 17: 101-110. Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism (2000); 49: 467-472. Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FC, Seynnes OR, Stewart CE, Maganaris CN, Narici MV. Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci (2010); 65: 1215-1219. Cartwright MS, Demar S, Griffin LP, Balakrishnan N, Harris JM, Walker FO. Validity and reliability of nerve and muscle ultrasound. Muscle Nerve (2013); 47: 515-521. Chow RS, Medri MK, Martin DC, Leekam RN, Agur AM, McKee NH. Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability. Eur J Appl Physiol (2000); 82: 236-244. Pillen S, van Keimpema M, Nievelstein RA, Verrips A, van Kruijsbergen-Raijmann W, Zwarts MJ. Skeletal muscle ultrasonography: visual versus quantitative evaluation. Ultrasound Med Biol (2006); 32: 1315-1321. Day SJ, Graham DF. Sample size and power for comparing two or more treatment groups in clinical trials. BMJ (1989); 299: 663-665. Rosenberg JG, Ryan ED, Sobolewski EJ, Scharville MJ, Thompson BJ, King GE. Reliability of panoramic ultrasound imaging to simultaneously examine muscle size and quality of the medial gastrocnemius. Muscle Nerve (2014); 49: 736-740. Wu JS, Darras BT, Rutkove SB. Assessing spinal muscular atrophy with quantitative ultrasound. Neurology (2010); 75: 526-531. 2010; 75 2013; 47 2000; 49 2010; 109 2010; 13 1989; 299 2006; 32 2002; 51 2014; 49 2008; 37 2005 2004; 91 2010; 41 2011; 111 2012; 31 2009; 29 2010; 65 2009; 35 1993; 12 1998; 17 2004; 115 2012; 112 2012a; 38 2010; 216 2012b; 112 2013; 113 2000; 82 2011; 43 2003; 27 1996; 496 2012; 26 2005; 37 2012; 45 2014; 34 1998; 36 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 Munro BH (e_1_2_7_21_1) 2005 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
References_xml | – reference: Wu JS, Darras BT, Rutkove SB. Assessing spinal muscular atrophy with quantitative ultrasound. Neurology (2010); 75: 526-531. – reference: Munro BH. Statistical Methods for Health Care Research, 5th edn (2005). Lippincott Williams & Wilkins, Philadelphia, PA. – reference: Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P. In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol (1996); 496: 287-297. – reference: Arts IM, Pillen S, Schelhaas HJ, Overeem S, Zwarts MJ. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve (2010); 41: 32-41. – reference: Chow RS, Medri MK, Martin DC, Leekam RN, Agur AM, McKee NH. Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability. Eur J Appl Physiol (2000); 82: 236-244. – reference: Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism (2000); 49: 467-472. – reference: Rosenberg JG, Ryan ED, Sobolewski EJ, Scharville MJ, Thompson BJ, King GE. Reliability of panoramic ultrasound imaging to simultaneously examine muscle size and quality of the medial gastrocnemius. Muscle Nerve (2014); 49: 736-740. – reference: Fukumoto Y, Ikezoe T, Tateuchi H, Tsukagoshi R, Akiyama H, So K, Kuroda Y, Yoneyama T, Ichihashi N. Muscle mass and composition of the hip, thigh and abdominal muscles in women with and with-out hip osteoarthritis. Ultrasound Med Biol (2012a); 38: 1540-1545. – reference: Cartwright MS, Demar S, Griffin LP, Balakrishnan N, Harris JM, Walker FO. Validity and reliability of nerve and muscle ultrasound. Muscle Nerve (2013); 47: 515-521. – reference: Atkinson RA, Srinivas-Shankar U, Roberts SA, Connolly MJ, Adams JE, Oldham JA, Wu FC, Seynnes OR, Stewart CE, Maganaris CN, Narici MV. Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J Gerontol A Biol Sci Med Sci (2010); 65: 1215-1219. – reference: Nijboer-Oosterveld J, Van Alfen N, Pillen S. New normal values for quantitative muscle ultrasound: obesity increases muscle echo intensity. Muscle Nerve (2011); 43: 142-143. – reference: Pillen S, Tak RO, Zwarts MJ, Lammens MM, Verrijp KN, Arts IM, van der Laak JA, Hoogerbrugge PM, van Engelen BG, Verrips A. Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity. Ultrasound Med Biol (2009); 35: 443-446. – reference: Nosaka K, Newton M, Sacco P, Chapman D, Lavender A. Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc (2005); 37: 746-753. – reference: Reimers K, Reimers CD, Wagner S, Paetzke I, Pongratz DE. Skeletal muscle sonography: a correlative study of echogenicity and morphology. J Ultrasound Med (1993); 12: 73-77. – reference: Walker FO, Cartwright MS, Wiesler ER, Caress J. Ultrasound of nerve and muscle. Clin Neurophysiol (2004); 115: 495-507. – reference: Day SJ, Graham DF. Sample size and power for comparing two or more treatment groups in clinical trials. BMJ (1989); 299: 663-665. – reference: Pillen S, Arts IM, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve (2008); 37: 679-693. – reference: Hu CF, Chen CP, Tsai WC, Hu LL, Hsu CC, Tseng ST, Shau YW. Quantification of skeletal muscle fibrosis at different healing stages using sonography: a morphologic and histologic study in an animal model. J Ultrasound Med (2012); 31: 43-48. – reference: Noorkoiv M, Nosaka K, Blazevich AJ. Assessment of quadriceps muscle cross-sectional area by ultrasound extended-field-of-view imaging. Eur J Appl Physiol (2010); 109: 631-639. – reference: Radaelli R, Bottaro M, Wilhelm EN, Wagner DR, Pinto RS. Time course of strength and echo intensity recovery after resistance exercise in women. J Strength Cond Res (2012); 26: 2577-2584. – reference: Scholten RR, Pillen S, Verrips A, Zwarts MJ. Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve (2003); 27: 693-698. – reference: Gan SK, Samaras K, Thompson CH, Kraegen EW, Carr A, Cooper DA, Chisholm DJ. Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor-related lipodystrophy. Diabetes (2002); 51: 3163-3169. – reference: Chen TC, Lin KY, Chen HL, Lin MJ, Nosaka K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol (2011); 111: 211-223. – reference: Fujikake T, Hart R, Nosaka K. Changes in B-mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes. Ultrasound Med Biol (2009); 35: 687-696. – reference: Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, Kimura M, Ichihashi N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol (2012b); 112: 1519-1525. – reference: Pillen S, van Keimpema M, Nievelstein RA, Verrips A, van Kruijsbergen-Raijmann W, Zwarts MJ. Skeletal muscle ultrasonography: visual versus quantitative evaluation. Ultrasound Med Biol (2006); 32: 1315-1321. – reference: Arts IM, Schelhaas HJ, Verrijp KC, Zwarts MJ, Overeem S, van der Laak JA, Lammens MM, Pillen S. Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis. Muscle Nerve (2012); 45: 449-450. – reference: Elias LJ, Bryden MP, Bulman-Fleming MB. Footedness is a better predictor than is handedness of emotional lateralization. Neuropsychologia (1998); 36: 37-43. – reference: Thoirs K, English C. Ultrasound measures of muscle thickness: intra-examiner reliability and influence of body position. Clin Physiol Funct Imaging (2009); 29: 440-446. – reference: Miljkovic I, Zmuda JM. Epidemiology of myosteatosis. Curr Opin Clin Nutr Metab Care (2010); 13: 260-264. – reference: Chen HL, Nosaka K, Chen TC. Muscle damage protection by low-intensity eccentric contractions remains for 2 weeks but not 3 weeks. Eur J Appl Physiol (2012); 112: 555-565. – reference: Chen TC, Tseng WC, Huang GL, Chen HL, Tseng KW, Nosaka K. Low-intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly. Eur J Appl Physiol (2013); 113: 1005-1015. – reference: English C, Fisher L, Thoirs K. Reliability of real-time ultrasound for measuring skeletal muscle size in human limbs in vivo: a systematic review. Clin Rehabil (2012); 26: 934-944. – reference: O'Brien TD, Reeves ND, Baltzopoulos V, Jones DA, Maganaris CN. Muscle-tendon structure and dimensions in adults and children. J Anat (2010); 216: 631-642. – reference: Walter SD, Eliasziw M, Donner A. Sample size and optimal designs for reliability studies. Statist Med (1998); 17: 101-110. – reference: Cho KH, Lee HJ, Lee WH. Reliability of rehabilitative ultrasound imaging for the medial gastrocnemius muscle in poststroke patients. Clin Physiol Funct Imaging (2014); 34: 26-31. – reference: Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol (2004); 91: 116-118. – volume: 34 start-page: 26 year: 2014 end-page: 31 article-title: Reliability of rehabilitative ultrasound imaging for the medial gastrocnemius muscle in poststroke patients publication-title: Clin Physiol Funct Imaging – volume: 12 start-page: 73 year: 1993 end-page: 77 article-title: Skeletal muscle sonography: a correlative study of echogenicity and morphology publication-title: J Ultrasound Med – volume: 112 start-page: 555 year: 2012 end-page: 565 article-title: Muscle damage protection by low‐intensity eccentric contractions remains for 2 weeks but not 3 weeks publication-title: Eur J Appl Physiol – volume: 49 start-page: 736 year: 2014 end-page: 740 article-title: Reliability of panoramic ultrasound imaging to simultaneously examine muscle size and quality of the medial gastrocnemius publication-title: Muscle Nerve – volume: 37 start-page: 679 year: 2008 end-page: 693 article-title: Muscle ultrasound in neuromuscular disorders publication-title: Muscle Nerve – volume: 26 start-page: 934 year: 2012 end-page: 944 article-title: Reliability of real‐time ultrasound for measuring skeletal muscle size in human limbs in vivo: a systematic review publication-title: Clin Rehabil – volume: 38 start-page: 1540 year: 2012a end-page: 1545 article-title: Muscle mass and composition of the hip, thigh and abdominal muscles in women with and with‐out hip osteoarthritis publication-title: Ultrasound Med Biol – year: 2005 – volume: 82 start-page: 236 year: 2000 end-page: 244 article-title: Sonographic studies of human soleus and gastrocnemius muscle architecture: gender variability publication-title: Eur J Appl Physiol – volume: 299 start-page: 663 year: 1989 end-page: 665 article-title: Sample size and power for comparing two or more treatment groups in clinical trials publication-title: BMJ – volume: 43 start-page: 142 year: 2011 end-page: 143 article-title: New normal values for quantitative muscle ultrasound: obesity increases muscle echo intensity publication-title: Muscle Nerve – volume: 45 start-page: 449 year: 2012 end-page: 450 article-title: Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis publication-title: Muscle Nerve – volume: 216 start-page: 631 year: 2010 end-page: 642 article-title: Muscle‐tendon structure and dimensions in adults and children publication-title: J Anat – volume: 49 start-page: 467 year: 2000 end-page: 472 article-title: Intramuscular lipid content is increased in obesity and decreased by weight loss publication-title: Metabolism – volume: 17 start-page: 101 year: 1998 end-page: 110 article-title: Sample size and optimal designs for reliability studies publication-title: Statist Med – volume: 41 start-page: 32 year: 2010 end-page: 41 article-title: Normal values for quantitative muscle ultrasonography in adults publication-title: Muscle Nerve – volume: 13 start-page: 260 year: 2010 end-page: 264 article-title: Epidemiology of myosteatosis publication-title: Curr Opin Clin Nutr Metab Care – volume: 35 start-page: 443 year: 2009 end-page: 446 article-title: Skeletal muscle ultrasound: correlation between fibrous tissue and echo intensity publication-title: Ultrasound Med Biol – volume: 111 start-page: 211 year: 2011 end-page: 223 article-title: Comparison in eccentric exercise‐induced muscle damage among four limb muscles publication-title: Eur J Appl Physiol – volume: 26 start-page: 2577 year: 2012 end-page: 2584 article-title: Time course of strength and echo intensity recovery after resistance exercise in women publication-title: J Strength Cond Res – volume: 35 start-page: 687 year: 2009 end-page: 696 article-title: Changes in B‐mode ultrasound echo intensity following injection of bupivacaine hydrochloride to rat hind limb muscles in relation to histologic changes publication-title: Ultrasound Med Biol – volume: 112 start-page: 1519 year: 2012b end-page: 1525 article-title: Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle‐aged and elderly persons publication-title: Eur J Appl Physiol – volume: 91 start-page: 116 year: 2004 end-page: 118 article-title: Ultrasonographic assessment of human skeletal muscle size publication-title: Eur J Appl Physiol – volume: 36 start-page: 37 year: 1998 end-page: 43 article-title: Footedness is a better predictor than is handedness of emotional lateralization publication-title: Neuropsychologia – volume: 496 start-page: 287 year: 1996 end-page: 297 article-title: In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction publication-title: J Physiol – volume: 27 start-page: 693 year: 2003 end-page: 698 article-title: Quantitative ultrasonography of skeletal muscles in children: normal values publication-title: Muscle Nerve – volume: 47 start-page: 515 year: 2013 end-page: 521 article-title: Validity and reliability of nerve and muscle ultrasound publication-title: Muscle Nerve – volume: 51 start-page: 3163 year: 2002 end-page: 3169 article-title: Altered myocellular and abdominal fat partitioning predict disturbance in insulin action in HIV protease inhibitor‐related lipodystrophy publication-title: Diabetes – volume: 31 start-page: 43 year: 2012 end-page: 48 article-title: Quantification of skeletal muscle fibrosis at different healing stages using sonography: a morphologic and histologic study in an animal model publication-title: J Ultrasound Med – volume: 113 start-page: 1005 year: 2013 end-page: 1015 article-title: Low‐intensity eccentric contractions attenuate muscle damage induced by subsequent maximal eccentric exercise of the knee extensors in the elderly publication-title: Eur J Appl Physiol – volume: 37 start-page: 746 year: 2005 end-page: 753 article-title: Partial protection against muscle damage by eccentric actions at short muscle lengths publication-title: Med Sci Sports Exerc – volume: 75 start-page: 526 year: 2010 end-page: 531 article-title: Assessing spinal muscular atrophy with quantitative ultrasound publication-title: Neurology – volume: 65 start-page: 1215 year: 2010 end-page: 1219 article-title: Effects of testosterone on skeletal muscle architecture in intermediate‐frail and frail elderly men publication-title: J Gerontol A Biol Sci Med Sci – volume: 115 start-page: 495 year: 2004 end-page: 507 article-title: Ultrasound of nerve and muscle publication-title: Clin Neurophysiol – volume: 109 start-page: 631 year: 2010 end-page: 639 article-title: Assessment of quadriceps muscle cross‐sectional area by ultrasound extended‐field‐of‐view imaging publication-title: Eur J Appl Physiol – volume: 32 start-page: 1315 year: 2006 end-page: 1321 article-title: Skeletal muscle ultrasonography: visual versus quantitative evaluation publication-title: Ultrasound Med Biol – volume: 29 start-page: 440 year: 2009 end-page: 446 article-title: Ultrasound measures of muscle thickness: intra‐examiner reliability and influence of body position publication-title: Clin Physiol Funct Imaging – ident: e_1_2_7_17_1 doi: 10.2337/diabetes.51.11.3163 – ident: e_1_2_7_9_1 doi: 10.1111/cpf.12060 – volume-title: Statistical Methods for Health Care Research year: 2005 ident: e_1_2_7_21_1 – ident: e_1_2_7_11_1 doi: 10.1136/bmj.299.6700.663 – ident: e_1_2_7_34_1 doi: 10.1002/mus.10384 – ident: e_1_2_7_8_1 doi: 10.1007/s00421-012-2517-3 – ident: e_1_2_7_28_1 doi: 10.1002/mus.21015 – ident: e_1_2_7_4_1 doi: 10.1093/gerona/glq118 – ident: e_1_2_7_14_1 doi: 10.1016/j.ultrasmedbio.2008.10.008 – ident: e_1_2_7_36_1 doi: 10.1016/j.clinph.2003.10.022 – ident: e_1_2_7_12_1 doi: 10.1016/S0028-3932(97)00107-3 – ident: e_1_2_7_5_1 doi: 10.1002/mus.23621 – ident: e_1_2_7_13_1 doi: 10.1177/0269215511434994 – ident: e_1_2_7_22_1 doi: 10.1113/jphysiol.1996.sp021685 – ident: e_1_2_7_37_1 doi: 10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E – ident: e_1_2_7_38_1 doi: 10.1212/WNL.0b013e3181eccf8f – ident: e_1_2_7_15_1 doi: 10.1016/j.ultrasmedbio.2012.04.016 – ident: e_1_2_7_23_1 doi: 10.1002/mus.21866 – ident: e_1_2_7_31_1 doi: 10.1007/s00421-003-0961-9 – ident: e_1_2_7_3_1 doi: 10.1002/mus.22254 – ident: e_1_2_7_7_1 doi: 10.1007/s00421-011-1999-8 – ident: e_1_2_7_16_1 doi: 10.1007/s00421-011-2099-5 – ident: e_1_2_7_2_1 doi: 10.1002/mus.21458 – ident: e_1_2_7_32_1 doi: 10.7863/jum.1993.12.2.73 – ident: e_1_2_7_27_1 doi: 10.1016/j.ultrasmedbio.2006.05.028 – ident: e_1_2_7_35_1 doi: 10.1111/j.1475-097X.2009.00897.x – ident: e_1_2_7_6_1 doi: 10.1007/s00421-010-1648-7 – ident: e_1_2_7_29_1 doi: 10.1016/j.ultrasmedbio.2008.09.016 – ident: e_1_2_7_10_1 doi: 10.1007/s004210050677 – ident: e_1_2_7_20_1 doi: 10.1097/MCO.0b013e328337d826 – ident: e_1_2_7_30_1 doi: 10.1519/JSC.0b013e31823dae96 – ident: e_1_2_7_18_1 doi: 10.1016/S0026-0495(00)80010-4 – ident: e_1_2_7_25_1 doi: 10.1249/01.MSS.0000162691.66162.00 – ident: e_1_2_7_19_1 doi: 10.7863/jum.2012.31.1.43 – ident: e_1_2_7_26_1 doi: 10.1111/j.1469-7580.2010.01218.x – ident: e_1_2_7_33_1 doi: 10.1002/mus.24061 – ident: e_1_2_7_24_1 doi: 10.1007/s00421-010-1402-1 |
SSID | ssj0017347 |
Score | 2.4584963 |
Snippet | Summary
Objective
To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape... To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape and location of the... Summary Objective To assess the issue of muscle echo intensity reliability and to investigate the relationship between muscle echo intensity and size, shape... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 393 |
SubjectTerms | Adult Algorithms Female fibrous and adipose tissue content of muscles greyscale analysis Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional - methods Male muscle thickness Muscle, Skeletal - anatomy & histology Muscle, Skeletal - diagnostic imaging region of interest Reproducibility of Results Sensitivity and Specificity Sex Characteristics subcutaneous layer thickness Ultrasonography |
Title | Muscle echo intensity: reliability and conditioning factors |
URI | https://api.istex.fr/ark:/67375/WNG-9R0VVVZC-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcpf.12175 https://www.ncbi.nlm.nih.gov/pubmed/24902991 https://www.proquest.com/docview/1700282620 https://www.proquest.com/docview/1701346081 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSx0xEB7EQulLW-1tW5VtKcWXlc0mm2T1SQ4epXCkSD2VUghJdgJiWeVcoPbXN8le0KIgvi1kliSTTPJNMvkG4DPn6EhtXMZzJzJmBGYmR5nljjBbayQ6culNjvnRKft6Vp6twF7_FqblhxgO3IJlxPU6GLg28xtGbq9coEYQ4YF5iNUKgOhkoI4igsbkYoSJMgtpTTpWoRDFM_x5ay96EtT65y6geRu3xo1n_AJ-9U1u400udpYLs2P__sfm-Mg-vYTnHSBN99sZtAYr2KzD00l35f4K9ibLuS9I0a-T6Xkb8L643k1nvqqW4_s61U2der-6Pu9Od9Mui89rOB0ffB8dZV3GhcyyKlCSioJJLHKJBIW0hAjn8aORQhqJxiGpK6Sa5BUSZzWV3HpvjUlGayoslpy-gdXmssF3kGJd1ZJKY3zPGDVcUiy0k1boytfFaALbve6V7ejIQ1aM36p3S7wyVFRGAp8G0auWg-MuoS9xAAcJPbsIQWuiVD-OD1V1kk-n058jVSSw0Y-w6ux1rgJLoXc-eZEn8HEo9pYWrk90g5fLKEMo4x5DJfC2nRlDZd6Jzf3G7ku24_je3041-jaOH-8fLvoBnnmcVrahbRuwupgtcdNjoYXZipP-Hza9Ano |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qC-qL3x-rVVcR6cuWzSabZNUXOT1P7R1S2rMIEpLsBEplW653YP3rTbIfWKkgvi1kliSTTPKbZPIbgOecoyO1cRnPnciYEZiZHGWWO8JsrZHoyKU3nfHJPvt4UB6swev-LUzLDzEcuAXLiOt1MPBwIP2bldsTF7gRRHkJNkJG78Cc_3Z3II8igsb0YoSJMguJTTpeoRDHM_x6bjfaCIr9cRHUPI9c49Yzvg7f-ka3ESdH26ul2bY__-Bz_N9e3YBrHSZN37ST6CasYXMLLk-7W_fb8Gq6OvUFKfqlMj1sY96XZy_Tha-rpfk-S3VTp961rg-7A960S-RzB_bH7_ZGk6xLupBZVgVWUlEwiUUukaCQlhDhPIQ0Ukgj0TgkdYVUk7xC4qymklvvsDHJaE2FxZLTu7DeHDd4H1Ksq1pSaYzvGaOGS4qFdtIKXfm6GE1gq1e-sh0jeUiM8V31nolXhorKSODZIHrS0nBcJPQijuAgoRdHIW5NlOrL7L2qdvP5fP51pIoENvshVp3JnqpAVOj9T17kCTwdir2xhRsU3eDxKsoQyriHUQnca6fGUJn3Y3O_t_uSrTjAf2-nGn0ex48H_y76BK5M9qY7aufD7NNDuOphW9lGum3C-nKxwkceGi3N42gBvwBdtQaW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qC8Uvvh-rVVcR6Zctm002ydpPcvWsjztKsWcRIWySCZTK9rjegfWvN8k-sFJB_LYwsySZzCQzyeQ3AC85R0esdhnPnciYFpjpHGWWO8KMrZHUEUtvMuX7R-zDcXm8Brv9W5gWH2I4cAuWEdfrYOBz634zcjN3ARpBlNdgg_G8CnUb9g4H7CgiaKwuRpgos1DXpIMVCmk8w6-XNqONINcfV3malx3XuPOMb8K3vs9twsnpzmqpd8zPP-Ac_3NQt-BG55Gmb1oVug1r2NyBzUl3534Xdierc09I0S-U6Umb8b68eJ0ufFMtyPdFWjc29YG1PemOd9OujM89OBq__Tzaz7qSC5lhVcAkFQWTWOQSCQppCBHOO5BaCqklaofEVkhrkldInKmp5MaHa0wyaqkwWHJ6H9abswYfQoq2spJKrf3IGNVcUixqJ42oK98Wowls97JXpsMjD2Uxvqs-LvHCUFEYCbwYWOctCMdVTK_iBA4c9eI0ZK2JUn2ZvlPVYT6bzb6OVJHAVj_DqjPYcxVgCn30yYs8gecD2ZtauD-pGzxbRR5CvapJksCDVjOGxnwUm_ud3VO24_z-vZ9qdDCOH4_-nfUZbB7sjdWn99OPj-G699nKNs1tC9aXixU-8X7RUj-N-v8LQ20FRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Muscle+echo+intensity%3A+reliability+and+conditioning+factors&rft.jtitle=Clinical+physiology+and+functional+imaging&rft.au=Caresio%2C+Cristina&rft.au=Molinari%2C+Filippo&rft.au=Emanuel%2C+Giorgio&rft.au=Minetto%2C+Marco+Alessandro&rft.date=2015-09-01&rft.issn=1475-0961&rft.eissn=1475-097X&rft.volume=35&rft.issue=5&rft.spage=393&rft.epage=403&rft_id=info:doi/10.1111%2Fcpf.12175&rft.externalDBID=10.1111%252Fcpf.12175&rft.externalDocID=CPF12175 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-0961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-0961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-0961&client=summon |