Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics

Aim: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 27; no. 1/2; pp. 245 - 256
Main Authors Fourcade, Yoan, Besnard, Aurélien G., Secondi, Jean
Format Journal Article
LanguageEnglish
Published Oxford John Wiley & Sons Ltd 01.02.2018
Wiley Subscription Services, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aim: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species' ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism. Innovation: First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo-predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo-predictors were classified as good and sometimes were even better evaluated than models computed using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability. Main conclusions: These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species' ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution.
AbstractList Aim: Species distribution modelling, a family of statistical methods that predicts species distribu- tions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species’ ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism.Innovation: First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo-predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo- predictors were classified as good and sometimes were even better evaluated than models com- puted using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability.Main conclusions: These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species’ ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution.
AIM: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species' ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism. INNOVATION: First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo‐predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo‐predictors were classified as good and sometimes were even better evaluated than models computed using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability. MAIN CONCLUSIONS: These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species' ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution.
Aim Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors, is now routinely applied in many macroecological studies. However, the reliability of evaluation metrics usually employed to validate these models remains questioned. Moreover, the emergence of online databases of environmental variables with global coverage, especially climatic, has favoured the use of the same set of standard predictors. Unfortunately, the selection of variables is too rarely based on a careful examination of the species' ecology. In this context, our aim was to highlight the importance of selecting ad hoc variables in species distribution models, and to assess the ability of classical evaluation statistics to identify models with no biological realism. Innovation First, we reviewed the current practices in the field of species distribution modelling in terms of variable selection and model evaluation. Then, we computed distribution models of 509 European species using pseudo‐predictors derived from paintings or using a real set of climatic and topographic predictors. We calculated model performance based on the area under the receiver operating curve (AUC) and true skill statistics (TSS), partitioning occurrences into training and test data with different levels of spatial independence. Most models computed from pseudo‐predictors were classified as good and sometimes were even better evaluated than models computed using real environmental variables. However, on average they were better discriminated when the partitioning of occurrences allowed testing for model transferability. Main conclusions These findings confirm the crucial importance of variable selection and the inability of current evaluation metrics to assess the biological significance of distribution models. We recommend that researchers carefully select variables according to the species' ecology and evaluate models only according to their capacity to be transfered in distant areas. Nevertheless, statistics of model evaluations must still be interpreted with great caution.
Author Secondi, Jean
Besnard, Aurélien G.
Fourcade, Yoan
Author_xml – sequence: 1
  givenname: Yoan
  surname: Fourcade
  fullname: Fourcade, Yoan
– sequence: 2
  givenname: Aurélien G.
  surname: Besnard
  fullname: Besnard, Aurélien G.
– sequence: 3
  givenname: Jean
  surname: Secondi
  fullname: Secondi, Jean
BackLink https://univ-lyon1.hal.science/hal-02155242$$DView record in HAL
https://res.slu.se/id/publ/93578$$DView record from Swedish Publication Index
BookMark eNp9kV9rFDEUxQepYFt98AMIA74oOG2SSebPY1tqKyzog4JvIcnc2WbJJmtuZkuf_OpmZ-2KBc3LDbm_c5Kbc1Ic-eChKF5TckbzOl-CPqOs6fiz4pjypqk6VndHhz37_qI4QVwRQgQXzXHx84uyPlm_xHITYbAmlekOysFiilZPyQZfhrHEDRgL-KEMce6bO-Uc-CXMTXBgdh4l-K2Nwa_BJ-UeDUPEUvmhhK1yk5odMeWKyRp8WTwflUN49bueFt8-Xn-9uq0Wn28-XV0sKsN7wivNGFOGgBj0ODRC1zURYhhUR2nfjZ0YWdtq3oEGTrnoa0046QdoRa8EaK3q06La--I9bCYtN9GuVXyQQVmJbtIq7opEkH0t2i7z7_d8HvQv-PZiIXdnhFEhGGdbmtl3e3YTw48JMMm1RQPOKQ9hQskII11fty3P6Nsn6CpM0efJZR6k4w2hhP653MSAGGE8vIASuYtZ5pjlHHNmz5-wxqb5l1NU1v1PcW8dPPzbWt5cXz4q3uwVK8xpHhSsaea_qn8BCL3G5A
CitedBy_id crossref_primary_10_1111_ddi_13377
crossref_primary_10_1111_gcb_15859
crossref_primary_10_1016_j_ecolind_2022_109487
crossref_primary_10_1016_j_indcrop_2024_118584
crossref_primary_10_11646_zootaxa_4550_4_2
crossref_primary_10_1002_ppp3_10630
crossref_primary_10_1002_ece3_11019
crossref_primary_10_1002_ecy_2912
crossref_primary_10_1002_ecs2_70026
crossref_primary_10_1002_eap_2514
crossref_primary_10_1016_j_ecoinf_2024_102658
crossref_primary_10_1002_ece3_4517
crossref_primary_10_3390_d14090750
crossref_primary_10_1111_ecog_06540
crossref_primary_10_1093_conphys_coac013
crossref_primary_10_1111_2041_210X_13312
crossref_primary_10_1111_ecog_07196
crossref_primary_10_7717_peerj_13728
crossref_primary_10_1016_j_pocean_2022_102924
crossref_primary_10_1111_ddi_13252
crossref_primary_10_1111_ibi_13046
crossref_primary_10_3389_fevo_2019_00033
crossref_primary_10_1016_j_fishres_2020_105821
crossref_primary_10_1007_s10980_020_00987_w
crossref_primary_10_3389_ffgc_2023_1236842
crossref_primary_10_1016_j_ecolind_2022_109255
crossref_primary_10_1111_gcb_14755
crossref_primary_10_1111_gcb_14996
crossref_primary_10_1111_geb_13303
crossref_primary_10_1007_s11692_020_09498_7
crossref_primary_10_1016_j_gecco_2019_e00767
crossref_primary_10_1029_2022WR033692
crossref_primary_10_1016_j_earscirev_2020_103359
crossref_primary_10_1111_ejss_12909
crossref_primary_10_1016_j_geoderma_2022_115953
crossref_primary_10_1111_jbi_13696
crossref_primary_10_1111_gcb_15961
crossref_primary_10_1111_cobi_14227
crossref_primary_10_1111_ibi_12982
crossref_primary_10_3390_f12121749
crossref_primary_10_1111_ecog_04707
crossref_primary_10_1016_j_jnc_2024_126753
crossref_primary_10_1111_ddi_12868
crossref_primary_10_1016_j_pocean_2024_103355
crossref_primary_10_1111_ddi_13834
crossref_primary_10_1016_j_ecolind_2021_108339
crossref_primary_10_1093_biosci_biz045
crossref_primary_10_21105_joss_04930
crossref_primary_10_3390_f14061220
crossref_primary_10_1111_jbi_14775
crossref_primary_10_1016_j_ecoinf_2023_102106
crossref_primary_10_1093_biosci_biy069
crossref_primary_10_7717_peerj_8059
crossref_primary_10_1007_s10531_024_02978_8
crossref_primary_10_1186_s40462_021_00240_2
crossref_primary_10_15407_zoo2021_01_025
crossref_primary_10_1111_jbi_15067
crossref_primary_10_1371_journal_pone_0248797
crossref_primary_10_1007_s11629_021_6966_1
crossref_primary_10_1016_j_scitotenv_2024_173719
crossref_primary_10_1038_s44185_022_00001_3
crossref_primary_10_1139_cjfr_2020_0507
crossref_primary_10_3389_fmars_2022_933291
crossref_primary_10_3389_fmars_2018_00219
crossref_primary_10_33764_2411_1759_2024_29_3_83_96
crossref_primary_10_5194_essd_14_5573_2022
crossref_primary_10_3897_natureconservation_56_139402
crossref_primary_10_5194_gmd_17_6007_2024
crossref_primary_10_1016_j_ecoinf_2022_101646
crossref_primary_10_3390_f14061232
crossref_primary_10_1038_s41467_025_56175_4
crossref_primary_10_1146_annurev_ecolsys_102320_093722
crossref_primary_10_3389_fevo_2023_1174495
crossref_primary_10_3390_rs13071392
crossref_primary_10_1002_ecs2_4284
crossref_primary_10_1080_17550874_2023_2239244
crossref_primary_10_3390_plants11101346
crossref_primary_10_1016_j_ecoinf_2023_102110
crossref_primary_10_7717_peerj_5457
crossref_primary_10_1111_ddi_13161
crossref_primary_10_3390_atmos13111773
crossref_primary_10_3356_0892_1016_55_1_79
crossref_primary_10_37828_em_2024_72_20
crossref_primary_10_1002_ecs2_4703
crossref_primary_10_1111_ecog_05939
crossref_primary_10_1007_s10530_022_02838_y
crossref_primary_10_1002_ece3_8599
crossref_primary_10_1111_ddi_13619
crossref_primary_10_1007_s10346_023_02065_z
crossref_primary_10_1002_ece3_6859
crossref_primary_10_2478_mspe_2022_0031
crossref_primary_10_21425_fob_18_133105
crossref_primary_10_1111_2041_210X_14209
crossref_primary_10_1186_s40462_024_00481_x
crossref_primary_10_1007_s10531_021_02270_z
crossref_primary_10_3390_d11080119
crossref_primary_10_1016_j_ecss_2018_06_022
crossref_primary_10_1111_geb_13476
crossref_primary_10_1111_1365_2664_14801
crossref_primary_10_1111_jbi_13780
crossref_primary_10_1016_j_jnc_2020_125927
crossref_primary_10_1016_j_jnc_2024_126607
crossref_primary_10_1111_geb_12935
crossref_primary_10_1111_ddi_12891
crossref_primary_10_1002_ece3_7391
crossref_primary_10_1007_s10531_018_1545_7
crossref_primary_10_1111_ddi_12890
crossref_primary_10_1371_journal_pone_0211171
crossref_primary_10_1007_s10530_022_02849_9
crossref_primary_10_1016_j_ecolmodel_2019_108927
crossref_primary_10_1016_j_gecco_2018_e00471
crossref_primary_10_1111_ddi_13627
crossref_primary_10_1186_s40462_021_00294_2
crossref_primary_10_1073_pnas_2113936119
crossref_primary_10_3389_fmars_2022_1009808
crossref_primary_10_3389_fbirs_2023_1230978
crossref_primary_10_1093_mollus_eyaa029
crossref_primary_10_1080_17451000_2020_1837883
crossref_primary_10_1038_s41598_019_50953_z
crossref_primary_10_1111_2041_210X_13488
crossref_primary_10_1111_ddi_13060
crossref_primary_10_1111_ecog_05360
crossref_primary_10_1016_j_dsr_2022_103707
crossref_primary_10_1093_jisesa_iez118
crossref_primary_10_3390_f14051058
crossref_primary_10_3390_land13040551
crossref_primary_10_1016_j_gloepi_2019_100014
crossref_primary_10_1038_s41598_022_06234_3
crossref_primary_10_1016_j_geoderma_2023_116652
crossref_primary_10_1007_s10530_019_02035_4
crossref_primary_10_1371_journal_pone_0214099
crossref_primary_10_1002_ece3_6753
crossref_primary_10_1111_jbi_14608
crossref_primary_10_1007_s10344_019_1266_6
crossref_primary_10_1016_j_ecolmodel_2021_109502
crossref_primary_10_1111_ecog_04503
crossref_primary_10_3897_neobiota_89_110085
crossref_primary_10_1002_saj2_20769
crossref_primary_10_1186_s12870_025_06370_8
crossref_primary_10_1371_journal_pone_0197234
crossref_primary_10_1002_ece3_70003
crossref_primary_10_1016_j_scitotenv_2022_157363
crossref_primary_10_3897_BDJ_8_e56827
crossref_primary_10_1016_j_jaridenv_2022_104725
crossref_primary_10_3390_d16080510
crossref_primary_10_1002_ecs2_4017
crossref_primary_10_1007_s11756_023_01523_2
crossref_primary_10_1093_ornithapp_duac019
crossref_primary_10_3390_land10010054
crossref_primary_10_1134_S2079086421030087
crossref_primary_10_1017_S0959270921000587
crossref_primary_10_1111_geb_13453
crossref_primary_10_1111_1365_2664_14464
crossref_primary_10_1016_j_agee_2020_106818
crossref_primary_10_1111_2041_210X_13140
crossref_primary_10_1002_ece3_9597
crossref_primary_10_1007_s12237_021_00924_3
crossref_primary_10_1002_ece3_10553
crossref_primary_10_1111_ecog_06919
crossref_primary_10_1007_s00442_022_05110_1
crossref_primary_10_1111_ele_14472
crossref_primary_10_1016_j_gecco_2022_e02050
crossref_primary_10_1016_j_gecco_2022_e02292
crossref_primary_10_1111_jvs_13021
crossref_primary_10_3390_biology11081219
crossref_primary_10_1016_S2095_3119_19_62857_1
crossref_primary_10_1093_jee_toae251
crossref_primary_10_1016_j_jenvman_2019_109609
crossref_primary_10_1098_rsos_200231
crossref_primary_10_1111_acv_12910
crossref_primary_10_1111_2041_210X_14119
crossref_primary_10_1002_wsb_1532
crossref_primary_10_1111_2041_210X_13389
crossref_primary_10_1016_j_ecocom_2022_100997
crossref_primary_10_1111_2041_210X_14356
crossref_primary_10_1134_S2079086421030075
crossref_primary_10_1111_2041_210X_13142
crossref_primary_10_1016_j_biocon_2019_01_007
crossref_primary_10_3897_natureconservation_35_33918
crossref_primary_10_3389_frsen_2025_1531097
crossref_primary_10_1111_evo_13836
crossref_primary_10_1016_j_ecolmodel_2020_109288
crossref_primary_10_3390_agronomy11040703
crossref_primary_10_1016_j_ecolmodel_2021_109686
crossref_primary_10_1038_s41598_020_79551_0
crossref_primary_10_1111_ddi_13536
crossref_primary_10_1007_s11783_024_1789_2
crossref_primary_10_1016_j_marpolbul_2023_115827
crossref_primary_10_1016_j_ecoinf_2023_102406
crossref_primary_10_3390_rs16020271
crossref_primary_10_1007_s10841_022_00441_z
crossref_primary_10_3390_en16020985
crossref_primary_10_3390_insects11080479
crossref_primary_10_1016_j_fishres_2019_03_006
crossref_primary_10_1038_s41598_020_73773_y
crossref_primary_10_1038_s41598_020_79491_9
crossref_primary_10_1111_geb_13277
crossref_primary_10_3390_ani13020274
crossref_primary_10_1002_eap_2470
crossref_primary_10_1111_jzo_13058
crossref_primary_10_1016_j_tree_2018_08_001
crossref_primary_10_1111_ddi_13544
crossref_primary_10_1016_j_tree_2019_03_004
crossref_primary_10_3389_ffgc_2023_1299120
crossref_primary_10_3390_ani13142341
crossref_primary_10_1007_s10651_020_00445_5
crossref_primary_10_1007_s00300_020_02714_2
crossref_primary_10_1007_s10980_023_01636_8
crossref_primary_10_1093_aesa_saz049
crossref_primary_10_1016_j_ecolmodel_2018_07_018
crossref_primary_10_1371_journal_pone_0274892
crossref_primary_10_3354_meps12890
crossref_primary_10_1111_ecog_05164
crossref_primary_10_3390_rs13101892
crossref_primary_10_1016_j_biocon_2021_109330
crossref_primary_10_1111_ejss_13159
crossref_primary_10_1111_ddi_13431
crossref_primary_10_1016_j_gecco_2020_e01106
crossref_primary_10_1111_geb_12842
crossref_primary_10_1371_journal_pone_0262451
crossref_primary_10_1016_j_scitotenv_2022_154246
crossref_primary_10_1038_s41558_019_0584_8
crossref_primary_10_1111_ddi_13434
crossref_primary_10_1007_s10344_024_01838_8
crossref_primary_10_1002_ece3_6316
crossref_primary_10_1002_ece3_6317
crossref_primary_10_3389_fevo_2021_706414
crossref_primary_10_3390_rs14174334
crossref_primary_10_1016_j_ecolind_2018_10_003
crossref_primary_10_1038_s41598_022_10642_w
crossref_primary_10_3389_fmars_2019_00278
crossref_primary_10_1002_ece3_70288
crossref_primary_10_1038_s41598_025_92272_6
crossref_primary_10_1016_j_pocean_2020_102307
crossref_primary_10_3389_fpls_2022_839327
crossref_primary_10_1007_s11053_024_10393_7
crossref_primary_10_1111_2041_210X_13851
crossref_primary_10_1016_j_biocon_2024_110725
crossref_primary_10_1111_csp2_578
crossref_primary_10_1111_geb_13376
crossref_primary_10_1016_j_ecoinf_2020_101172
crossref_primary_10_1016_j_biocon_2024_110963
crossref_primary_10_1016_j_ecoinf_2023_102080
crossref_primary_10_1007_s10980_022_01491_z
crossref_primary_10_1111_ddi_13442
crossref_primary_10_1111_ele_14312
crossref_primary_10_1111_ddi_13688
crossref_primary_10_1111_ele_13106
crossref_primary_10_1111_ddi_13684
crossref_primary_10_1002_fee_2530
crossref_primary_10_1016_j_gecco_2020_e01353
crossref_primary_10_1111_jbi_13705
crossref_primary_10_2136_sssaj2017_11_0392
crossref_primary_10_1002_ecy_3719
crossref_primary_10_1007_s10530_022_02976_3
crossref_primary_10_1007_s10531_020_01961_3
crossref_primary_10_1111_aec_12867
crossref_primary_10_1080_15592324_2021_1913311
crossref_primary_10_1126_science_adg8028
crossref_primary_10_1007_s10530_022_02893_5
crossref_primary_10_1111_jbi_14361
crossref_primary_10_3389_fevo_2021_757902
crossref_primary_10_3389_fgene_2022_968961
crossref_primary_10_1016_j_ecolmodel_2022_110013
crossref_primary_10_1016_j_sajce_2023_11_011
crossref_primary_10_1111_cobi_13518
crossref_primary_10_1111_geb_13240
crossref_primary_10_1007_s12145_020_00466_5
crossref_primary_10_1111_geb_13639
crossref_primary_10_1007_s10914_020_09501_0
crossref_primary_10_1007_s10530_021_02706_1
crossref_primary_10_1111_ecog_04687
crossref_primary_10_1002_wll2_12010
crossref_primary_10_1656_045_026_0304
crossref_primary_10_1002_rra_4434
crossref_primary_10_3897_neobiota_77_86364
crossref_primary_10_1007_s11356_021_14247_0
crossref_primary_10_1016_j_scitotenv_2023_162893
crossref_primary_10_1111_mms_13057
crossref_primary_10_3390_biology14020126
crossref_primary_10_1016_j_rse_2018_02_038
crossref_primary_10_1007_s11356_021_17171_5
crossref_primary_10_1111_gcb_16187
crossref_primary_10_3390_f11090934
crossref_primary_10_1002_ece3_7310
crossref_primary_10_1016_j_marenvres_2024_106656
crossref_primary_10_1016_j_jnc_2023_126464
crossref_primary_10_1590_0102_33062020abb0358
crossref_primary_10_1007_s10344_023_01679_x
crossref_primary_10_1111_jbi_13803
crossref_primary_10_1155_2022_6872214
crossref_primary_10_1016_j_cub_2023_02_063
crossref_primary_10_1111_ecog_06852
crossref_primary_10_1111_fwb_13483
crossref_primary_10_1111_jbi_14105
crossref_primary_10_1111_ecog_05880
crossref_primary_10_1007_s00114_023_01880_7
crossref_primary_10_1016_j_biocon_2022_109795
crossref_primary_10_1111_jbi_14344
crossref_primary_10_1111_ecog_07143
crossref_primary_10_1139_cjfas_2021_0313
crossref_primary_10_1038_s41559_020_1212_8
crossref_primary_10_1007_s40333_024_0062_7
crossref_primary_10_1016_j_ecolmodel_2024_110872
crossref_primary_10_1007_s12224_021_09390_y
crossref_primary_10_1111_ddi_13238
crossref_primary_10_1007_s13157_024_01848_x
crossref_primary_10_1111_ddi_12940
crossref_primary_10_1016_j_ecolind_2021_107960
crossref_primary_10_1111_ejss_13192
crossref_primary_10_3390_earth4030029
crossref_primary_10_1111_ecog_05317
crossref_primary_10_1177_03091333231156362
crossref_primary_10_1002_ece3_11594
crossref_primary_10_1016_j_envpol_2021_117187
crossref_primary_10_1371_journal_pone_0257502
crossref_primary_10_3390_f12040385
crossref_primary_10_1017_S0959270918000278
crossref_primary_10_1016_j_gecco_2018_e00513
crossref_primary_10_3390_insects9030094
crossref_primary_10_7554_eLife_85422
crossref_primary_10_1016_j_ecolmodel_2024_110667
crossref_primary_10_1111_ecog_07294
crossref_primary_10_3390_rs14184589
crossref_primary_10_1016_j_biocon_2019_108374
crossref_primary_10_1007_s10531_021_02176_w
crossref_primary_10_1017_ext_2023_5
crossref_primary_10_1111_ddi_13489
crossref_primary_10_1080_24749508_2023_2254007
crossref_primary_10_3354_meps13925
crossref_primary_10_1002_rse2_117
crossref_primary_10_1002_aqc_3593
crossref_primary_10_1007_s13280_022_01779_z
crossref_primary_10_1371_journal_pone_0239424
crossref_primary_10_1111_jav_02162
crossref_primary_10_1016_j_jnc_2023_126490
crossref_primary_10_1111_acv_12999
crossref_primary_10_1007_s10530_024_03304_7
crossref_primary_10_1016_j_ecolmodel_2021_109693
crossref_primary_10_1139_cjfas_2022_0302
crossref_primary_10_1007_s10113_021_01751_9
crossref_primary_10_1111_acfi_13044
crossref_primary_10_1111_brv_13004
Cites_doi 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
10.1146/annurev.ecolsys.110308.120159
10.1111/ddi.12031
10.1017/S0376892997000088
10.1111/j.1600-0587.2012.07348.x
10.1111/j.1365-2427.2010.02417.x
10.1111/j.1558-5646.2008.00482.x
10.1111/j.1365-2664.2006.01214.x
10.7717/peerj.3093
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1111/j.1466-8238.2007.00358.x
10.1890/10-1171.1
10.1016/j.ecolmodel.2011.02.011
10.1111/j.1365-2486.2006.01256.x
10.1111/j.1466-8238.2010.00574.x
10.1111/2041-210x.12004
10.1371/journal.pone.0055158
10.1111/j.1600-0706.2012.00299.x
10.1111/jbi.12058
10.1111/j.1600-0587.2009.06039.x
10.1111/j.1466-8238.2008.00395.x
10.1371/journal.pone.0007843
10.1890/11-0826.1
10.1111/j.1600-0587.2013.00138.x
10.1111/geb.12530
10.1148/radiology.143.1.7063747
10.1007/s10530-011-9963-4
10.1371/journal.pone.0068337
10.1890/10-1325.1
10.1007/s10530-014-0649-6
10.1890/11-1930.1
10.1111/2041-210X.12261
10.1111/j.1461-0248.2007.01107.x
10.1111/j.1466-8238.2007.00331.x
10.1111/j.1365-2699.2010.02416.x
10.1126/science.1206432
10.1046/j.1466-822X.2003.00042.x
10.1007/s00114-010-0694-7
10.1111/j.2041-210X.2011.00170.x
10.1016/j.palaeo.2011.07.021
10.1002/joc.1276
10.1111/ecog.01132
10.1007/s10531-013-0606-1
10.1016/j.ecolmodel.2005.03.026
10.1016/j.ecolmodel.2016.09.019
10.1111/j.1466-8238.2010.00561.x
10.1111/j.1365-2699.2011.02659.x
10.1016/j.tree.2014.08.003
10.1111/ecog.02881
10.1073/pnas.0803506105
10.1111/ele.12189
10.1111/ddi.12279
10.1111/jbi.12894
10.1111/jbi.12227
10.1111/j.1472-4642.2010.00642.x
10.1126/science.289.5488.2312
10.1111/geb.12007
10.1016/j.ecolmodel.2007.11.008
10.1371/journal.pone.0113749
10.1111/j.1600-0587.2013.07872.x
10.1111/j.1365-2664.2009.01671.x
10.1111/j.1472-4642.2010.00725.x
10.1111/j.1365-2699.2009.02174.x
10.1111/j.0906-7590.2008.5203.x
10.1111/j.1600-0587.2009.06142.x
10.1111/j.1466-8238.2010.00635.x
10.1111/j.1466-8238.2011.00683.x
10.1371/journal.pone.0097122
10.1890/09-0760.1
10.1111/ddi.12144
10.1111/j.1365-2486.2005.01000.x
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons Ltd.
2017 John Wiley & Sons Ltd
2018 John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons Ltd.
– notice: 2017 John Wiley & Sons Ltd
– notice: 2018 John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
1XC
ADTPV
AOWAS
DOI 10.1111/geb.12684
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
DatabaseTitle CrossRef
Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA



Entomology Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
Statistics
EISSN 1466-8238
1466-822X
EndPage 256
ExternalDocumentID oai_slubar_slu_se_93578
oai_HAL_hal_02155242v1
10_1111_geb_12684
GEB12684
26635783
Genre article
GrantInformation_xml – fundername: Direction Régionale de l'Environnement, de l'Aménagement et du Logement (DREAL) du bassin de la Loire
– fundername: Région des Pays de la Loire
– fundername: Agence de l'eau Loire‐Bretagne
– fundername: Plan Loire Grandeur Nature
– fundername: European Regional Development Fund (ERDF)
– fundername: Département du Maine‐et‐Loire
– fundername: Angers Loire Métropole
GroupedDBID -~X
.3N
.GA
0R~
10A
1OC
29I
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHBH
AAHKG
AAHQN
AAKGQ
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
ATUGU
AUFTA
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CBGCD
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
G-S
GODZA
HGLYW
HZI
IHE
IPSME
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
OIG
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
W99
WIH
WIK
WQJ
WXSBR
XG1
ZZTAW
~KM
.Y3
31~
AAHHS
AAISJ
AANHP
ACBWZ
ACCFJ
ACHIC
ACRPL
ACYXJ
ADNMO
ADULT
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AHXOZ
AILXY
AIWBW
AJBDE
AQVQM
ASPBG
AVWKF
AZFZN
BDRZF
CAG
COF
DOOOF
EQZMY
ESX
FEDTE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
VQP
WRC
AAYXX
ABSQW
AGQPQ
AGUYK
CITATION
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
1XC
ADTPV
AOWAS
ID FETCH-LOGICAL-c4904-b222ac0e5dbfd65b33055dda81198f85f277b48ebe414593b0409de759a5ebba3
IEDL.DBID DR2
ISSN 1466-822X
1466-8238
IngestDate Thu Aug 21 06:52:20 EDT 2025
Sat Jul 26 06:31:09 EDT 2025
Fri Jul 11 18:38:10 EDT 2025
Fri Jul 25 06:18:21 EDT 2025
Tue Jul 01 02:37:32 EDT 2025
Thu Apr 24 22:51:38 EDT 2025
Wed Jan 22 16:52:57 EST 2025
Thu Jul 03 21:56:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1/2
Keywords environmental predictors
MaxEnt
model evaluation
TSS
environmental variables
ROC curve
species distribution modelling
AUC
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4904-b222ac0e5dbfd65b33055dda81198f85f277b48ebe414593b0409de759a5ebba3
Notes Funding information
Plan Loire Grandeur Nature; European Regional Development Fund (ERDF); Région des Pays de la Loire; Agence de l'eau Loire‐Bretagne; Angers Loire Métropole; Direction Régionale de l'Environnement; de l'Aménagement et du Logement (DREAL) du bassin de la Loire; Département du Maine‐et‐Loire
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8130-1195
0000-0003-3820-946X
PQID 1988460101
PQPubID 1066347
PageCount 12
ParticipantIDs swepub_primary_oai_slubar_slu_se_93578
hal_primary_oai_HAL_hal_02155242v1
proquest_miscellaneous_2020893774
proquest_journals_1988460101
crossref_primary_10_1111_geb_12684
crossref_citationtrail_10_1111_geb_12684
wiley_primary_10_1111_geb_12684_GEB12684
jstor_primary_26635783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationYear 2018
Publisher John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 5
2017; 40
2009; 46
2010; 97
2010; 16
2015; 38
2009; 40
2013; 4
2013; 22
2010; 19
2017; 44
2013; 122
1982; 143
2016; 341
2008; 105
2011; 13
2011; 56
2014; 29
2008; 31
2011; 17
2013; 8
2014; 23
2011; 310
2014; 20
2005; 25
2003; 12
2013; 19
2014; 5
2013; 16
2000; 289
2011; 20
2014; 16
2011; 21
2014; 9
2008; 62
2012; 21
1950; 3
2010; 33
2011; 333
2006; 12
2017; 26
2011
2013; 40
2011; 81
1997; 24
2008; 17
1876
2012; 39
1988; 240
2002
2014; 41
2011; 38
2007; 10
2007; 16
2012; 93
2009; 36
2013; 36
2012; 3
2006; 43
2006; 190
2015; 21
2015
2014
2008; 213
2009; 4
2010; 91
1805
2005; 11
2011; 222
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
R Development Core Team (e_1_2_7_53_1) 2015
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Burnham K. P. (e_1_2_7_14_1) 2002
von Humboldt A. (e_1_2_7_68_1) 1805
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Wallace A. R. (e_1_2_7_69_1) 1876
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
Peterson A. T. (e_1_2_7_47_1) 2011
Hijmans R. J. (e_1_2_7_30_1) 2014
References_xml – volume: 38
  start-page: 1
  year: 2011
  end-page: 8
  article-title: Improving species distribution models for climate change studies: Variable selection and scale
  publication-title: Journal of Biogeography
– volume: 40
  start-page: 913
  year: 2017
  end-page: 929
  article-title: Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure
  publication-title: Ecography
– volume: 46
  start-page: 842
  year: 2009
  end-page: 851
  article-title: How useful is expert opinion for predicting the distribution of a species within and beyond the region of expertise? A case study using brush‐tailed rock‐wallabies Petrogale penicillata
  publication-title: Journal of Applied Ecology
– year: 1805
– volume: 16
  start-page: 1424
  year: 2013
  end-page: 1435
  article-title: Predicting species distributions for conservation decisions
  publication-title: Ecology Letters
– volume: 20
  start-page: 114
  year: 2011
  end-page: 118
  article-title: Dominant climate influences on North American bird distributions
  publication-title: Global Ecology and Biogeography
– volume: 33
  start-page: 103
  year: 2010
  end-page: 114
  article-title: The uncertain nature of absences and their importance in species distribution modelling
  publication-title: Ecography
– volume: 26
  start-page: 275
  year: 2017
  end-page: 287
  article-title: Selecting predictors to maximize the transferability of species distribution models: Lessons from cross‐continental plant invasions
  publication-title: Global Ecology and Biogeography
– volume: 20
  start-page: 904
  year: 2011
  end-page: 914
  article-title: Choice of predictor variables as a source of uncertainty in continental‐scale species distribution modelling under climate change
  publication-title: Global Ecology and Biogeography
– volume: 17
  start-page: 145
  year: 2008
  end-page: 151
  article-title: AUC: A misleading measure of the performance of predictive distribution models
  publication-title: Global Ecology and Biogeography
– volume: 93
  start-page: 1527
  year: 2012
  end-page: 1539
  article-title: Uses and misuses of bioclimatic envelope modeling
  publication-title: Ecology
– volume: 13
  start-page: 2785
  year: 2011
  end-page: 2797
  article-title: Use of niche models in invasive species risk assessments
  publication-title: Biological Invasions
– volume: 97
  start-page: 781
  year: 2010
  end-page: 796
  article-title: Explanative power of variables used in species distribution modelling: An issue of general model transferability or niche shift in the invasive Greenhouse frog ( )
  publication-title: Naturwissenschaften
– year: 1876
– volume: 341
  start-page: 5
  year: 2016
  end-page: 13
  article-title: Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish
  publication-title: Ecological Modelling
– volume: 105
  start-page: 14908
  year: 2008
  end-page: 14912
  article-title: Opening the climate envelope reveals no macroscale associations with climate in European birds
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 81
  start-page: 241
  year: 2011
  end-page: 257
  article-title: Modeling plant ranges over 75 years of climate change in California, USA: Temporal transferability and species traits
  publication-title: Ecological Monographs
– volume: 222
  start-page: 1810
  year: 2011
  end-page: 1819
  article-title: The crucial role of the accessible area in ecological niche modeling and species distribution modeling
  publication-title: Ecological Modelling
– year: 2014
– volume: 44
  start-page: 1344
  year: 2017
  end-page: 1361
  article-title: A quantitative synthesis of the importance of variables used in MaxEnt species distribution models
  publication-title: Journal of Biogeography
– volume: 56
  start-page: 71
  year: 2011
  end-page: 88
  article-title: Application of species distribution models and conservation planning software to the design of a reserve network for the riverine fishes of northeastern Mesoamerica
  publication-title: Freshwater Biology
– volume: 5
  start-page: e3093
  year: 2017
  article-title: MaxEnt's parameter configuration and small samples: Are we paying attention to recommendations? A systematic review
  publication-title: PeerJ
– volume: 12
  start-page: 2272
  year: 2006
  end-page: 2281
  article-title: The ability of climate envelope models to predict the effect of climate change on species distributions
  publication-title: Global Change Biology
– volume: 43
  start-page: 1223
  year: 2006
  end-page: 1232
  article-title: Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS)
  publication-title: Journal of Applied Ecology
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: Ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 10
  start-page: 1115
  year: 2007
  end-page: 1123
  article-title: Grinnellian and Eltonian niches and geographic distributions of species
  publication-title: Ecology Letters
– volume: 21
  start-page: 335
  year: 2011
  end-page: 342
  article-title: Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria
  publication-title: Ecological Applications
– volume: 289
  start-page: 2312
  year: 2000
  end-page: 2314
  article-title: Interoperability of biodiversity databases: Biodiversity information on every desktop
  publication-title: Science
– volume: 16
  start-page: 488
  year: 2010
  end-page: 495
  article-title: Climate, climate change and range boundaries
  publication-title: Diversity and Distributions
– volume: 333
  start-page: 1024
  year: 2011
  end-page: 1026
  article-title: Rapid range shifts of species associated with high levels of climate warming
  publication-title: Science
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– volume: 33
  start-page: 607
  year: 2010
  end-page: 611
  article-title: ENMTools: A toolbox for comparative studies of environmental niche models
  publication-title: Ecography
– volume: 41
  start-page: 629
  year: 2014
  end-page: 643
  article-title: Making better Maxent models of species distributions: Complexity, overfitting and evaluation
  publication-title: Journal of Biogeography
– volume: 62
  start-page: 2868
  year: 2008
  end-page: 2883
  article-title: Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution
  publication-title: Evolution
– volume: 310
  start-page: 451
  year: 2011
  end-page: 463
  article-title: Using species distribution models in paleobiogeography: A matter of data, predictors and concepts
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– volume: 17
  start-page: 479
  year: 2008
  end-page: 488
  article-title: Model selection and information theory in geographical ecology
  publication-title: Global Ecology and Biogeography
– volume: 36
  start-page: 2290
  year: 2009
  end-page: 2299
  article-title: Spatially autocorrelated sampling falsely inflates measures of accuracy for presence‐only niche models
  publication-title: Journal of Biogeography
– volume: 17
  start-page: 43
  year: 2011
  end-page: 47
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Diversity and Distributions
– volume: 36
  start-page: 971
  year: 2013
  end-page: 983
  article-title: Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change
  publication-title: Ecography
– year: 2015
– volume: 240
  start-page: 1285
  year: 1988
  end-page: 1293
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
– volume: 4
  start-page: e7843
  year: 2009
  article-title: Alien invasive slider turtle in unpredicted habitat: A matter of niche shift or of predictors studied?
  publication-title: PLoS ONE
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 40
  start-page: 778
  year: 2013
  end-page: 789
  article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data
  publication-title: Journal of Biogeography
– volume: 213
  start-page: 63
  year: 2008
  end-page: 72
  article-title: Rethinking receiver operating characteristic analysis applications in ecological niche modeling
  publication-title: Ecological Modelling
– volume: 19
  start-page: 831
  year: 2010
  end-page: 841
  article-title: Weak climatic associations among British plant distributions
  publication-title: Global Ecology and Biogeography
– volume: 29
  start-page: 572
  year: 2014
  end-page: 580
  article-title: Mistaking geography for biology: Inferring processes from species distributions
  publication-title: Trends in Ecology and Evolution
– volume: 24
  start-page: 38
  year: 1997
  end-page: 49
  article-title: A review of methods for the assessment of prediction errors in conservation presence/absence models
  publication-title: Environmental Conservation
– volume: 39
  start-page: 2119
  year: 2012
  end-page: 2131
  article-title: Correlation and process in species distribution models: Bridging a dichotomy
  publication-title: Journal of Biogeography
– volume: 8
  start-page: e55158
  year: 2013
  article-title: The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models
  publication-title: PLoS ONE
– volume: 9
  start-page: e113749
  year: 2014
  end-page: e113749
  article-title: Improving the use of species distribution models in conservation planning and management under climate change
  publication-title: PLoS ONE
– volume: 36
  start-page: 27
  year: 2013
  end-page: 46
  article-title: Collinearity: A review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– volume: 12
  start-page: 361
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?
  publication-title: Global Ecology and Biogeography
– volume: 5
  start-page: 1198
  year: 2014
  end-page: 1205
  article-title: ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models
  publication-title: Methods in Ecology and Evolution
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– volume: 11
  start-page: 1504
  year: 2005
  end-page: 1513
  article-title: Validation of species–climate impact models under climate change
  publication-title: Global Change Biology
– volume: 122
  start-page: 321
  year: 2013
  end-page: 331
  article-title: Testing the predictive performance of distribution models
  publication-title: Oikos
– volume: 91
  start-page: 2476
  year: 2010
  end-page: 2484
  article-title: POC plots: Calibrating species distribution models with presence‐only data
  publication-title: Ecology
– volume: 22
  start-page: 508
  year: 2013
  end-page: 516
  article-title: Discrimination capacity in species distribution models depends on the representativeness of the environmental domain
  publication-title: Global Ecology and Biogeography
– volume: 16
  start-page: 2079
  year: 2014
  end-page: 2103
  article-title: Shaping up model transferability and generality of species distribution modeling for predicting invasions: Implications from a study on
  publication-title: Biological Invasions
– volume: 9
  start-page: e97122
  year: 2014
  article-title: Mapping species distributions with MAXENT using a geographically biased sample of presence data: A performance assessment of methods for correcting sampling bias
  publication-title: PLoS ONE
– volume: 19
  start-page: 867
  year: 2013
  end-page: 872
  article-title: On evaluating species distribution models with random background sites in place of absences when test presences disproportionately sample suitable habitat
  publication-title: Diversity and Distributions
– volume: 21
  start-page: 498
  year: 2012
  end-page: 507
  article-title: Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling
  publication-title: Global Ecology and Biogeography
– volume: 20
  start-page: 1
  year: 2014
  end-page: 9
  article-title: BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MaxEnt studies
  publication-title: Diversity and Distributions
– year: 2002
– volume: 31
  start-page: 161
  year: 2008
  end-page: 175
  article-title: Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation
  publication-title: Ecography
– volume: 4
  start-page: 236
  year: 2013
  end-page: 243
  article-title: Presence‐only modelling using MAXENT: When can we trust the inferences?
  publication-title: Methods in Ecology and Evolution
– volume: 8
  start-page: e68337
  year: 2013
  article-title: Improving transferability of introduced species' distribution models: New tools to forecast the spread of a highly invasive seaweed
  publication-title: PLoS ONE
– volume: 36
  start-page: 1058
  year: 2013
  end-page: 1069
  article-title: A practical guide to MaxEnt for modeling species' distributions: What it does, and why inputs and settings matter
  publication-title: Ecography
– volume: 16
  start-page: 733
  year: 2007
  end-page: 742
  article-title: Can niche‐based distribution models outperform spatial interpolation?
  publication-title: Global Ecology and Biogeography
– volume: 23
  start-page: 369
  year: 2014
  end-page: 385
  article-title: Threshold‐dependence as a desirable attribute for discrimination assessment: Implications for the evaluation of species distribution models
  publication-title: Biodiversity and Conservation
– start-page: 150
  year: 2011
  end-page: 181)
– volume: 93
  start-page: 679
  year: 2012
  end-page: 688
  article-title: Cross‐validation of species distribution models: Removing spatial sorting bias and calibration with a null model
  publication-title: Ecology
– volume: 38
  start-page: 541
  year: 2015
  end-page: 545
  article-title: spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models
  publication-title: Ecography
– volume: 21
  start-page: 595
  year: 2015
  end-page: 608
  article-title: Accounting for spatially biased sampling effort in presence‐only species distribution modelling
  publication-title: Diversity and Distributions
– volume: 3
  start-page: 260
  year: 2012
  end-page: 267
  article-title: Assessing transferability of ecological models: An underappreciated aspect of statistical validation
  publication-title: Methods in Ecology and Evolution
– ident: e_1_2_7_61_1
  doi: 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_7_58_1
  doi: 10.1111/ddi.12031
– ident: e_1_2_7_25_1
  doi: 10.1017/S0376892997000088
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1600-0587.2012.07348.x
– volume-title: The geographical distribution of animals; with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth's surface
  year: 1876
  ident: e_1_2_7_69_1
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1365-2427.2010.02417.x
– volume-title: R: A language and environment for statistical computing
  year: 2015
  ident: e_1_2_7_53_1
– ident: e_1_2_7_73_1
  doi: 10.1111/j.1558-5646.2008.00482.x
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1365-2664.2006.01214.x
– ident: e_1_2_7_42_1
  doi: 10.7717/peerj.3093
– ident: e_1_2_7_77_1
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1466-8238.2007.00358.x
– ident: e_1_2_7_71_1
  doi: 10.1890/10-1171.1
– ident: e_1_2_7_9_1
  doi: 10.1016/j.ecolmodel.2011.02.011
– ident: e_1_2_7_31_1
  doi: 10.1111/j.1365-2486.2006.01256.x
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1466-8238.2010.00574.x
– ident: e_1_2_7_76_1
  doi: 10.1111/2041-210x.12004
– ident: e_1_2_7_62_1
  doi: 10.1371/journal.pone.0055158
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1600-0706.2012.00299.x
– ident: e_1_2_7_38_1
  doi: 10.1111/jbi.12058
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1600-0587.2009.06039.x
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1466-8238.2008.00395.x
– ident: e_1_2_7_57_1
  doi: 10.1371/journal.pone.0007843
– volume-title: Essai sur la géographie des plantes; accompagné d'un tableau physique des régions équinoxiales
  year: 1805
  ident: e_1_2_7_68_1
– ident: e_1_2_7_29_1
  doi: 10.1890/11-0826.1
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1600-0587.2013.00138.x
– ident: e_1_2_7_48_1
  doi: 10.1111/geb.12530
– ident: e_1_2_7_28_1
  doi: 10.1148/radiology.143.1.7063747
– ident: e_1_2_7_37_1
  doi: 10.1007/s10530-011-9963-4
– ident: e_1_2_7_67_1
  doi: 10.1371/journal.pone.0068337
– ident: e_1_2_7_18_1
  doi: 10.1890/10-1325.1
– ident: e_1_2_7_70_1
  doi: 10.1007/s10530-014-0649-6
– ident: e_1_2_7_4_1
  doi: 10.1890/11-1930.1
– ident: e_1_2_7_44_1
  doi: 10.1111/2041-210X.12261
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1461-0248.2007.01107.x
– ident: e_1_2_7_7_1
  doi: 10.1111/j.1466-8238.2007.00331.x
– volume-title: raster: Geographic data analysis and modeling
  year: 2014
  ident: e_1_2_7_30_1
– volume-title: Model selection and multi‐model inference: A practical information‐theoretic approach
  year: 2002
  ident: e_1_2_7_14_1
– ident: e_1_2_7_6_1
  doi: 10.1111/j.1365-2699.2010.02416.x
– ident: e_1_2_7_16_1
  doi: 10.1126/science.1206432
– ident: e_1_2_7_45_1
  doi: 10.1046/j.1466-822X.2003.00042.x
– ident: e_1_2_7_56_1
  doi: 10.1007/s00114-010-0694-7
– ident: e_1_2_7_75_1
  doi: 10.1111/j.2041-210X.2011.00170.x
– ident: e_1_2_7_65_1
  doi: 10.1016/j.palaeo.2011.07.021
– ident: e_1_2_7_32_1
  doi: 10.1002/joc.1276
– ident: e_1_2_7_2_1
  doi: 10.1111/ecog.01132
– ident: e_1_2_7_33_1
  doi: 10.1007/s10531-013-0606-1
– ident: e_1_2_7_51_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_7_78_1
  doi: 10.1016/j.ecolmodel.2016.09.019
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1466-8238.2010.00561.x
– ident: e_1_2_7_20_1
  doi: 10.1111/j.1365-2699.2011.02659.x
– ident: e_1_2_7_72_1
  doi: 10.1016/j.tree.2014.08.003
– ident: e_1_2_7_55_1
  doi: 10.1111/ecog.02881
– ident: e_1_2_7_10_1
  doi: 10.1073/pnas.0803506105
– ident: e_1_2_7_27_1
  doi: 10.1111/ele.12189
– ident: e_1_2_7_60_1
  doi: 10.1111/ddi.12279
– ident: e_1_2_7_12_1
  doi: 10.1111/jbi.12894
– ident: e_1_2_7_54_1
  doi: 10.1111/jbi.12227
– start-page: 150
  volume-title: Evaluating model performance and significance
  year: 2011
  ident: e_1_2_7_47_1
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1472-4642.2010.00642.x
– ident: e_1_2_7_21_1
  doi: 10.1126/science.289.5488.2312
– ident: e_1_2_7_35_1
  doi: 10.1111/geb.12007
– ident: e_1_2_7_46_1
  doi: 10.1016/j.ecolmodel.2007.11.008
– ident: e_1_2_7_52_1
  doi: 10.1371/journal.pone.0113749
– ident: e_1_2_7_41_1
  doi: 10.1111/j.1600-0587.2013.07872.x
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1365-2664.2009.01671.x
– ident: e_1_2_7_23_1
  doi: 10.1111/j.1472-4642.2010.00725.x
– ident: e_1_2_7_66_1
  doi: 10.1111/j.1365-2699.2009.02174.x
– ident: e_1_2_7_49_1
  doi: 10.1111/j.0906-7590.2008.5203.x
– ident: e_1_2_7_74_1
  doi: 10.1111/j.1600-0587.2009.06142.x
– ident: e_1_2_7_63_1
  doi: 10.1111/j.1466-8238.2010.00635.x
– ident: e_1_2_7_34_1
  doi: 10.1111/j.1466-8238.2011.00683.x
– ident: e_1_2_7_26_1
  doi: 10.1371/journal.pone.0097122
– ident: e_1_2_7_50_1
  doi: 10.1890/09-0760.1
– ident: e_1_2_7_11_1
  doi: 10.1111/ddi.12144
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1365-2486.2005.01000.x
SSID ssj0005456
Score 2.6432185
Snippet Aim: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental...
Aim Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors,...
Aim Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental predictors,...
AIM: Species distribution modelling, a family of statistical methods that predicts species distributions from a set of occurrences and environmental...
Aim: Species distribution modelling, a family of statistical methods that predicts species distribu- tions from a set of occurrences and environmental...
SourceID swepub
hal
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 245
SubjectTerms AUC
Biodiversity and Ecology
biogeography
Computation
Ecology
Ekologi
Environment models
environmental factors
environmental predictors
Environmental Sciences
Environmental statistics
environmental variables
Evaluation
Innovations
Macroecological Methods
MaxEnt
model evaluation
model validation
Partitioning
Real variables
Reliability analysis
researchers
ROC curve
Spatial distribution
Species
species distribution modelling
Statistical analysis
Statistical methods
Statistical tests
Statistics
topography
TSS
Variables
Title Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics
URI https://www.jstor.org/stable/26635783
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12684
https://www.proquest.com/docview/1988460101
https://www.proquest.com/docview/2020893774
https://univ-lyon1.hal.science/hal-02155242
https://res.slu.se/id/publ/93578
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ri9QwEB7OA8EXT08X650SRcQHu2zbtE3x6ZQ9F1ER8WAfhJA06Ske7dHuCvriX3cmabtWFMSnLZvZNslOZr40M98APOK6XEQ2FqFGdx1ykZVhUWUmFIh-rUV_m7v3HW_eZqsz_mqdrvfg2ZAL4_khxhdutDKcvaYFrnT3yyI_t3oeEVcJ2l-K1SJA9H5HHUXIwGcWZSE6wXXPKkRRPOMvJ77oyieKhPRBiVO46SlEp-jVuZ_TA_g4dNxHnXyZbzd6Xn7_jdPxP0d2A673sJSdeD26CXu2PoSrS0dp_e0QZstdPhyK9QahuwU_3qnPrtZExy5bOvPZMESUzBAdb19JizUVo3xO3JI_ZU3r2suhhItrdKV48B7MTp7S37BpO6Zqw3a85IyyoDzB9G04O11-eLEK-5oOYcmLBUeViGNVLmxqdGWyVCfEOGaMElFUiEqkVZznmgtULR7xtEg0GpnC2DwtVGq1VskM9uumtneAWZPh5jfTnA4HK2EKHlWJsWjDIsqXLQN4Mvy7suwJz6nuxoUcNj440dJNdAAPR9FLz_LxRyGcnLGdeLlXJ68lfUfAKUWw8zUKYOY0aBSLCdLlIgngeFAp2ZuJTuKYEf8RzV8AD8ZmXOB0aqNq22w7GVMZVQSROXbgsVfFSR-6i61WLX3IzsqCHoYjd_r197HIl8vn7uLuv4sewTVEi8KHrB_D_qbd2nuIyDb6vlt6PwGFVDJi
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RQguPAorAgUMAsShWW0S53XgUOiWLd1WCLXS3kwcO7RqlVTJLqhc-EP8Ff4TM85jCQKJSw-cEsWW48eM_dme-QbgGZfpyNFuZEtcrm0eBakdZ4GyI0S_WuN6G5rzjv2DYHLE38382Qp8b31han6I7sCNNMPM16TgdCD9i5Z_0nLoEFlJY1K5py--4IaterW7jaP73HV3xodvJnYTU8BOeTziWCXXTdKR9pXMVOBLjxivlEoiB3ffWeRnbhhKHmHTuMP92JMo5LHSoR8nvpYy8bDcVbhCEcSJqX_7w5KsirBI7csU2LjszhoeI7Ib6qraW_1Wj8n2sjaD7APcmrS0j5fNgrdzE360XVXbuZwOF3M5TL_-xiL5v_TlLbjRIG-2VavKbVjR-TpcHRvW7ot1GIyXLn-YrZnzqjvw7X1yYsJpVOy8pGutOUPQzBQxDjfBwliRMXJZPdHVJitKk562UWpMook2hGUw3ftLU2BRVizJFVtSrzNy9Ko5tO_C0aV0ywDW8iLX94BpFeD-PpCc7j-zSMXcyTylcZp2yCU4teBlK04ibTjdKbTImWj3djiwwgysBU-7rOc1kckfM2HndOlEPT7Zmgr6RtjQRzz32bFgYES2y-YSag0jz4KNVoZFMxNWAtuMEJeYDC140iXjHEYXU0mui0UlXIoUizg5xAq8qGW_V4fqbCGTkh6i0iKmn2HLjUD_vS3i7fi1ebn_71kfw7XJ4f5UTHcP9h7AdQTHUW2hvwFr83KhHyIAnctHRu8ZfLxs5fgJvcqQtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RSAuPAorAgUMAsSBrDaJ8zpwKOwuW1qqClFpbyaOHaioklWyCyoXfhB_hR_FjPNYgkDi0gOnjdYjx48Z-3M88w3AIy7TkaPdyJa4Xds8ClI7zgJlR4h-tcb9NjTfO94cBrNj_nruzzfgexsLU_NDdB_cyDLMek0GvlDZL0b-QcuhQ1wljUflvj77gue16vneGCf3setOJ-9ezuwmpYCd8njEsUWum6Qj7SuZqcCXHhFeKZVEDh6-s8jP3DCUPMKecYf7sSdRx2OlQz9OfC1l4mG9m3CBB6OY8kSM3665qgiK1KFMgY277ryhMSK3oa6pvc1v8yO5XtZekH18W3OW9uGy2e-mV-FHO1K1m8un4Woph-nX30gk_5OhvAZXGtzNdmtDuQ4bOt-GixPD2X22DYPJOuAPxZoVr7oB346SE5NMo2KLki61lgwhM1PEN9ykCmNFxihg9URXz1hRmvK0zVFjCk2uIayD6d5bmgqLsmJJrtiaeJ1RmFfNoH0Tjs9lWAawlRe5vgVMqwBP94HkdPuZRSrmTuYpjYu0QwHBqQVPW20SacPoTolFTkV7ssOJFWZiLXjYiS5qGpM_CuHgdOVEPD7bPRD0HyFDH9HcZ8eCgdHYTswlzBpGngU7rQqLZh2sBPYZAS7xGFrwoCvGFYyupZJcF6tKuJQnFlFyiA14Uqt-rw3V6UomJf2ISouYXoY9N_r8976IV5MX5uH2v4veh0tH46k42DvcvwOXERlHtXv-Dmwty5W-i-hzKe8Zq2fw_rxt4ydy-o9l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paintings+predict+the+distribution+of+species%2C+or+the+challenge+of+selecting+environmental+predictors+and+evaluation+statistics&rft.jtitle=Global+ecology+and+biogeography&rft.au=Fourcade%2C+Yoan&rft.au=Besnard%2C+Aur%C3%A9lien+G.&rft.au=Secondi%2C+Jean&rft.date=2018-02-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=27&rft.issue=2&rft.spage=245&rft.epage=256&rft_id=info:doi/10.1111%2Fgeb.12684&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_geb_12684
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon