Formation of parametric images using mixed-effects models: a feasibility study
Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed‐effects models incorporating both within‐ and between‐subject variations are capable of improving parameter estimation. In this wo...
Saved in:
Published in | NMR in biomedicine Vol. 29; no. 3; pp. 239 - 247 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.03.2016
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0952-3480 1099-1492 1099-1492 |
DOI | 10.1002/nbm.3453 |
Cover
Abstract | Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed‐effects models incorporating both within‐ and between‐subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non‐linear mixed‐effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel‐wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo‐diffusion coefficient and true diffusion coefficient were estimated using diffusion‐weighted MR images and NLME through fitting the IVIM model. The conventional method of non‐linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal‐to‐noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd.
We propose to use the non‐linear mixed effect (NLME) models to generate the parametric images. Intravoxel incoherent motion (IVIM) diffusion parameters including the fractional volume of capillary blood (Fv), the true diffusion coefficient (D) and the pseudo‐diffusion coefficient (D*) were estimated using voxel‐by‐voxel fitting of real diffusion‐weighted MRI data to the IVIM model. Compared to the non‐linear least‐squares (NLLS) fitting and the NLLS fitting with image smoothing (NLLS‐SM), the proposed NLME approach improves the parametric image quality. |
---|---|
AbstractList | Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd.Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. We propose to use the non-linear mixed effect (NLME) models to generate the parametric images. Intravoxel incoherent motion (IVIM) diffusion parameters including the fractional volume of capillary blood (Fv), the true diffusion coefficient (D) and the pseudo-diffusion coefficient (D*) were estimated using voxel-by-voxel fitting of real diffusion-weighted MRI data to the IVIM model. Compared to the non-linear least-squares (NLLS) fitting and the NLLS fitting with image smoothing (NLLS-SM), the proposed NLME approach improves the parametric image quality. Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed‐effects models incorporating both within‐ and between‐subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non‐linear mixed‐effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel‐wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo‐diffusion coefficient and true diffusion coefficient were estimated using diffusion‐weighted MR images and NLME through fitting the IVIM model. The conventional method of non‐linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal‐to‐noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. We propose to use the non‐linear mixed effect (NLME) models to generate the parametric images. Intravoxel incoherent motion (IVIM) diffusion parameters including the fractional volume of capillary blood (Fv), the true diffusion coefficient (D) and the pseudo‐diffusion coefficient (D*) were estimated using voxel‐by‐voxel fitting of real diffusion‐weighted MRI data to the IVIM model. Compared to the non‐linear least‐squares (NLLS) fitting and the NLLS fitting with image smoothing (NLLS‐SM), the proposed NLME approach improves the parametric image quality. |
Author | Lin, Chieh Huang, Husan-Ming Shih, Yi-Yu |
Author_xml | – sequence: 1 givenname: Husan-Ming surname: Huang fullname: Huang, Husan-Ming email: b9003205@gmail.com organization: Medical Physics Research Center, Institute of Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan City, Taiwan (ROC) – sequence: 2 givenname: Yi-Yu surname: Shih fullname: Shih, Yi-Yu organization: Siemens Shenzhen Magnetic Resonance Ltd., Siemens MR Center, Shenzhen, People's Republic of China – sequence: 3 givenname: Chieh surname: Lin fullname: Lin, Chieh organization: Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan (ROC) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26915793$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0V1rFDEUBuAgFbutgr9AAt54M2s-J4l3trVV2K4IflyGJJOU1JnJNslg99877bYVRcGr3Dw5nPO-B2BvTKMH4DlGS4wQeT3aYUkZp4_AAiOlGswU2QMLpDhpKJNoHxyUcokQkoySJ2CftApzoegCrE9THkyNaYQpwI3JZvA1RwfjYC58gVOJ4wUc4rXvGh-Cd7XAIXW-L2-ggcGbEm3sY93CUqdu-xQ8DqYv_tndewi-nL77fPy-WX08-3D8dtU4phBtRAiUMks8t5YgFzpClXRdhySVhnNiKTZWGSwCs4ZYiblyjDoZZOBcYEEPwavd3E1OV5MvVQ-xON_3ZvRpKhoL0bYtnsP5D9pK3jLaqpm-_INepimP8yG3CiNOOZ7Vizs12cF3epPnrPJW34c6g-UOuJxKyT5oF-ttxjWb2GuM9E1rem5N37T2a8WHD_cz_0KbHf0Re7_9p9Pro_PffSzVXz94k7_rVlDB9bf1mcafzlfo5OuJPqI_AYcAsuI |
CitedBy_id | crossref_primary_10_1002_nbm_3965 crossref_primary_10_1186_s12968_017_0391_1 crossref_primary_10_1002_nbm_5148 crossref_primary_10_1002_mrm_26528 |
Cites_doi | 10.1007/978-1-4419-0318-1 10.1002/jmri.24514 10.2967/jnumed.109.064824 10.1007/s00442-002-0954-0 10.1038/psp.2014.12 10.1118/1.2966349 10.1161/01.STR.0000114877.58809.3D 10.1016/j.csda.2004.07.002 10.1098/rsfs.2011.0026 10.1002/mrm.1910320109 10.1016/j.media.2012.12.001 10.1148/radiology.161.2.3763909 10.1186/gb-2003-4-4-210 10.1667/RR1787.1 10.1016/j.nicl.2013.08.001 10.1016/j.cmpb.2012.11.007 10.1016/j.neuroimage.2012.10.065 10.1016/j.jcct.2011.10.005 10.1080/02841859809172209 10.1161/01.RES.51.4.494 10.1148/radiology.168.2.3393671 10.1146/annurev.pharmtox.47.120505.105154 10.1186/1742-5573-4-8 10.1111/j.1468-0084.2008.00537.x 10.1148/radiol.2313021488 10.1002/mrm.24649 10.7150/thno.5130 10.1002/mrm.24529 10.2214/AJR.10.5515 10.1214/aos/1018031103 |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons, Ltd. – notice: Copyright © 2016 John Wiley & Sons, Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/nbm.3453 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Physics |
EISSN | 1099-1492 |
EndPage | 247 |
ExternalDocumentID | 3963955451 26915793 10_1002_nbm_3453 NBM3453 ark_67375_WNG_1QML0DVD_B |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: CIRPD3E0121 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52V 52W 52X 53G 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P2Z P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXSBR XG1 XPP XV2 ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4903-7ff334b2e5bb20cfd2398cdd0838a552b31ab9a17f4ba2b8159c43c8f8f557173 |
IEDL.DBID | DR2 |
ISSN | 0952-3480 1099-1492 |
IngestDate | Thu Jul 10 19:24:41 EDT 2025 Fri Jul 11 05:46:17 EDT 2025 Fri Jul 25 10:02:35 EDT 2025 Mon Jul 21 06:02:22 EDT 2025 Tue Jul 01 02:45:39 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Tue Sep 09 05:11:08 EDT 2025 Tue Sep 09 05:26:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | MRI diffusion-weighted imaging mixed-effects models intra-voxel incoherent motion |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2015 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4903-7ff334b2e5bb20cfd2398cdd0838a552b31ab9a17f4ba2b8159c43c8f8f557173 |
Notes | ArticleID:NBM3453 istex:8C23624D89F1A197392B7F78BBDA66FD23821628 ark:/67375/WNG-1QML0DVD-B CIRPD3E0121 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26915793 |
PQID | 1768105351 |
PQPubID | 2029982 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1776661100 proquest_miscellaneous_1768564369 proquest_journals_1768105351 pubmed_primary_26915793 crossref_citationtrail_10_1002_nbm_3453 crossref_primary_10_1002_nbm_3453 wiley_primary_10_1002_nbm_3453_NBM3453 istex_primary_ark_67375_WNG_1QML0DVD_B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2016 |
PublicationDateYYYYMMDD | 2016-03-01 |
PublicationDate_xml | – month: 03 year: 2016 text: March 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NMR in biomedicine |
PublicationTitleAlternate | NMR Biomed |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 2005; 49(4): 1020-38. Lei T. Statistics of Medical Imaging. CRC Press: Boca Raton, 2012. Jang H, Conklin DJ, Kong M. Piecewise nonlinear mixed-effects models for modeling cardiac function and assessing treatment effects. Comput. Methods Programs Biomed. 2013; 110(3): 240-52. Egeland TAM, Simonsen TG, Gaustad JV, Gulliksrud K, Ellingsen C, Rofstad EK. Dynamic contrast-enhanced magnetic resonance imaging of tumors: preclinical validation of parametric images. Radiat. Res. 2009; 172(3): 339-47. Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn. Reson. Med. 2014; 71(1): 411-20. Finucane MM, Samet JH, Horton NJ. Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time. Epidemiologic Perspect. Innov. 2007; 4: 8. Sadeghi N, Prastawa M, Fletcher PT, Vachet C, Wang B, Gilmore J, Gerig G. Multivariate modeling of longitudinal MRI in early brain development with confidence measures. Proc. IEEE Int. Symp. Biomed. Imaging 2013: 1400-3. Fox J. Applied Regression Analysis, Linear Models, and Related Methods. Sage: Thousand Oaks, CA, 1997. Danhof M, de Jongh J, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu. Rev. Pharmacol. Toxicol. 2007; 47: 357-400. Weiss HR, Buchweitz E, Murtha TJ, Auletta M. Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain. Circ. Res. 1982; 51(4): 494-503. Ko BS, Cameron JD, Defrance T, Seneviratne SK. CT stress myocardial perfusion imaging using multidetector CT - a review. J. Cardiovasc. Comput. Tomogr. 2011; 5(6): 345-56. Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Springer Science and Business Media: New York; 2000. Veraart J, Rajan J, Peeters RR, Leemans A, Sunaert S, Sijbers J. Comprehensive framework for accurate diffusion MRI parameter estimation. Magn. Reson. Med. 2013; 70(4): 972-84. Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR. Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage 2013; 66: 249-60. Jones BC, Nair G, Shea CD, Crainiceanu CM, Cortese ICM, Reich DS. Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling. NeuroImage Clin. 2013; 3: 171-9. Olofsen E, Dinges DF, Van Dongen HPA. Nonlinear mixed-effects modeling: individualization and prediction. Aviat. Space. Environ. Med. 2004; 75(3): A134-40. Ribba B, Holford NH, Magni P, Trocóniz I, Gueorguieva I, Girard P, Sarr C, Elishmereni M, Kloft C, Friberg LE. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet. Syst. Pharmacol. 2014; 3(5): e113. le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161(2): 401-7. Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics 2013; 3(10): 802-15. Koh D-M, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am. J. Roentgenol. 2011; 196(6): 1351-61. Freiman M, Perez-Rossello JM, Callahan MJ, Voss SD, Ecklund K, Mulkern R V, Warfield SK. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 2013; 17(3): 325-36. Neil JJ, Bosch CS, Ackerman JJH. An evaluation of the sensitivity of the IVIM method of blood flow measurements to changes in cerebral blood flow. Magn. Reson. Med. 1994; 32(1): 60-5. Wiesmann M, Meyer K, Albers T, Seidel G. Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke 2004; 35(2): 508-13. Tisdall MD, Atkins MS, Lockhart RA. Maximum likelihood estimators in magnetic resonance imaging. Inf. Process. Med. Imaging Proc. Conf. 2007; 4584: 434-45. Hoeffner EG, Case I, Jain R, Gujar SK, Shah G V, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK. Cerebral perfusion CT: technique and clinical applications. Radiology 2004; 231(3): 632-44. Peek M, Russek-Cohen E, Wait A, Forseth I. Physiological response curve analysis using nonlinear mixed models. Oecologia 2002; 132(2): 175-80. Tang M-X, Mulvana H, Gauthier T, Lim AKP, Cosgrove DO, Eckersley RJ, Stride E. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 2011; 1(4): 520-39. Fang Y-HD, Asthana P, Salinas C, Huang H-M, Muzic RF. Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging. J. Nucl. Med 2010; 51(1): 77-84. Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003; 4(4): 210. Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 1999; 27(1): 94-128. Doornik JA, Hansen H. An omnibus test for univariate and multivariate normality. Oxf. Bull. Econ. Stat. 2008; 70(s1): 927-39. Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. Acta Radiol 1998; 39(5): 460-73. Ferl GZ, O'Connor JPB, Parker GJM, Carano RAD, Acharya SJ, Jayson GC, Port RE. Mixed-effects modeling of clinical DCE-MRI data: application to colorectal liver metastases treated with bevacizumab. J. Magn. Reson. Imaging 2015; 41(1): 132-41. Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med. Phys. 2008; 35(9): 3963-71. le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168(2): 497-505. 2013; 3 2011; 1 2013; 66 2012 2002; 132 1982; 51 1999; 27 1997 1988; 168 2008; 35 2013; 70 2009; 172 2011; 196 2005; 49 2008; 70 2011; 5 2004; 231 2007; 4584 2004; 75 1998; 39 2014; 3 2013; 17 2000 1986; 161 2015; 41 2004; 35 2003; 4 2007; 4 2013; 110 2013 2014; 71 2007; 47 2010; 51 1994; 32 e_1_2_8_28_1 e_1_2_8_29_1 Sadeghi N (e_1_2_8_13_1) 2013 e_1_2_8_24_1 e_1_2_8_25_1 Olofsen E (e_1_2_8_8_1) 2004; 75 Fox J. (e_1_2_8_9_1) 1997 e_1_2_8_26_1 Tisdall MD (e_1_2_8_27_1) 2007; 4584 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Li TQ (e_1_2_8_35_1) 1998; 39 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Lei T. (e_1_2_8_30_1) 2012 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – reference: Jang H, Conklin DJ, Kong M. Piecewise nonlinear mixed-effects models for modeling cardiac function and assessing treatment effects. Comput. Methods Programs Biomed. 2013; 110(3): 240-52. – reference: Tang M-X, Mulvana H, Gauthier T, Lim AKP, Cosgrove DO, Eckersley RJ, Stride E. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 2011; 1(4): 520-39. – reference: Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Springer Science and Business Media: New York; 2000. – reference: Ferl GZ, O'Connor JPB, Parker GJM, Carano RAD, Acharya SJ, Jayson GC, Port RE. Mixed-effects modeling of clinical DCE-MRI data: application to colorectal liver metastases treated with bevacizumab. J. Magn. Reson. Imaging 2015; 41(1): 132-41. – reference: Ko BS, Cameron JD, Defrance T, Seneviratne SK. CT stress myocardial perfusion imaging using multidetector CT - a review. J. Cardiovasc. Comput. Tomogr. 2011; 5(6): 345-56. – reference: Hoeffner EG, Case I, Jain R, Gujar SK, Shah G V, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK. Cerebral perfusion CT: technique and clinical applications. Radiology 2004; 231(3): 632-44. – reference: le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168(2): 497-505. – reference: Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 2005; 49(4): 1020-38. – reference: Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med. Phys. 2008; 35(9): 3963-71. – reference: Doornik JA, Hansen H. An omnibus test for univariate and multivariate normality. Oxf. Bull. Econ. Stat. 2008; 70(s1): 927-39. – reference: Jones BC, Nair G, Shea CD, Crainiceanu CM, Cortese ICM, Reich DS. Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling. NeuroImage Clin. 2013; 3: 171-9. – reference: Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 1999; 27(1): 94-128. – reference: Wiesmann M, Meyer K, Albers T, Seidel G. Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke 2004; 35(2): 508-13. – reference: Weiss HR, Buchweitz E, Murtha TJ, Auletta M. Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain. Circ. Res. 1982; 51(4): 494-503. – reference: Neil JJ, Bosch CS, Ackerman JJH. An evaluation of the sensitivity of the IVIM method of blood flow measurements to changes in cerebral blood flow. Magn. Reson. Med. 1994; 32(1): 60-5. – reference: Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. Acta Radiol 1998; 39(5): 460-73. – reference: Ribba B, Holford NH, Magni P, Trocóniz I, Gueorguieva I, Girard P, Sarr C, Elishmereni M, Kloft C, Friberg LE. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet. Syst. Pharmacol. 2014; 3(5): e113. – reference: Finucane MM, Samet JH, Horton NJ. Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time. Epidemiologic Perspect. Innov. 2007; 4: 8. – reference: Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics 2013; 3(10): 802-15. – reference: Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003; 4(4): 210. – reference: le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161(2): 401-7. – reference: Koh D-M, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am. J. Roentgenol. 2011; 196(6): 1351-61. – reference: Veraart J, Rajan J, Peeters RR, Leemans A, Sunaert S, Sijbers J. Comprehensive framework for accurate diffusion MRI parameter estimation. Magn. Reson. Med. 2013; 70(4): 972-84. – reference: Peek M, Russek-Cohen E, Wait A, Forseth I. Physiological response curve analysis using nonlinear mixed models. Oecologia 2002; 132(2): 175-80. – reference: Egeland TAM, Simonsen TG, Gaustad JV, Gulliksrud K, Ellingsen C, Rofstad EK. Dynamic contrast-enhanced magnetic resonance imaging of tumors: preclinical validation of parametric images. Radiat. Res. 2009; 172(3): 339-47. – reference: Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn. Reson. Med. 2014; 71(1): 411-20. – reference: Olofsen E, Dinges DF, Van Dongen HPA. Nonlinear mixed-effects modeling: individualization and prediction. Aviat. Space. Environ. Med. 2004; 75(3): A134-40. – reference: Tisdall MD, Atkins MS, Lockhart RA. Maximum likelihood estimators in magnetic resonance imaging. Inf. Process. Med. Imaging Proc. Conf. 2007; 4584: 434-45. – reference: Lei T. Statistics of Medical Imaging. CRC Press: Boca Raton, 2012. – reference: Sadeghi N, Prastawa M, Fletcher PT, Vachet C, Wang B, Gilmore J, Gerig G. Multivariate modeling of longitudinal MRI in early brain development with confidence measures. Proc. IEEE Int. Symp. Biomed. Imaging 2013: 1400-3. – reference: Fox J. Applied Regression Analysis, Linear Models, and Related Methods. Sage: Thousand Oaks, CA, 1997. – reference: Fang Y-HD, Asthana P, Salinas C, Huang H-M, Muzic RF. Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging. J. Nucl. Med 2010; 51(1): 77-84. – reference: Freiman M, Perez-Rossello JM, Callahan MJ, Voss SD, Ecklund K, Mulkern R V, Warfield SK. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 2013; 17(3): 325-36. – reference: Danhof M, de Jongh J, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu. Rev. Pharmacol. Toxicol. 2007; 47: 357-400. – reference: Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR. Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage 2013; 66: 249-60. – volume: 71 start-page: 411 issue: 1 year: 2014 end-page: 20 article-title: Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling publication-title: Magn. Reson. Med. – volume: 51 start-page: 77 issue: 1 year: 2010 end-page: 84 article-title: Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging publication-title: J. Nucl. Med – volume: 3 start-page: e113 issue: 5 year: 2014 article-title: A review of mixed‐effects models of tumor growth and effects of anticancer drug treatment used in population analysis publication-title: CPT Pharmacomet. Syst. Pharmacol. – volume: 5 start-page: 345 issue: 6 year: 2011 end-page: 56 article-title: CT stress myocardial perfusion imaging using multidetector CT – a review publication-title: J. Cardiovasc. Comput. Tomogr. – volume: 4584 start-page: 434 year: 2007 end-page: 45 article-title: Maximum likelihood estimators in magnetic resonance imaging publication-title: Inf. Process. Med. Imaging Proc. Conf. – volume: 4 start-page: 8 year: 2007 article-title: Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time publication-title: Epidemiologic Perspect. Innov. – volume: 3 start-page: 802 issue: 10 year: 2013 end-page: 15 article-title: Direct estimation of kinetic parametric images for dynamic PET publication-title: Theranostics – start-page: 1400 year: 2013 end-page: 3 article-title: Multivariate modeling of longitudinal MRI in early brain development with confidence measures publication-title: Proc. IEEE Int. Symp. Biomed. Imaging – volume: 47 start-page: 357 year: 2007 end-page: 400 article-title: Mechanism‐based pharmacokinetic–pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis publication-title: Annu. Rev. Pharmacol. Toxicol. – year: 2000 – volume: 70 start-page: 972 issue: 4 year: 2013 end-page: 84 article-title: Comprehensive framework for accurate diffusion MRI parameter estimation publication-title: Magn. Reson. Med. – volume: 39 start-page: 460 issue: 5 year: 1998 end-page: 73 article-title: Diffusion‐weighted MR imaging of acute cerebral ischemia publication-title: Acta Radiol – volume: 161 start-page: 401 issue: 2 year: 1986 end-page: 7 article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders publication-title: Radiology – volume: 17 start-page: 325 issue: 3 year: 2013 end-page: 36 article-title: Reliable estimation of incoherent motion parametric maps from diffusion‐weighted MRI using fusion bootstrap moves publication-title: Med. Image Anal. – volume: 110 start-page: 240 issue: 3 year: 2013 end-page: 52 article-title: Piecewise nonlinear mixed‐effects models for modeling cardiac function and assessing treatment effects publication-title: Comput. Methods Programs Biomed. – volume: 66 start-page: 249 year: 2013 end-page: 60 article-title: Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models publication-title: NeuroImage – volume: 27 start-page: 94 issue: 1 year: 1999 end-page: 128 article-title: Convergence of a stochastic approximation version of the EM algorithm publication-title: Ann. Stat. – volume: 49 start-page: 1020 issue: 4 year: 2005 end-page: 38 article-title: Maximum likelihood estimation in nonlinear mixed effects models publication-title: Comput. Stat. Data Anal. – volume: 35 start-page: 508 issue: 2 year: 2004 end-page: 13 article-title: Parametric perfusion imaging with contrast‐enhanced ultrasound in acute ischemic stroke publication-title: Stroke – year: 2012 – volume: 70 start-page: 927 issue: s1 year: 2008 end-page: 39 article-title: An omnibus test for univariate and multivariate normality publication-title: Oxf. Bull. Econ. Stat. – volume: 132 start-page: 175 issue: 2 year: 2002 end-page: 80 article-title: Physiological response curve analysis using nonlinear mixed models publication-title: Oecologia – volume: 3 start-page: 171 year: 2013 end-page: 9 article-title: Quantification of multiple‐sclerosis‐related brain atrophy in two heterogeneous MRI datasets using mixed‐effects modeling publication-title: NeuroImage Clin. – volume: 35 start-page: 3963 issue: 9 year: 2008 end-page: 71 article-title: A survey of approaches for direct parametric image reconstruction in emission tomography publication-title: Med. Phys. – volume: 168 start-page: 497 issue: 2 year: 1988 end-page: 505 article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging publication-title: Radiology – volume: 51 start-page: 494 issue: 4 year: 1982 end-page: 503 article-title: Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain publication-title: Circ. Res. – volume: 32 start-page: 60 issue: 1 year: 1994 end-page: 5 article-title: An evaluation of the sensitivity of the IVIM method of blood flow measurements to changes in cerebral blood flow publication-title: Magn. Reson. Med. – year: 1997 – volume: 4 start-page: 210 issue: 4 year: 2003 article-title: Statistical tests for differential expression in cDNA microarray experiments publication-title: Genome Biol. – volume: 231 start-page: 632 issue: 3 year: 2004 end-page: 44 article-title: Cerebral perfusion CT: technique and clinical applications publication-title: Radiology – volume: 41 start-page: 132 issue: 1 year: 2015 end-page: 41 article-title: Mixed‐effects modeling of clinical DCE‐MRI data: application to colorectal liver metastases treated with bevacizumab publication-title: J. Magn. Reson. Imaging – volume: 172 start-page: 339 issue: 3 year: 2009 end-page: 47 article-title: Dynamic contrast‐enhanced magnetic resonance imaging of tumors: preclinical validation of parametric images publication-title: Radiat. Res. – volume: 196 start-page: 1351 issue: 6 year: 2011 end-page: 61 article-title: Intravoxel incoherent motion in body diffusion‐weighted MRI: reality and challenges publication-title: Am. J. Roentgenol. – volume: 1 start-page: 520 issue: 4 year: 2011 end-page: 39 article-title: Quantitative contrast‐enhanced ultrasound imaging: a review of sources of variability publication-title: Interface Focus – volume: 75 start-page: A134 issue: 3 year: 2004 end-page: 40 article-title: Nonlinear mixed‐effects modeling: individualization and prediction publication-title: Aviat. Space. Environ. Med. – ident: e_1_2_8_10_1 doi: 10.1007/978-1-4419-0318-1 – ident: e_1_2_8_14_1 doi: 10.1002/jmri.24514 – ident: e_1_2_8_36_1 doi: 10.2967/jnumed.109.064824 – volume-title: Applied Regression Analysis, Linear Models, and Related Methods year: 1997 ident: e_1_2_8_9_1 – ident: e_1_2_8_4_1 doi: 10.1007/s00442-002-0954-0 – start-page: 1400 year: 2013 ident: e_1_2_8_13_1 article-title: Multivariate modeling of longitudinal MRI in early brain development with confidence measures publication-title: Proc. IEEE Int. Symp. Biomed. Imaging – ident: e_1_2_8_7_1 doi: 10.1038/psp.2014.12 – volume-title: Statistics of Medical Imaging year: 2012 ident: e_1_2_8_30_1 – ident: e_1_2_8_15_1 doi: 10.1118/1.2966349 – volume: 4584 start-page: 434 year: 2007 ident: e_1_2_8_27_1 article-title: Maximum likelihood estimators in magnetic resonance imaging publication-title: Inf. Process. Med. Imaging Proc. Conf. – ident: e_1_2_8_21_1 doi: 10.1161/01.STR.0000114877.58809.3D – ident: e_1_2_8_26_1 doi: 10.1016/j.csda.2004.07.002 – ident: e_1_2_8_22_1 doi: 10.1098/rsfs.2011.0026 – ident: e_1_2_8_34_1 doi: 10.1002/mrm.1910320109 – ident: e_1_2_8_24_1 doi: 10.1016/j.media.2012.12.001 – volume: 75 start-page: A134 issue: 3 year: 2004 ident: e_1_2_8_8_1 article-title: Nonlinear mixed‐effects modeling: individualization and prediction publication-title: Aviat. Space. Environ. Med. – ident: e_1_2_8_18_1 doi: 10.1148/radiology.161.2.3763909 – ident: e_1_2_8_2_1 doi: 10.1186/gb-2003-4-4-210 – ident: e_1_2_8_29_1 doi: 10.1667/RR1787.1 – ident: e_1_2_8_12_1 doi: 10.1016/j.nicl.2013.08.001 – ident: e_1_2_8_5_1 doi: 10.1016/j.cmpb.2012.11.007 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2012.10.065 – ident: e_1_2_8_20_1 doi: 10.1016/j.jcct.2011.10.005 – volume: 39 start-page: 460 issue: 5 year: 1998 ident: e_1_2_8_35_1 article-title: Diffusion‐weighted MR imaging of acute cerebral ischemia publication-title: Acta Radiol doi: 10.1080/02841859809172209 – ident: e_1_2_8_33_1 doi: 10.1161/01.RES.51.4.494 – ident: e_1_2_8_17_1 doi: 10.1148/radiology.168.2.3393671 – ident: e_1_2_8_6_1 doi: 10.1146/annurev.pharmtox.47.120505.105154 – ident: e_1_2_8_3_1 doi: 10.1186/1742-5573-4-8 – ident: e_1_2_8_28_1 doi: 10.1111/j.1468-0084.2008.00537.x – ident: e_1_2_8_19_1 doi: 10.1148/radiol.2313021488 – ident: e_1_2_8_32_1 doi: 10.1002/mrm.24649 – ident: e_1_2_8_16_1 doi: 10.7150/thno.5130 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.24529 – ident: e_1_2_8_23_1 doi: 10.2214/AJR.10.5515 – ident: e_1_2_8_25_1 doi: 10.1214/aos/1018031103 |
SSID | ssj0008432 |
Score | 2.162412 |
Snippet | Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random... Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 239 |
SubjectTerms | Animals Computer Simulation Diffusion Magnetic Resonance Imaging - methods diffusion-weighted imaging Feasibility Studies Image Processing, Computer-Assisted intra-voxel incoherent motion mixed-effects models Models, Theoretical MRI Nonlinear Dynamics Rats, Sprague-Dawley Signal-To-Noise Ratio |
Title | Formation of parametric images using mixed-effects models: a feasibility study |
URI | https://api.istex.fr/ark:/67375/WNG-1QML0DVD-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.3453 https://www.ncbi.nlm.nih.gov/pubmed/26915793 https://www.proquest.com/docview/1768105351 https://www.proquest.com/docview/1768564369 https://www.proquest.com/docview/1776661100 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL1CRTw2PIbXQEFGQrDKNLFjx2FHOwwVYkaAKFRiYdmOjaoyM6iZkQorPoFv5EvwdR5QVBBilUVuEj_udY7t43MBHiCkcKW2ifSGJXkp08RYYxLPtNWOcyMMLuhPZ2J3L3--z_dbViWehWn0IfoFN4yMOF5jgGtTb_0iGmrmI5ZzFPrMmEDZ_PHrn8pRMo-5yQKAoAnLZdrpzqZ0q3vwxJ_oLDbq8Wkw8yRqjb-dyWV43xW4YZscjtYrM7JfftNy_L8aXYFLLRolTxr3uQpn3GIAF3a6JHADOD9t994HcC6SRW19DV5OuhOPZOkJiofPMS-XJQfzMDrVBLn0H8j84NhV379-axkjJObcqR8TTbzTLSn3M4nyttdhb_L0zc5u0mZmSGxepiwpvGcsN9RxY2hqfYUqgraqAp6TmnNqWKZNqbPC50ZTIwNmsjmz0kvPOe7734CNxXLhbgEpnK2ooJnwughTdS9NeLGwwmpalaLUQ3jU9ZKyrWw5Zs_4qBrBZapCsylstiHc7y0_NVIdp9g8jB3dG-ijQ6S2FVy9mz1T2avpi3T8dqy2h7DZeYJqo7pWWYHqbZzxLHyrvx16BDdZ9MIt140NDzBPlH-zKcKsEcX6hnCz8bK-QFSUGQ-DZihp9JU_VkXNtqd4vf2vhnfgYkB7oiHQbcLG6mjt7gZEtTL3Yuz8ALLXHNo |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am2C8cClsFAYYCcFTusS3OPDEVkqBpgK0wR6QLNux0TTaorWVBk_8BH4jvwQ7NxgaCPGUh5wkvpzjfLY_fwfgfoAUNlMmEk6TiGYijrTROnJEGWUZ01yHBf18zIf79MUBO1iBx81ZmEofol1wC5FRjtchwMOC9PYvqqF60iOUkXOwRj3OCDOv_puf2lGCltnJPITAEaEibpRnY7zdPHnqX7QWmvXkLKB5GreWP57BZXjfFLnimxz1lgvdM19-U3P8zzpdgUs1IEVPKg-6Cit22oH13SYPXAcu5PX2ewfOl3xRM78GrwbNoUc0cyjoh09Cai6DDid-gJqjQKf_gCaHJ7b4_vVbTRpBZdqd-SOkkLOq5uV-RqXC7XXYHzzd2x1GdXKGyNAsJlHqHCFUY8u0xrFxRRASNEXhIZ1QjGFNEqUzlaSOaoW18LDJUGKEE46xsPW_AavT2dTeAJRaU2COE-5U6mfrTmj_Ym64UbjIeKa68LDpJmlq5fKQQOOjrDSXsfTNJkOzdeFea_mpUus4w-ZB2dOtgTo-Cuy2lMl342cyeZ2P4v7bvtzpwlbjCrIO7LlM0iDgxghL_Lfa275Hwj6LmtrZsrJhHunx7G82qZ84Br2-LmxWbtYWCPMsYX7c9CUtneWPVZHjnTxcb_6r4V1YH-7lIzl6Pn55Cy568McrPt0WrC6Ol_a2B1gLfacMpB909yD5 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2CVrRseAxQBgoYCcEq08SvJOxoh6FAZ1QQLZVYWLZjo6rMTNWZkQorPoFv5EvwzQuKCkKssshN4se9zrF9fC7AI4QULtc2yrxhEc-zODLWmMgzbbUTwkiDC_rDkdze468OxEHNqsSzMJU-RLvghpFRjtcY4MeF3_hFNNSMe4wLdhGWuQxAAgHR25_SURkvk5MFBEEjxrO4EZ6N6Ubz5Jlf0TK26ul5OPMsbC3_O4Or8KEpcUU3Oeot5qZnv_wm5vh_VboGV2o4Sp5V_nMdLrhJB1a3mixwHVgZ1pvvHbhUskXt7AbsDpojj2TqCaqHjzExlyWH4zA8zQiS6T-S8eGpK75__VZTRkiZdGf2lGjina5ZuZ9JqW97E_YGz99tbUd1aobI8jxmUeo9Y9xQJ4yhsfUFygjaogj9kGkhqGGJNrlOUs-NpiYLoMlyZjOfeSFw4_8WLE2mE3cbSOpsQSVNpNdpmKv7zIQXSyutpkUuc92FJ00vKVvrlmP6jE-qUlymKjSbwmbrwsPW8rjS6jjH5nHZ0a2BPjlCblsq1PvRC5W8Ge7E_f2-2uzCeuMJqg7rmUpSlG8TTCThW-3t0CO4y6InbrqobETAeTL_m00apo2o1teFtcrL2gJRmScijJqhpKWv_LEqarQ5xOudfzV8ACu7_YHaeTl6fRcuB-QnKzLdOizNTxbuXkBXc3O_DKMf_JofqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+parametric+images+using+mixed-effects+models%3A+a+feasibility+study&rft.jtitle=NMR+in+biomedicine&rft.au=Huang%2C+Husan-Ming&rft.au=Shih%2C+Yi-Yu&rft.au=Lin%2C+Chieh&rft.date=2016-03-01&rft.issn=1099-1492&rft.eissn=1099-1492&rft.volume=29&rft.issue=3&rft.spage=239&rft_id=info:doi/10.1002%2Fnbm.3453&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon |