Long fatigue life critical crack lengths
ABSTRACT A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with...
Saved in:
Published in | Fatigue & fracture of engineering materials & structures Vol. 33; no. 5; pp. 320 - 330 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2010
Blackwell Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non‐propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime (Nf ≈ 109 cycles). When the surface cracks become non‐propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles). |
---|---|
AbstractList | ABSTRACT
A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non‐propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime (
N
f
≈ 10
9
cycles). When the surface cracks become non‐propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (10
7
<
N
f
< 10
9
cycles). A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non-propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime (Nf - 109 cycles). When the surface cracks become non-propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles). A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non-propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime ( Nf [approximate] 109 cycles). When the surface cracks become non-propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles). [PUBLICATION ABSTRACT] ABSTRACT A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non‐propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime (Nf ≈ 109 cycles). When the surface cracks become non‐propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles). |
Author | UNTERMANN, N. PLUMTREE, A. |
Author_xml | – sequence: 1 givenname: A. surname: PLUMTREE fullname: PLUMTREE, A. organization: Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada – sequence: 2 givenname: N. surname: UNTERMANN fullname: UNTERMANN, N. organization: Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22566373$$DView record in Pascal Francis |
BookMark | eNqNkEFPwyAYhomZidv0PzQmRi-dFCiUgwddtmmyqAeN3r4wCpNZW4Uuzn8vdWYHT3LhCzzvmy_PAPXqpjYIJRkeZfGcr0YZ4zglXOYjguMrzhhjo80e6u8-eqhfiJynIi-eD9AghBXGGWeU9tHZvKmXiVWtW65NUjlrEu1d67Sq4qD0a1KZetm-hEO0b1UVzNHvPUSP08nD-Dqd381uxpfzVDOJWcpVsdBa8ZKWBEuTK2KlEXKhqKaUC06EZSW1BebMLjgpealzzMqCyJxptSB0iE63ve---Vib0MKbC9pUlapNsw4gGOWSFIWM5PEfctWsfR2XA4JZxjCTHVRsIe2bELyx8O7dm_JfkGHoBMIKOk_QeYJOIPwIhE2Mnvz2qxB1WK9q7cIuT0jOORU0chdb7tNV5uvf_TCdTrop5tNt3oXWbHZ55V-BCypyeLqdwdO9JBm9kjCm38QMkgg |
CODEN | FFESEY |
CitedBy_id | crossref_primary_10_1016_j_jcsr_2023_107904 crossref_primary_10_1016_j_ijfatigue_2011_11_014 crossref_primary_10_1111_ffe_12197 crossref_primary_10_1016_j_ijfatigue_2012_07_013 crossref_primary_10_1111_j_1460_2695_2011_01658_x |
Cites_doi | 10.1016/j.ijfatigue.2005.05.018 10.1111/j.1460-2695.1992.tb00065.x 10.1016/0025-5416(78)90174-X 10.1016/j.scriptamat.2008.08.004 10.1007/BF02645485 10.1016/S0921-5093(97)00246-3 10.1111/j.1460-2695.1992.tb00026.x 10.1007/BF02644801 10.1016/S0007-8506(07)60412-0 10.1111/j.1460-2695.1982.tb01220.x 10.1016/S0924-0136(01)00770-1 10.1016/0142-1123(80)90024-9 10.1016/0142-1123(92)90155-6 10.1299/kikaia.50.1077 10.1016/j.ijfatigue.2007.03.010 10.1111/j.1460-2695.1995.tb00868.x |
ContentType | Journal Article |
Copyright | 2010 Blackwell Publishing Ltd. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Blackwell Publishing Ltd. – notice: 2015 INIST-CNRS |
DBID | BSCLL IQODW AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1111/j.1460-2695.2010.01444.x |
DatabaseName | Istex Pascal-Francis CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1460-2695 |
EndPage | 330 |
ExternalDocumentID | 2004755081 10_1111_j_1460_2695_2010_01444_x 22566373 FFE1444 ark_67375_WNG_WP9213B9_C |
Genre | article Feature |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29H 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6KP 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDEX ABEFU ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOD ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EAD EAP EBS EJD EMK EST ESX F00 F01 F04 FEDTE FOJGT FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 W8V W99 WBKPD WFSAM WIH WIK WOHZO WQJ WRC WTY WXSBR WYISQ XG1 ZZTAW ~IA ~WT ABHUG ABPTK ABWRO ACXME ADAWD ADDAD AFVGU AGJLS IQODW AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c4904-6a8bcca6d3d209e5a2f9e79ba3c3367627f4d3f8064fb62d6dc504d82954cab23 |
IEDL.DBID | DR2 |
ISSN | 8756-758X |
IngestDate | Fri Aug 16 10:31:39 EDT 2024 Thu Oct 10 18:43:35 EDT 2024 Fri Aug 23 01:45:19 EDT 2024 Wed Jan 24 06:17:32 EST 2024 Sat Aug 24 01:16:23 EDT 2024 Wed Oct 30 09:50:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Fatigue life Crack length Mechanical properties critical crack lengths Strain distribution Fatigue Fatigue threshold closure long life fatigue Fatigue crack |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4904-6a8bcca6d3d209e5a2f9e79ba3c3367627f4d3f8064fb62d6dc504d82954cab23 |
Notes | ArticleID:FFE1444 ark:/67375/WNG-WP9213B9-C This manuscript was originally compiled for a Special Issue by Prof. C. Rodopoulos entitled 'Physics of Fatigue Damage'. istex:848B75D0257CD032D463BAFBFAC132F81CD54EE7 This manuscript was originally compiled for a Special Issue by Prof. C. Rodopoulos entitled ‘Physics of Fatigue Damage’. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1460-2695.2010.01444.x |
PQID | 204140499 |
PQPubID | 45644 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_743692889 proquest_journals_204140499 crossref_primary_10_1111_j_1460_2695_2010_01444_x pascalfrancis_primary_22566373 wiley_primary_10_1111_j_1460_2695_2010_01444_x_FFE1444 istex_primary_ark_67375_WNG_WP9213B9_C |
PublicationCentury | 2000 |
PublicationDate | May 2010 |
PublicationDateYYYYMMDD | 2010-05-01 |
PublicationDate_xml | – month: 05 year: 2010 text: May 2010 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | Fatigue & fracture of engineering materials & structures |
PublicationYear | 2010 |
Publisher | Blackwell Publishing Ltd Blackwell Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell – name: Wiley Subscription Services, Inc |
References | Abdel-Raouf, A., Topper, T. H. and Plumtree, A. (1992) A model for the fatigue limit and short crack behaviour related to surface strain redistribution. Fatigue Fract. Engng. Mater. Struct. 15, 895-909. Liaw, P. K., Leax, T. R., Williams, R. S. and Peck, M. G. (1982) Near-threshold fatigue crack growth behaviour in copper. Metall. Trans. A 13A, 1607-1618. Hourlier, F., D'Hondt, H., Truchon, M. and Pineau, A. (1985) Fatigue Crack Path Behaviour under Polymodal Fatigue, ASTM STP 853, Philadelphia , 228-248 Plumtree, A. and Varvani-Farahani, A. (1996) Prediction of Non-Propagating Fatigue Crack Behaviour in Aluminium Alloys, Fatigue '96' (Edited by G. Lütjering and H. Nowack), Pergamon , NY , USA , pp. 271-275. Murakami, Y. and Endo, T. (1980) Effects of small defects on fatigue strength of metals. Int. J. Fatigue 29, 23-30. Mughrabi, H. (1978) The cyclic hardening and saturation behaviour of copper single crystals. Mater. Sci. Engng. 33, 207-223. Turnbull, A. and De Los Rios, E. R. (1995) The effect of grain size on the fatigue of commercially pure aluminum. Fatigue Fract. Engng Mater. Struct. 18, 1455-1467. Marchand, N. J. Bailon, J.-P. and Dickson, J. I. (1988) Near-threshold fatigue crack growth in copper and alpha-brass: grain size and environmental effects. Metall. Trans. A 19A, 2575-2587. Nisitani, H. and Chen, D. H (1984) Stress intensity factors for semi-elliptical surface cracks in a shaft under tension. Trans. Jap. Soc. Mech. Engrs. 50, 1077-1082. Brown, M. W. (1986) Interfaces between Short, Long and Non-Propagating Cracks, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 423-439 Miller, K. J., Mohamed, H. J. and De Los Rios, E. R. (1986) Fatigue Damage Accumulation Above and Below the Fatigue Limit, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 491-511. Murakami, Y. (2002) Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Amsterdam , Netherlands . DuQuesnay, D. L., Abdel-Raouf, H., Topper, T. H. and Plumtree, A. (1992) A modified fracture mechanics approach to metal fatigue. Fatigue Fract. Engng. Mater. Struct 15, 979-993. Plumtree, A. (1997) Threshold stress range for short crack growth. Engineering Against Fatigue, (Edited by J. H. Beynon, M. W. Brown, R. A. Smith, T. C. Lindley and B. Tomkins), A.A. Balkema Publishers, Rotterdam , Netherlands , pp.55-61. Mughrabi, H. (2006) Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int. J. Fatigue 28, 1501-1508. Mughrabi, H. and Stanzl-Tschegg, S. (2007) Fatigue damage evolution in ductile single-phase facecentered cubic metals in the UHCF- regime. Fourth Int. Conf on Very High Cycle Fatigue, (Edited by J. E. Allison, J. W. Jones, M. Larsen and R. O. Ritchie), TMS, Warrendale , PA , USA , pp. 75-82. Hoffman, H. and Hong, S. (2006) Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect. CIRP Ann- Manuf. Technol 55, 263-266. Stanzl-Tschegg, S., Mughrabi, H. and Schuller, R. (2006) Does copper undergo surface roughening during fatigue in the VHCF regime? Proc 16th European Conf. of Fracture -Failure Analysis of Nano and Engineering Materials and Structures. (Edited by E. E. Gdoutos), Paper 458, Springer, ISBN-10 1-4020-4971-4. Molotnikov, A., Lapovok, R., Davies, C. H. J., Cao, W. and Estrin, Y. (2008) Size effect on the tensile strength of fine-grained copper. Scripta Mats. 59, 1182-1185 Gao, H., Brown, M. W. and Miller, K. J. (1982) Mixed-mode fatigue thresholds. Fatigue Engng. Mater. Structures 5, 1-17. Bäumel, A Jr. and Seeger, T. (1990) Materials Data for Cyclic Loading, Materials Science Monographs 61, Supplement 1, Elsevier, Amsterdam , Netherlands . Usami, S. (1981) Applications of the Cyclic-Plastic-Zone-Size Criterion on the Fatigue Limit. Symposium on Fatigue Thresholds (Edited by I. Blacklund, A. Bloom and C. J. Beevers), EMAS, Warley , U.K. , 205. Plumtree, A. (1997) A model relating grain size to the endurance limit and non-propagating crack behaviour. Mats. Sci. Engng. A234-236, 636-638. Stanzl-Tschegg, S., Mughrabi, H. and Schoenbauer, B. (2007) Life time and cyclic slip of copper in the VHCF regime. Int. J. Fatigue 29, 2050-2059. Verreman, Y., Bailon, J. -P. and Masounave, J. (1986) Fatigue Short Crack Propagation and Plasticity- Induced Crack Closure at the Toe of a Fillet Welded Joint, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 387-404. Murakami, Y. and Endo, M. (1986) Effects of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 275-293. Abdel-Raouf, H., DuQuesnay, D. L., Topper, T. H. and Plumtree, A. (1992) Notch-size effects in fatigue based on surface strain redistribution and crack closure. Int. J. Fatigue 14, 57-62. Raulea, L. V., Goijaerts, A. M, Govaert, L. E, and Baaijens, F. P. T. (2001) Size effects in the processing of thin metal sheets. J. Mats. Process. Tech. 115, 44-48. Untermann, N. (2000) Short Fatigue Cracks - Strain Redistribution at the Free Surface, Research Report, Department of Mechanical Engineering, University of Waterloo, Canada. O'Connor, B. P. D. and Plumtree, A. (1987) Growth of Short Fatigue Cracks in a Squeeze-Formed Aluminium Alloy. Fatigue 87 (Edited by R. O. Ritchie and E. A. Starke Jr.), EMAS, Warley , U.K. , pp.145-154 1980; 29 1978; 33 2006; 55 2008; 59 1997 2007 1996 2006 1992; 14 1992; 15 2002 1991 1995; 18 1984; 50 2007; 29 1982; 13A 1990 2000 1982; 5 2006; 28 1987 1986 1985 1981 1997; A234–236 1988; 19A 2001; 115 Brown M. W. (e_1_2_11_24_2) 1986 Plumtree A. (e_1_2_11_16_2) 1997 e_1_2_11_31_2 Murakami Y. (e_1_2_11_3_2) 2002 Murakami Y. (e_1_2_11_29_2) 1986 Plumtree A. (e_1_2_11_30_2) 1996 e_1_2_11_13_2 Hourlier F. (e_1_2_11_25_2) 1985 O'Connor B. P. D. (e_1_2_11_9_2) 1987 e_1_2_11_12_2 e_1_2_11_11_2 e_1_2_11_10_2 Miller K. J. (e_1_2_11_26_2) 1986 e_1_2_11_6_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_2_2 Verreman Y. (e_1_2_11_28_2) 1986 Bäumel A (e_1_2_11_7_2) 1990 Stanzl‐Tschegg S. (e_1_2_11_19_2) 2006 e_1_2_11_20_2 e_1_2_11_23_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_17_2 e_1_2_11_15_2 e_1_2_11_14_2 Mughrabi H. (e_1_2_11_21_2) 2007 Usami S. (e_1_2_11_32_2) 1981 e_1_2_11_18_2 Untermann N. (e_1_2_11_5_2) 2000 |
References_xml | – volume: 18 start-page: 1455 year: 1995 end-page: 1467 article-title: The effect of grain size on the fatigue of commercially pure aluminum publication-title: Fatigue Fract. Engng Mater. Struct. – year: 1981 – volume: 19A start-page: 2575 year: 1988 end-page: 2587 article-title: Near‐threshold fatigue crack growth in copper and alpha‐brass: grain size and environmental effects publication-title: Metall. Trans. A – volume: 5 start-page: 1 year: 1982 end-page: 17 article-title: Mixed‐mode fatigue thresholds publication-title: Fatigue Engng. Mater. Structures – start-page: 387 year: 1986 end-page: 404 – volume: 15 start-page: 895 year: 1992 end-page: 909 article-title: A model for the fatigue limit and short crack behaviour related to surface strain redistribution publication-title: Fatigue Fract. Engng. Mater. Struct. – start-page: 145 year: 1987 end-page: 154 – year: 2000 – start-page: 423 year: 1986 end-page: 439 – start-page: 75 year: 2007 end-page: 82 – volume: 29 start-page: 2050 year: 2007 end-page: 2059 article-title: Life time and cyclic slip of copper in the VHCF regime publication-title: Int. J. Fatigue – year: 1990 – volume: 55 start-page: 263 year: 2006 end-page: 266 article-title: Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect publication-title: CIRP Ann- Manuf. Technol – volume: 50 start-page: 1077 year: 1984 end-page: 1082 article-title: Stress intensity factors for semi‐elliptical surface cracks in a shaft under tension publication-title: Trans. Jap. Soc. Mech. Engrs. – volume: 33 start-page: 207 year: 1978 end-page: 223 article-title: The cyclic hardening and saturation behaviour of copper single crystals publication-title: Mater. Sci. Engng. – volume: 115 start-page: 44 year: 2001 end-page: 48 article-title: Size effects in the processing of thin metal sheets publication-title: J. Mats. Process. Tech. – volume: 59 start-page: 1182 year: 2008 end-page: 1185 article-title: Size effect on the tensile strength of fine‐grained copper publication-title: Scripta Mats. – start-page: 491 year: 1986 end-page: 511 – start-page: 271 year: 1996 end-page: 275 – volume: 29 start-page: 23 year: 1980 end-page: 30 article-title: Effects of small defects on fatigue strength of metals publication-title: Int. J. Fatigue – volume: 28 start-page: 1501 year: 2006 end-page: 1508 article-title: Specific features and mechanisms of fatigue in the ultrahigh‐cycle regime publication-title: Int. J. Fatigue – volume: 13A start-page: 1607 year: 1982 end-page: 1618 article-title: Near‐threshold fatigue crack growth behaviour in copper publication-title: Metall. Trans. A – start-page: 55 year: 1997 end-page: 61 – year: 2002 – start-page: 228 year: 1985 end-page: 248 – volume: 15 start-page: 979 year: 1992 end-page: 993 article-title: A modified fracture mechanics approach to metal fatigue publication-title: Fatigue Fract. Engng. Mater. Struct – year: 2006 – volume: 14 start-page: 57 year: 1992 end-page: 62 article-title: Notch‐size effects in fatigue based on surface strain redistribution and crack closure publication-title: Int. J. Fatigue – year: 1991 – volume: A234–236 start-page: 636 year: 1997 end-page: 638 article-title: A model relating grain size to the endurance limit and non‐propagating crack behaviour publication-title: Mats. Sci. Engng. – start-page: 275 year: 1986 end-page: 293 – ident: e_1_2_11_4_2 doi: 10.1016/j.ijfatigue.2005.05.018 – ident: e_1_2_11_2_2 doi: 10.1111/j.1460-2695.1992.tb00065.x – ident: e_1_2_11_6_2 doi: 10.1016/0025-5416(78)90174-X – ident: e_1_2_11_12_2 doi: 10.1016/j.scriptamat.2008.08.004 – start-page: 75 volume-title: Fatigue damage evolution in ductile single‐phase facecentered cubic metals in the UHCF‐ regime year: 2007 ident: e_1_2_11_21_2 contributor: fullname: Mughrabi H. – ident: e_1_2_11_15_2 – ident: e_1_2_11_23_2 doi: 10.1007/BF02645485 – start-page: 145 volume-title: Growth of Short Fatigue Cracks in a Squeeze‐Formed Aluminium Alloy year: 1987 ident: e_1_2_11_9_2 contributor: fullname: O'Connor B. P. D. – ident: e_1_2_11_17_2 doi: 10.1016/S0921-5093(97)00246-3 – ident: e_1_2_11_14_2 doi: 10.1111/j.1460-2695.1992.tb00026.x – volume-title: Does copper undergo surface roughening during fatigue in the VHCF regime? year: 2006 ident: e_1_2_11_19_2 contributor: fullname: Stanzl‐Tschegg S. – ident: e_1_2_11_22_2 doi: 10.1007/BF02644801 – ident: e_1_2_11_10_2 doi: 10.1016/S0007-8506(07)60412-0 – ident: e_1_2_11_27_2 doi: 10.1111/j.1460-2695.1982.tb01220.x – volume-title: Materials Data for Cyclic Loading year: 1990 ident: e_1_2_11_7_2 contributor: fullname: Bäumel A – volume-title: Short Fatigue Cracks – Strain Redistribution at the Free Surface year: 2000 ident: e_1_2_11_5_2 contributor: fullname: Untermann N. – ident: e_1_2_11_11_2 doi: 10.1016/S0924-0136(01)00770-1 – ident: e_1_2_11_31_2 doi: 10.1016/0142-1123(80)90024-9 – ident: e_1_2_11_13_2 doi: 10.1016/0142-1123(92)90155-6 – ident: e_1_2_11_8_2 doi: 10.1299/kikaia.50.1077 – start-page: 491 volume-title: Fatigue Damage Accumulation Above and Below the Fatigue Limit year: 1986 ident: e_1_2_11_26_2 contributor: fullname: Miller K. J. – start-page: 275 volume-title: Effects of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects year: 1986 ident: e_1_2_11_29_2 contributor: fullname: Murakami Y. – volume-title: Applications of the Cyclic‐Plastic‐Zone‐Size Criterion on the Fatigue Limit year: 1981 ident: e_1_2_11_32_2 contributor: fullname: Usami S. – start-page: 55 volume-title: Threshold stress range for short crack growth year: 1997 ident: e_1_2_11_16_2 contributor: fullname: Plumtree A. – start-page: 423 volume-title: Interfaces between Short, Long and Non‐Propagating Cracks year: 1986 ident: e_1_2_11_24_2 contributor: fullname: Brown M. W. – start-page: 271 volume-title: Prediction of Non‐Propagating Fatigue Crack Behaviour in Aluminium Alloys year: 1996 ident: e_1_2_11_30_2 contributor: fullname: Plumtree A. – volume-title: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions year: 2002 ident: e_1_2_11_3_2 contributor: fullname: Murakami Y. – ident: e_1_2_11_20_2 doi: 10.1016/j.ijfatigue.2007.03.010 – start-page: 387 volume-title: Fatigue Short Crack Propagation and Plasticity‐ Induced Crack Closure at the Toe of a Fillet Welded Joint year: 1986 ident: e_1_2_11_28_2 contributor: fullname: Verreman Y. – start-page: 228 volume-title: Fatigue Crack Path Behaviour under Polymodal Fatigue year: 1985 ident: e_1_2_11_25_2 contributor: fullname: Hourlier F. – ident: e_1_2_11_18_2 doi: 10.1111/j.1460-2695.1995.tb00868.x |
SSID | ssj0016433 |
Score | 1.947281 |
Snippet | ABSTRACT
A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining... A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the... |
SourceID | proquest crossref pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 320 |
SubjectTerms | Applied sciences closure Cracks critical crack lengths Exact sciences and technology Fatigue Fatigue life fatigue threshold long life fatigue Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy strain distribution Stress analysis |
Title | Long fatigue life critical crack lengths |
URI | https://api.istex.fr/ark:/67375/WNG-WP9213B9-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-2695.2010.01444.x https://www.proquest.com/docview/204140499 https://search.proquest.com/docview/743692889 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYquJRDoTzU5aUcUMXFq8RJHPvIa4sQRVVVxN4sPwEtyiKyKyF-PTNJNiKoB1T1Zil2HM947G_izzOEHCTBO2etoMFpThERUOFiQ4UJvNAadmCJF4V_XvHz6-xinI9b_hPehWniQ3Q_3NAy6vUaDVyb6r2Rx5RxmbcMLfANsiHiySQtkN11-ruLJAVOQZ1VHtA5pwCRx31Sz19f1NupllHoz8ic1BUILzRZL3qw9C24rXen0SqZLMbVkFImw_nMDO3Lu5CP_2fga-RLC2Kjo2bWfSWffLlOVt6ENtwgh5fT8jYKoPfbuY8e7oOPbJtVAQraTiJM4TK7qzbJ9ejsz8k5bbMyUJvJOKNcCwNq5y51LJY-1yxIX0ijU5ti-DdWhMylQQDWCYYzx53N48wJPFC02rB0iyyV09J_IxFU8N56FrzgmYNpIRKbJCEVBhYegEIDkiw0oB6b4Buq57TECqWgUAqqloJ6HpDvtaq6BvppguS1Ilc3Vz_UzS_JkvRYqpMB2e_psmsAKxz0XUDvOwvlqtawK-gqw4BEUg5I1D0Fi8RjFl366bxSgMm4ZEJAFV7r8cPfrkajMyxt_2vDHfJ5wW6Ik12yNHua-z0ATTOzX5vDK1MABmM |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOUAqI7TOHquLiVeIkjn2kj-0C21WFWnVvlp8FbZWturtSxa9nJslGTcUBod4sxY94Po_92R7PEHKQBO-ctYIGpzlFRkCFiw0VJvBCa1iBJT4UPh_z4VX2bZJPmnBA-Bam9g_RHrihZlTzNSo4Hkg_1fKYMi7zxkQLNgdZHwjlOmh_inEcTn60vqRgW1DFlQd-zimQ5EnXrOevNXXWqnUU-wPaTuo5iC_UcS86xPQxva3Wp8FbcrvqWW2WMu0vF6Zvfz9x-vhMXd8gbxoeG32pB9478sKXm-T1I--G78nn0ay8iQJAf7P00e2v4CPbBFaAhLbTCKO4LH7OP5Crwenl8ZA2gRmozWScUa6FAeS5Sx2Lpc81C9IX0ujUpugBjhUhc2kQQHeC4cxxZ_M4cwLvFK02LP1I1spZ6T-RCDJ4bz0LXvDMwcgQiU2SkAoDcw-woR5JVhCou9r_hursW2KFUlAoBVVJQT30yGGFVVtA30_Rfq3I1fX4TF1fSJakR1Id98heB8y2AExy0HYBrW-v0FWNbs-hqQx9EknZI1H7FZQSb1p06WfLuQJaxiUTArLwCsh__nc1GJxiaut_C-6Tl8PL85EafR1_3yavVsYOcbJD1hb3S78LHGph9ird-APEOAp7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hVkJwKOWlLqUlB4S4eJU4jmMfoTQtUFYVoureLD8L2ipbdXelil_POMlGTcUBod4sxY7jGY_9Tfx5BuBtFrxz1goSnOYkIgIiXGqIMIGXWuMOLONF4W8TfnzGvkyLacd_indh2vgQ_Q-3aBnNeh0N_MqFu0aeEspl0TG00DdgY8STm4wjEI4A6XsfSgq9giatPMJzThAjT4esnr--abBVbUap30TqpF6g9EKb9mKAS2-j22Z7qp7AbD2wlpUyG6-WZmx_34n5eD8j34atDsUmH9pp9xQe-PoZPL4V2_A5vD-Z1xdJQMVfrHxy-Sv4xHZpFbCg7SyJOVyWPxcv4Kw6_HFwTLq0DMQymTLCtTCod-5yR1PpC02D9KU0Ord5jP9Gy8BcHgSCnWA4ddzZImVOxBNFqw3NX8JGPa_9DiRYwXvrafCCM4fzQmQ2y0IuDK48iIVGkK01oK7a6Btq4LWkKkpBRSmoRgrqZgTvGlX1DfT1LLLXykKdT47U-amkWf5RqoMR7A902TfAJQ77LrH33bVyVWfZC-yKxYhEUo4g6Z-iScZzFl37-WqhEJRxSYXAKrzR4z9_u6qqw1h69b8N38DD00-VOvk8-boLj9ZMhzR7DRvL65XfQwC1NPuNZfwBh4EJKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+fatigue+life+critical+crack+lengths&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=PLUMTREE%2C+A.&rft.au=UNTERMANN%2C+N.&rft.date=2010-05-01&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=33&rft.issue=5&rft.spage=320&rft.epage=330&rft_id=info:doi/10.1111%2Fj.1460-2695.2010.01444.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1460_2695_2010_01444_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon |