Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics
Aim: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these...
Saved in:
Published in | Global ecology and biogeography Vol. 27; no. 1/2; pp. 245 - 256 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
John Wiley & Sons Ltd
01.02.2018
Wiley Subscription Services, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aim: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species' ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism. Innovation: First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo-predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo-predictors were classified as good and sometimes were even better evaluated than models computed using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability. Main conclusions: These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species' ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution. |
---|---|
AbstractList | Aim: Species distribution modelling, a family of statistical methods that predicts species distribu- tions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species’ ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism.Innovation: First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo-predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo- predictors were classified as good and sometimes were even better evaluated than models com- puted using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability.Main conclusions: These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species’ ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution. AIM: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species' ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism. INNOVATION: First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo‐predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo‐predictors were classified as good and sometimes were even better evaluated than models computed using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability. MAIN CONCLUSIONS: These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species' ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution. Aim Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species' ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism. Innovation First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo‐predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo‐predictors were classified as good and sometimes were even better evaluated than models computed using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability. Main conclusions These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species' ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution. |
Author | Secondi, Jean Besnard, Aurélien G. Fourcade, Yoan |
Author_xml | – sequence: 1 givenname: Yoan surname: Fourcade fullname: Fourcade, Yoan – sequence: 2 givenname: Aurélien G. surname: Besnard fullname: Besnard, Aurélien G. – sequence: 3 givenname: Jean surname: Secondi fullname: Secondi, Jean |
BackLink | https://univ-lyon1.hal.science/hal-02155242$$DView record in HAL https://res.slu.se/id/publ/93578$$DView record from Swedish Publication Index |
BookMark | eNp9kV9rFDEUxQepYFt98AMIA74oOG2SSebPY1tqKyzog4JvIcnc2WbJJmtuZkuf_OpmZ-2KBc3LDbm_c5Kbc1Ic-eChKF5TckbzOl-CPqOs6fiz4pjypqk6VndHhz37_qI4QVwRQgQXzXHx84uyPlm_xHITYbAmlekOysFiilZPyQZfhrHEDRgL-KEMce6bO-Uc-CXMTXBgdh4l-K2Nwa_BJ-UeDUPEUvmhhK1yk5odMeWKyRp8WTwflUN49bueFt8-Xn-9uq0Wn28-XV0sKsN7wivNGFOGgBj0ODRC1zURYhhUR2nfjZ0YWdtq3oEGTrnoa0046QdoRa8EaK3q06La--I9bCYtN9GuVXyQQVmJbtIq7opEkH0t2i7z7_d8HvQv-PZiIXdnhFEhGGdbmtl3e3YTw48JMMm1RQPOKQ9hQskII11fty3P6Nsn6CpM0efJZR6k4w2hhP653MSAGGE8vIASuYtZ5pjlHHNmz5-wxqb5l1NU1v1PcW8dPPzbWt5cXz4q3uwVK8xpHhSsaea_qn8BCL3G5A |
CitedBy_id | crossref_primary_10_1111_ddi_13377 crossref_primary_10_1111_gcb_15859 crossref_primary_10_1016_j_ecolind_2022_109487 crossref_primary_10_1016_j_indcrop_2024_118584 crossref_primary_10_11646_zootaxa_4550_4_2 crossref_primary_10_1002_ppp3_10630 crossref_primary_10_1002_ece3_11019 crossref_primary_10_1002_ecy_2912 crossref_primary_10_1002_ecs2_70026 crossref_primary_10_1002_eap_2514 crossref_primary_10_1016_j_ecoinf_2024_102658 crossref_primary_10_1002_ece3_4517 crossref_primary_10_3390_d14090750 crossref_primary_10_1111_ecog_06540 crossref_primary_10_1093_conphys_coac013 crossref_primary_10_1111_2041_210X_13312 crossref_primary_10_1111_ecog_07196 crossref_primary_10_7717_peerj_13728 crossref_primary_10_1016_j_pocean_2022_102924 crossref_primary_10_1111_ddi_13252 crossref_primary_10_1111_ibi_13046 crossref_primary_10_3389_fevo_2019_00033 crossref_primary_10_1016_j_fishres_2020_105821 crossref_primary_10_1007_s10980_020_00987_w crossref_primary_10_3389_ffgc_2023_1236842 crossref_primary_10_1016_j_ecolind_2022_109255 crossref_primary_10_1111_gcb_14755 crossref_primary_10_1111_gcb_14996 crossref_primary_10_1111_geb_13303 crossref_primary_10_1007_s11692_020_09498_7 crossref_primary_10_1016_j_gecco_2019_e00767 crossref_primary_10_1029_2022WR033692 crossref_primary_10_1016_j_earscirev_2020_103359 crossref_primary_10_1111_ejss_12909 crossref_primary_10_1016_j_geoderma_2022_115953 crossref_primary_10_1111_jbi_13696 crossref_primary_10_1111_gcb_15961 crossref_primary_10_1111_cobi_14227 crossref_primary_10_1111_ibi_12982 crossref_primary_10_3390_f12121749 crossref_primary_10_1111_ecog_04707 crossref_primary_10_1016_j_jnc_2024_126753 crossref_primary_10_1111_ddi_12868 crossref_primary_10_1016_j_pocean_2024_103355 crossref_primary_10_1111_ddi_13834 crossref_primary_10_1016_j_ecolind_2021_108339 crossref_primary_10_1093_biosci_biz045 crossref_primary_10_21105_joss_04930 crossref_primary_10_3390_f14061220 crossref_primary_10_1111_jbi_14775 crossref_primary_10_1016_j_ecoinf_2023_102106 crossref_primary_10_1093_biosci_biy069 crossref_primary_10_7717_peerj_8059 crossref_primary_10_1007_s10531_024_02978_8 crossref_primary_10_1186_s40462_021_00240_2 crossref_primary_10_15407_zoo2021_01_025 crossref_primary_10_1111_jbi_15067 crossref_primary_10_1371_journal_pone_0248797 crossref_primary_10_1007_s11629_021_6966_1 crossref_primary_10_1016_j_scitotenv_2024_173719 crossref_primary_10_1038_s44185_022_00001_3 crossref_primary_10_1139_cjfr_2020_0507 crossref_primary_10_3389_fmars_2022_933291 crossref_primary_10_3389_fmars_2018_00219 crossref_primary_10_33764_2411_1759_2024_29_3_83_96 crossref_primary_10_5194_essd_14_5573_2022 crossref_primary_10_3897_natureconservation_56_139402 crossref_primary_10_5194_gmd_17_6007_2024 crossref_primary_10_1016_j_ecoinf_2022_101646 crossref_primary_10_3390_f14061232 crossref_primary_10_1038_s41467_025_56175_4 crossref_primary_10_1146_annurev_ecolsys_102320_093722 crossref_primary_10_3389_fevo_2023_1174495 crossref_primary_10_3390_rs13071392 crossref_primary_10_1002_ecs2_4284 crossref_primary_10_1080_17550874_2023_2239244 crossref_primary_10_3390_plants11101346 crossref_primary_10_1016_j_ecoinf_2023_102110 crossref_primary_10_7717_peerj_5457 crossref_primary_10_1111_ddi_13161 crossref_primary_10_3390_atmos13111773 crossref_primary_10_3356_0892_1016_55_1_79 crossref_primary_10_37828_em_2024_72_20 crossref_primary_10_1002_ecs2_4703 crossref_primary_10_1111_ecog_05939 crossref_primary_10_1007_s10530_022_02838_y crossref_primary_10_1002_ece3_8599 crossref_primary_10_1111_ddi_13619 crossref_primary_10_1007_s10346_023_02065_z crossref_primary_10_1002_ece3_6859 crossref_primary_10_2478_mspe_2022_0031 crossref_primary_10_21425_fob_18_133105 crossref_primary_10_1111_2041_210X_14209 crossref_primary_10_1186_s40462_024_00481_x crossref_primary_10_1007_s10531_021_02270_z crossref_primary_10_3390_d11080119 crossref_primary_10_1016_j_ecss_2018_06_022 crossref_primary_10_1111_geb_13476 crossref_primary_10_1111_1365_2664_14801 crossref_primary_10_1111_jbi_13780 crossref_primary_10_1016_j_jnc_2020_125927 crossref_primary_10_1016_j_jnc_2024_126607 crossref_primary_10_1111_geb_12935 crossref_primary_10_1111_ddi_12891 crossref_primary_10_1002_ece3_7391 crossref_primary_10_1007_s10531_018_1545_7 crossref_primary_10_1111_ddi_12890 crossref_primary_10_1371_journal_pone_0211171 crossref_primary_10_1007_s10530_022_02849_9 crossref_primary_10_1016_j_ecolmodel_2019_108927 crossref_primary_10_1016_j_gecco_2018_e00471 crossref_primary_10_1111_ddi_13627 crossref_primary_10_1186_s40462_021_00294_2 crossref_primary_10_1073_pnas_2113936119 crossref_primary_10_3389_fmars_2022_1009808 crossref_primary_10_3389_fbirs_2023_1230978 crossref_primary_10_1093_mollus_eyaa029 crossref_primary_10_1080_17451000_2020_1837883 crossref_primary_10_1038_s41598_019_50953_z crossref_primary_10_1111_2041_210X_13488 crossref_primary_10_1111_ddi_13060 crossref_primary_10_1111_ecog_05360 crossref_primary_10_1016_j_dsr_2022_103707 crossref_primary_10_1093_jisesa_iez118 crossref_primary_10_3390_f14051058 crossref_primary_10_3390_land13040551 crossref_primary_10_1016_j_gloepi_2019_100014 crossref_primary_10_1038_s41598_022_06234_3 crossref_primary_10_1016_j_geoderma_2023_116652 crossref_primary_10_1007_s10530_019_02035_4 crossref_primary_10_1371_journal_pone_0214099 crossref_primary_10_1002_ece3_6753 crossref_primary_10_1111_jbi_14608 crossref_primary_10_1007_s10344_019_1266_6 crossref_primary_10_1016_j_ecolmodel_2021_109502 crossref_primary_10_1111_ecog_04503 crossref_primary_10_3897_neobiota_89_110085 crossref_primary_10_1002_saj2_20769 crossref_primary_10_1186_s12870_025_06370_8 crossref_primary_10_1371_journal_pone_0197234 crossref_primary_10_1002_ece3_70003 crossref_primary_10_1016_j_scitotenv_2022_157363 crossref_primary_10_3897_BDJ_8_e56827 crossref_primary_10_1016_j_jaridenv_2022_104725 crossref_primary_10_3390_d16080510 crossref_primary_10_1002_ecs2_4017 crossref_primary_10_1007_s11756_023_01523_2 crossref_primary_10_1093_ornithapp_duac019 crossref_primary_10_3390_land10010054 crossref_primary_10_1134_S2079086421030087 crossref_primary_10_1017_S0959270921000587 crossref_primary_10_1111_geb_13453 crossref_primary_10_1111_1365_2664_14464 crossref_primary_10_1016_j_agee_2020_106818 crossref_primary_10_1111_2041_210X_13140 crossref_primary_10_1002_ece3_9597 crossref_primary_10_1007_s12237_021_00924_3 crossref_primary_10_1002_ece3_10553 crossref_primary_10_1111_ecog_06919 crossref_primary_10_1007_s00442_022_05110_1 crossref_primary_10_1111_ele_14472 crossref_primary_10_1016_j_gecco_2022_e02050 crossref_primary_10_1016_j_gecco_2022_e02292 crossref_primary_10_1111_jvs_13021 crossref_primary_10_3390_biology11081219 crossref_primary_10_1016_S2095_3119_19_62857_1 crossref_primary_10_1093_jee_toae251 crossref_primary_10_1016_j_jenvman_2019_109609 crossref_primary_10_1098_rsos_200231 crossref_primary_10_1111_acv_12910 crossref_primary_10_1111_2041_210X_14119 crossref_primary_10_1002_wsb_1532 crossref_primary_10_1111_2041_210X_13389 crossref_primary_10_1016_j_ecocom_2022_100997 crossref_primary_10_1111_2041_210X_14356 crossref_primary_10_1134_S2079086421030075 crossref_primary_10_1111_2041_210X_13142 crossref_primary_10_1016_j_biocon_2019_01_007 crossref_primary_10_3897_natureconservation_35_33918 crossref_primary_10_3389_frsen_2025_1531097 crossref_primary_10_1111_evo_13836 crossref_primary_10_1016_j_ecolmodel_2020_109288 crossref_primary_10_3390_agronomy11040703 crossref_primary_10_1016_j_ecolmodel_2021_109686 crossref_primary_10_1038_s41598_020_79551_0 crossref_primary_10_1111_ddi_13536 crossref_primary_10_1007_s11783_024_1789_2 crossref_primary_10_1016_j_marpolbul_2023_115827 crossref_primary_10_1016_j_ecoinf_2023_102406 crossref_primary_10_3390_rs16020271 crossref_primary_10_1007_s10841_022_00441_z crossref_primary_10_3390_en16020985 crossref_primary_10_3390_insects11080479 crossref_primary_10_1016_j_fishres_2019_03_006 crossref_primary_10_1038_s41598_020_73773_y crossref_primary_10_1038_s41598_020_79491_9 crossref_primary_10_1111_geb_13277 crossref_primary_10_3390_ani13020274 crossref_primary_10_1002_eap_2470 crossref_primary_10_1111_jzo_13058 crossref_primary_10_1016_j_tree_2018_08_001 crossref_primary_10_1111_ddi_13544 crossref_primary_10_1016_j_tree_2019_03_004 crossref_primary_10_3389_ffgc_2023_1299120 crossref_primary_10_3390_ani13142341 crossref_primary_10_1007_s10651_020_00445_5 crossref_primary_10_1007_s00300_020_02714_2 crossref_primary_10_1007_s10980_023_01636_8 crossref_primary_10_1093_aesa_saz049 crossref_primary_10_1016_j_ecolmodel_2018_07_018 crossref_primary_10_1371_journal_pone_0274892 crossref_primary_10_3354_meps12890 crossref_primary_10_1111_ecog_05164 crossref_primary_10_3390_rs13101892 crossref_primary_10_1016_j_biocon_2021_109330 crossref_primary_10_1111_ejss_13159 crossref_primary_10_1111_ddi_13431 crossref_primary_10_1016_j_gecco_2020_e01106 crossref_primary_10_1111_geb_12842 crossref_primary_10_1371_journal_pone_0262451 crossref_primary_10_1016_j_scitotenv_2022_154246 crossref_primary_10_1038_s41558_019_0584_8 crossref_primary_10_1111_ddi_13434 crossref_primary_10_1007_s10344_024_01838_8 crossref_primary_10_1002_ece3_6316 crossref_primary_10_1002_ece3_6317 crossref_primary_10_3389_fevo_2021_706414 crossref_primary_10_3390_rs14174334 crossref_primary_10_1016_j_ecolind_2018_10_003 crossref_primary_10_1038_s41598_022_10642_w crossref_primary_10_3389_fmars_2019_00278 crossref_primary_10_1002_ece3_70288 crossref_primary_10_1038_s41598_025_92272_6 crossref_primary_10_1016_j_pocean_2020_102307 crossref_primary_10_3389_fpls_2022_839327 crossref_primary_10_1007_s11053_024_10393_7 crossref_primary_10_1111_2041_210X_13851 crossref_primary_10_1016_j_biocon_2024_110725 crossref_primary_10_1111_csp2_578 crossref_primary_10_1111_geb_13376 crossref_primary_10_1016_j_ecoinf_2020_101172 crossref_primary_10_1016_j_biocon_2024_110963 crossref_primary_10_1016_j_ecoinf_2023_102080 crossref_primary_10_1007_s10980_022_01491_z crossref_primary_10_1111_ddi_13442 crossref_primary_10_1111_ele_14312 crossref_primary_10_1111_ddi_13688 crossref_primary_10_1111_ele_13106 crossref_primary_10_1111_ddi_13684 crossref_primary_10_1002_fee_2530 crossref_primary_10_1016_j_gecco_2020_e01353 crossref_primary_10_1111_jbi_13705 crossref_primary_10_2136_sssaj2017_11_0392 crossref_primary_10_1002_ecy_3719 crossref_primary_10_1007_s10530_022_02976_3 crossref_primary_10_1007_s10531_020_01961_3 crossref_primary_10_1111_aec_12867 crossref_primary_10_1080_15592324_2021_1913311 crossref_primary_10_1126_science_adg8028 crossref_primary_10_1007_s10530_022_02893_5 crossref_primary_10_1111_jbi_14361 crossref_primary_10_3389_fevo_2021_757902 crossref_primary_10_3389_fgene_2022_968961 crossref_primary_10_1016_j_ecolmodel_2022_110013 crossref_primary_10_1016_j_sajce_2023_11_011 crossref_primary_10_1111_cobi_13518 crossref_primary_10_1111_geb_13240 crossref_primary_10_1007_s12145_020_00466_5 crossref_primary_10_1111_geb_13639 crossref_primary_10_1007_s10914_020_09501_0 crossref_primary_10_1007_s10530_021_02706_1 crossref_primary_10_1111_ecog_04687 crossref_primary_10_1002_wll2_12010 crossref_primary_10_1656_045_026_0304 crossref_primary_10_1002_rra_4434 crossref_primary_10_3897_neobiota_77_86364 crossref_primary_10_1007_s11356_021_14247_0 crossref_primary_10_1016_j_scitotenv_2023_162893 crossref_primary_10_1111_mms_13057 crossref_primary_10_3390_biology14020126 crossref_primary_10_1016_j_rse_2018_02_038 crossref_primary_10_1007_s11356_021_17171_5 crossref_primary_10_1111_gcb_16187 crossref_primary_10_3390_f11090934 crossref_primary_10_1002_ece3_7310 crossref_primary_10_1016_j_marenvres_2024_106656 crossref_primary_10_1016_j_jnc_2023_126464 crossref_primary_10_1590_0102_33062020abb0358 crossref_primary_10_1007_s10344_023_01679_x crossref_primary_10_1111_jbi_13803 crossref_primary_10_1155_2022_6872214 crossref_primary_10_1016_j_cub_2023_02_063 crossref_primary_10_1111_ecog_06852 crossref_primary_10_1111_fwb_13483 crossref_primary_10_1111_jbi_14105 crossref_primary_10_1111_ecog_05880 crossref_primary_10_1007_s00114_023_01880_7 crossref_primary_10_1016_j_biocon_2022_109795 crossref_primary_10_1111_jbi_14344 crossref_primary_10_1111_ecog_07143 crossref_primary_10_1139_cjfas_2021_0313 crossref_primary_10_1038_s41559_020_1212_8 crossref_primary_10_1007_s40333_024_0062_7 crossref_primary_10_1016_j_ecolmodel_2024_110872 crossref_primary_10_1007_s12224_021_09390_y crossref_primary_10_1111_ddi_13238 crossref_primary_10_1007_s13157_024_01848_x crossref_primary_10_1111_ddi_12940 crossref_primary_10_1016_j_ecolind_2021_107960 crossref_primary_10_1111_ejss_13192 crossref_primary_10_3390_earth4030029 crossref_primary_10_1111_ecog_05317 crossref_primary_10_1177_03091333231156362 crossref_primary_10_1002_ece3_11594 crossref_primary_10_1016_j_envpol_2021_117187 crossref_primary_10_1371_journal_pone_0257502 crossref_primary_10_3390_f12040385 crossref_primary_10_1017_S0959270918000278 crossref_primary_10_1016_j_gecco_2018_e00513 crossref_primary_10_3390_insects9030094 crossref_primary_10_7554_eLife_85422 crossref_primary_10_1016_j_ecolmodel_2024_110667 crossref_primary_10_1111_ecog_07294 crossref_primary_10_3390_rs14184589 crossref_primary_10_1016_j_biocon_2019_108374 crossref_primary_10_1007_s10531_021_02176_w crossref_primary_10_1017_ext_2023_5 crossref_primary_10_1111_ddi_13489 crossref_primary_10_1080_24749508_2023_2254007 crossref_primary_10_3354_meps13925 crossref_primary_10_1002_rse2_117 crossref_primary_10_1002_aqc_3593 crossref_primary_10_1007_s13280_022_01779_z crossref_primary_10_1371_journal_pone_0239424 crossref_primary_10_1111_jav_02162 crossref_primary_10_1016_j_jnc_2023_126490 crossref_primary_10_1111_acv_12999 crossref_primary_10_1007_s10530_024_03304_7 crossref_primary_10_1016_j_ecolmodel_2021_109693 crossref_primary_10_1139_cjfas_2022_0302 crossref_primary_10_1007_s10113_021_01751_9 crossref_primary_10_1111_acfi_13044 crossref_primary_10_1111_brv_13004 |
Cites_doi | 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E 10.1146/annurev.ecolsys.110308.120159 10.1111/ddi.12031 10.1017/S0376892997000088 10.1111/j.1600-0587.2012.07348.x 10.1111/j.1365-2427.2010.02417.x 10.1111/j.1558-5646.2008.00482.x 10.1111/j.1365-2664.2006.01214.x 10.7717/peerj.3093 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 10.1111/j.1466-8238.2007.00358.x 10.1890/10-1171.1 10.1016/j.ecolmodel.2011.02.011 10.1111/j.1365-2486.2006.01256.x 10.1111/j.1466-8238.2010.00574.x 10.1111/2041-210x.12004 10.1371/journal.pone.0055158 10.1111/j.1600-0706.2012.00299.x 10.1111/jbi.12058 10.1111/j.1600-0587.2009.06039.x 10.1111/j.1466-8238.2008.00395.x 10.1371/journal.pone.0007843 10.1890/11-0826.1 10.1111/j.1600-0587.2013.00138.x 10.1111/geb.12530 10.1148/radiology.143.1.7063747 10.1007/s10530-011-9963-4 10.1371/journal.pone.0068337 10.1890/10-1325.1 10.1007/s10530-014-0649-6 10.1890/11-1930.1 10.1111/2041-210X.12261 10.1111/j.1461-0248.2007.01107.x 10.1111/j.1466-8238.2007.00331.x 10.1111/j.1365-2699.2010.02416.x 10.1126/science.1206432 10.1046/j.1466-822X.2003.00042.x 10.1007/s00114-010-0694-7 10.1111/j.2041-210X.2011.00170.x 10.1016/j.palaeo.2011.07.021 10.1002/joc.1276 10.1111/ecog.01132 10.1007/s10531-013-0606-1 10.1016/j.ecolmodel.2005.03.026 10.1016/j.ecolmodel.2016.09.019 10.1111/j.1466-8238.2010.00561.x 10.1111/j.1365-2699.2011.02659.x 10.1016/j.tree.2014.08.003 10.1111/ecog.02881 10.1073/pnas.0803506105 10.1111/ele.12189 10.1111/ddi.12279 10.1111/jbi.12894 10.1111/jbi.12227 10.1111/j.1472-4642.2010.00642.x 10.1126/science.289.5488.2312 10.1111/geb.12007 10.1016/j.ecolmodel.2007.11.008 10.1371/journal.pone.0113749 10.1111/j.1600-0587.2013.07872.x 10.1111/j.1365-2664.2009.01671.x 10.1111/j.1472-4642.2010.00725.x 10.1111/j.1365-2699.2009.02174.x 10.1111/j.0906-7590.2008.5203.x 10.1111/j.1600-0587.2009.06142.x 10.1111/j.1466-8238.2010.00635.x 10.1111/j.1466-8238.2011.00683.x 10.1371/journal.pone.0097122 10.1890/09-0760.1 10.1111/ddi.12144 10.1111/j.1365-2486.2005.01000.x |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons Ltd. 2017 John Wiley & Sons Ltd 2018 John Wiley & Sons Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons Ltd. – notice: 2017 John Wiley & Sons Ltd – notice: 2018 John Wiley & Sons Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 1XC ADTPV AOWAS |
DOI | 10.1111/geb.12684 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) SwePub SwePub Articles |
DatabaseTitle | CrossRef Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences Statistics |
EISSN | 1466-8238 1466-822X |
EndPage | 256 |
ExternalDocumentID | oai_slubar_slu_se_93578 oai_HAL_hal_02155242v1 10_1111_geb_12684 GEB12684 26635783 |
Genre | article |
GrantInformation_xml | – fundername: Direction Régionale de l'Environnement, de l'Aménagement et du Logement (DREAL) du bassin de la Loire – fundername: Région des Pays de la Loire – fundername: Agence de l'eau Loire‐Bretagne – fundername: Plan Loire Grandeur Nature – fundername: European Regional Development Fund (ERDF) – fundername: Département du Maine‐et‐Loire – fundername: Angers Loire Métropole |
GroupedDBID | -~X .3N .GA 0R~ 10A 1OC 29I 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHBH AAHKG AAHQN AAKGQ AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEML ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF ATUGU AUFTA BFHJK BMNLL BMXJE BRXPI BY8 CBGCD CS3 CUYZI D-E D-F DCZOG DEVKO DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 G-S GODZA HGLYW HZI IHE IPSME IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A OIG P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT W99 WIH WIK WQJ WXSBR XG1 ZZTAW ~KM .Y3 31~ AAHHS AAISJ AANHP ACBWZ ACCFJ ACHIC ACRPL ACYXJ ADNMO ADULT ADZOD AEEZP AEQDE AEUQT AFPWT AHXOZ AILXY AIWBW AJBDE AQVQM ASPBG AVWKF AZFZN BDRZF CAG COF DOOOF EQZMY ESX FEDTE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD VQP WRC AAYXX ABSQW AGQPQ AGUYK CITATION 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 1XC ADTPV AOWAS |
ID | FETCH-LOGICAL-c4904-b222ac0e5dbfd65b33055dda81198f85f277b48ebe414593b0409de759a5ebba3 |
IEDL.DBID | DR2 |
ISSN | 1466-822X 1466-8238 |
IngestDate | Thu Aug 21 06:52:20 EDT 2025 Sat Jul 26 06:31:09 EDT 2025 Fri Jul 11 18:38:10 EDT 2025 Fri Jul 25 06:18:21 EDT 2025 Tue Jul 01 02:37:32 EDT 2025 Thu Apr 24 22:51:38 EDT 2025 Wed Jan 22 16:52:57 EST 2025 Thu Jul 03 21:56:09 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | environmental predictors MaxEnt model evaluation TSS environmental variables ROC curve species distribution modelling AUC |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4904-b222ac0e5dbfd65b33055dda81198f85f277b48ebe414593b0409de759a5ebba3 |
Notes | Funding information Plan Loire Grandeur Nature; European Regional Development Fund (ERDF); Région des Pays de la Loire; Agence de l'eau Loire‐Bretagne; Angers Loire Métropole; Direction Régionale de l'Environnement; de l'Aménagement et du Logement (DREAL) du bassin de la Loire; Département du Maine‐et‐Loire ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8130-1195 0000-0003-3820-946X |
PQID | 1988460101 |
PQPubID | 1066347 |
PageCount | 12 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_93578 hal_primary_oai_HAL_hal_02155242v1 proquest_miscellaneous_2020893774 proquest_journals_1988460101 crossref_primary_10_1111_geb_12684 crossref_citationtrail_10_1111_geb_12684 wiley_primary_10_1111_geb_12684_GEB12684 jstor_primary_26635783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationYear | 2018 |
Publisher | John Wiley & Sons Ltd Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 5 2017; 40 2009; 46 2010; 97 2010; 16 2015; 38 2009; 40 2013; 4 2013; 22 2010; 19 2017; 44 2013; 122 1982; 143 2016; 341 2008; 105 2011; 13 2011; 56 2014; 29 2008; 31 2011; 17 2013; 8 2014; 23 2011; 310 2014; 20 2005; 25 2003; 12 2013; 19 2014; 5 2013; 16 2000; 289 2011; 20 2014; 16 2011; 21 2014; 9 2008; 62 2012; 21 1950; 3 2010; 33 2011; 333 2006; 12 2017; 26 2011 2013; 40 2011; 81 1997; 24 2008; 17 1876 2012; 39 1988; 240 2002 2014; 41 2011; 38 2007; 10 2007; 16 2012; 93 2009; 36 2013; 36 2012; 3 2006; 43 2006; 190 2015; 21 2015 2014 2008; 213 2009; 4 2010; 91 1805 2005; 11 2011; 222 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 R Development Core Team (e_1_2_7_53_1) 2015 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Burnham K. P. (e_1_2_7_14_1) 2002 von Humboldt A. (e_1_2_7_68_1) 1805 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Wallace A. R. (e_1_2_7_69_1) 1876 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 Peterson A. T. (e_1_2_7_47_1) 2011 Hijmans R. J. (e_1_2_7_30_1) 2014 |
References_xml | – volume: 38 start-page: 1 year: 2011 end-page: 8 article-title: Improving species distribution models for climate change studies: Variable selection and scale publication-title: Journal of Biogeography – volume: 40 start-page: 913 year: 2017 end-page: 929 article-title: Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure publication-title: Ecography – volume: 46 start-page: 842 year: 2009 end-page: 851 article-title: How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? A case study using brush‐tailed rock‐wallabies Petrogale penicillata publication-title: Journal of Applied Ecology – year: 1805 – volume: 16 start-page: 1424 year: 2013 end-page: 1435 article-title: Predicting species distributions for conservation decisions publication-title: Ecology Letters – volume: 20 start-page: 114 year: 2011 end-page: 118 article-title: Dominant climate influences on North American bird distributions publication-title: Global Ecology and Biogeography – volume: 33 start-page: 103 year: 2010 end-page: 114 article-title: The uncertain nature of absences and their importance in species distribution modelling publication-title: Ecography – volume: 26 start-page: 275 year: 2017 end-page: 287 article-title: Selecting predictors to maximize the transferability of species distribution models: Lessons from cross‐continental plant invasions publication-title: Global Ecology and Biogeography – volume: 20 start-page: 904 year: 2011 end-page: 914 article-title: Choice of predictor variables as a source of uncertainty in continental‐scale species distribution modelling under climate change publication-title: Global Ecology and Biogeography – volume: 17 start-page: 145 year: 2008 end-page: 151 article-title: AUC: A misleading measure of the performance of predictive distribution models publication-title: Global Ecology and Biogeography – volume: 93 start-page: 1527 year: 2012 end-page: 1539 article-title: Uses and misuses of bioclimatic envelope modeling publication-title: Ecology – volume: 13 start-page: 2785 year: 2011 end-page: 2797 article-title: Use of niche models in invasive species risk assessments publication-title: Biological Invasions – volume: 97 start-page: 781 year: 2010 end-page: 796 article-title: Explanative power of variables used in species distribution modelling: An issue of general model transferability or niche shift in the invasive Greenhouse frog ( ) publication-title: Naturwissenschaften – year: 1876 – volume: 341 start-page: 5 year: 2016 end-page: 13 article-title: Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish publication-title: Ecological Modelling – volume: 105 start-page: 14908 year: 2008 end-page: 14912 article-title: Opening the climate envelope reveals no macroscale associations with climate in European birds publication-title: Proceedings of the National Academy of Sciences USA – volume: 81 start-page: 241 year: 2011 end-page: 257 article-title: Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits publication-title: Ecological Monographs – volume: 222 start-page: 1810 year: 2011 end-page: 1819 article-title: The crucial role of the accessible area in ecological niche modeling and species distribution modeling publication-title: Ecological Modelling – year: 2014 – volume: 44 start-page: 1344 year: 2017 end-page: 1361 article-title: A quantitative synthesis of the importance of variables used in MaxEnt species distribution models publication-title: Journal of Biogeography – volume: 56 start-page: 71 year: 2011 end-page: 88 article-title: Application of species distribution models and conservation planning software to the design of a reserve network for the riverine fishes of northeastern Mesoamerica publication-title: Freshwater Biology – volume: 5 start-page: e3093 year: 2017 article-title: MaxEnt's parameter configuration and small samples: Are we paying attention to recommendations? A systematic review publication-title: PeerJ – volume: 12 start-page: 2272 year: 2006 end-page: 2281 article-title: The ability of climate envelope models to predict the effect of climate change on species distributions publication-title: Global Change Biology – volume: 43 start-page: 1223 year: 2006 end-page: 1232 article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS) publication-title: Journal of Applied Ecology – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: Ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 10 start-page: 1115 year: 2007 end-page: 1123 article-title: Grinnellian and Eltonian niches and geographic distributions of species publication-title: Ecology Letters – volume: 21 start-page: 335 year: 2011 end-page: 342 article-title: Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria publication-title: Ecological Applications – volume: 289 start-page: 2312 year: 2000 end-page: 2314 article-title: Interoperability of biodiversity databases: Biodiversity information on every desktop publication-title: Science – volume: 16 start-page: 488 year: 2010 end-page: 495 article-title: Climate, climate change and range boundaries publication-title: Diversity and Distributions – volume: 333 start-page: 1024 year: 2011 end-page: 1026 article-title: Rapid range shifts of species associated with high levels of climate warming publication-title: Science – volume: 143 start-page: 29 year: 1982 end-page: 36 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – volume: 33 start-page: 607 year: 2010 end-page: 611 article-title: ENMTools: A toolbox for comparative studies of environmental niche models publication-title: Ecography – volume: 41 start-page: 629 year: 2014 end-page: 643 article-title: Making better Maxent models of species distributions: Complexity, overfitting and evaluation publication-title: Journal of Biogeography – volume: 62 start-page: 2868 year: 2008 end-page: 2883 article-title: Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution publication-title: Evolution – volume: 310 start-page: 451 year: 2011 end-page: 463 article-title: Using species distribution models in paleobiogeography: A matter of data, predictors and concepts publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 17 start-page: 479 year: 2008 end-page: 488 article-title: Model selection and information theory in geographical ecology publication-title: Global Ecology and Biogeography – volume: 36 start-page: 2290 year: 2009 end-page: 2299 article-title: Spatially autocorrelated sampling falsely inflates measures of accuracy for presence‐only niche models publication-title: Journal of Biogeography – volume: 17 start-page: 43 year: 2011 end-page: 47 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Diversity and Distributions – volume: 36 start-page: 971 year: 2013 end-page: 983 article-title: Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change publication-title: Ecography – year: 2015 – volume: 240 start-page: 1285 year: 1988 end-page: 1293 article-title: Measuring the accuracy of diagnostic systems publication-title: Science – volume: 4 start-page: e7843 year: 2009 article-title: Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors studied? publication-title: PLoS ONE – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 40 start-page: 778 year: 2013 end-page: 789 article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data publication-title: Journal of Biogeography – volume: 213 start-page: 63 year: 2008 end-page: 72 article-title: Rethinking receiver operating characteristic analysis applications in ecological niche modeling publication-title: Ecological Modelling – volume: 19 start-page: 831 year: 2010 end-page: 841 article-title: Weak climatic associations among British plant distributions publication-title: Global Ecology and Biogeography – volume: 29 start-page: 572 year: 2014 end-page: 580 article-title: Mistaking geography for biology: Inferring processes from species distributions publication-title: Trends in Ecology and Evolution – volume: 24 start-page: 38 year: 1997 end-page: 49 article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models publication-title: Environmental Conservation – volume: 39 start-page: 2119 year: 2012 end-page: 2131 article-title: Correlation and process in species distribution models: Bridging a dichotomy publication-title: Journal of Biogeography – volume: 8 start-page: e55158 year: 2013 article-title: The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models publication-title: PLoS ONE – volume: 9 start-page: e113749 year: 2014 end-page: e113749 article-title: Improving the use of species distribution models in conservation planning and management under climate change publication-title: PLoS ONE – volume: 36 start-page: 27 year: 2013 end-page: 46 article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – volume: 12 start-page: 361 year: 2003 end-page: 371 article-title: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? publication-title: Global Ecology and Biogeography – volume: 5 start-page: 1198 year: 2014 end-page: 1205 article-title: ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models publication-title: Methods in Ecology and Evolution – volume: 3 start-page: 32 year: 1950 end-page: 35 article-title: Index for rating diagnostic tests publication-title: Cancer – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – volume: 11 start-page: 1504 year: 2005 end-page: 1513 article-title: Validation of species–climate impact models under climate change publication-title: Global Change Biology – volume: 122 start-page: 321 year: 2013 end-page: 331 article-title: Testing the predictive performance of distribution models publication-title: Oikos – volume: 91 start-page: 2476 year: 2010 end-page: 2484 article-title: POC plots: Calibrating species distribution models with presence‐only data publication-title: Ecology – volume: 22 start-page: 508 year: 2013 end-page: 516 article-title: Discrimination capacity in species distribution models depends on the representativeness of the environmental domain publication-title: Global Ecology and Biogeography – volume: 16 start-page: 2079 year: 2014 end-page: 2103 article-title: Shaping up model transferability and generality of species distribution modeling for predicting invasions: Implications from a study on publication-title: Biological Invasions – volume: 9 start-page: e97122 year: 2014 article-title: Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias publication-title: PLoS ONE – volume: 19 start-page: 867 year: 2013 end-page: 872 article-title: On evaluating species distribution models with random background sites in place of absences when test presences disproportionately sample suitable habitat publication-title: Diversity and Distributions – volume: 21 start-page: 498 year: 2012 end-page: 507 article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling publication-title: Global Ecology and Biogeography – volume: 20 start-page: 1 year: 2014 end-page: 9 article-title: BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies publication-title: Diversity and Distributions – year: 2002 – volume: 31 start-page: 161 year: 2008 end-page: 175 article-title: Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation publication-title: Ecography – volume: 4 start-page: 236 year: 2013 end-page: 243 article-title: Presence‐only modelling using MAXENT: When can we trust the inferences? publication-title: Methods in Ecology and Evolution – volume: 8 start-page: e68337 year: 2013 article-title: Improving transferability of introduced species' distribution models: New tools to forecast the spread of a highly invasive seaweed publication-title: PLoS ONE – volume: 36 start-page: 1058 year: 2013 end-page: 1069 article-title: A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter publication-title: Ecography – volume: 16 start-page: 733 year: 2007 end-page: 742 article-title: Can niche‐based distribution models outperform spatial interpolation? publication-title: Global Ecology and Biogeography – volume: 23 start-page: 369 year: 2014 end-page: 385 article-title: Threshold‐dependence as a desirable attribute for discrimination assessment: Implications for the evaluation of species distribution models publication-title: Biodiversity and Conservation – start-page: 150 year: 2011 end-page: 181) – volume: 93 start-page: 679 year: 2012 end-page: 688 article-title: Cross‐validation of species distribution models: Removing spatial sorting bias and calibration with a null model publication-title: Ecology – volume: 38 start-page: 541 year: 2015 end-page: 545 article-title: spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models publication-title: Ecography – volume: 21 start-page: 595 year: 2015 end-page: 608 article-title: Accounting for spatially biased sampling effort in presence‐only species distribution modelling publication-title: Diversity and Distributions – volume: 3 start-page: 260 year: 2012 end-page: 267 article-title: Assessing transferability of ecological models: An underappreciated aspect of statistical validation publication-title: Methods in Ecology and Evolution – ident: e_1_2_7_61_1 doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E – ident: e_1_2_7_22_1 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: e_1_2_7_58_1 doi: 10.1111/ddi.12031 – ident: e_1_2_7_25_1 doi: 10.1017/S0376892997000088 – ident: e_1_2_7_19_1 doi: 10.1111/j.1600-0587.2012.07348.x – volume-title: The geographical distribution of animals; with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth's surface year: 1876 ident: e_1_2_7_69_1 – ident: e_1_2_7_24_1 doi: 10.1111/j.1365-2427.2010.02417.x – volume-title: R: A language and environment for statistical computing year: 2015 ident: e_1_2_7_53_1 – ident: e_1_2_7_73_1 doi: 10.1111/j.1558-5646.2008.00482.x – ident: e_1_2_7_3_1 doi: 10.1111/j.1365-2664.2006.01214.x – ident: e_1_2_7_42_1 doi: 10.7717/peerj.3093 – ident: e_1_2_7_77_1 doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3 – ident: e_1_2_7_40_1 doi: 10.1111/j.1466-8238.2007.00358.x – ident: e_1_2_7_71_1 doi: 10.1890/10-1171.1 – ident: e_1_2_7_9_1 doi: 10.1016/j.ecolmodel.2011.02.011 – ident: e_1_2_7_31_1 doi: 10.1111/j.1365-2486.2006.01256.x – ident: e_1_2_7_36_1 doi: 10.1111/j.1466-8238.2010.00574.x – ident: e_1_2_7_76_1 doi: 10.1111/2041-210x.12004 – ident: e_1_2_7_62_1 doi: 10.1371/journal.pone.0055158 – ident: e_1_2_7_8_1 doi: 10.1111/j.1600-0706.2012.00299.x – ident: e_1_2_7_38_1 doi: 10.1111/jbi.12058 – ident: e_1_2_7_39_1 doi: 10.1111/j.1600-0587.2009.06039.x – ident: e_1_2_7_17_1 doi: 10.1111/j.1466-8238.2008.00395.x – ident: e_1_2_7_57_1 doi: 10.1371/journal.pone.0007843 – volume-title: Essai sur la géographie des plantes; accompagné d'un tableau physique des régions équinoxiales year: 1805 ident: e_1_2_7_68_1 – ident: e_1_2_7_29_1 doi: 10.1890/11-0826.1 – ident: e_1_2_7_13_1 doi: 10.1111/j.1600-0587.2013.00138.x – ident: e_1_2_7_48_1 doi: 10.1111/geb.12530 – ident: e_1_2_7_28_1 doi: 10.1148/radiology.143.1.7063747 – ident: e_1_2_7_37_1 doi: 10.1007/s10530-011-9963-4 – ident: e_1_2_7_67_1 doi: 10.1371/journal.pone.0068337 – ident: e_1_2_7_18_1 doi: 10.1890/10-1325.1 – ident: e_1_2_7_70_1 doi: 10.1007/s10530-014-0649-6 – ident: e_1_2_7_4_1 doi: 10.1890/11-1930.1 – ident: e_1_2_7_44_1 doi: 10.1111/2041-210X.12261 – ident: e_1_2_7_59_1 doi: 10.1111/j.1461-0248.2007.01107.x – ident: e_1_2_7_7_1 doi: 10.1111/j.1466-8238.2007.00331.x – volume-title: raster: Geographic data analysis and modeling year: 2014 ident: e_1_2_7_30_1 – volume-title: Model selection and multi‐model inference: A practical information‐theoretic approach year: 2002 ident: e_1_2_7_14_1 – ident: e_1_2_7_6_1 doi: 10.1111/j.1365-2699.2010.02416.x – ident: e_1_2_7_16_1 doi: 10.1126/science.1206432 – ident: e_1_2_7_45_1 doi: 10.1046/j.1466-822X.2003.00042.x – ident: e_1_2_7_56_1 doi: 10.1007/s00114-010-0694-7 – ident: e_1_2_7_75_1 doi: 10.1111/j.2041-210X.2011.00170.x – ident: e_1_2_7_65_1 doi: 10.1016/j.palaeo.2011.07.021 – ident: e_1_2_7_32_1 doi: 10.1002/joc.1276 – ident: e_1_2_7_2_1 doi: 10.1111/ecog.01132 – ident: e_1_2_7_33_1 doi: 10.1007/s10531-013-0606-1 – ident: e_1_2_7_51_1 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: e_1_2_7_78_1 doi: 10.1016/j.ecolmodel.2016.09.019 – ident: e_1_2_7_15_1 doi: 10.1111/j.1466-8238.2010.00561.x – ident: e_1_2_7_20_1 doi: 10.1111/j.1365-2699.2011.02659.x – ident: e_1_2_7_72_1 doi: 10.1016/j.tree.2014.08.003 – ident: e_1_2_7_55_1 doi: 10.1111/ecog.02881 – ident: e_1_2_7_10_1 doi: 10.1073/pnas.0803506105 – ident: e_1_2_7_27_1 doi: 10.1111/ele.12189 – ident: e_1_2_7_60_1 doi: 10.1111/ddi.12279 – ident: e_1_2_7_12_1 doi: 10.1111/jbi.12894 – ident: e_1_2_7_54_1 doi: 10.1111/jbi.12227 – start-page: 150 volume-title: Evaluating model performance and significance year: 2011 ident: e_1_2_7_47_1 – ident: e_1_2_7_64_1 doi: 10.1111/j.1472-4642.2010.00642.x – ident: e_1_2_7_21_1 doi: 10.1126/science.289.5488.2312 – ident: e_1_2_7_35_1 doi: 10.1111/geb.12007 – ident: e_1_2_7_46_1 doi: 10.1016/j.ecolmodel.2007.11.008 – ident: e_1_2_7_52_1 doi: 10.1371/journal.pone.0113749 – ident: e_1_2_7_41_1 doi: 10.1111/j.1600-0587.2013.07872.x – ident: e_1_2_7_43_1 doi: 10.1111/j.1365-2664.2009.01671.x – ident: e_1_2_7_23_1 doi: 10.1111/j.1472-4642.2010.00725.x – ident: e_1_2_7_66_1 doi: 10.1111/j.1365-2699.2009.02174.x – ident: e_1_2_7_49_1 doi: 10.1111/j.0906-7590.2008.5203.x – ident: e_1_2_7_74_1 doi: 10.1111/j.1600-0587.2009.06142.x – ident: e_1_2_7_63_1 doi: 10.1111/j.1466-8238.2010.00635.x – ident: e_1_2_7_34_1 doi: 10.1111/j.1466-8238.2011.00683.x – ident: e_1_2_7_26_1 doi: 10.1371/journal.pone.0097122 – ident: e_1_2_7_50_1 doi: 10.1890/09-0760.1 – ident: e_1_2_7_11_1 doi: 10.1111/ddi.12144 – ident: e_1_2_7_5_1 doi: 10.1111/j.1365-2486.2005.01000.x |
SSID | ssj0005456 |
Score | 2.6432185 |
Snippet | Aim: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental... Aim Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors,... Aim Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors,... AIM: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental... Aim: Species distribution modelling, a family of statistical methods that predicts species distribu- tions from a set of occurrences and environmental... |
SourceID | swepub hal proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 245 |
SubjectTerms | AUC Biodiversity and Ecology biogeography Computation Ecology Ekologi Environment models environmental factors environmental predictors Environmental Sciences Environmental statistics environmental variables Evaluation Innovations Macroecological Methods MaxEnt model evaluation model validation Partitioning Real variables Reliability analysis researchers ROC curve Spatial distribution Species species distribution modelling Statistical analysis Statistical methods Statistical tests Statistics topography TSS Variables |
Title | Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics |
URI | https://www.jstor.org/stable/26635783 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12684 https://www.proquest.com/docview/1988460101 https://www.proquest.com/docview/2020893774 https://univ-lyon1.hal.science/hal-02155242 https://res.slu.se/id/publ/93578 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ri9QwEB7OA8EXT08X650SRcQHu2zbtE3x6ZQ9F1ER8WAfhJA06Ske7dHuCvriX3cmabtWFMSnLZvZNslOZr40M98APOK6XEQ2FqFGdx1ykZVhUWUmFIh-rUV_m7v3HW_eZqsz_mqdrvfg2ZAL4_khxhdutDKcvaYFrnT3yyI_t3oeEVcJ2l-K1SJA9H5HHUXIwGcWZSE6wXXPKkRRPOMvJ77oyieKhPRBiVO46SlEp-jVuZ_TA_g4dNxHnXyZbzd6Xn7_jdPxP0d2A673sJSdeD26CXu2PoSrS0dp_e0QZstdPhyK9QahuwU_3qnPrtZExy5bOvPZMESUzBAdb19JizUVo3xO3JI_ZU3r2suhhItrdKV48B7MTp7S37BpO6Zqw3a85IyyoDzB9G04O11-eLEK-5oOYcmLBUeViGNVLmxqdGWyVCfEOGaMElFUiEqkVZznmgtULR7xtEg0GpnC2DwtVGq1VskM9uumtneAWZPh5jfTnA4HK2EKHlWJsWjDIsqXLQN4Mvy7suwJz6nuxoUcNj440dJNdAAPR9FLz_LxRyGcnLGdeLlXJ68lfUfAKUWw8zUKYOY0aBSLCdLlIgngeFAp2ZuJTuKYEf8RzV8AD8ZmXOB0aqNq22w7GVMZVQSROXbgsVfFSR-6i61WLX3IzsqCHoYjd_r197HIl8vn7uLuv4sewTVEi8KHrB_D_qbd2nuIyDb6vlt6PwGFVDJi |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RQguPAorAgUMAsShWW0S53XgUOiWLd1WCLXS3kwcO7RqlVTJLqhc-EP8Ff4TM85jCQKJSw-cEsWW48eM_dme-QbgGZfpyNFuZEtcrm0eBakdZ4GyI0S_WuN6G5rzjv2DYHLE38382Qp8b31han6I7sCNNMPM16TgdCD9i5Z_0nLoEFlJY1K5py--4IaterW7jaP73HV3xodvJnYTU8BOeTziWCXXTdKR9pXMVOBLjxivlEoiB3ffWeRnbhhKHmHTuMP92JMo5LHSoR8nvpYy8bDcVbhCEcSJqX_7w5KsirBI7csU2LjszhoeI7Ib6qraW_1Wj8n2sjaD7APcmrS0j5fNgrdzE360XVXbuZwOF3M5TL_-xiL5v_TlLbjRIG-2VavKbVjR-TpcHRvW7ot1GIyXLn-YrZnzqjvw7X1yYsJpVOy8pGutOUPQzBQxDjfBwliRMXJZPdHVJitKk562UWpMook2hGUw3ftLU2BRVizJFVtSrzNy9Ko5tO_C0aV0ywDW8iLX94BpFeD-PpCc7j-zSMXcyTylcZp2yCU4teBlK04ibTjdKbTImWj3djiwwgysBU-7rOc1kckfM2HndOlEPT7Zmgr6RtjQRzz32bFgYES2y-YSag0jz4KNVoZFMxNWAtuMEJeYDC140iXjHEYXU0mui0UlXIoUizg5xAq8qGW_V4fqbCGTkh6i0iKmn2HLjUD_vS3i7fi1ebn_71kfw7XJ4f5UTHcP9h7AdQTHUW2hvwFr83KhHyIAnctHRu8ZfLxs5fgJvcqQtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RSAuPAorAgUMAsSBrDaJ8zpwKOwuW1qqClFpbyaOHaioklWyCyoXfhB_hR_FjPNYgkDi0gOnjdYjx48Z-3M88w3AIy7TkaPdyJa4Xds8ClI7zgJlR4h-tcb9NjTfO94cBrNj_nruzzfgexsLU_NDdB_cyDLMek0GvlDZL0b-QcuhQ1wljUflvj77gue16vneGCf3setOJ-9ezuwmpYCd8njEsUWum6Qj7SuZqcCXHhFeKZVEDh6-s8jP3DCUPMKecYf7sSdRx2OlQz9OfC1l4mG9m3CBB6OY8kSM3665qgiK1KFMgY277ryhMSK3oa6pvc1v8yO5XtZekH18W3OW9uGy2e-mV-FHO1K1m8un4Woph-nX30gk_5OhvAZXGtzNdmtDuQ4bOt-GixPD2X22DYPJOuAPxZoVr7oB346SE5NMo2KLki61lgwhM1PEN9ykCmNFxihg9URXz1hRmvK0zVFjCk2uIayD6d5bmgqLsmJJrtiaeJ1RmFfNoH0Tjs9lWAawlRe5vgVMqwBP94HkdPuZRSrmTuYpjYu0QwHBqQVPW20SacPoTolFTkV7ssOJFWZiLXjYiS5qGpM_CuHgdOVEPD7bPRD0HyFDH9HcZ8eCgdHYTswlzBpGngU7rQqLZh2sBPYZAS7xGFrwoCvGFYyupZJcF6tKuJQnFlFyiA14Uqt-rw3V6UomJf2ISouYXoY9N_r8976IV5MX5uH2v4veh0tH46k42DvcvwOXERlHtXv-Dmwty5W-i-hzKe8Zq2fw_rxt4ydy-o9l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paintings+predict+the+distribution+of+species%2C+or+the+challenge+of+selecting+environmental+predictors+and+evaluation+statistics&rft.jtitle=Global+ecology+and+biogeography&rft.au=Fourcade%2C+Yoan&rft.au=Besnard%2C+Aur%C3%A9lien+G.&rft.au=Secondi%2C+Jean&rft.date=2018-02-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=27&rft.issue=2&rft.spage=245&rft.epage=256&rft_id=info:doi/10.1111%2Fgeb.12684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geb_12684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |