Long fatigue life critical crack lengths

ABSTRACT A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with...

Full description

Saved in:
Bibliographic Details
Published inFatigue & fracture of engineering materials & structures Vol. 33; no. 5; pp. 320 - 330
Main Authors PLUMTREE, A., UNTERMANN, N.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.05.2010
Blackwell
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non‐propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime (Nf ≈ 109 cycles). When the surface cracks become non‐propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles).
AbstractList ABSTRACT A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non‐propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime ( N f  ≈ 10 9 cycles). When the surface cracks become non‐propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (10 7 <  N f  < 10 9 cycles).
A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non-propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime (Nf - 109 cycles). When the surface cracks become non-propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles).
A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non-propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime ( Nf [approximate] 109 cycles). When the surface cracks become non-propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles). [PUBLICATION ABSTRACT]
ABSTRACT A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the threshold stress and critical length of short cracks that develop under microstructural control. The threshold stress first decreases with crack size to a local minimum then increases to a local maximum corresponding to the fatigue limit stress. This occurs at the critical crack length corresponding to about four grain diameters. The model is capable of determining the threshold stress range and depth of propagating and non‐propagating surface cracks as a function of stress ratio, material and grain size. The microstructure is shown to be particularly significant in the very long life regime (Nf ≈ 109 cycles). When the surface cracks become non‐propagating, internally initiated cracks continue growing slowly, eventually reaching the critical crack length with failure occurring after a very high number of cycles (107 < Nf < 109 cycles).
Author UNTERMANN, N.
PLUMTREE, A.
Author_xml – sequence: 1
  givenname: A.
  surname: PLUMTREE
  fullname: PLUMTREE, A.
  organization: Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
– sequence: 2
  givenname: N.
  surname: UNTERMANN
  fullname: UNTERMANN, N.
  organization: Department of Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22566373$$DView record in Pascal Francis
BookMark eNqNkEFPwyAYhomZidv0PzQmRi-dFCiUgwddtmmyqAeN3r4wCpNZW4Uuzn8vdWYHT3LhCzzvmy_PAPXqpjYIJRkeZfGcr0YZ4zglXOYjguMrzhhjo80e6u8-eqhfiJynIi-eD9AghBXGGWeU9tHZvKmXiVWtW65NUjlrEu1d67Sq4qD0a1KZetm-hEO0b1UVzNHvPUSP08nD-Dqd381uxpfzVDOJWcpVsdBa8ZKWBEuTK2KlEXKhqKaUC06EZSW1BebMLjgpealzzMqCyJxptSB0iE63ve---Vib0MKbC9pUlapNsw4gGOWSFIWM5PEfctWsfR2XA4JZxjCTHVRsIe2bELyx8O7dm_JfkGHoBMIKOk_QeYJOIPwIhE2Mnvz2qxB1WK9q7cIuT0jOORU0chdb7tNV5uvf_TCdTrop5tNt3oXWbHZ55V-BCypyeLqdwdO9JBm9kjCm38QMkgg
CODEN FFESEY
CitedBy_id crossref_primary_10_1016_j_jcsr_2023_107904
crossref_primary_10_1016_j_ijfatigue_2011_11_014
crossref_primary_10_1111_ffe_12197
crossref_primary_10_1016_j_ijfatigue_2012_07_013
crossref_primary_10_1111_j_1460_2695_2011_01658_x
Cites_doi 10.1016/j.ijfatigue.2005.05.018
10.1111/j.1460-2695.1992.tb00065.x
10.1016/0025-5416(78)90174-X
10.1016/j.scriptamat.2008.08.004
10.1007/BF02645485
10.1016/S0921-5093(97)00246-3
10.1111/j.1460-2695.1992.tb00026.x
10.1007/BF02644801
10.1016/S0007-8506(07)60412-0
10.1111/j.1460-2695.1982.tb01220.x
10.1016/S0924-0136(01)00770-1
10.1016/0142-1123(80)90024-9
10.1016/0142-1123(92)90155-6
10.1299/kikaia.50.1077
10.1016/j.ijfatigue.2007.03.010
10.1111/j.1460-2695.1995.tb00868.x
ContentType Journal Article
Copyright 2010 Blackwell Publishing Ltd.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Blackwell Publishing Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1111/j.1460-2695.2010.01444.x
DatabaseName Istex
Pascal-Francis
CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1460-2695
EndPage 330
ExternalDocumentID 2004755081
10_1111_j_1460_2695_2010_01444_x
22566373
FFE1444
ark_67375_WNG_WP9213B9_C
Genre article
Feature
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29H
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6KP
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDEX
ABEFU
ABEML
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EAD
EAP
EBS
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FOJGT
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WFSAM
WIH
WIK
WOHZO
WQJ
WRC
WTY
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
IQODW
AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c4904-6a8bcca6d3d209e5a2f9e79ba3c3367627f4d3f8064fb62d6dc504d82954cab23
IEDL.DBID DR2
ISSN 8756-758X
IngestDate Fri Aug 16 10:31:39 EDT 2024
Thu Oct 10 18:43:35 EDT 2024
Fri Aug 23 01:45:19 EDT 2024
Wed Jan 24 06:17:32 EST 2024
Sat Aug 24 01:16:23 EDT 2024
Wed Oct 30 09:50:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Fatigue life
Crack length
Mechanical properties
critical crack lengths
Strain distribution
Fatigue
Fatigue threshold
closure
long life fatigue
Fatigue crack
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4904-6a8bcca6d3d209e5a2f9e79ba3c3367627f4d3f8064fb62d6dc504d82954cab23
Notes ArticleID:FFE1444
ark:/67375/WNG-WP9213B9-C
This manuscript was originally compiled for a Special Issue by Prof. C. Rodopoulos entitled 'Physics of Fatigue Damage'.
istex:848B75D0257CD032D463BAFBFAC132F81CD54EE7
This manuscript was originally compiled for a Special Issue by Prof. C. Rodopoulos entitled ‘Physics of Fatigue Damage’.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1460-2695.2010.01444.x
PQID 204140499
PQPubID 45644
PageCount 11
ParticipantIDs proquest_miscellaneous_743692889
proquest_journals_204140499
crossref_primary_10_1111_j_1460_2695_2010_01444_x
pascalfrancis_primary_22566373
wiley_primary_10_1111_j_1460_2695_2010_01444_x_FFE1444
istex_primary_ark_67375_WNG_WP9213B9_C
PublicationCentury 2000
PublicationDate May 2010
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: May 2010
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle Fatigue & fracture of engineering materials & structures
PublicationYear 2010
Publisher Blackwell Publishing Ltd
Blackwell
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
– name: Wiley Subscription Services, Inc
References Abdel-Raouf, A., Topper, T. H. and Plumtree, A. (1992) A model for the fatigue limit and short crack behaviour related to surface strain redistribution. Fatigue Fract. Engng. Mater. Struct. 15, 895-909.
Liaw, P. K., Leax, T. R., Williams, R. S. and Peck, M. G. (1982) Near-threshold fatigue crack growth behaviour in copper. Metall. Trans. A 13A, 1607-1618.
Hourlier, F., D'Hondt, H., Truchon, M. and Pineau, A. (1985) Fatigue Crack Path Behaviour under Polymodal Fatigue, ASTM STP 853, Philadelphia , 228-248
Plumtree, A. and Varvani-Farahani, A. (1996) Prediction of Non-Propagating Fatigue Crack Behaviour in Aluminium Alloys, Fatigue '96' (Edited by G. Lütjering and H. Nowack), Pergamon , NY , USA , pp. 271-275.
Murakami, Y. and Endo, T. (1980) Effects of small defects on fatigue strength of metals. Int. J. Fatigue 29, 23-30.
Mughrabi, H. (1978) The cyclic hardening and saturation behaviour of copper single crystals. Mater. Sci. Engng. 33, 207-223.
Turnbull, A. and De Los Rios, E. R. (1995) The effect of grain size on the fatigue of commercially pure aluminum. Fatigue Fract. Engng Mater. Struct. 18, 1455-1467.
Marchand, N. J. Bailon, J.-P. and Dickson, J. I. (1988) Near-threshold fatigue crack growth in copper and alpha-brass: grain size and environmental effects. Metall. Trans. A 19A, 2575-2587.
Nisitani, H. and Chen, D. H (1984) Stress intensity factors for semi-elliptical surface cracks in a shaft under tension. Trans. Jap. Soc. Mech. Engrs. 50, 1077-1082.
Brown, M. W. (1986) Interfaces between Short, Long and Non-Propagating Cracks, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 423-439
Miller, K. J., Mohamed, H. J. and De Los Rios, E. R. (1986) Fatigue Damage Accumulation Above and Below the Fatigue Limit, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 491-511.
Murakami, Y. (2002) Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, Amsterdam , Netherlands .
DuQuesnay, D. L., Abdel-Raouf, H., Topper, T. H. and Plumtree, A. (1992) A modified fracture mechanics approach to metal fatigue. Fatigue Fract. Engng. Mater. Struct 15, 979-993.
Plumtree, A. (1997) Threshold stress range for short crack growth. Engineering Against Fatigue, (Edited by J. H. Beynon, M. W. Brown, R. A. Smith, T. C. Lindley and B. Tomkins), A.A. Balkema Publishers, Rotterdam , Netherlands , pp.55-61.
Mughrabi, H. (2006) Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. Int. J. Fatigue 28, 1501-1508.
Mughrabi, H. and Stanzl-Tschegg, S. (2007) Fatigue damage evolution in ductile single-phase facecentered cubic metals in the UHCF- regime. Fourth Int. Conf on Very High Cycle Fatigue, (Edited by J. E. Allison, J. W. Jones, M. Larsen and R. O. Ritchie), TMS, Warrendale , PA , USA , pp. 75-82.
Hoffman, H. and Hong, S. (2006) Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect. CIRP Ann- Manuf. Technol 55, 263-266.
Stanzl-Tschegg, S., Mughrabi, H. and Schuller, R. (2006) Does copper undergo surface roughening during fatigue in the VHCF regime? Proc 16th European Conf. of Fracture -Failure Analysis of Nano and Engineering Materials and Structures. (Edited by E. E. Gdoutos), Paper 458, Springer, ISBN-10 1-4020-4971-4.
Molotnikov, A., Lapovok, R., Davies, C. H. J., Cao, W. and Estrin, Y. (2008) Size effect on the tensile strength of fine-grained copper. Scripta Mats. 59, 1182-1185
Gao, H., Brown, M. W. and Miller, K. J. (1982) Mixed-mode fatigue thresholds. Fatigue Engng. Mater. Structures 5, 1-17.
Bäumel, A Jr. and Seeger, T. (1990) Materials Data for Cyclic Loading, Materials Science Monographs 61, Supplement 1, Elsevier, Amsterdam , Netherlands .
Usami, S. (1981) Applications of the Cyclic-Plastic-Zone-Size Criterion on the Fatigue Limit. Symposium on Fatigue Thresholds (Edited by I. Blacklund, A. Bloom and C. J. Beevers), EMAS, Warley , U.K. , 205.
Plumtree, A. (1997) A model relating grain size to the endurance limit and non-propagating crack behaviour. Mats. Sci. Engng. A234-236, 636-638.
Stanzl-Tschegg, S., Mughrabi, H. and Schoenbauer, B. (2007) Life time and cyclic slip of copper in the VHCF regime. Int. J. Fatigue 29, 2050-2059.
Verreman, Y., Bailon, J. -P. and Masounave, J. (1986) Fatigue Short Crack Propagation and Plasticity- Induced Crack Closure at the Toe of a Fillet Welded Joint, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 387-404.
Murakami, Y. and Endo, M. (1986) Effects of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects, The Behaviour of Short Fatigue Cracks (Edited by K. J. Miller and E. R. De Los Rios), MEP Publications, London , pp. 275-293.
Abdel-Raouf, H., DuQuesnay, D. L., Topper, T. H. and Plumtree, A. (1992) Notch-size effects in fatigue based on surface strain redistribution and crack closure. Int. J. Fatigue 14, 57-62.
Raulea, L. V., Goijaerts, A. M, Govaert, L. E, and Baaijens, F. P. T. (2001) Size effects in the processing of thin metal sheets. J. Mats. Process. Tech. 115, 44-48.
Untermann, N. (2000) Short Fatigue Cracks - Strain Redistribution at the Free Surface, Research Report, Department of Mechanical Engineering, University of Waterloo, Canada.
O'Connor, B. P. D. and Plumtree, A. (1987) Growth of Short Fatigue Cracks in a Squeeze-Formed Aluminium Alloy. Fatigue 87 (Edited by R. O. Ritchie and E. A. Starke Jr.), EMAS, Warley , U.K. , pp.145-154
1980; 29
1978; 33
2006; 55
2008; 59
1997
2007
1996
2006
1992; 14
1992; 15
2002
1991
1995; 18
1984; 50
2007; 29
1982; 13A
1990
2000
1982; 5
2006; 28
1987
1986
1985
1981
1997; A234–236
1988; 19A
2001; 115
Brown M. W. (e_1_2_11_24_2) 1986
Plumtree A. (e_1_2_11_16_2) 1997
e_1_2_11_31_2
Murakami Y. (e_1_2_11_3_2) 2002
Murakami Y. (e_1_2_11_29_2) 1986
Plumtree A. (e_1_2_11_30_2) 1996
e_1_2_11_13_2
Hourlier F. (e_1_2_11_25_2) 1985
O'Connor B. P. D. (e_1_2_11_9_2) 1987
e_1_2_11_12_2
e_1_2_11_11_2
e_1_2_11_10_2
Miller K. J. (e_1_2_11_26_2) 1986
e_1_2_11_6_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_2_2
Verreman Y. (e_1_2_11_28_2) 1986
Bäumel A (e_1_2_11_7_2) 1990
Stanzl‐Tschegg S. (e_1_2_11_19_2) 2006
e_1_2_11_20_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_17_2
e_1_2_11_15_2
e_1_2_11_14_2
Mughrabi H. (e_1_2_11_21_2) 2007
Usami S. (e_1_2_11_32_2) 1981
e_1_2_11_18_2
Untermann N. (e_1_2_11_5_2) 2000
References_xml – volume: 18
  start-page: 1455
  year: 1995
  end-page: 1467
  article-title: The effect of grain size on the fatigue of commercially pure aluminum
  publication-title: Fatigue Fract. Engng Mater. Struct.
– year: 1981
– volume: 19A
  start-page: 2575
  year: 1988
  end-page: 2587
  article-title: Near‐threshold fatigue crack growth in copper and alpha‐brass: grain size and environmental effects
  publication-title: Metall. Trans. A
– volume: 5
  start-page: 1
  year: 1982
  end-page: 17
  article-title: Mixed‐mode fatigue thresholds
  publication-title: Fatigue Engng. Mater. Structures
– start-page: 387
  year: 1986
  end-page: 404
– volume: 15
  start-page: 895
  year: 1992
  end-page: 909
  article-title: A model for the fatigue limit and short crack behaviour related to surface strain redistribution
  publication-title: Fatigue Fract. Engng. Mater. Struct.
– start-page: 145
  year: 1987
  end-page: 154
– year: 2000
– start-page: 423
  year: 1986
  end-page: 439
– start-page: 75
  year: 2007
  end-page: 82
– volume: 29
  start-page: 2050
  year: 2007
  end-page: 2059
  article-title: Life time and cyclic slip of copper in the VHCF regime
  publication-title: Int. J. Fatigue
– year: 1990
– volume: 55
  start-page: 263
  year: 2006
  end-page: 266
  article-title: Tensile test of very thin sheet metal and determination of flow stress considering the scaling effect
  publication-title: CIRP Ann- Manuf. Technol
– volume: 50
  start-page: 1077
  year: 1984
  end-page: 1082
  article-title: Stress intensity factors for semi‐elliptical surface cracks in a shaft under tension
  publication-title: Trans. Jap. Soc. Mech. Engrs.
– volume: 33
  start-page: 207
  year: 1978
  end-page: 223
  article-title: The cyclic hardening and saturation behaviour of copper single crystals
  publication-title: Mater. Sci. Engng.
– volume: 115
  start-page: 44
  year: 2001
  end-page: 48
  article-title: Size effects in the processing of thin metal sheets
  publication-title: J. Mats. Process. Tech.
– volume: 59
  start-page: 1182
  year: 2008
  end-page: 1185
  article-title: Size effect on the tensile strength of fine‐grained copper
  publication-title: Scripta Mats.
– start-page: 491
  year: 1986
  end-page: 511
– start-page: 271
  year: 1996
  end-page: 275
– volume: 29
  start-page: 23
  year: 1980
  end-page: 30
  article-title: Effects of small defects on fatigue strength of metals
  publication-title: Int. J. Fatigue
– volume: 28
  start-page: 1501
  year: 2006
  end-page: 1508
  article-title: Specific features and mechanisms of fatigue in the ultrahigh‐cycle regime
  publication-title: Int. J. Fatigue
– volume: 13A
  start-page: 1607
  year: 1982
  end-page: 1618
  article-title: Near‐threshold fatigue crack growth behaviour in copper
  publication-title: Metall. Trans. A
– start-page: 55
  year: 1997
  end-page: 61
– year: 2002
– start-page: 228
  year: 1985
  end-page: 248
– volume: 15
  start-page: 979
  year: 1992
  end-page: 993
  article-title: A modified fracture mechanics approach to metal fatigue
  publication-title: Fatigue Fract. Engng. Mater. Struct
– year: 2006
– volume: 14
  start-page: 57
  year: 1992
  end-page: 62
  article-title: Notch‐size effects in fatigue based on surface strain redistribution and crack closure
  publication-title: Int. J. Fatigue
– year: 1991
– volume: A234–236
  start-page: 636
  year: 1997
  end-page: 638
  article-title: A model relating grain size to the endurance limit and non‐propagating crack behaviour
  publication-title: Mats. Sci. Engng.
– start-page: 275
  year: 1986
  end-page: 293
– ident: e_1_2_11_4_2
  doi: 10.1016/j.ijfatigue.2005.05.018
– ident: e_1_2_11_2_2
  doi: 10.1111/j.1460-2695.1992.tb00065.x
– ident: e_1_2_11_6_2
  doi: 10.1016/0025-5416(78)90174-X
– ident: e_1_2_11_12_2
  doi: 10.1016/j.scriptamat.2008.08.004
– start-page: 75
  volume-title: Fatigue damage evolution in ductile single‐phase facecentered cubic metals in the UHCF‐ regime
  year: 2007
  ident: e_1_2_11_21_2
  contributor:
    fullname: Mughrabi H.
– ident: e_1_2_11_15_2
– ident: e_1_2_11_23_2
  doi: 10.1007/BF02645485
– start-page: 145
  volume-title: Growth of Short Fatigue Cracks in a Squeeze‐Formed Aluminium Alloy
  year: 1987
  ident: e_1_2_11_9_2
  contributor:
    fullname: O'Connor B. P. D.
– ident: e_1_2_11_17_2
  doi: 10.1016/S0921-5093(97)00246-3
– ident: e_1_2_11_14_2
  doi: 10.1111/j.1460-2695.1992.tb00026.x
– volume-title: Does copper undergo surface roughening during fatigue in the VHCF regime?
  year: 2006
  ident: e_1_2_11_19_2
  contributor:
    fullname: Stanzl‐Tschegg S.
– ident: e_1_2_11_22_2
  doi: 10.1007/BF02644801
– ident: e_1_2_11_10_2
  doi: 10.1016/S0007-8506(07)60412-0
– ident: e_1_2_11_27_2
  doi: 10.1111/j.1460-2695.1982.tb01220.x
– volume-title: Materials Data for Cyclic Loading
  year: 1990
  ident: e_1_2_11_7_2
  contributor:
    fullname: Bäumel A
– volume-title: Short Fatigue Cracks – Strain Redistribution at the Free Surface
  year: 2000
  ident: e_1_2_11_5_2
  contributor:
    fullname: Untermann N.
– ident: e_1_2_11_11_2
  doi: 10.1016/S0924-0136(01)00770-1
– ident: e_1_2_11_31_2
  doi: 10.1016/0142-1123(80)90024-9
– ident: e_1_2_11_13_2
  doi: 10.1016/0142-1123(92)90155-6
– ident: e_1_2_11_8_2
  doi: 10.1299/kikaia.50.1077
– start-page: 491
  volume-title: Fatigue Damage Accumulation Above and Below the Fatigue Limit
  year: 1986
  ident: e_1_2_11_26_2
  contributor:
    fullname: Miller K. J.
– start-page: 275
  volume-title: Effects of Hardness and Crack Geometries on ΔKth of Small Cracks Emanating from Small Defects
  year: 1986
  ident: e_1_2_11_29_2
  contributor:
    fullname: Murakami Y.
– volume-title: Applications of the Cyclic‐Plastic‐Zone‐Size Criterion on the Fatigue Limit
  year: 1981
  ident: e_1_2_11_32_2
  contributor:
    fullname: Usami S.
– start-page: 55
  volume-title: Threshold stress range for short crack growth
  year: 1997
  ident: e_1_2_11_16_2
  contributor:
    fullname: Plumtree A.
– start-page: 423
  volume-title: Interfaces between Short, Long and Non‐Propagating Cracks
  year: 1986
  ident: e_1_2_11_24_2
  contributor:
    fullname: Brown M. W.
– start-page: 271
  volume-title: Prediction of Non‐Propagating Fatigue Crack Behaviour in Aluminium Alloys
  year: 1996
  ident: e_1_2_11_30_2
  contributor:
    fullname: Plumtree A.
– volume-title: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
  year: 2002
  ident: e_1_2_11_3_2
  contributor:
    fullname: Murakami Y.
– ident: e_1_2_11_20_2
  doi: 10.1016/j.ijfatigue.2007.03.010
– start-page: 387
  volume-title: Fatigue Short Crack Propagation and Plasticity‐ Induced Crack Closure at the Toe of a Fillet Welded Joint
  year: 1986
  ident: e_1_2_11_28_2
  contributor:
    fullname: Verreman Y.
– start-page: 228
  volume-title: Fatigue Crack Path Behaviour under Polymodal Fatigue
  year: 1985
  ident: e_1_2_11_25_2
  contributor:
    fullname: Hourlier F.
– ident: e_1_2_11_18_2
  doi: 10.1111/j.1460-2695.1995.tb00868.x
SSID ssj0016433
Score 1.947281
Snippet ABSTRACT A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining...
A model based on surface strain redistribution and crack closure is presented for prediction of the endurance or fatigue limit stress by determining the...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 320
SubjectTerms Applied sciences
closure
Cracks
critical crack lengths
Exact sciences and technology
Fatigue
Fatigue life
fatigue threshold
long life fatigue
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
strain distribution
Stress analysis
Title Long fatigue life critical crack lengths
URI https://api.istex.fr/ark:/67375/WNG-WP9213B9-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-2695.2010.01444.x
https://www.proquest.com/docview/204140499
https://search.proquest.com/docview/743692889
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYquJRDoTzU5aUcUMXFq8RJHPvIa4sQRVVVxN4sPwEtyiKyKyF-PTNJNiKoB1T1Zil2HM947G_izzOEHCTBO2etoMFpThERUOFiQ4UJvNAadmCJF4V_XvHz6-xinI9b_hPehWniQ3Q_3NAy6vUaDVyb6r2Rx5RxmbcMLfANsiHiySQtkN11-ruLJAVOQZ1VHtA5pwCRx31Sz19f1NupllHoz8ic1BUILzRZL3qw9C24rXen0SqZLMbVkFImw_nMDO3Lu5CP_2fga-RLC2Kjo2bWfSWffLlOVt6ENtwgh5fT8jYKoPfbuY8e7oOPbJtVAQraTiJM4TK7qzbJ9ejsz8k5bbMyUJvJOKNcCwNq5y51LJY-1yxIX0ijU5ti-DdWhMylQQDWCYYzx53N48wJPFC02rB0iyyV09J_IxFU8N56FrzgmYNpIRKbJCEVBhYegEIDkiw0oB6b4Buq57TECqWgUAqqloJ6HpDvtaq6BvppguS1Ilc3Vz_UzS_JkvRYqpMB2e_psmsAKxz0XUDvOwvlqtawK-gqw4BEUg5I1D0Fi8RjFl366bxSgMm4ZEJAFV7r8cPfrkajMyxt_2vDHfJ5wW6Ik12yNHua-z0ATTOzX5vDK1MABmM
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOUAqI7TOHquLiVeIkjn2kj-0C21WFWnVvlp8FbZWturtSxa9nJslGTcUBod4sxY94Po_92R7PEHKQBO-ctYIGpzlFRkCFiw0VJvBCa1iBJT4UPh_z4VX2bZJPmnBA-Bam9g_RHrihZlTzNSo4Hkg_1fKYMi7zxkQLNgdZHwjlOmh_inEcTn60vqRgW1DFlQd-zimQ5EnXrOevNXXWqnUU-wPaTuo5iC_UcS86xPQxva3Wp8FbcrvqWW2WMu0vF6Zvfz9x-vhMXd8gbxoeG32pB9478sKXm-T1I--G78nn0ay8iQJAf7P00e2v4CPbBFaAhLbTCKO4LH7OP5Crwenl8ZA2gRmozWScUa6FAeS5Sx2Lpc81C9IX0ujUpugBjhUhc2kQQHeC4cxxZ_M4cwLvFK02LP1I1spZ6T-RCDJ4bz0LXvDMwcgQiU2SkAoDcw-woR5JVhCou9r_hursW2KFUlAoBVVJQT30yGGFVVtA30_Rfq3I1fX4TF1fSJakR1Id98heB8y2AExy0HYBrW-v0FWNbs-hqQx9EknZI1H7FZQSb1p06WfLuQJaxiUTArLwCsh__nc1GJxiaut_C-6Tl8PL85EafR1_3yavVsYOcbJD1hb3S78LHGph9ird-APEOAp7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hVkJwKOWlLqUlB4S4eJU4jmMfoTQtUFYVoureLD8L2ipbdXelil_POMlGTcUBod4sxY7jGY_9Tfx5BuBtFrxz1goSnOYkIgIiXGqIMIGXWuMOLONF4W8TfnzGvkyLacd_indh2vgQ_Q-3aBnNeh0N_MqFu0aeEspl0TG00DdgY8STm4wjEI4A6XsfSgq9giatPMJzThAjT4esnr--abBVbUap30TqpF6g9EKb9mKAS2-j22Z7qp7AbD2wlpUyG6-WZmx_34n5eD8j34atDsUmH9pp9xQe-PoZPL4V2_A5vD-Z1xdJQMVfrHxy-Sv4xHZpFbCg7SyJOVyWPxcv4Kw6_HFwTLq0DMQymTLCtTCod-5yR1PpC02D9KU0Ord5jP9Gy8BcHgSCnWA4ddzZImVOxBNFqw3NX8JGPa_9DiRYwXvrafCCM4fzQmQ2y0IuDK48iIVGkK01oK7a6Btq4LWkKkpBRSmoRgrqZgTvGlX1DfT1LLLXykKdT47U-amkWf5RqoMR7A902TfAJQ77LrH33bVyVWfZC-yKxYhEUo4g6Z-iScZzFl37-WqhEJRxSYXAKrzR4z9_u6qqw1h69b8N38DD00-VOvk8-boLj9ZMhzR7DRvL65XfQwC1NPuNZfwBh4EJKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+fatigue+life+critical+crack+lengths&rft.jtitle=Fatigue+%26+fracture+of+engineering+materials+%26+structures&rft.au=PLUMTREE%2C+A.&rft.au=UNTERMANN%2C+N.&rft.date=2010-05-01&rft.issn=8756-758X&rft.eissn=1460-2695&rft.volume=33&rft.issue=5&rft.spage=320&rft.epage=330&rft_id=info:doi/10.1111%2Fj.1460-2695.2010.01444.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1460_2695_2010_01444_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-758X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-758X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-758X&client=summon