An investigation into the origin of the biased agonism associated with the urotensin II receptor activation

The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers...

Full description

Saved in:
Bibliographic Details
Published inJournal of peptide science Vol. 21; no. 5; pp. 392 - 399
Main Authors Brancaccio, Diego, Merlino, Francesco, Limatola, Antonio, Yousif, Ali Munaim, Gomez-Monterrey, Isabel, Campiglia, Pietro, Novellino, Ettore, Grieco, Paolo, Carotenuto, Alfonso
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.05.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U‐II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U‐II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU‐II previously determined. Finally, we undertook docking studies between URP, hU‐II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostosis. The endogenous ligands of UTR, U‐II, and URP can exert common as well as different actions (biased agonism). To shed light on the origin of the divergent activities of two endogenous ligands, we performed a conformational study on URP, compared the obtained NMR structure of URP with that of hU‐II previously determined, and undertook docking studies between URP, hU‐II, and a newly developed UT receptor model.
AbstractList The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model. Copyright copyright 2015 European Peptide Society and John Wiley & Sons, Ltd. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostosis. The endogenous ligands of UTR, U-II, and URP can exert common as well as different actions (biased agonism). To shed light on the origin of the divergent activities of two endogenous ligands, we performed a conformational study on URP, compared the obtained NMR structure of URP with that of hU-II previously determined, and undertook docking studies between URP, hU-II, and a newly developed UT receptor model.
The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model.
The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U‐II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U‐II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU‐II previously determined. Finally, we undertook docking studies between URP, hU‐II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostosis. The endogenous ligands of UTR, U‐II, and URP can exert common as well as different actions (biased agonism). To shed light on the origin of the divergent activities of two endogenous ligands, we performed a conformational study on URP, compared the obtained NMR structure of URP with that of hU‐II previously determined, and undertook docking studies between URP, hU‐II, and a newly developed UT receptor model.
The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U‐II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U‐II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of h U‐II previously determined. Finally, we undertook docking studies between URP, h U‐II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Author Brancaccio, Diego
Limatola, Antonio
Yousif, Ali Munaim
Carotenuto, Alfonso
Gomez-Monterrey, Isabel
Campiglia, Pietro
Merlino, Francesco
Novellino, Ettore
Grieco, Paolo
Author_xml – sequence: 1
  givenname: Diego
  surname: Brancaccio
  fullname: Brancaccio, Diego
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
– sequence: 2
  givenname: Francesco
  surname: Merlino
  fullname: Merlino, Francesco
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
– sequence: 3
  givenname: Antonio
  surname: Limatola
  fullname: Limatola, Antonio
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
– sequence: 4
  givenname: Ali Munaim
  surname: Yousif
  fullname: Yousif, Ali Munaim
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
– sequence: 5
  givenname: Isabel
  surname: Gomez-Monterrey
  fullname: Gomez-Monterrey, Isabel
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
– sequence: 6
  givenname: Pietro
  surname: Campiglia
  fullname: Campiglia, Pietro
  organization: Department of Pharmacy, University of Salerno, Fisciano, I-84084, Salerno, Italy
– sequence: 7
  givenname: Ettore
  surname: Novellino
  fullname: Novellino, Ettore
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
– sequence: 8
  givenname: Paolo
  surname: Grieco
  fullname: Grieco, Paolo
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
– sequence: 9
  givenname: Alfonso
  surname: Carotenuto
  fullname: Carotenuto, Alfonso
  email: alfonso.carotenuto@unina.it
  organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25694247$$D View this record in MEDLINE/PubMed
BookMark eNqNkV1rFDEUhoNU7JfgL5ABb7yZmu9JLsvS1oWigkoXb8KZmcw27W6yTTKt_fdmtmsFQfAqOclzHnh5D9GeD94i9IbgE4Ix_bBJ3QltOH6BDgjWuiZMNXvTvRE1laTZR4cp3WBc_oR8hfapkJpT3hyg21NfOX9vU3ZLyC5MUw5VvrZViG7pfBWG7dQ6SLavYBm8S-sKUgqdg1yeHly-3iJjDNn6VHbm8yrazm5yiBV02d1v1cfo5QCrZF_vziP0_fzs2-xjffn5Yj47vaw7rjGue0VbUIprwGqgqgNCOaNEMswlBi4pI4OmmpC-JVz2XCoAwBY0aTkIq9gRev_k3cRwN5ZoZu1SZ1cr8DaMyRCpMGdCcPEfaNOwhilOCvruL_QmjNGXIBMlKaEayz_CLoaUoh3MJro1xEdDsJm6MqUrM3VV0Lc74diubf8M_i6nAPUT8OBW9vGfIvPl62wn3PEuZfvzmYd4a2RJIczVpwuz-MFnYrEoW-wXjOmtAw
CODEN JPSIEI
CitedBy_id crossref_primary_10_1039_C7OB00959C
crossref_primary_10_1111_eci_13972
crossref_primary_10_1021_acs_jmedchem_6b00108
crossref_primary_10_1021_acs_jcim_6b00706
crossref_primary_10_1016_j_bcp_2017_08_003
crossref_primary_10_1021_acs_jmedchem_8b01601
crossref_primary_10_1021_acs_jmedchem_8b00789
crossref_primary_10_1016_j_tips_2019_08_005
crossref_primary_10_1021_acsmedchemlett_0c00223
crossref_primary_10_1016_j_bcp_2023_115485
crossref_primary_10_1016_j_cellsig_2024_111056
crossref_primary_10_1016_j_drudis_2019_08_005
crossref_primary_10_1016_j_ejmech_2017_11_030
crossref_primary_10_1016_j_jbc_2021_101057
crossref_primary_10_1155_2019_9293560
crossref_primary_10_23736_S1121_421X_19_02602_3
crossref_primary_10_1016_j_bbadis_2024_167170
crossref_primary_10_1002_cmdc_201500607
crossref_primary_10_1002_pep2_24056
Cites_doi 10.1002/1521-3773(20020816)41:16<2940::AID-ANIE2940>3.0.CO;2-M
10.1038/nature12944
10.1016/j.bcp.2014.08.023
10.1073/pnas.1317903111
10.1063/1.438208
10.1021/jm058043j
10.1038/nature11896
10.1073/pnas.85.15.5350
10.1021/jm0309912
10.1021/jm500218x
10.1006/jmra.1995.1047
10.1051/epn/19861701011
10.1016/0006-291X(92)91095-8
10.1021/jm901294u
10.1111/j.1749-6632.2010.05514.x
10.1186/1471-2105-9-40
10.1021/jm1005868
10.1007/s10723-012-9246-z
10.1021/bi00212a022
10.1016/j.peptides.2004.04.019
10.1038/nature10954
10.1107/S0021889892009944
10.1073/pnas.77.8.5021
10.1038/nprot.2010.32
10.1124/mol.110.067066
10.1021/jm070886i
10.1021/jm900148c
10.1021/bi060190b
10.1016/j.neuroscience.2004.12.045
10.1016/j.ejmech.2011.05.038
10.1002/ardp.201300269
10.1038/nprot.2009.2
10.1021/ja00388a062
10.1016/S0014-5793(99)01003-0
10.1016/0006-291X(83)91093-8
10.1007/BF00417486
10.1016/j.bcp.2009.01.013
10.3389/fendo.2012.00174
10.1016/0022-2364(83)90226-3
10.1021/ml500241n
10.1111/j.1476-5381.2012.02217.x
10.1016/S0925-4773(00)00548-7
10.1126/science.289.5480.739
10.1038/nprot.2010.5
10.1021/bi00121a010
10.1016/0022-2364(82)90279-7
10.1126/science.1194396
10.1006/jmbi.1997.1284
10.1038/sj.bjp.0704671
10.1002/jcc.20084
10.1038/45809
10.1002/(SICI)1096-9861(19960108)364:2<324::AID-CNE10>3.0.CO;2-P
10.1016/j.bbrc.2003.09.102
10.1002/psc.2498
10.1006/bbrc.1999.1640
10.1021/jm040867y
10.1016/j.bcp.2013.09.015
10.1016/S0306-4522(02)00413-X
10.1073/pnas.95.26.15803
ContentType Journal Article
Copyright Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
– notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/psc.2740
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Engineering Research Database
MEDLINE

ProQuest Health & Medical Complete (Alumni)
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1099-1387
EndPage 399
ExternalDocumentID 3667919951
10_1002_psc_2740
25694247
PSC2740
ark_67375_WNG_XZ4C5XX0_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
V8K
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4900-d82ba8849a08f28ca124321630460a46231f92911db146d468aaa0ea91b4a5e83
IEDL.DBID DR2
ISSN 1075-2617
IngestDate Fri Aug 16 22:28:18 EDT 2024
Fri Aug 16 21:00:36 EDT 2024
Thu Oct 10 18:00:16 EDT 2024
Fri Aug 23 02:12:10 EDT 2024
Sat Sep 28 08:38:43 EDT 2024
Sat Aug 24 01:08:19 EDT 2024
Wed Oct 30 09:51:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords conformation by NMR
docking studies
biased agonism
urotensin II-related peptide
urotensin-II
therapeutic peptide
Language English
License Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4900-d82ba8849a08f28ca124321630460a46231f92911db146d468aaa0ea91b4a5e83
Notes istex:1D34D51BEB8E1E856B6F124D84D1177EB3A74E4A
Supporting info item
ArticleID:PSC2740
Special issue of contributions presented at the 14th Naples Workshop on Bioactive Peptides "The renaissance era of peptides in drug discovery", June 12-14, 2014, Naples".
ark:/67375/WNG-XZ4C5XX0-P
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25694247
PQID 1676212906
PQPubID 1006390
PageCount 8
ParticipantIDs proquest_miscellaneous_1680435545
proquest_miscellaneous_1677373841
proquest_journals_1676212906
crossref_primary_10_1002_psc_2740
pubmed_primary_25694247
wiley_primary_10_1002_psc_2740_PSC2740
istex_primary_ark_67375_WNG_XZ4C5XX0_P
PublicationCentury 2000
PublicationDate May 2015
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: May 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Journal of peptide science
PublicationTitleAlternate J. Pept. Sci
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hwang TL, Shaka AJ. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Res. 1995; 112: 275-279.
Misika A, Hruby VJ. Optimization of disulfide bond formation. Pol. J. Chem. 1994; 68: 893-899.
Carotenuto A, Auriemma L, Merlino F, Limatola A, Campiglia P, Gomez-Monterrey I, di Villa Bianca R, Brancaccio D, Santicioli P, Meini S, Maggi CA, Novellino E, Grieco P. New insight into the binding mode of peptides at urotensin-II receptor by Trp-constrained analogues of P5U and urantide. J. Pept. Sci. 2013; 19: 293-300.
Piantini U, Sorensen OW Ernst RR Multiple quantum filters for elucidating NMR coupling network. J. Am. Chem. Soc. 1982; 104: 6800-6801.
Mollica A, Carotenuto A, Novellino E, Limatola A, Costante R, Pinnen F, Stefanucci A, Pieretti S, Borsodi A, Samavati R, Zador F, Benyhe S, Davis P, Porreca F, Hruby VJ. Novel cyclic biphalin analogue with improved antinociceptive properties. ACS Med. Chem. Lett. 2014; 5: 1032-1036.
Brancaccio D, Limatola A, Campiglia P, Gomez-Monterrey I, Novellino E, Grieco P, Carotenuto A. Urantide conformation and interaction with the urotensin-II receptor. Arch. Pharm. 2014; 347: 185-192.
Braunschweiler L, Ernst RR. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 1983; 53: 521-528.
Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF Babu MM. Molecular signatures of G-protein-coupled receptors. Nature 2013; 494: 185-94.
Güntert P, Mumenthaler C Wüthrich K Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 1997; 273: 283-298.
Grieco P, Carotenuto A, Campiglia P, Gomez-Monterrey I, Auriemma L, Sala M, Marcozzi C, d'Emmanuele di Villa Bianca R, Brancaccio D, Rovero P, Santicioli P, Meini S, Maggi CA, Novellino E. New insight into the binding mode of peptide ligands at urotensin-II receptor: structure-activity relationships study on P5U and urantide. J. Med. Chem. 2009; 52: 3927-3940.
Sainsily X, Cabana J, Boulais PE, Holleran BJ, Escher E, Lavigne P, Leduc R. Identification of transmembrane domain 3, 4 & 5 residues that contribute to the formation of the ligand-binding pocket of the urotensin-II receptor. Biochem. Pharmacol. 2013; 86: 1584-1593.
Marion D, Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 1983; 113: 967-974.
de Vries SJ, van Dijk M Bonvin AMJJ The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 2010; 5: 883-897.
Wassenaar TA, van Dijk M, Loureiro-Ferreira N, van der Schot G, de Vries SJ, Schmitz C, van der Zwan J, Boelens R, Giachetti A, Ferella L, Rosato A, Bertini I, Herrmann T, Jonker HRA, Bagaria A, Jaravine V, Guntert P, Schwalbe H, Vranken WF, Doreleijers JF, Vriend G, Vuister GW, Franke D, Kikhney A, Svergun DI, Fogh R, Ionides J, Laue ED, Spronk C, Jurka S, Verlato M, Badoer S, Dal Pra S, Mazzucato M, Frizziero E, Bonvin AMJJ. WeNMR: structural biology on the grid. J. Grid. Comp. 2012; 10: 743-767.
Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schuetz M, Plueckthun A. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: E655-E662.
Elshourbagy NA, Douglas SA, Shabon U, Harrison S, Duddy G, Sechler JL, Ao Z, Maleef BE, Naselsky D, Disa J, Aiyar NV. Molecular and pharmacological characterization of genes encoding urotensin II-related peptides and their cognate G-protein coupled receptors from the mouse and monkey. Br. J. Pharmacol. 2002; 136: 9-22.
Sainsily X, Cabana J, Holleran BJ, Escher E, Lavigne P, Leduc R. Identification of transmembrane domain 1 & 2 residues that contribute to the formation of the ligand-binding pocket of the urotensin-II receptor. Biochem. Pharmacol. 2014. DOI: 10.1016/j.bcp.2014.08.023.
Sugo T, Murakami Y, Shimomura Y, Harada M, Abe M, Ishibashi Y, Kitada C, Miyajima N, Suzuki N, Mori M, Fujino M. Identification of urotensin II-related peptide as the urotensin II immunoreactive molecule in the rat brain. Biochem. Biophys. Res. Commun. 2003; 310: 860-868.
Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A. Urotensin II, from fish to human. Ann. N.Y. Acad. Sci. 2010; 1200: 53-66.
Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC. Molecular control of δ-opioid receptor signalling. Nature 2014; 506: 191-196.
Grieco P, Brancaccio D, Novellino E, Hruby VJ, Carotenuto A. Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor. Eur. J. Med. Chem. 2011; 46: 3721-3733.
Coulouarn Y, Fernex C, Jegou S, Henderson CE, Vaudry H, Lihrmann I Specific expression of the urotensin II gene in sacral motoneurons of developing rat spinal cord. Mech. Dev. 2001; 101: 187-190.
Moroder L, Romano R, Guba W, Mierke DF, Kessler H, Delporte C, Winand J, Christophe J. New evidence for a membrane bound pathway in hormone receptor binding. Biochemistry 1993; 32: 13551-13559.
Patel CB, Noor N, Rockman HA. Functional selectivity in adrenergic and angiotensin signaling systems. Mol. Pharmacol. 2010; 78: 983-992.
Grieco P, Carotenuto A, Campiglia P, Marinelli L, Lama T, Patacchini R, Santicioli P, Maggi CA, Rovero P, Novellino E. Urotensin-II receptor ligands. From agonist to antagonist activity. J. Med. Chem. 2005; 48: 7290-7297.
Maple J, Dinur U, Hagler AT. Derivation of force fields for molecular mechanics and dynamics from ab initio energy surface. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 5350-53.
Beauvillain JC, Conlon JM, Bern HA, Vaudry H. Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 15803-15808.
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289: 739-745.
Laskowski RA, Mac Arthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993; 26: 283-291.
Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 2012; 485: 321-326.
Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010; 330: 1066-1071.
Mori M, Sugo T, Abe M, Shimomura Y, Kurihara M, Kitada C, Kikuchi K, Shintani Y, Kurokawa T, Onda H, Nishimura O, Fujino M. Urotensin II is the endogenous ligand of a G-protein coupled orphan receptor, SENR (GPR14). Biochem. Biophys. Res. Commun. 1999; 265: 123-129.
Stewart JM, Young JD. Solid Phase Peptide Synthesis, Pierce Chemical: Rockford, IL,1984.
Carotenuto A, Auriemma L, Merlino F, Yousif AM, Marasco D, Limatola A, Campiglia P, Gomez-Monterrey I, Santicioli P, Meini S, Maggi CA, Novellino E. Grieco P. Lead optimization of P5U and urantide: discovery of novel potent ligands at the urotensin-II receptor. J. Med. Chem. 2014; 57: 5965-5974.
Jenner J, Meyer BH, Bachman P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 1979; 71: 4546-4553.
Chartrel N, Conlon JM, Collin F, Braun B, Waugh D, Vallarino M, Lahrichi SL, Rivier JE, Vaudry H. Urotensin II in the central nervous system of the frog Rana ridibunda: immunohistochemical localization and biochemical characterization. J. Comput. Neurol. 1996; 364: 324-339.
Di Cianni A, Carotenuto A, Brancaccio D, Ettore Novellino E, Jean Claude Reubi JC, Karin Beetschen K, Anna Maria Papini AM, Mauro Ginanneschi M. Novel octreotide dicarba-analogues with high affinity and different selectivity for somatostatin receptors. J. Med. Chem. 2010; 53: 6188-6197.
Wishart DS, Sykes BD, Richards FM. The chemical shift index: a fast method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 1992; 31: 1647-1651.
D'Addona D, Carotenuto A, Novellino E, Piccand V, Reubi JC, Di Cianni A, Gori F, Anna Papini AM, Ginanneschi M. Novel sst5-selective somatostatin dicarba-analogues: synthesis and conformation-affinity relationships. J. Med. Chem. 2008; 51: 512-520.
Chatenet D, Nguyen TT, Létourneau M, Fournier A. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design. Front. Endocrinol. 2013; 3: 1-13.
Bartels C, Xia T, Billeter M, Güntert P Wüthrich K The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 1995; 6: 1-10.
Conlon JM, O'Harte F, Smith DD, Tonon MC, Vaudry H. Isolation and primary structure of urotensin II from the brain of a tetrapod, the frog Rana ridibunda. Biochem. Biophys. Res. Commun. 1992; 188: 578-583.
Maryanoff EB, Kinney AW. Urotensin-II receptor modulators as potential drugs. J. Med. Chem. 2010; 53: 2695-2708.
Grieco P, Giusti L, Carotenuto A, Campiglia P, Calderone V, Lama T, Gomez-Monterrey I, Tartaro G, Mazzoni MR, Novellino E. Morphiceptin analogues containing a dipeptide mimetic structure: an investigation on the bioactive topology at the μ-receptor. J. Med. Chem. 2005; 48: 3153-3163.
Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar RV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNutty DE, Ellis CE, Eishourbagy NA, Shabon U, Trill JJ, Hay DVP, Ohlstein EH, Bergsma DJ, Douglas SA. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 1999; 401: 282-286.
Chatenet D, Du
1993; 26
2001; 101
2010; 53
2013; 3
1983; 113
2012; 485
2005; 132
1997; 273
2004; 25
1983; 53
2008; 9
2002; 115
2013; 168
1994; 68
1982; 104
1999; 401
2003; 310
1979; 71
2012; 10
2013; 19
2009; 52
2014; 5
2002; 41
2000; 289
1993; 32
1980; 77
1986
1984
2014; 57
1988; 85
1998; 95
2010; 1200
2010; 5
1999; 457
2010; 78
1992; 188
2004; 47
2002; 136
2013; 86
2008
1996; 364
1999; 265
1995; 112
2005; 48
1992; 31
2014; 111
2008; 51
1995; 6
2009; 77
2014; 347
1982; 48
2014; 506
2006; 45
2010; 330
2011; 46
2014
2009; 4
2013; 494
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
Misika A (e_1_2_8_21_1) 1994; 68
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Stewart JM (e_1_2_8_39_1) 1984
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 48
  start-page: 3153
  year: 2005
  end-page: 3163
  article-title: Morphiceptin analogues containing a dipeptide mimetic structure: an investigation on the bioactive topology at the μ‐receptor
  publication-title: J. Med. Chem.
– volume: 48
  start-page: 286
  year: 1982
  end-page: 292
  article-title: A two‐dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants
  publication-title: J. Magn. Reson.
– volume: 77
  start-page: 5021
  year: 1980
  end-page: 5024
  article-title: Urotensin II: a somatostain‐like peptide in the caudal neurosecretory system of fishes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2014
  article-title: Identification of transmembrane domain 1 & 2 residues that contribute to the formation of the ligand‐binding pocket of the urotensin‐II receptor
  publication-title: Biochem. Pharmacol.
– volume: 188
  start-page: 578
  year: 1992
  end-page: 583
  article-title: Isolation and primary structure of urotensin II from the brain of a tetrapod, the frog
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 86
  start-page: 1584
  year: 2013
  end-page: 1593
  article-title: Identification of transmembrane domain 3, 4 & 5 residues that contribute to the formation of the ligand‐binding pocket of the urotensin‐II receptor
  publication-title: Biochem. Pharmacol.
– volume: 115
  start-page: 525
  year: 2002
  end-page: 532
  article-title: Role of androgens in the regulation of urotensin II precursor mRNA expression in the rat brainstem and spinal cord
  publication-title: Neuroscience
– volume: 57
  start-page: 5965
  year: 2014
  end-page: 5974
  article-title: Lead optimization of P5U and urantide: discovery of novel potent ligands at the urotensin‐II receptor
  publication-title: J. Med. Chem.
– volume: 4
  start-page: 363
  year: 2009
  end-page: 371
  article-title: Protein structure prediction on the Web: a case study using the Phyre server
  publication-title: Nat. Protoc.
– volume: 401
  start-page: 282
  year: 1999
  end-page: 286
  article-title: Human urotensin‐II is a potent vasoconstrictor and agonist for the orphan receptor GPR14
  publication-title: Nature
– volume: 47
  start-page: 1652
  year: 2004
  end-page: 1661
  article-title: Unraveling the active conformation of urotensin II
  publication-title: J. Med. Chem.
– volume: 48
  start-page: 7290
  year: 2005
  end-page: 7297
  article-title: Urotensin‐II receptor ligands. From agonist to antagonist activity
  publication-title: J. Med. Chem.
– volume: 265
  start-page: 123
  year: 1999
  end-page: 129
  article-title: Urotensin II is the endogenous ligand of a G‐protein coupled orphan receptor, SENR (GPR14)
  publication-title: Biochem. Biophys. Res. Commun.
– year: 1986
– volume: 101
  start-page: 187
  year: 2001
  end-page: 190
  article-title: Specific expression of the urotensin II gene in sacral motoneurons of developing rat spinal cord
  publication-title: Mech. Dev.
– volume: 5
  start-page: 1032
  year: 2014
  end-page: 1036
  article-title: Novel cyclic biphalin analogue with improved antinociceptive properties
  publication-title: ACS Med. Chem. Lett.
– volume: 111
  start-page: E655
  year: 2014
  end-page: E662
  article-title: Structure of signaling‐competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 32
  start-page: 13551
  year: 1993
  end-page: 13559
  article-title: New evidence for a membrane bound pathway in hormone receptor binding
  publication-title: Biochemistry
– volume: 113
  start-page: 967
  year: 1983
  end-page: 974
  article-title: Application of phase sensitive two‐dimensional correlated spectroscopy (COSY) for measurements of H‐ H spin‐spin coupling constants in proteins
  publication-title: Biochem. Biophys. Res. Commun.
– year: 2008
– volume: 46
  start-page: 3721
  year: 2011
  end-page: 3733
  article-title: Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor
  publication-title: Eur. J. Med. Chem.
– volume: 25
  start-page: 1819
  year: 2004
  end-page: 1830
  article-title: Structure‐activity relationships and structural conformation of a novel urotensin II‐related peptide
  publication-title: Peptides
– volume: 5
  start-page: 883
  year: 2010
  end-page: 897
  article-title: The HADDOCK web server for data‐driven biomolecular docking
  publication-title: Nat. Protoc.
– volume: 132
  start-page: 689
  year: 2005
  end-page: 696
  article-title: Androgenic down‐regulation of urotensin II precursor, urotensin II‐related peptide precursor and androgen receptor mRNA in the mouse spinal cord
  publication-title: Neuroscience
– volume: 52
  start-page: 3927
  year: 2009
  end-page: 3940
  article-title: New insight into the binding mode of peptide ligands at urotensin‐II receptor: structure‐activity relationships study on P5U and urantide
  publication-title: J. Med. Chem.
– volume: 45
  start-page: 5993
  year: 2006
  end-page: 6002
  article-title: Characterization of urotensin‐II receptor structural domains involved in the recognition of U‐II, URP, and urantide
  publication-title: Biochemistry
– volume: 26
  start-page: 283
  year: 1993
  end-page: 291
  article-title: PROCHECK: a program to check the stereochemical quality of protein structures
  publication-title: J. Appl. Crystallogr.
– volume: 78
  start-page: 983
  year: 2010
  end-page: 992
  article-title: Functional selectivity in adrenergic and angiotensin signaling systems
  publication-title: Mol. Pharmacol.
– volume: 3
  start-page: 1
  year: 2013
  end-page: 13
  article-title: Update on the urotensinergic system: new trends in receptor localization, activation, and drug design
  publication-title: Front. Endocrinol.
– volume: 31
  start-page: 1647
  year: 1992
  end-page: 1651
  article-title: The chemical shift index: a fast method for the assignment of protein secondary structure through NMR spectroscopy
  publication-title: Biochemistry
– volume: 273
  start-page: 283
  year: 1997
  end-page: 298
  article-title: Torsion angle dynamics for NMR structure calculation with the new program DYANA
  publication-title: J. Mol. Biol.
– volume: 85
  start-page: 5350
  year: 1988
  end-page: 53
  article-title: Derivation of force fields for molecular mechanics and dynamics from ab initio energy surface
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 1200
  start-page: 53
  year: 2010
  end-page: 66
  article-title: Urotensin II, from fish to human
  publication-title: Ann. N.Y. Acad. Sci.
– volume: 77
  start-page: 1374
  year: 2009
  end-page: 1382
  article-title: Identification of transmembrane domain 6 & 7 residues that contribute to the binding pocket of the urotensin II receptor
  publication-title: Biochem. Pharmacol.
– volume: 51
  start-page: 512
  year: 2008
  end-page: 520
  article-title: Novel sst5‐selective somatostatin dicarba‐analogues: synthesis and conformation‐affinity relationships
  publication-title: J. Med. Chem.
– volume: 71
  start-page: 4546
  year: 1979
  end-page: 4553
  article-title: Investigation of exchange processes by two‐dimensional NMR spectroscopy
  publication-title: J. Chem. Phys.
– volume: 19
  start-page: 293
  year: 2013
  end-page: 300
  article-title: New insight into the binding mode of peptides at urotensin‐II receptor by Trp‐constrained analogues of P5U and urantide
  publication-title: J. Pept. Sci.
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera—a visualization system for exploratory research and analysis
  publication-title: J. Comput. Chem.
– volume: 494
  start-page: 185
  year: 2013
  end-page: 94
  article-title: Molecular signatures of G‐protein‐coupled receptors
  publication-title: Nature
– volume: 310
  start-page: 860
  year: 2003
  end-page: 868
  article-title: Identification of urotensin II‐related peptide as the urotensin II immunoreactive molecule in the rat brain
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 53
  start-page: 6188
  year: 2010
  end-page: 6197
  article-title: Novel octreotide dicarba‐analogues with high affinity and different selectivity for somatostatin receptors
  publication-title: J. Med. Chem.
– volume: 53
  start-page: 521
  year: 1983
  end-page: 528
  article-title: Coherence transfer by isotropic mixing: application to proton correlation spectroscopy
  publication-title: J. Magn. Reson.
– volume: 506
  start-page: 191
  year: 2014
  end-page: 196
  article-title: Molecular control of δ‐opioid receptor signalling
  publication-title: Nature
– volume: 457
  start-page: 28
  year: 1999
  end-page: 32
  article-title: Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors
  publication-title: FEBS Lett.
– year: 1984
– volume: 6
  start-page: 1
  year: 1995
  end-page: 10
  article-title: The program XEASY for computer‐supported NMR spectral analysis of biological macromolecules
  publication-title: J. Biomol. NMR
– volume: 9
  start-page: 40
  year: 2008
  article-title: I‐TASSER server for protein 3D structure prediction
  publication-title: BMC Bioinf
– volume: 168
  start-page: 807
  year: 2013
  end-page: 821
  article-title: Discovery of new antagonists aimed at discriminating UII and URP‐mediated biological activities: insight into UII and URP receptor activation
  publication-title: Br. J. Pharmacol.
– volume: 68
  start-page: 893
  year: 1994
  end-page: 899
  article-title: Optimization of disulfide bond formation
  publication-title: Pol. J. Chem.
– volume: 112
  start-page: 275
  year: 1995
  end-page: 279
  article-title: Water suppression that works. Excitation sculpting using arbitrary wave‐forms and pulsed‐field gradients
  publication-title: J. Magn. Res.
– volume: 364
  start-page: 324
  year: 1996
  end-page: 339
  article-title: Urotensin II in the central nervous system of the frog : immunohistochemical localization and biochemical characterization
  publication-title: J. Comput. Neurol.
– volume: 41
  start-page: 2940
  year: 2002
  end-page: 2944
  article-title: Structure‐function analysis of urotensin II and its use in the construction of a ligand‐receptor working model
  publication-title: Angew. Chem. Int. Ed.
– volume: 289
  start-page: 739
  year: 2000
  end-page: 745
  article-title: Crystal structure of rhodopsin: a G protein‐coupled receptor
  publication-title: Science
– volume: 10
  start-page: 743
  year: 2012
  end-page: 767
  article-title: WeNMR: structural biology on the grid
  publication-title: J. Grid. Comp.
– volume: 5
  start-page: 725
  year: 2010
  end-page: 738
  article-title: I‐TASSER: a unified platform for automated protein structure and function prediction
  publication-title: Nat. Protoc.
– volume: 104
  start-page: 6800
  year: 1982
  end-page: 6801
  article-title: Multiple quantum filters for elucidating NMR coupling network
  publication-title: J. Am. Chem. Soc.
– volume: 485
  start-page: 321
  year: 2012
  end-page: 326
  article-title: Crystal structure of the μ‐opioid receptor bound to a morphinan antagonist
  publication-title: Nature
– volume: 95
  start-page: 15803
  year: 1998
  end-page: 15808
  article-title: Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 347
  start-page: 185
  year: 2014
  end-page: 192
  article-title: Urantide conformation and interaction with the urotensin‐II receptor
  publication-title: Arch. Pharm.
– volume: 136
  start-page: 9
  year: 2002
  end-page: 22
  article-title: Molecular and pharmacological characterization of genes encoding urotensin II‐related peptides and their cognate G‐protein coupled receptors from the mouse and monkey
  publication-title: Br. J. Pharmacol.
– volume: 330
  start-page: 1066
  year: 2010
  end-page: 1071
  article-title: Structures of the CXCR4 chemokine GPCR with small‐molecule and cyclic peptide antagonists
  publication-title: Science
– volume: 53
  start-page: 2695
  year: 2010
  end-page: 2708
  article-title: Urotensin‐II receptor modulators as potential drugs
  publication-title: J. Med. Chem.
– ident: e_1_2_8_38_1
  doi: 10.1002/1521-3773(20020816)41:16<2940::AID-ANIE2940>3.0.CO;2-M
– ident: e_1_2_8_45_1
  doi: 10.1038/nature12944
– ident: e_1_2_8_61_1
  doi: 10.1016/j.bcp.2014.08.023
– ident: e_1_2_8_47_1
  doi: 10.1073/pnas.1317903111
– ident: e_1_2_8_26_1
  doi: 10.1063/1.438208
– ident: e_1_2_8_42_1
  doi: 10.1021/jm058043j
– ident: e_1_2_8_49_1
  doi: 10.1038/nature11896
– volume: 68
  start-page: 893
  year: 1994
  ident: e_1_2_8_21_1
  article-title: Optimization of disulfide bond formation
  publication-title: Pol. J. Chem.
  contributor:
    fullname: Misika A
– ident: e_1_2_8_30_1
  doi: 10.1073/pnas.85.15.5350
– ident: e_1_2_8_31_1
  doi: 10.1021/jm0309912
– ident: e_1_2_8_41_1
  doi: 10.1021/jm500218x
– ident: e_1_2_8_22_1
  doi: 10.1006/jmra.1995.1047
– ident: e_1_2_8_43_1
  doi: 10.1051/epn/19861701011
– ident: e_1_2_8_3_1
  doi: 10.1016/0006-291X(92)91095-8
– ident: e_1_2_8_18_1
  doi: 10.1021/jm901294u
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1749-6632.2010.05514.x
– ident: e_1_2_8_33_1
  doi: 10.1186/1471-2105-9-40
– ident: e_1_2_8_53_1
  doi: 10.1021/jm1005868
– ident: e_1_2_8_37_1
  doi: 10.1007/s10723-012-9246-z
– ident: e_1_2_8_50_1
  doi: 10.1021/bi00212a022
– ident: e_1_2_8_10_1
  doi: 10.1016/j.peptides.2004.04.019
– ident: e_1_2_8_46_1
  doi: 10.1038/nature10954
– ident: e_1_2_8_48_1
  doi: 10.1107/S0021889892009944
– ident: e_1_2_8_2_1
  doi: 10.1073/pnas.77.8.5021
– ident: e_1_2_8_36_1
  doi: 10.1038/nprot.2010.32
– volume-title: Solid Phase Peptide Synthesis
  year: 1984
  ident: e_1_2_8_39_1
  contributor:
    fullname: Stewart JM
– ident: e_1_2_8_15_1
– ident: e_1_2_8_20_1
  doi: 10.1124/mol.110.067066
– ident: e_1_2_8_52_1
  doi: 10.1021/jm070886i
– ident: e_1_2_8_40_1
  doi: 10.1021/jm900148c
– ident: e_1_2_8_62_1
  doi: 10.1021/bi060190b
– ident: e_1_2_8_14_1
  doi: 10.1016/j.neuroscience.2004.12.045
– ident: e_1_2_8_54_1
  doi: 10.1016/j.ejmech.2011.05.038
– ident: e_1_2_8_57_1
  doi: 10.1002/ardp.201300269
– ident: e_1_2_8_34_1
  doi: 10.1038/nprot.2009.2
– ident: e_1_2_8_23_1
  doi: 10.1021/ja00388a062
– ident: e_1_2_8_5_1
  doi: 10.1016/S0014-5793(99)01003-0
– ident: e_1_2_8_24_1
  doi: 10.1016/0006-291X(83)91093-8
– ident: e_1_2_8_28_1
  doi: 10.1007/BF00417486
– ident: e_1_2_8_59_1
  doi: 10.1016/j.bcp.2009.01.013
– ident: e_1_2_8_17_1
  doi: 10.3389/fendo.2012.00174
– ident: e_1_2_8_25_1
  doi: 10.1016/0022-2364(83)90226-3
– ident: e_1_2_8_55_1
  doi: 10.1021/ml500241n
– ident: e_1_2_8_19_1
  doi: 10.1111/j.1476-5381.2012.02217.x
– ident: e_1_2_8_12_1
  doi: 10.1016/S0925-4773(00)00548-7
– ident: e_1_2_8_58_1
  doi: 10.1126/science.289.5480.739
– ident: e_1_2_8_35_1
  doi: 10.1038/nprot.2010.5
– ident: e_1_2_8_44_1
  doi: 10.1021/bi00121a010
– ident: e_1_2_8_27_1
  doi: 10.1016/0022-2364(82)90279-7
– ident: e_1_2_8_63_1
  doi: 10.1126/science.1194396
– ident: e_1_2_8_29_1
  doi: 10.1006/jmbi.1997.1284
– ident: e_1_2_8_7_1
  doi: 10.1038/sj.bjp.0704671
– ident: e_1_2_8_32_1
  doi: 10.1002/jcc.20084
– ident: e_1_2_8_8_1
  doi: 10.1038/45809
– ident: e_1_2_8_11_1
  doi: 10.1002/(SICI)1096-9861(19960108)364:2<324::AID-CNE10>3.0.CO;2-P
– ident: e_1_2_8_9_1
  doi: 10.1016/j.bbrc.2003.09.102
– ident: e_1_2_8_56_1
  doi: 10.1002/psc.2498
– ident: e_1_2_8_6_1
  doi: 10.1006/bbrc.1999.1640
– ident: e_1_2_8_51_1
  doi: 10.1021/jm040867y
– ident: e_1_2_8_60_1
  doi: 10.1016/j.bcp.2013.09.015
– ident: e_1_2_8_13_1
  doi: 10.1016/S0306-4522(02)00413-X
– ident: e_1_2_8_4_1
  doi: 10.1073/pnas.95.26.15803
SSID ssj0009956
Score 2.2156694
Snippet The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 392
SubjectTerms Amino Acid Sequence
Animals
biased agonism
conformation by NMR
docking studies
Humans
Magnetic Resonance Spectroscopy
Models, Molecular
Molecular Docking Simulation
Peptide Hormones - agonists
Peptide Hormones - chemical synthesis
Peptide Hormones - chemistry
Peptide Hormones - metabolism
Peptides
Protein Conformation
Receptors, G-Protein-Coupled - chemistry
Receptors, G-Protein-Coupled - metabolism
Sodium Dodecyl Sulfate - chemistry
Structure-Activity Relationship
therapeutic peptide
urotensin II-related peptide
urotensin-II
Urotensins - agonists
Urotensins - chemistry
Urotensins - metabolism
Title An investigation into the origin of the biased agonism associated with the urotensin II receptor activation
URI https://api.istex.fr/ark:/67375/WNG-XZ4C5XX0-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpsc.2740
https://www.ncbi.nlm.nih.gov/pubmed/25694247
https://www.proquest.com/docview/1676212906
https://search.proquest.com/docview/1677373841
https://search.proquest.com/docview/1680435545
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA8yQX3xY37s6pQI4lvvkjRt0sdx3dyEjaEOiz6E0zaVcVl7We8F8a_3nKa9lw0V8amkPaHJydfvJCe_w9gbZdLaqLKOvIEk0qqqI5tKG4GnsFZSlUbQbeST0_ToXH_Ik3zwqqS7MIEfYr3hRiOjn69pgEPR7W1IQxddOUWTisx1GRvy5nr3ccMcRRc2g7shOXFJM_LOCrU3Zry2Et0mpf74Hcy8jlr7ZefwAfs2Fjh4m8ynq2UxLX_e4HL8vxo9ZPcHNMr3Q_d5xG75ZpvdnY1B4LbZnZPh7P0xm-83_GLDytFSatlyBJA8RNfibd2nigtcGSsO33G66C45DB0AX9Gmby-yInaIpsM8x8cc51y_QNOf0x2LsEP8hJ0fHnyeHUVDqIao1JkQUWVVAdbqDIStlS0BYUOsEOvRuStoxFiyRiAmZVXg1Fzp1AKA8JDJQkPibfyUbTVt43cYRxNQgo9rmVhEN9ZDiogpE1Vc25TY6yfs9dhsbhEYOVzgXlYONehIgxP2tm_PtQBczcmDzSTuy-l7l3_VsyTPhTubsN2xwd0weDsnU1whaH8uxX-tP6Pi6SwFGt-uehlDpFBa_k3GCk14LpmwZ6EzrQuESDPTShssad8l_lgVd_ZpRs_n_yr4gt1DUJcEp8xdtrW8WvmXCJyWxat-iPwCo00SDg
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KC-te1q77StdtGoy9ObVk2ZbZU0nXJVsTytYyMwpCtuVRQu3QJFD21-_OshM6tjH2ZGSfsL5O-ul0-h3AGxFHZSzy0rOxCT0pitJTEVeesRTWios89uk28ngSDS_kxzRMN-BddxfG8UOsDG6kGc18TQpOBunDNWvobJ73cU-F-_Ut1PaA4jYcf15zR9GVTedwSG5cPO6YZ31x2OW8sxZtUbPe_g5o3sWtzcJzsgOXXZGdv8m0v1xk_fzHL2yO_1mnXXjQAlJ25EbQQ9iw1R5sD7o4cHtwb9wevz-C6VHFrtbEHDWlFjVDDMlcgC1Wl00qu8LFsWDmO84Y82tm2jGAr8ju24gsiSCimmOe0YjhtGtnuPtndM3CGYkfw8XJ-_PB0GujNXi5THzfK5TIjFIyMb4qhcoNIodAINyjo1cjEWbxErEY50WGs3MhI2WM8a1JeCZNaFXwBDarurLPgOEukBsblDxUCHCUNRGCpsQvglJFRGDfg9ddv-mZI-XQjn5ZaGxBTS3Yg7dNh64EzM2UnNjiUH-dfNDpNzkI09TXZz046Hpct_o71zzCRYJMdBH-a_UZG56OU0xl62UjExMvlOR_k1G-JEgX9uCpG02rAiHYTKSQMZa0GRN_rIo--zKg5_6_Cr6C7eH5-FSfjiafnsN9xHih89E8gM3FzdK-QBy1yF42-vITrFwWJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbQJg1e2BgwOjYwEuItne06jvM4dSsrsKoCJiJ4sJzERlNFUq2thPjruYuTVkOAEE-Rk7Nin399Z5-_I-SlSJRPROEjl9g4kqL0kVZcR9ZhWCsuioThbeTLibq4km-yOGu9KvEuTOCHWG-44cho5msc4PPSn2xIQ-eLog8mFZjr21IB8EVA9H5DHYU3NoO_IXpx8aQjnmXipMt5aynaRq1-_x3OvA1bm3VntEu-dCUO7iaz_mqZ94sfv5A5_l-V9sj9Fo7S09B_HpA7rtond4ddFLh9snPZHr4_JLPTil5vaDlqTC1rCgiShvBatPZNKr-GpbGk9ivMF4tv1LY9AF7hrm8jskJ6iGoBecZjCpOum4PtT_GSRdgifkSuRucfhxdRG6shKmTKWFRqkVutZWqZ9kIXFnDDQADYw4NXKwFkcQ9IjPMyh7m5lEpba5mzKc-ljZ0ePCZbVV25J4SCDcitG3gea4A32lkFkCll5cBrhfT1PfKiazYzD5QcJpAvCwMaNKjBHnnVtOdawN7M0IUtic2nyWuTfZbDOMuYmfbIUdfgph29C8MVLBG4QafgX-vPoHg8TLGVq1eNTIKsUJL_TUYziYAu7pGD0JnWBQKomUohEyhp0yX-WBUz_TDE5-G_Cj4nO9OzkXk3nrx9Su4BwIuDg-YR2VrerNwxgKhl_qwZLT8BWJwU1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+into+the+origin+of+the+biased+agonism+associated+with+the+urotensin+II+receptor+activation&rft.jtitle=Journal+of+peptide+science&rft.au=Brancaccio%2C+Diego&rft.au=Merlino%2C+Francesco&rft.au=Limatola%2C+Antonio&rft.au=Yousif%2C+Ali+Munaim&rft.date=2015-05-01&rft.eissn=1099-1387&rft.volume=21&rft.issue=5&rft.spage=392&rft_id=info:doi/10.1002%2Fpsc.2740&rft_id=info%3Apmid%2F25694247&rft.externalDocID=25694247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1075-2617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1075-2617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1075-2617&client=summon