Formation of parametric images using mixed-effects models: a feasibility study

Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed‐effects models incorporating both within‐ and between‐subject variations are capable of improving parameter estimation. In this wo...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 29; no. 3; pp. 239 - 247
Main Authors Huang, Husan-Ming, Shih, Yi-Yu, Lin, Chieh
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.03.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.3453

Cover

Abstract Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed‐effects models incorporating both within‐ and between‐subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non‐linear mixed‐effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel‐wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo‐diffusion coefficient and true diffusion coefficient were estimated using diffusion‐weighted MR images and NLME through fitting the IVIM model. The conventional method of non‐linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal‐to‐noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. We propose to use the non‐linear mixed effect (NLME) models to generate the parametric images. Intravoxel incoherent motion (IVIM) diffusion parameters including the fractional volume of capillary blood (Fv), the true diffusion coefficient (D) and the pseudo‐diffusion coefficient (D*) were estimated using voxel‐by‐voxel fitting of real diffusion‐weighted MRI data to the IVIM model. Compared to the non‐linear least‐squares (NLLS) fitting and the NLLS fitting with image smoothing (NLLS‐SM), the proposed NLME approach improves the parametric image quality.
AbstractList Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd.
Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd.Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd.
Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed-effects models incorporating both within- and between-subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non-linear mixed-effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel-wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo-diffusion coefficient and true diffusion coefficient were estimated using diffusion-weighted MR images and NLME through fitting the IVIM model. The conventional method of non-linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal-to-noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. We propose to use the non-linear mixed effect (NLME) models to generate the parametric images. Intravoxel incoherent motion (IVIM) diffusion parameters including the fractional volume of capillary blood (Fv), the true diffusion coefficient (D) and the pseudo-diffusion coefficient (D*) were estimated using voxel-by-voxel fitting of real diffusion-weighted MRI data to the IVIM model. Compared to the non-linear least-squares (NLLS) fitting and the NLLS fitting with image smoothing (NLLS-SM), the proposed NLME approach improves the parametric image quality.
Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random effects, mixed‐effects models incorporating both within‐ and between‐subject variations are capable of improving parameter estimation. In this work, we demonstrate the feasibility of using a non‐linear mixed‐effects (NLME) approach for generating parametric images from medical imaging data of a single study. By assuming that all voxels in the image are independent, we used simulation and animal data to evaluate whether NLME can improve the voxel‐wise parameter estimation. For testing purposes, intravoxel incoherent motion (IVIM) diffusion parameters including perfusion fraction, pseudo‐diffusion coefficient and true diffusion coefficient were estimated using diffusion‐weighted MR images and NLME through fitting the IVIM model. The conventional method of non‐linear least squares (NLLS) was used as the standard approach for comparison of the resulted parametric images. In the simulated data, NLME provides more accurate and precise estimates of diffusion parameters compared with NLLS. Similarly, we found that NLME has the ability to improve the signal‐to‐noise ratio of parametric images obtained from rat brain data. These data have shown that it is feasible to apply NLME in parametric image generation, and the parametric image quality can be accordingly improved with the use of NLME. With the flexibility to be adapted to other models or modalities, NLME may become a useful tool to improve the parametric image quality in the future. Copyright © 2015 John Wiley & Sons, Ltd. We propose to use the non‐linear mixed effect (NLME) models to generate the parametric images. Intravoxel incoherent motion (IVIM) diffusion parameters including the fractional volume of capillary blood (Fv), the true diffusion coefficient (D) and the pseudo‐diffusion coefficient (D*) were estimated using voxel‐by‐voxel fitting of real diffusion‐weighted MRI data to the IVIM model. Compared to the non‐linear least‐squares (NLLS) fitting and the NLLS fitting with image smoothing (NLLS‐SM), the proposed NLME approach improves the parametric image quality.
Author Lin, Chieh
Huang, Husan-Ming
Shih, Yi-Yu
Author_xml – sequence: 1
  givenname: Husan-Ming
  surname: Huang
  fullname: Huang, Husan-Ming
  email: b9003205@gmail.com
  organization: Medical Physics Research Center, Institute of Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan City, Taiwan (ROC)
– sequence: 2
  givenname: Yi-Yu
  surname: Shih
  fullname: Shih, Yi-Yu
  organization: Siemens Shenzhen Magnetic Resonance Ltd., Siemens MR Center, Shenzhen, People's Republic of China
– sequence: 3
  givenname: Chieh
  surname: Lin
  fullname: Lin, Chieh
  organization: Department of Nuclear Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan (ROC)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26915793$$D View this record in MEDLINE/PubMed
BookMark eNqN0V1rFDEUBuAgFbutgr9AAt54M2s-J4l3trVV2K4IflyGJJOU1JnJNslg99877bYVRcGr3Dw5nPO-B2BvTKMH4DlGS4wQeT3aYUkZp4_AAiOlGswU2QMLpDhpKJNoHxyUcokQkoySJ2CftApzoegCrE9THkyNaYQpwI3JZvA1RwfjYC58gVOJ4wUc4rXvGh-Cd7XAIXW-L2-ggcGbEm3sY93CUqdu-xQ8DqYv_tndewi-nL77fPy-WX08-3D8dtU4phBtRAiUMks8t5YgFzpClXRdhySVhnNiKTZWGSwCs4ZYiblyjDoZZOBcYEEPwavd3E1OV5MvVQ-xON_3ZvRpKhoL0bYtnsP5D9pK3jLaqpm-_INepimP8yG3CiNOOZ7Vizs12cF3epPnrPJW34c6g-UOuJxKyT5oF-ttxjWb2GuM9E1rem5N37T2a8WHD_cz_0KbHf0Re7_9p9Pro_PffSzVXz94k7_rVlDB9bf1mcafzlfo5OuJPqI_AYcAsuI
CitedBy_id crossref_primary_10_1002_nbm_3965
crossref_primary_10_1186_s12968_017_0391_1
crossref_primary_10_1002_nbm_5148
crossref_primary_10_1002_mrm_26528
Cites_doi 10.1007/978-1-4419-0318-1
10.1002/jmri.24514
10.2967/jnumed.109.064824
10.1007/s00442-002-0954-0
10.1038/psp.2014.12
10.1118/1.2966349
10.1161/01.STR.0000114877.58809.3D
10.1016/j.csda.2004.07.002
10.1098/rsfs.2011.0026
10.1002/mrm.1910320109
10.1016/j.media.2012.12.001
10.1148/radiology.161.2.3763909
10.1186/gb-2003-4-4-210
10.1667/RR1787.1
10.1016/j.nicl.2013.08.001
10.1016/j.cmpb.2012.11.007
10.1016/j.neuroimage.2012.10.065
10.1016/j.jcct.2011.10.005
10.1080/02841859809172209
10.1161/01.RES.51.4.494
10.1148/radiology.168.2.3393671
10.1146/annurev.pharmtox.47.120505.105154
10.1186/1742-5573-4-8
10.1111/j.1468-0084.2008.00537.x
10.1148/radiol.2313021488
10.1002/mrm.24649
10.7150/thno.5130
10.1002/mrm.24529
10.2214/AJR.10.5515
10.1214/aos/1018031103
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/nbm.3453
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
EISSN 1099-1492
EndPage 247
ExternalDocumentID 3963955451
26915793
10_1002_nbm_3453
NBM3453
ark_67375_WNG_1QML0DVD_B
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: CIRPD3E0121
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4903-7ff334b2e5bb20cfd2398cdd0838a552b31ab9a17f4ba2b8159c43c8f8f557173
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Thu Jul 10 19:24:41 EDT 2025
Fri Jul 11 05:46:17 EDT 2025
Fri Jul 25 10:02:35 EDT 2025
Mon Jul 21 06:02:22 EDT 2025
Tue Jul 01 02:45:39 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Tue Sep 09 05:11:08 EDT 2025
Tue Sep 09 05:26:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords MRI
diffusion-weighted imaging
mixed-effects models
intra-voxel incoherent motion
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2015 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4903-7ff334b2e5bb20cfd2398cdd0838a552b31ab9a17f4ba2b8159c43c8f8f557173
Notes ArticleID:NBM3453
istex:8C23624D89F1A197392B7F78BBDA66FD23821628
ark:/67375/WNG-1QML0DVD-B
CIRPD3E0121
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26915793
PQID 1768105351
PQPubID 2029982
PageCount 9
ParticipantIDs proquest_miscellaneous_1776661100
proquest_miscellaneous_1768564369
proquest_journals_1768105351
pubmed_primary_26915793
crossref_citationtrail_10_1002_nbm_3453
crossref_primary_10_1002_nbm_3453
wiley_primary_10_1002_nbm_3453_NBM3453
istex_primary_ark_67375_WNG_1QML0DVD_B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2016
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: March 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NMR in biomedicine
PublicationTitleAlternate NMR Biomed
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 2005; 49(4): 1020-38.
Lei T. Statistics of Medical Imaging. CRC Press: Boca Raton, 2012.
Jang H, Conklin DJ, Kong M. Piecewise nonlinear mixed-effects models for modeling cardiac function and assessing treatment effects. Comput. Methods Programs Biomed. 2013; 110(3): 240-52.
Egeland TAM, Simonsen TG, Gaustad JV, Gulliksrud K, Ellingsen C, Rofstad EK. Dynamic contrast-enhanced magnetic resonance imaging of tumors: preclinical validation of parametric images. Radiat. Res. 2009; 172(3): 339-47.
Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn. Reson. Med. 2014; 71(1): 411-20.
Finucane MM, Samet JH, Horton NJ. Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time. Epidemiologic Perspect. Innov. 2007; 4: 8.
Sadeghi N, Prastawa M, Fletcher PT, Vachet C, Wang B, Gilmore J, Gerig G. Multivariate modeling of longitudinal MRI in early brain development with confidence measures. Proc. IEEE Int. Symp. Biomed. Imaging 2013: 1400-3.
Fox J. Applied Regression Analysis, Linear Models, and Related Methods. Sage: Thousand Oaks, CA, 1997.
Danhof M, de Jongh J, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu. Rev. Pharmacol. Toxicol. 2007; 47: 357-400.
Weiss HR, Buchweitz E, Murtha TJ, Auletta M. Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain. Circ. Res. 1982; 51(4): 494-503.
Ko BS, Cameron JD, Defrance T, Seneviratne SK. CT stress myocardial perfusion imaging using multidetector CT - a review. J. Cardiovasc. Comput. Tomogr. 2011; 5(6): 345-56.
Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Springer Science and Business Media: New York; 2000.
Veraart J, Rajan J, Peeters RR, Leemans A, Sunaert S, Sijbers J. Comprehensive framework for accurate diffusion MRI parameter estimation. Magn. Reson. Med. 2013; 70(4): 972-84.
Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR. Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage 2013; 66: 249-60.
Jones BC, Nair G, Shea CD, Crainiceanu CM, Cortese ICM, Reich DS. Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling. NeuroImage Clin. 2013; 3: 171-9.
Olofsen E, Dinges DF, Van Dongen HPA. Nonlinear mixed-effects modeling: individualization and prediction. Aviat. Space. Environ. Med. 2004; 75(3): A134-40.
Ribba B, Holford NH, Magni P, Trocóniz I, Gueorguieva I, Girard P, Sarr C, Elishmereni M, Kloft C, Friberg LE. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet. Syst. Pharmacol. 2014; 3(5): e113.
le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161(2): 401-7.
Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics 2013; 3(10): 802-15.
Koh D-M, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am. J. Roentgenol. 2011; 196(6): 1351-61.
Freiman M, Perez-Rossello JM, Callahan MJ, Voss SD, Ecklund K, Mulkern R V, Warfield SK. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 2013; 17(3): 325-36.
Neil JJ, Bosch CS, Ackerman JJH. An evaluation of the sensitivity of the IVIM method of blood flow measurements to changes in cerebral blood flow. Magn. Reson. Med. 1994; 32(1): 60-5.
Wiesmann M, Meyer K, Albers T, Seidel G. Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke 2004; 35(2): 508-13.
Tisdall MD, Atkins MS, Lockhart RA. Maximum likelihood estimators in magnetic resonance imaging. Inf. Process. Med. Imaging Proc. Conf. 2007; 4584: 434-45.
Hoeffner EG, Case I, Jain R, Gujar SK, Shah G V, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK. Cerebral perfusion CT: technique and clinical applications. Radiology 2004; 231(3): 632-44.
Peek M, Russek-Cohen E, Wait A, Forseth I. Physiological response curve analysis using nonlinear mixed models. Oecologia 2002; 132(2): 175-80.
Tang M-X, Mulvana H, Gauthier T, Lim AKP, Cosgrove DO, Eckersley RJ, Stride E. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 2011; 1(4): 520-39.
Fang Y-HD, Asthana P, Salinas C, Huang H-M, Muzic RF. Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging. J. Nucl. Med 2010; 51(1): 77-84.
Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003; 4(4): 210.
Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 1999; 27(1): 94-128.
Doornik JA, Hansen H. An omnibus test for univariate and multivariate normality. Oxf. Bull. Econ. Stat. 2008; 70(s1): 927-39.
Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. Acta Radiol 1998; 39(5): 460-73.
Ferl GZ, O'Connor JPB, Parker GJM, Carano RAD, Acharya SJ, Jayson GC, Port RE. Mixed-effects modeling of clinical DCE-MRI data: application to colorectal liver metastases treated with bevacizumab. J. Magn. Reson. Imaging 2015; 41(1): 132-41.
Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med. Phys. 2008; 35(9): 3963-71.
le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168(2): 497-505.
2013; 3
2011; 1
2013; 66
2012
2002; 132
1982; 51
1999; 27
1997
1988; 168
2008; 35
2013; 70
2009; 172
2011; 196
2005; 49
2008; 70
2011; 5
2004; 231
2007; 4584
2004; 75
1998; 39
2014; 3
2013; 17
2000
1986; 161
2015; 41
2004; 35
2003; 4
2007; 4
2013; 110
2013
2014; 71
2007; 47
2010; 51
1994; 32
e_1_2_8_28_1
e_1_2_8_29_1
Sadeghi N (e_1_2_8_13_1) 2013
e_1_2_8_24_1
e_1_2_8_25_1
Olofsen E (e_1_2_8_8_1) 2004; 75
Fox J. (e_1_2_8_9_1) 1997
e_1_2_8_26_1
Tisdall MD (e_1_2_8_27_1) 2007; 4584
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Li TQ (e_1_2_8_35_1) 1998; 39
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Lei T. (e_1_2_8_30_1) 2012
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – reference: Jang H, Conklin DJ, Kong M. Piecewise nonlinear mixed-effects models for modeling cardiac function and assessing treatment effects. Comput. Methods Programs Biomed. 2013; 110(3): 240-52.
– reference: Tang M-X, Mulvana H, Gauthier T, Lim AKP, Cosgrove DO, Eckersley RJ, Stride E. Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 2011; 1(4): 520-39.
– reference: Pinheiro JC, Bates DM. Mixed-Effects Models in S and S-PLUS. Springer Science and Business Media: New York; 2000.
– reference: Ferl GZ, O'Connor JPB, Parker GJM, Carano RAD, Acharya SJ, Jayson GC, Port RE. Mixed-effects modeling of clinical DCE-MRI data: application to colorectal liver metastases treated with bevacizumab. J. Magn. Reson. Imaging 2015; 41(1): 132-41.
– reference: Ko BS, Cameron JD, Defrance T, Seneviratne SK. CT stress myocardial perfusion imaging using multidetector CT - a review. J. Cardiovasc. Comput. Tomogr. 2011; 5(6): 345-56.
– reference: Hoeffner EG, Case I, Jain R, Gujar SK, Shah G V, Deveikis JP, Carlos RC, Thompson BG, Harrigan MR, Mukherji SK. Cerebral perfusion CT: technique and clinical applications. Radiology 2004; 231(3): 632-44.
– reference: le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168(2): 497-505.
– reference: Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Stat. Data Anal. 2005; 49(4): 1020-38.
– reference: Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med. Phys. 2008; 35(9): 3963-71.
– reference: Doornik JA, Hansen H. An omnibus test for univariate and multivariate normality. Oxf. Bull. Econ. Stat. 2008; 70(s1): 927-39.
– reference: Jones BC, Nair G, Shea CD, Crainiceanu CM, Cortese ICM, Reich DS. Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling. NeuroImage Clin. 2013; 3: 171-9.
– reference: Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 1999; 27(1): 94-128.
– reference: Wiesmann M, Meyer K, Albers T, Seidel G. Parametric perfusion imaging with contrast-enhanced ultrasound in acute ischemic stroke. Stroke 2004; 35(2): 508-13.
– reference: Weiss HR, Buchweitz E, Murtha TJ, Auletta M. Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain. Circ. Res. 1982; 51(4): 494-503.
– reference: Neil JJ, Bosch CS, Ackerman JJH. An evaluation of the sensitivity of the IVIM method of blood flow measurements to changes in cerebral blood flow. Magn. Reson. Med. 1994; 32(1): 60-5.
– reference: Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. Acta Radiol 1998; 39(5): 460-73.
– reference: Ribba B, Holford NH, Magni P, Trocóniz I, Gueorguieva I, Girard P, Sarr C, Elishmereni M, Kloft C, Friberg LE. A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT Pharmacomet. Syst. Pharmacol. 2014; 3(5): e113.
– reference: Finucane MM, Samet JH, Horton NJ. Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time. Epidemiologic Perspect. Innov. 2007; 4: 8.
– reference: Wang G, Qi J. Direct estimation of kinetic parametric images for dynamic PET. Theranostics 2013; 3(10): 802-15.
– reference: Cui X, Churchill GA. Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 2003; 4(4): 210.
– reference: le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161(2): 401-7.
– reference: Koh D-M, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am. J. Roentgenol. 2011; 196(6): 1351-61.
– reference: Veraart J, Rajan J, Peeters RR, Leemans A, Sunaert S, Sijbers J. Comprehensive framework for accurate diffusion MRI parameter estimation. Magn. Reson. Med. 2013; 70(4): 972-84.
– reference: Peek M, Russek-Cohen E, Wait A, Forseth I. Physiological response curve analysis using nonlinear mixed models. Oecologia 2002; 132(2): 175-80.
– reference: Egeland TAM, Simonsen TG, Gaustad JV, Gulliksrud K, Ellingsen C, Rofstad EK. Dynamic contrast-enhanced magnetic resonance imaging of tumors: preclinical validation of parametric images. Radiat. Res. 2009; 172(3): 339-47.
– reference: Orton MR, Collins DJ, Koh DM, Leach MO. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn. Reson. Med. 2014; 71(1): 411-20.
– reference: Olofsen E, Dinges DF, Van Dongen HPA. Nonlinear mixed-effects modeling: individualization and prediction. Aviat. Space. Environ. Med. 2004; 75(3): A134-40.
– reference: Tisdall MD, Atkins MS, Lockhart RA. Maximum likelihood estimators in magnetic resonance imaging. Inf. Process. Med. Imaging Proc. Conf. 2007; 4584: 434-45.
– reference: Lei T. Statistics of Medical Imaging. CRC Press: Boca Raton, 2012.
– reference: Sadeghi N, Prastawa M, Fletcher PT, Vachet C, Wang B, Gilmore J, Gerig G. Multivariate modeling of longitudinal MRI in early brain development with confidence measures. Proc. IEEE Int. Symp. Biomed. Imaging 2013: 1400-3.
– reference: Fox J. Applied Regression Analysis, Linear Models, and Related Methods. Sage: Thousand Oaks, CA, 1997.
– reference: Fang Y-HD, Asthana P, Salinas C, Huang H-M, Muzic RF. Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging. J. Nucl. Med 2010; 51(1): 77-84.
– reference: Freiman M, Perez-Rossello JM, Callahan MJ, Voss SD, Ecklund K, Mulkern R V, Warfield SK. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 2013; 17(3): 325-36.
– reference: Danhof M, de Jongh J, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu. Rev. Pharmacol. Toxicol. 2007; 47: 357-400.
– reference: Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR. Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models. NeuroImage 2013; 66: 249-60.
– volume: 71
  start-page: 411
  issue: 1
  year: 2014
  end-page: 20
  article-title: Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling
  publication-title: Magn. Reson. Med.
– volume: 51
  start-page: 77
  issue: 1
  year: 2010
  end-page: 84
  article-title: Integrated software environment based on COMKAT for analyzing tracer pharmacokinetics with molecular imaging
  publication-title: J. Nucl. Med
– volume: 3
  start-page: e113
  issue: 5
  year: 2014
  article-title: A review of mixed‐effects models of tumor growth and effects of anticancer drug treatment used in population analysis
  publication-title: CPT Pharmacomet. Syst. Pharmacol.
– volume: 5
  start-page: 345
  issue: 6
  year: 2011
  end-page: 56
  article-title: CT stress myocardial perfusion imaging using multidetector CT – a review
  publication-title: J. Cardiovasc. Comput. Tomogr.
– volume: 4584
  start-page: 434
  year: 2007
  end-page: 45
  article-title: Maximum likelihood estimators in magnetic resonance imaging
  publication-title: Inf. Process. Med. Imaging Proc. Conf.
– volume: 4
  start-page: 8
  year: 2007
  article-title: Translational methods in biostatistics: linear mixed effect regression models of alcohol consumption and HIV disease progression over time
  publication-title: Epidemiologic Perspect. Innov.
– volume: 3
  start-page: 802
  issue: 10
  year: 2013
  end-page: 15
  article-title: Direct estimation of kinetic parametric images for dynamic PET
  publication-title: Theranostics
– start-page: 1400
  year: 2013
  end-page: 3
  article-title: Multivariate modeling of longitudinal MRI in early brain development with confidence measures
  publication-title: Proc. IEEE Int. Symp. Biomed. Imaging
– volume: 47
  start-page: 357
  year: 2007
  end-page: 400
  article-title: Mechanism‐based pharmacokinetic–pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– year: 2000
– volume: 70
  start-page: 972
  issue: 4
  year: 2013
  end-page: 84
  article-title: Comprehensive framework for accurate diffusion MRI parameter estimation
  publication-title: Magn. Reson. Med.
– volume: 39
  start-page: 460
  issue: 5
  year: 1998
  end-page: 73
  article-title: Diffusion‐weighted MR imaging of acute cerebral ischemia
  publication-title: Acta Radiol
– volume: 161
  start-page: 401
  issue: 2
  year: 1986
  end-page: 7
  article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– volume: 17
  start-page: 325
  issue: 3
  year: 2013
  end-page: 36
  article-title: Reliable estimation of incoherent motion parametric maps from diffusion‐weighted MRI using fusion bootstrap moves
  publication-title: Med. Image Anal.
– volume: 110
  start-page: 240
  issue: 3
  year: 2013
  end-page: 52
  article-title: Piecewise nonlinear mixed‐effects models for modeling cardiac function and assessing treatment effects
  publication-title: Comput. Methods Programs Biomed.
– volume: 66
  start-page: 249
  year: 2013
  end-page: 60
  article-title: Statistical analysis of longitudinal neuroimage data with Linear Mixed Effects models
  publication-title: NeuroImage
– volume: 27
  start-page: 94
  issue: 1
  year: 1999
  end-page: 128
  article-title: Convergence of a stochastic approximation version of the EM algorithm
  publication-title: Ann. Stat.
– volume: 49
  start-page: 1020
  issue: 4
  year: 2005
  end-page: 38
  article-title: Maximum likelihood estimation in nonlinear mixed effects models
  publication-title: Comput. Stat. Data Anal.
– volume: 35
  start-page: 508
  issue: 2
  year: 2004
  end-page: 13
  article-title: Parametric perfusion imaging with contrast‐enhanced ultrasound in acute ischemic stroke
  publication-title: Stroke
– year: 2012
– volume: 70
  start-page: 927
  issue: s1
  year: 2008
  end-page: 39
  article-title: An omnibus test for univariate and multivariate normality
  publication-title: Oxf. Bull. Econ. Stat.
– volume: 132
  start-page: 175
  issue: 2
  year: 2002
  end-page: 80
  article-title: Physiological response curve analysis using nonlinear mixed models
  publication-title: Oecologia
– volume: 3
  start-page: 171
  year: 2013
  end-page: 9
  article-title: Quantification of multiple‐sclerosis‐related brain atrophy in two heterogeneous MRI datasets using mixed‐effects modeling
  publication-title: NeuroImage Clin.
– volume: 35
  start-page: 3963
  issue: 9
  year: 2008
  end-page: 71
  article-title: A survey of approaches for direct parametric image reconstruction in emission tomography
  publication-title: Med. Phys.
– volume: 168
  start-page: 497
  issue: 2
  year: 1988
  end-page: 505
  article-title: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging
  publication-title: Radiology
– volume: 51
  start-page: 494
  issue: 4
  year: 1982
  end-page: 503
  article-title: Quantitative regional determination of morphometric indices of the total and perfused capillary network in the rat brain
  publication-title: Circ. Res.
– volume: 32
  start-page: 60
  issue: 1
  year: 1994
  end-page: 5
  article-title: An evaluation of the sensitivity of the IVIM method of blood flow measurements to changes in cerebral blood flow
  publication-title: Magn. Reson. Med.
– year: 1997
– volume: 4
  start-page: 210
  issue: 4
  year: 2003
  article-title: Statistical tests for differential expression in cDNA microarray experiments
  publication-title: Genome Biol.
– volume: 231
  start-page: 632
  issue: 3
  year: 2004
  end-page: 44
  article-title: Cerebral perfusion CT: technique and clinical applications
  publication-title: Radiology
– volume: 41
  start-page: 132
  issue: 1
  year: 2015
  end-page: 41
  article-title: Mixed‐effects modeling of clinical DCE‐MRI data: application to colorectal liver metastases treated with bevacizumab
  publication-title: J. Magn. Reson. Imaging
– volume: 172
  start-page: 339
  issue: 3
  year: 2009
  end-page: 47
  article-title: Dynamic contrast‐enhanced magnetic resonance imaging of tumors: preclinical validation of parametric images
  publication-title: Radiat. Res.
– volume: 196
  start-page: 1351
  issue: 6
  year: 2011
  end-page: 61
  article-title: Intravoxel incoherent motion in body diffusion‐weighted MRI: reality and challenges
  publication-title: Am. J. Roentgenol.
– volume: 1
  start-page: 520
  issue: 4
  year: 2011
  end-page: 39
  article-title: Quantitative contrast‐enhanced ultrasound imaging: a review of sources of variability
  publication-title: Interface Focus
– volume: 75
  start-page: A134
  issue: 3
  year: 2004
  end-page: 40
  article-title: Nonlinear mixed‐effects modeling: individualization and prediction
  publication-title: Aviat. Space. Environ. Med.
– ident: e_1_2_8_10_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_8_14_1
  doi: 10.1002/jmri.24514
– ident: e_1_2_8_36_1
  doi: 10.2967/jnumed.109.064824
– volume-title: Applied Regression Analysis, Linear Models, and Related Methods
  year: 1997
  ident: e_1_2_8_9_1
– ident: e_1_2_8_4_1
  doi: 10.1007/s00442-002-0954-0
– start-page: 1400
  year: 2013
  ident: e_1_2_8_13_1
  article-title: Multivariate modeling of longitudinal MRI in early brain development with confidence measures
  publication-title: Proc. IEEE Int. Symp. Biomed. Imaging
– ident: e_1_2_8_7_1
  doi: 10.1038/psp.2014.12
– volume-title: Statistics of Medical Imaging
  year: 2012
  ident: e_1_2_8_30_1
– ident: e_1_2_8_15_1
  doi: 10.1118/1.2966349
– volume: 4584
  start-page: 434
  year: 2007
  ident: e_1_2_8_27_1
  article-title: Maximum likelihood estimators in magnetic resonance imaging
  publication-title: Inf. Process. Med. Imaging Proc. Conf.
– ident: e_1_2_8_21_1
  doi: 10.1161/01.STR.0000114877.58809.3D
– ident: e_1_2_8_26_1
  doi: 10.1016/j.csda.2004.07.002
– ident: e_1_2_8_22_1
  doi: 10.1098/rsfs.2011.0026
– ident: e_1_2_8_34_1
  doi: 10.1002/mrm.1910320109
– ident: e_1_2_8_24_1
  doi: 10.1016/j.media.2012.12.001
– volume: 75
  start-page: A134
  issue: 3
  year: 2004
  ident: e_1_2_8_8_1
  article-title: Nonlinear mixed‐effects modeling: individualization and prediction
  publication-title: Aviat. Space. Environ. Med.
– ident: e_1_2_8_18_1
  doi: 10.1148/radiology.161.2.3763909
– ident: e_1_2_8_2_1
  doi: 10.1186/gb-2003-4-4-210
– ident: e_1_2_8_29_1
  doi: 10.1667/RR1787.1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.nicl.2013.08.001
– ident: e_1_2_8_5_1
  doi: 10.1016/j.cmpb.2012.11.007
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2012.10.065
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jcct.2011.10.005
– volume: 39
  start-page: 460
  issue: 5
  year: 1998
  ident: e_1_2_8_35_1
  article-title: Diffusion‐weighted MR imaging of acute cerebral ischemia
  publication-title: Acta Radiol
  doi: 10.1080/02841859809172209
– ident: e_1_2_8_33_1
  doi: 10.1161/01.RES.51.4.494
– ident: e_1_2_8_17_1
  doi: 10.1148/radiology.168.2.3393671
– ident: e_1_2_8_6_1
  doi: 10.1146/annurev.pharmtox.47.120505.105154
– ident: e_1_2_8_3_1
  doi: 10.1186/1742-5573-4-8
– ident: e_1_2_8_28_1
  doi: 10.1111/j.1468-0084.2008.00537.x
– ident: e_1_2_8_19_1
  doi: 10.1148/radiol.2313021488
– ident: e_1_2_8_32_1
  doi: 10.1002/mrm.24649
– ident: e_1_2_8_16_1
  doi: 10.7150/thno.5130
– ident: e_1_2_8_31_1
  doi: 10.1002/mrm.24529
– ident: e_1_2_8_23_1
  doi: 10.2214/AJR.10.5515
– ident: e_1_2_8_25_1
  doi: 10.1214/aos/1018031103
SSID ssj0008432
Score 2.162412
Snippet Mixed‐effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random...
Mixed-effects models have been widely used in the analysis of longitudinal data. By presenting the parameters as a combination of fixed effects and random...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 239
SubjectTerms Animals
Computer Simulation
Diffusion Magnetic Resonance Imaging - methods
diffusion-weighted imaging
Feasibility Studies
Image Processing, Computer-Assisted
intra-voxel incoherent motion
mixed-effects models
Models, Theoretical
MRI
Nonlinear Dynamics
Rats, Sprague-Dawley
Signal-To-Noise Ratio
Title Formation of parametric images using mixed-effects models: a feasibility study
URI https://api.istex.fr/ark:/67375/WNG-1QML0DVD-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.3453
https://www.ncbi.nlm.nih.gov/pubmed/26915793
https://www.proquest.com/docview/1768105351
https://www.proquest.com/docview/1768564369
https://www.proquest.com/docview/1776661100
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL1CRTw2PIbXQEFGQrDKNLFjx2FHOwwVYkaAKFRiYdmOjaoyM6iZkQorPoFv5EvwdR5QVBBilUVuEj_udY7t43MBHiCkcKW2ifSGJXkp08RYYxLPtNWOcyMMLuhPZ2J3L3--z_dbViWehWn0IfoFN4yMOF5jgGtTb_0iGmrmI5ZzFPrMmEDZ_PHrn8pRMo-5yQKAoAnLZdrpzqZ0q3vwxJ_oLDbq8Wkw8yRqjb-dyWV43xW4YZscjtYrM7JfftNy_L8aXYFLLRolTxr3uQpn3GIAF3a6JHADOD9t994HcC6SRW19DV5OuhOPZOkJiofPMS-XJQfzMDrVBLn0H8j84NhV379-axkjJObcqR8TTbzTLSn3M4nyttdhb_L0zc5u0mZmSGxepiwpvGcsN9RxY2hqfYUqgraqAp6TmnNqWKZNqbPC50ZTIwNmsjmz0kvPOe7734CNxXLhbgEpnK2ooJnwughTdS9NeLGwwmpalaLUQ3jU9ZKyrWw5Zs_4qBrBZapCsylstiHc7y0_NVIdp9g8jB3dG-ijQ6S2FVy9mz1T2avpi3T8dqy2h7DZeYJqo7pWWYHqbZzxLHyrvx16BDdZ9MIt140NDzBPlH-zKcKsEcX6hnCz8bK-QFSUGQ-DZihp9JU_VkXNtqd4vf2vhnfgYkB7oiHQbcLG6mjt7gZEtTL3Yuz8ALLXHNo
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am2C8cClsFAYYCcFTusS3OPDEVkqBpgK0wR6QLNux0TTaorWVBk_8BH4jvwQ7NxgaCPGUh5wkvpzjfLY_fwfgfoAUNlMmEk6TiGYijrTROnJEGWUZ01yHBf18zIf79MUBO1iBx81ZmEofol1wC5FRjtchwMOC9PYvqqF60iOUkXOwRj3OCDOv_puf2lGCltnJPITAEaEibpRnY7zdPHnqX7QWmvXkLKB5GreWP57BZXjfFLnimxz1lgvdM19-U3P8zzpdgUs1IEVPKg-6Cit22oH13SYPXAcu5PX2ewfOl3xRM78GrwbNoUc0cyjoh09Cai6DDid-gJqjQKf_gCaHJ7b4_vVbTRpBZdqd-SOkkLOq5uV-RqXC7XXYHzzd2x1GdXKGyNAsJlHqHCFUY8u0xrFxRRASNEXhIZ1QjGFNEqUzlaSOaoW18LDJUGKEE46xsPW_AavT2dTeAJRaU2COE-5U6mfrTmj_Ym64UbjIeKa68LDpJmlq5fKQQOOjrDSXsfTNJkOzdeFea_mpUus4w-ZB2dOtgTo-Cuy2lMl342cyeZ2P4v7bvtzpwlbjCrIO7LlM0iDgxghL_Lfa275Hwj6LmtrZsrJhHunx7G82qZ84Br2-LmxWbtYWCPMsYX7c9CUtneWPVZHjnTxcb_6r4V1YH-7lIzl6Pn55Cy568McrPt0WrC6Ol_a2B1gLfacMpB909yD5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2CVrRseAxQBgoYCcEq08SvJOxoh6FAZ1QQLZVYWLZjo6rMTNWZkQorPoFv5EvwzQuKCkKssshN4se9zrF9fC7AI4QULtc2yrxhEc-zODLWmMgzbbUTwkiDC_rDkdze468OxEHNqsSzMJU-RLvghpFRjtcY4MeF3_hFNNSMe4wLdhGWuQxAAgHR25_SURkvk5MFBEEjxrO4EZ6N6Ubz5Jlf0TK26ul5OPMsbC3_O4Or8KEpcUU3Oeot5qZnv_wm5vh_VboGV2o4Sp5V_nMdLrhJB1a3mixwHVgZ1pvvHbhUskXt7AbsDpojj2TqCaqHjzExlyWH4zA8zQiS6T-S8eGpK75__VZTRkiZdGf2lGjina5ZuZ9JqW97E_YGz99tbUd1aobI8jxmUeo9Y9xQJ4yhsfUFygjaogj9kGkhqGGJNrlOUs-NpiYLoMlyZjOfeSFw4_8WLE2mE3cbSOpsQSVNpNdpmKv7zIQXSyutpkUuc92FJ00vKVvrlmP6jE-qUlymKjSbwmbrwsPW8rjS6jjH5nHZ0a2BPjlCblsq1PvRC5W8Ge7E_f2-2uzCeuMJqg7rmUpSlG8TTCThW-3t0CO4y6InbrqobETAeTL_m00apo2o1teFtcrL2gJRmScijJqhpKWv_LEqarQ5xOudfzV8ACu7_YHaeTl6fRcuB-QnKzLdOizNTxbuXkBXc3O_DKMf_JofqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formation+of+parametric+images+using+mixed-effects+models%3A+a+feasibility+study&rft.jtitle=NMR+in+biomedicine&rft.au=Huang%2C+Husan-Ming&rft.au=Shih%2C+Yi-Yu&rft.au=Lin%2C+Chieh&rft.date=2016-03-01&rft.issn=1099-1492&rft.eissn=1099-1492&rft.volume=29&rft.issue=3&rft.spage=239&rft_id=info:doi/10.1002%2Fnbm.3453&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon