An investigation into the origin of the biased agonism associated with the urotensin II receptor activation
The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers...
Saved in:
Published in | Journal of peptide science Vol. 21; no. 5; pp. 392 - 399 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.05.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U‐II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U‐II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU‐II previously determined. Finally, we undertook docking studies between URP, hU‐II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostosis. The endogenous ligands of UTR, U‐II, and URP can exert common as well as different actions (biased agonism). To shed light on the origin of the divergent activities of two endogenous ligands, we performed a conformational study on URP, compared the obtained NMR structure of URP with that of hU‐II previously determined, and undertook docking studies between URP, hU‐II, and a newly developed UT receptor model. |
---|---|
AbstractList | The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model. Copyright copyright 2015 European Peptide Society and John Wiley & Sons, Ltd. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostosis. The endogenous ligands of UTR, U-II, and URP can exert common as well as different actions (biased agonism). To shed light on the origin of the divergent activities of two endogenous ligands, we performed a conformational study on URP, compared the obtained NMR structure of URP with that of hU-II previously determined, and undertook docking studies between URP, hU-II, and a newly developed UT receptor model. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U‐II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U‐II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU‐II previously determined. Finally, we undertook docking studies between URP, hU‐II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostosis. The endogenous ligands of UTR, U‐II, and URP can exert common as well as different actions (biased agonism). To shed light on the origin of the divergent activities of two endogenous ligands, we performed a conformational study on URP, compared the obtained NMR structure of URP with that of hU‐II previously determined, and undertook docking studies between URP, hU‐II, and a newly developed UT receptor model. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U-II) and urotensin II-related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U-II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U-II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of hU-II previously determined. Finally, we undertook docking studies between URP, hU-II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two endogenous ligands activate UTR, i.e. urotensin II (U‐II) and urotensin II‐related peptide (URP). Extensive expression of the two ligands uncovers the diversified pathophysiological effects mediated by the urotensinergic system such as cardiovascular disorders, smooth muscle cell proliferation, renal disease, diabetes, and tumour growth. As newly reported, U‐II and URP have distinct effects on transcriptional activity, cell proliferation, and myocardial contractile activities supporting the idea that U‐II and URP interact with UTR in a distinct manner (biased agonism). To shed light on the origin of the divergent activities of the two endogenous ligands, we performed a conformational study on URP by solution NMR in sodium dodecyl sulfate micelle solution and compared the obtained NMR structure of URP with that of h U‐II previously determined. Finally, we undertook docking studies between URP, h U‐II, and an UT receptor model. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. |
Author | Brancaccio, Diego Limatola, Antonio Yousif, Ali Munaim Carotenuto, Alfonso Gomez-Monterrey, Isabel Campiglia, Pietro Merlino, Francesco Novellino, Ettore Grieco, Paolo |
Author_xml | – sequence: 1 givenname: Diego surname: Brancaccio fullname: Brancaccio, Diego organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy – sequence: 2 givenname: Francesco surname: Merlino fullname: Merlino, Francesco organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy – sequence: 3 givenname: Antonio surname: Limatola fullname: Limatola, Antonio organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy – sequence: 4 givenname: Ali Munaim surname: Yousif fullname: Yousif, Ali Munaim organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy – sequence: 5 givenname: Isabel surname: Gomez-Monterrey fullname: Gomez-Monterrey, Isabel organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy – sequence: 6 givenname: Pietro surname: Campiglia fullname: Campiglia, Pietro organization: Department of Pharmacy, University of Salerno, Fisciano, I-84084, Salerno, Italy – sequence: 7 givenname: Ettore surname: Novellino fullname: Novellino, Ettore organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy – sequence: 8 givenname: Paolo surname: Grieco fullname: Grieco, Paolo organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy – sequence: 9 givenname: Alfonso surname: Carotenuto fullname: Carotenuto, Alfonso email: alfonso.carotenuto@unina.it organization: Department of Pharmacy, University of Naples 'Federico II', I-80131, Naples, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25694247$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkV1rFDEUhoNU7JfgL5ABb7yZmu9JLsvS1oWigkoXb8KZmcw27W6yTTKt_fdmtmsFQfAqOclzHnh5D9GeD94i9IbgE4Ix_bBJ3QltOH6BDgjWuiZMNXvTvRE1laTZR4cp3WBc_oR8hfapkJpT3hyg21NfOX9vU3ZLyC5MUw5VvrZViG7pfBWG7dQ6SLavYBm8S-sKUgqdg1yeHly-3iJjDNn6VHbm8yrazm5yiBV02d1v1cfo5QCrZF_vziP0_fzs2-xjffn5Yj47vaw7rjGue0VbUIprwGqgqgNCOaNEMswlBi4pI4OmmpC-JVz2XCoAwBY0aTkIq9gRev_k3cRwN5ZoZu1SZ1cr8DaMyRCpMGdCcPEfaNOwhilOCvruL_QmjNGXIBMlKaEayz_CLoaUoh3MJro1xEdDsJm6MqUrM3VV0Lc74diubf8M_i6nAPUT8OBW9vGfIvPl62wn3PEuZfvzmYd4a2RJIczVpwuz-MFnYrEoW-wXjOmtAw |
CODEN | JPSIEI |
CitedBy_id | crossref_primary_10_1039_C7OB00959C crossref_primary_10_1111_eci_13972 crossref_primary_10_1021_acs_jmedchem_6b00108 crossref_primary_10_1021_acs_jcim_6b00706 crossref_primary_10_1016_j_bcp_2017_08_003 crossref_primary_10_1021_acs_jmedchem_8b01601 crossref_primary_10_1021_acs_jmedchem_8b00789 crossref_primary_10_1016_j_tips_2019_08_005 crossref_primary_10_1021_acsmedchemlett_0c00223 crossref_primary_10_1016_j_bcp_2023_115485 crossref_primary_10_1016_j_cellsig_2024_111056 crossref_primary_10_1016_j_drudis_2019_08_005 crossref_primary_10_1016_j_ejmech_2017_11_030 crossref_primary_10_1016_j_jbc_2021_101057 crossref_primary_10_1155_2019_9293560 crossref_primary_10_23736_S1121_421X_19_02602_3 crossref_primary_10_1016_j_bbadis_2024_167170 crossref_primary_10_1002_cmdc_201500607 crossref_primary_10_1002_pep2_24056 |
Cites_doi | 10.1002/1521-3773(20020816)41:16<2940::AID-ANIE2940>3.0.CO;2-M 10.1038/nature12944 10.1016/j.bcp.2014.08.023 10.1073/pnas.1317903111 10.1063/1.438208 10.1021/jm058043j 10.1038/nature11896 10.1073/pnas.85.15.5350 10.1021/jm0309912 10.1021/jm500218x 10.1006/jmra.1995.1047 10.1051/epn/19861701011 10.1016/0006-291X(92)91095-8 10.1021/jm901294u 10.1111/j.1749-6632.2010.05514.x 10.1186/1471-2105-9-40 10.1021/jm1005868 10.1007/s10723-012-9246-z 10.1021/bi00212a022 10.1016/j.peptides.2004.04.019 10.1038/nature10954 10.1107/S0021889892009944 10.1073/pnas.77.8.5021 10.1038/nprot.2010.32 10.1124/mol.110.067066 10.1021/jm070886i 10.1021/jm900148c 10.1021/bi060190b 10.1016/j.neuroscience.2004.12.045 10.1016/j.ejmech.2011.05.038 10.1002/ardp.201300269 10.1038/nprot.2009.2 10.1021/ja00388a062 10.1016/S0014-5793(99)01003-0 10.1016/0006-291X(83)91093-8 10.1007/BF00417486 10.1016/j.bcp.2009.01.013 10.3389/fendo.2012.00174 10.1016/0022-2364(83)90226-3 10.1021/ml500241n 10.1111/j.1476-5381.2012.02217.x 10.1016/S0925-4773(00)00548-7 10.1126/science.289.5480.739 10.1038/nprot.2010.5 10.1021/bi00121a010 10.1016/0022-2364(82)90279-7 10.1126/science.1194396 10.1006/jmbi.1997.1284 10.1038/sj.bjp.0704671 10.1002/jcc.20084 10.1038/45809 10.1002/(SICI)1096-9861(19960108)364:2<324::AID-CNE10>3.0.CO;2-P 10.1016/j.bbrc.2003.09.102 10.1002/psc.2498 10.1006/bbrc.1999.1640 10.1021/jm040867y 10.1016/j.bcp.2013.09.015 10.1016/S0306-4522(02)00413-X 10.1073/pnas.95.26.15803 |
ContentType | Journal Article |
Copyright | Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. – notice: Copyright © 2015 John Wiley & Sons, Ltd. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/psc.2740 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry |
EISSN | 1099-1387 |
EndPage | 399 |
ExternalDocumentID | 3667919951 10_1002_psc_2740 25694247 PSC2740 ark_67375_WNG_XZ4C5XX0_P |
Genre | article Research Support, Non-U.S. Gov't Journal Article Comparative Study |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 UB1 V2E V8K W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XV2 Y6R ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4900-d82ba8849a08f28ca124321630460a46231f92911db146d468aaa0ea91b4a5e83 |
IEDL.DBID | DR2 |
ISSN | 1075-2617 |
IngestDate | Fri Aug 16 22:28:18 EDT 2024 Fri Aug 16 21:00:36 EDT 2024 Thu Oct 10 18:00:16 EDT 2024 Fri Aug 23 02:12:10 EDT 2024 Sat Sep 28 08:38:43 EDT 2024 Sat Aug 24 01:08:19 EDT 2024 Wed Oct 30 09:51:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | conformation by NMR docking studies biased agonism urotensin II-related peptide urotensin-II therapeutic peptide |
Language | English |
License | Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4900-d82ba8849a08f28ca124321630460a46231f92911db146d468aaa0ea91b4a5e83 |
Notes | istex:1D34D51BEB8E1E856B6F124D84D1177EB3A74E4A Supporting info item ArticleID:PSC2740 Special issue of contributions presented at the 14th Naples Workshop on Bioactive Peptides "The renaissance era of peptides in drug discovery", June 12-14, 2014, Naples". ark:/67375/WNG-XZ4C5XX0-P ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25694247 |
PQID | 1676212906 |
PQPubID | 1006390 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1680435545 proquest_miscellaneous_1677373841 proquest_journals_1676212906 crossref_primary_10_1002_psc_2740 pubmed_primary_25694247 wiley_primary_10_1002_psc_2740_PSC2740 istex_primary_ark_67375_WNG_XZ4C5XX0_P |
PublicationCentury | 2000 |
PublicationDate | May 2015 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: May 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Journal of peptide science |
PublicationTitleAlternate | J. Pept. Sci |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Hwang TL, Shaka AJ. Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J. Magn. Res. 1995; 112: 275-279. Misika A, Hruby VJ. Optimization of disulfide bond formation. Pol. J. Chem. 1994; 68: 893-899. Carotenuto A, Auriemma L, Merlino F, Limatola A, Campiglia P, Gomez-Monterrey I, di Villa Bianca R, Brancaccio D, Santicioli P, Meini S, Maggi CA, Novellino E, Grieco P. New insight into the binding mode of peptides at urotensin-II receptor by Trp-constrained analogues of P5U and urantide. J. Pept. Sci. 2013; 19: 293-300. Piantini U, Sorensen OW Ernst RR Multiple quantum filters for elucidating NMR coupling network. J. Am. Chem. Soc. 1982; 104: 6800-6801. Mollica A, Carotenuto A, Novellino E, Limatola A, Costante R, Pinnen F, Stefanucci A, Pieretti S, Borsodi A, Samavati R, Zador F, Benyhe S, Davis P, Porreca F, Hruby VJ. Novel cyclic biphalin analogue with improved antinociceptive properties. ACS Med. Chem. Lett. 2014; 5: 1032-1036. Brancaccio D, Limatola A, Campiglia P, Gomez-Monterrey I, Novellino E, Grieco P, Carotenuto A. Urantide conformation and interaction with the urotensin-II receptor. Arch. Pharm. 2014; 347: 185-192. Braunschweiler L, Ernst RR. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 1983; 53: 521-528. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF Babu MM. Molecular signatures of G-protein-coupled receptors. Nature 2013; 494: 185-94. Güntert P, Mumenthaler C Wüthrich K Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 1997; 273: 283-298. Grieco P, Carotenuto A, Campiglia P, Gomez-Monterrey I, Auriemma L, Sala M, Marcozzi C, d'Emmanuele di Villa Bianca R, Brancaccio D, Rovero P, Santicioli P, Meini S, Maggi CA, Novellino E. New insight into the binding mode of peptide ligands at urotensin-II receptor: structure-activity relationships study on P5U and urantide. J. Med. Chem. 2009; 52: 3927-3940. Sainsily X, Cabana J, Boulais PE, Holleran BJ, Escher E, Lavigne P, Leduc R. Identification of transmembrane domain 3, 4 & 5 residues that contribute to the formation of the ligand-binding pocket of the urotensin-II receptor. Biochem. Pharmacol. 2013; 86: 1584-1593. Marion D, Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem. Biophys. Res. Commun. 1983; 113: 967-974. de Vries SJ, van Dijk M Bonvin AMJJ The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 2010; 5: 883-897. Wassenaar TA, van Dijk M, Loureiro-Ferreira N, van der Schot G, de Vries SJ, Schmitz C, van der Zwan J, Boelens R, Giachetti A, Ferella L, Rosato A, Bertini I, Herrmann T, Jonker HRA, Bagaria A, Jaravine V, Guntert P, Schwalbe H, Vranken WF, Doreleijers JF, Vriend G, Vuister GW, Franke D, Kikhney A, Svergun DI, Fogh R, Ionides J, Laue ED, Spronk C, Jurka S, Verlato M, Badoer S, Dal Pra S, Mazzucato M, Frizziero E, Bonvin AMJJ. WeNMR: structural biology on the grid. J. Grid. Comp. 2012; 10: 743-767. Egloff P, Hillenbrand M, Klenk C, Batyuk A, Heine P, Balada S, Schlinkmann KM, Scott DJ, Schuetz M, Plueckthun A. Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: E655-E662. Elshourbagy NA, Douglas SA, Shabon U, Harrison S, Duddy G, Sechler JL, Ao Z, Maleef BE, Naselsky D, Disa J, Aiyar NV. Molecular and pharmacological characterization of genes encoding urotensin II-related peptides and their cognate G-protein coupled receptors from the mouse and monkey. Br. J. Pharmacol. 2002; 136: 9-22. Sainsily X, Cabana J, Holleran BJ, Escher E, Lavigne P, Leduc R. Identification of transmembrane domain 1 & 2 residues that contribute to the formation of the ligand-binding pocket of the urotensin-II receptor. Biochem. Pharmacol. 2014. DOI: 10.1016/j.bcp.2014.08.023. Sugo T, Murakami Y, Shimomura Y, Harada M, Abe M, Ishibashi Y, Kitada C, Miyajima N, Suzuki N, Mori M, Fujino M. Identification of urotensin II-related peptide as the urotensin II immunoreactive molecule in the rat brain. Biochem. Biophys. Res. Commun. 2003; 310: 860-868. Vaudry H, Do Rego JC, Le Mevel JC, Chatenet D, Tostivint H, Fournier A. Urotensin II, from fish to human. Ann. N.Y. Acad. Sci. 2010; 1200: 53-66. Fenalti G, Giguere PM, Katritch V, Huang XP, Thompson AA, Cherezov V, Roth BL, Stevens RC. Molecular control of δ-opioid receptor signalling. Nature 2014; 506: 191-196. Grieco P, Brancaccio D, Novellino E, Hruby VJ, Carotenuto A. Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor. Eur. J. Med. Chem. 2011; 46: 3721-3733. Coulouarn Y, Fernex C, Jegou S, Henderson CE, Vaudry H, Lihrmann I Specific expression of the urotensin II gene in sacral motoneurons of developing rat spinal cord. Mech. Dev. 2001; 101: 187-190. Moroder L, Romano R, Guba W, Mierke DF, Kessler H, Delporte C, Winand J, Christophe J. New evidence for a membrane bound pathway in hormone receptor binding. Biochemistry 1993; 32: 13551-13559. Patel CB, Noor N, Rockman HA. Functional selectivity in adrenergic and angiotensin signaling systems. Mol. Pharmacol. 2010; 78: 983-992. Grieco P, Carotenuto A, Campiglia P, Marinelli L, Lama T, Patacchini R, Santicioli P, Maggi CA, Rovero P, Novellino E. Urotensin-II receptor ligands. From agonist to antagonist activity. J. Med. Chem. 2005; 48: 7290-7297. Maple J, Dinur U, Hagler AT. Derivation of force fields for molecular mechanics and dynamics from ab initio energy surface. Proc. Natl. Acad. Sci. U. S. A. 1988; 85: 5350-53. Beauvillain JC, Conlon JM, Bern HA, Vaudry H. Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord. Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 15803-15808. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000; 289: 739-745. Laskowski RA, Mac Arthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993; 26: 283-291. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. Crystal structure of the μ-opioid receptor bound to a morphinan antagonist. Nature 2012; 485: 321-326. Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010; 330: 1066-1071. Mori M, Sugo T, Abe M, Shimomura Y, Kurihara M, Kitada C, Kikuchi K, Shintani Y, Kurokawa T, Onda H, Nishimura O, Fujino M. Urotensin II is the endogenous ligand of a G-protein coupled orphan receptor, SENR (GPR14). Biochem. Biophys. Res. Commun. 1999; 265: 123-129. Stewart JM, Young JD. Solid Phase Peptide Synthesis, Pierce Chemical: Rockford, IL,1984. Carotenuto A, Auriemma L, Merlino F, Yousif AM, Marasco D, Limatola A, Campiglia P, Gomez-Monterrey I, Santicioli P, Meini S, Maggi CA, Novellino E. Grieco P. Lead optimization of P5U and urantide: discovery of novel potent ligands at the urotensin-II receptor. J. Med. Chem. 2014; 57: 5965-5974. Jenner J, Meyer BH, Bachman P, Ernst RR. Investigation of exchange processes by two-dimensional NMR spectroscopy. J. Chem. Phys. 1979; 71: 4546-4553. Chartrel N, Conlon JM, Collin F, Braun B, Waugh D, Vallarino M, Lahrichi SL, Rivier JE, Vaudry H. Urotensin II in the central nervous system of the frog Rana ridibunda: immunohistochemical localization and biochemical characterization. J. Comput. Neurol. 1996; 364: 324-339. Di Cianni A, Carotenuto A, Brancaccio D, Ettore Novellino E, Jean Claude Reubi JC, Karin Beetschen K, Anna Maria Papini AM, Mauro Ginanneschi M. Novel octreotide dicarba-analogues with high affinity and different selectivity for somatostatin receptors. J. Med. Chem. 2010; 53: 6188-6197. Wishart DS, Sykes BD, Richards FM. The chemical shift index: a fast method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 1992; 31: 1647-1651. D'Addona D, Carotenuto A, Novellino E, Piccand V, Reubi JC, Di Cianni A, Gori F, Anna Papini AM, Ginanneschi M. Novel sst5-selective somatostatin dicarba-analogues: synthesis and conformation-affinity relationships. J. Med. Chem. 2008; 51: 512-520. Chatenet D, Nguyen TT, Létourneau M, Fournier A. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design. Front. Endocrinol. 2013; 3: 1-13. Bartels C, Xia T, Billeter M, Güntert P Wüthrich K The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 1995; 6: 1-10. Conlon JM, O'Harte F, Smith DD, Tonon MC, Vaudry H. Isolation and primary structure of urotensin II from the brain of a tetrapod, the frog Rana ridibunda. Biochem. Biophys. Res. Commun. 1992; 188: 578-583. Maryanoff EB, Kinney AW. Urotensin-II receptor modulators as potential drugs. J. Med. Chem. 2010; 53: 2695-2708. Grieco P, Giusti L, Carotenuto A, Campiglia P, Calderone V, Lama T, Gomez-Monterrey I, Tartaro G, Mazzoni MR, Novellino E. Morphiceptin analogues containing a dipeptide mimetic structure: an investigation on the bioactive topology at the μ-receptor. J. Med. Chem. 2005; 48: 3153-3163. Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar RV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNutty DE, Ellis CE, Eishourbagy NA, Shabon U, Trill JJ, Hay DVP, Ohlstein EH, Bergsma DJ, Douglas SA. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 1999; 401: 282-286. Chatenet D, Du 1993; 26 2001; 101 2010; 53 2013; 3 1983; 113 2012; 485 2005; 132 1997; 273 2004; 25 1983; 53 2008; 9 2002; 115 2013; 168 1994; 68 1982; 104 1999; 401 2003; 310 1979; 71 2012; 10 2013; 19 2009; 52 2014; 5 2002; 41 2000; 289 1993; 32 1980; 77 1986 1984 2014; 57 1988; 85 1998; 95 2010; 1200 2010; 5 1999; 457 2010; 78 1992; 188 2004; 47 2002; 136 2013; 86 2008 1996; 364 1999; 265 1995; 112 2005; 48 1992; 31 2014; 111 2008; 51 1995; 6 2009; 77 2014; 347 1982; 48 2014; 506 2006; 45 2010; 330 2011; 46 2014 2009; 4 2013; 494 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 Misika A (e_1_2_8_21_1) 1994; 68 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Stewart JM (e_1_2_8_39_1) 1984 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 48 start-page: 3153 year: 2005 end-page: 3163 article-title: Morphiceptin analogues containing a dipeptide mimetic structure: an investigation on the bioactive topology at the μ‐receptor publication-title: J. Med. Chem. – volume: 48 start-page: 286 year: 1982 end-page: 292 article-title: A two‐dimensional nuclear Overhauser experiment with pure absorption phase in four quadrants publication-title: J. Magn. Reson. – volume: 77 start-page: 5021 year: 1980 end-page: 5024 article-title: Urotensin II: a somatostain‐like peptide in the caudal neurosecretory system of fishes publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2014 article-title: Identification of transmembrane domain 1 & 2 residues that contribute to the formation of the ligand‐binding pocket of the urotensin‐II receptor publication-title: Biochem. Pharmacol. – volume: 188 start-page: 578 year: 1992 end-page: 583 article-title: Isolation and primary structure of urotensin II from the brain of a tetrapod, the frog publication-title: Biochem. Biophys. Res. Commun. – volume: 86 start-page: 1584 year: 2013 end-page: 1593 article-title: Identification of transmembrane domain 3, 4 & 5 residues that contribute to the formation of the ligand‐binding pocket of the urotensin‐II receptor publication-title: Biochem. Pharmacol. – volume: 115 start-page: 525 year: 2002 end-page: 532 article-title: Role of androgens in the regulation of urotensin II precursor mRNA expression in the rat brainstem and spinal cord publication-title: Neuroscience – volume: 57 start-page: 5965 year: 2014 end-page: 5974 article-title: Lead optimization of P5U and urantide: discovery of novel potent ligands at the urotensin‐II receptor publication-title: J. Med. Chem. – volume: 4 start-page: 363 year: 2009 end-page: 371 article-title: Protein structure prediction on the Web: a case study using the Phyre server publication-title: Nat. Protoc. – volume: 401 start-page: 282 year: 1999 end-page: 286 article-title: Human urotensin‐II is a potent vasoconstrictor and agonist for the orphan receptor GPR14 publication-title: Nature – volume: 47 start-page: 1652 year: 2004 end-page: 1661 article-title: Unraveling the active conformation of urotensin II publication-title: J. Med. Chem. – volume: 48 start-page: 7290 year: 2005 end-page: 7297 article-title: Urotensin‐II receptor ligands. From agonist to antagonist activity publication-title: J. Med. Chem. – volume: 265 start-page: 123 year: 1999 end-page: 129 article-title: Urotensin II is the endogenous ligand of a G‐protein coupled orphan receptor, SENR (GPR14) publication-title: Biochem. Biophys. Res. Commun. – year: 1986 – volume: 101 start-page: 187 year: 2001 end-page: 190 article-title: Specific expression of the urotensin II gene in sacral motoneurons of developing rat spinal cord publication-title: Mech. Dev. – volume: 5 start-page: 1032 year: 2014 end-page: 1036 article-title: Novel cyclic biphalin analogue with improved antinociceptive properties publication-title: ACS Med. Chem. Lett. – volume: 111 start-page: E655 year: 2014 end-page: E662 article-title: Structure of signaling‐competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 32 start-page: 13551 year: 1993 end-page: 13559 article-title: New evidence for a membrane bound pathway in hormone receptor binding publication-title: Biochemistry – volume: 113 start-page: 967 year: 1983 end-page: 974 article-title: Application of phase sensitive two‐dimensional correlated spectroscopy (COSY) for measurements of H‐ H spin‐spin coupling constants in proteins publication-title: Biochem. Biophys. Res. Commun. – year: 2008 – volume: 46 start-page: 3721 year: 2011 end-page: 3733 article-title: Conformational study on cyclic melanocortin ligands and new insight into their binding mode at the MC4 receptor publication-title: Eur. J. Med. Chem. – volume: 25 start-page: 1819 year: 2004 end-page: 1830 article-title: Structure‐activity relationships and structural conformation of a novel urotensin II‐related peptide publication-title: Peptides – volume: 5 start-page: 883 year: 2010 end-page: 897 article-title: The HADDOCK web server for data‐driven biomolecular docking publication-title: Nat. Protoc. – volume: 132 start-page: 689 year: 2005 end-page: 696 article-title: Androgenic down‐regulation of urotensin II precursor, urotensin II‐related peptide precursor and androgen receptor mRNA in the mouse spinal cord publication-title: Neuroscience – volume: 52 start-page: 3927 year: 2009 end-page: 3940 article-title: New insight into the binding mode of peptide ligands at urotensin‐II receptor: structure‐activity relationships study on P5U and urantide publication-title: J. Med. Chem. – volume: 45 start-page: 5993 year: 2006 end-page: 6002 article-title: Characterization of urotensin‐II receptor structural domains involved in the recognition of U‐II, URP, and urantide publication-title: Biochemistry – volume: 26 start-page: 283 year: 1993 end-page: 291 article-title: PROCHECK: a program to check the stereochemical quality of protein structures publication-title: J. Appl. Crystallogr. – volume: 78 start-page: 983 year: 2010 end-page: 992 article-title: Functional selectivity in adrenergic and angiotensin signaling systems publication-title: Mol. Pharmacol. – volume: 3 start-page: 1 year: 2013 end-page: 13 article-title: Update on the urotensinergic system: new trends in receptor localization, activation, and drug design publication-title: Front. Endocrinol. – volume: 31 start-page: 1647 year: 1992 end-page: 1651 article-title: The chemical shift index: a fast method for the assignment of protein secondary structure through NMR spectroscopy publication-title: Biochemistry – volume: 273 start-page: 283 year: 1997 end-page: 298 article-title: Torsion angle dynamics for NMR structure calculation with the new program DYANA publication-title: J. Mol. Biol. – volume: 85 start-page: 5350 year: 1988 end-page: 53 article-title: Derivation of force fields for molecular mechanics and dynamics from ab initio energy surface publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 1200 start-page: 53 year: 2010 end-page: 66 article-title: Urotensin II, from fish to human publication-title: Ann. N.Y. Acad. Sci. – volume: 77 start-page: 1374 year: 2009 end-page: 1382 article-title: Identification of transmembrane domain 6 & 7 residues that contribute to the binding pocket of the urotensin II receptor publication-title: Biochem. Pharmacol. – volume: 51 start-page: 512 year: 2008 end-page: 520 article-title: Novel sst5‐selective somatostatin dicarba‐analogues: synthesis and conformation‐affinity relationships publication-title: J. Med. Chem. – volume: 71 start-page: 4546 year: 1979 end-page: 4553 article-title: Investigation of exchange processes by two‐dimensional NMR spectroscopy publication-title: J. Chem. Phys. – volume: 19 start-page: 293 year: 2013 end-page: 300 article-title: New insight into the binding mode of peptides at urotensin‐II receptor by Trp‐constrained analogues of P5U and urantide publication-title: J. Pept. Sci. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 article-title: UCSF Chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 494 start-page: 185 year: 2013 end-page: 94 article-title: Molecular signatures of G‐protein‐coupled receptors publication-title: Nature – volume: 310 start-page: 860 year: 2003 end-page: 868 article-title: Identification of urotensin II‐related peptide as the urotensin II immunoreactive molecule in the rat brain publication-title: Biochem. Biophys. Res. Commun. – volume: 53 start-page: 6188 year: 2010 end-page: 6197 article-title: Novel octreotide dicarba‐analogues with high affinity and different selectivity for somatostatin receptors publication-title: J. Med. Chem. – volume: 53 start-page: 521 year: 1983 end-page: 528 article-title: Coherence transfer by isotropic mixing: application to proton correlation spectroscopy publication-title: J. Magn. Reson. – volume: 506 start-page: 191 year: 2014 end-page: 196 article-title: Molecular control of δ‐opioid receptor signalling publication-title: Nature – volume: 457 start-page: 28 year: 1999 end-page: 32 article-title: Cloning, sequence analysis and tissue distribution of the mouse and rat urotensin II precursors publication-title: FEBS Lett. – year: 1984 – volume: 6 start-page: 1 year: 1995 end-page: 10 article-title: The program XEASY for computer‐supported NMR spectral analysis of biological macromolecules publication-title: J. Biomol. NMR – volume: 9 start-page: 40 year: 2008 article-title: I‐TASSER server for protein 3D structure prediction publication-title: BMC Bioinf – volume: 168 start-page: 807 year: 2013 end-page: 821 article-title: Discovery of new antagonists aimed at discriminating UII and URP‐mediated biological activities: insight into UII and URP receptor activation publication-title: Br. J. Pharmacol. – volume: 68 start-page: 893 year: 1994 end-page: 899 article-title: Optimization of disulfide bond formation publication-title: Pol. J. Chem. – volume: 112 start-page: 275 year: 1995 end-page: 279 article-title: Water suppression that works. Excitation sculpting using arbitrary wave‐forms and pulsed‐field gradients publication-title: J. Magn. Res. – volume: 364 start-page: 324 year: 1996 end-page: 339 article-title: Urotensin II in the central nervous system of the frog : immunohistochemical localization and biochemical characterization publication-title: J. Comput. Neurol. – volume: 41 start-page: 2940 year: 2002 end-page: 2944 article-title: Structure‐function analysis of urotensin II and its use in the construction of a ligand‐receptor working model publication-title: Angew. Chem. Int. Ed. – volume: 289 start-page: 739 year: 2000 end-page: 745 article-title: Crystal structure of rhodopsin: a G protein‐coupled receptor publication-title: Science – volume: 10 start-page: 743 year: 2012 end-page: 767 article-title: WeNMR: structural biology on the grid publication-title: J. Grid. Comp. – volume: 5 start-page: 725 year: 2010 end-page: 738 article-title: I‐TASSER: a unified platform for automated protein structure and function prediction publication-title: Nat. Protoc. – volume: 104 start-page: 6800 year: 1982 end-page: 6801 article-title: Multiple quantum filters for elucidating NMR coupling network publication-title: J. Am. Chem. Soc. – volume: 485 start-page: 321 year: 2012 end-page: 326 article-title: Crystal structure of the μ‐opioid receptor bound to a morphinan antagonist publication-title: Nature – volume: 95 start-page: 15803 year: 1998 end-page: 15808 article-title: Cloning of the cDNA encoding the urotensin II precursor in frog and human reveals intense expression of the urotensin II gene in motoneurons of the spinal cord publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 347 start-page: 185 year: 2014 end-page: 192 article-title: Urantide conformation and interaction with the urotensin‐II receptor publication-title: Arch. Pharm. – volume: 136 start-page: 9 year: 2002 end-page: 22 article-title: Molecular and pharmacological characterization of genes encoding urotensin II‐related peptides and their cognate G‐protein coupled receptors from the mouse and monkey publication-title: Br. J. Pharmacol. – volume: 330 start-page: 1066 year: 2010 end-page: 1071 article-title: Structures of the CXCR4 chemokine GPCR with small‐molecule and cyclic peptide antagonists publication-title: Science – volume: 53 start-page: 2695 year: 2010 end-page: 2708 article-title: Urotensin‐II receptor modulators as potential drugs publication-title: J. Med. Chem. – ident: e_1_2_8_38_1 doi: 10.1002/1521-3773(20020816)41:16<2940::AID-ANIE2940>3.0.CO;2-M – ident: e_1_2_8_45_1 doi: 10.1038/nature12944 – ident: e_1_2_8_61_1 doi: 10.1016/j.bcp.2014.08.023 – ident: e_1_2_8_47_1 doi: 10.1073/pnas.1317903111 – ident: e_1_2_8_26_1 doi: 10.1063/1.438208 – ident: e_1_2_8_42_1 doi: 10.1021/jm058043j – ident: e_1_2_8_49_1 doi: 10.1038/nature11896 – volume: 68 start-page: 893 year: 1994 ident: e_1_2_8_21_1 article-title: Optimization of disulfide bond formation publication-title: Pol. J. Chem. contributor: fullname: Misika A – ident: e_1_2_8_30_1 doi: 10.1073/pnas.85.15.5350 – ident: e_1_2_8_31_1 doi: 10.1021/jm0309912 – ident: e_1_2_8_41_1 doi: 10.1021/jm500218x – ident: e_1_2_8_22_1 doi: 10.1006/jmra.1995.1047 – ident: e_1_2_8_43_1 doi: 10.1051/epn/19861701011 – ident: e_1_2_8_3_1 doi: 10.1016/0006-291X(92)91095-8 – ident: e_1_2_8_18_1 doi: 10.1021/jm901294u – ident: e_1_2_8_16_1 doi: 10.1111/j.1749-6632.2010.05514.x – ident: e_1_2_8_33_1 doi: 10.1186/1471-2105-9-40 – ident: e_1_2_8_53_1 doi: 10.1021/jm1005868 – ident: e_1_2_8_37_1 doi: 10.1007/s10723-012-9246-z – ident: e_1_2_8_50_1 doi: 10.1021/bi00212a022 – ident: e_1_2_8_10_1 doi: 10.1016/j.peptides.2004.04.019 – ident: e_1_2_8_46_1 doi: 10.1038/nature10954 – ident: e_1_2_8_48_1 doi: 10.1107/S0021889892009944 – ident: e_1_2_8_2_1 doi: 10.1073/pnas.77.8.5021 – ident: e_1_2_8_36_1 doi: 10.1038/nprot.2010.32 – volume-title: Solid Phase Peptide Synthesis year: 1984 ident: e_1_2_8_39_1 contributor: fullname: Stewart JM – ident: e_1_2_8_15_1 – ident: e_1_2_8_20_1 doi: 10.1124/mol.110.067066 – ident: e_1_2_8_52_1 doi: 10.1021/jm070886i – ident: e_1_2_8_40_1 doi: 10.1021/jm900148c – ident: e_1_2_8_62_1 doi: 10.1021/bi060190b – ident: e_1_2_8_14_1 doi: 10.1016/j.neuroscience.2004.12.045 – ident: e_1_2_8_54_1 doi: 10.1016/j.ejmech.2011.05.038 – ident: e_1_2_8_57_1 doi: 10.1002/ardp.201300269 – ident: e_1_2_8_34_1 doi: 10.1038/nprot.2009.2 – ident: e_1_2_8_23_1 doi: 10.1021/ja00388a062 – ident: e_1_2_8_5_1 doi: 10.1016/S0014-5793(99)01003-0 – ident: e_1_2_8_24_1 doi: 10.1016/0006-291X(83)91093-8 – ident: e_1_2_8_28_1 doi: 10.1007/BF00417486 – ident: e_1_2_8_59_1 doi: 10.1016/j.bcp.2009.01.013 – ident: e_1_2_8_17_1 doi: 10.3389/fendo.2012.00174 – ident: e_1_2_8_25_1 doi: 10.1016/0022-2364(83)90226-3 – ident: e_1_2_8_55_1 doi: 10.1021/ml500241n – ident: e_1_2_8_19_1 doi: 10.1111/j.1476-5381.2012.02217.x – ident: e_1_2_8_12_1 doi: 10.1016/S0925-4773(00)00548-7 – ident: e_1_2_8_58_1 doi: 10.1126/science.289.5480.739 – ident: e_1_2_8_35_1 doi: 10.1038/nprot.2010.5 – ident: e_1_2_8_44_1 doi: 10.1021/bi00121a010 – ident: e_1_2_8_27_1 doi: 10.1016/0022-2364(82)90279-7 – ident: e_1_2_8_63_1 doi: 10.1126/science.1194396 – ident: e_1_2_8_29_1 doi: 10.1006/jmbi.1997.1284 – ident: e_1_2_8_7_1 doi: 10.1038/sj.bjp.0704671 – ident: e_1_2_8_32_1 doi: 10.1002/jcc.20084 – ident: e_1_2_8_8_1 doi: 10.1038/45809 – ident: e_1_2_8_11_1 doi: 10.1002/(SICI)1096-9861(19960108)364:2<324::AID-CNE10>3.0.CO;2-P – ident: e_1_2_8_9_1 doi: 10.1016/j.bbrc.2003.09.102 – ident: e_1_2_8_56_1 doi: 10.1002/psc.2498 – ident: e_1_2_8_6_1 doi: 10.1006/bbrc.1999.1640 – ident: e_1_2_8_51_1 doi: 10.1021/jm040867y – ident: e_1_2_8_60_1 doi: 10.1016/j.bcp.2013.09.015 – ident: e_1_2_8_13_1 doi: 10.1016/S0306-4522(02)00413-X – ident: e_1_2_8_4_1 doi: 10.1073/pnas.95.26.15803 |
SSID | ssj0009956 |
Score | 2.2156694 |
Snippet | The urotensin II receptor (UTR) has long been studied mainly for its involvement in the cardiovascular homeostasis both in health and disease state. Two... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 392 |
SubjectTerms | Amino Acid Sequence Animals biased agonism conformation by NMR docking studies Humans Magnetic Resonance Spectroscopy Models, Molecular Molecular Docking Simulation Peptide Hormones - agonists Peptide Hormones - chemical synthesis Peptide Hormones - chemistry Peptide Hormones - metabolism Peptides Protein Conformation Receptors, G-Protein-Coupled - chemistry Receptors, G-Protein-Coupled - metabolism Sodium Dodecyl Sulfate - chemistry Structure-Activity Relationship therapeutic peptide urotensin II-related peptide urotensin-II Urotensins - agonists Urotensins - chemistry Urotensins - metabolism |
Title | An investigation into the origin of the biased agonism associated with the urotensin II receptor activation |
URI | https://api.istex.fr/ark:/67375/WNG-XZ4C5XX0-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpsc.2740 https://www.ncbi.nlm.nih.gov/pubmed/25694247 https://www.proquest.com/docview/1676212906 https://search.proquest.com/docview/1677373841 https://search.proquest.com/docview/1680435545 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA8yQX3xY37s6pQI4lvvkjRt0sdx3dyEjaEOiz6E0zaVcVl7We8F8a_3nKa9lw0V8amkPaHJydfvJCe_w9gbZdLaqLKOvIEk0qqqI5tKG4GnsFZSlUbQbeST0_ToXH_Ik3zwqqS7MIEfYr3hRiOjn69pgEPR7W1IQxddOUWTisx1GRvy5nr3ccMcRRc2g7shOXFJM_LOCrU3Zry2Et0mpf74Hcy8jlr7ZefwAfs2Fjh4m8ynq2UxLX_e4HL8vxo9ZPcHNMr3Q_d5xG75ZpvdnY1B4LbZnZPh7P0xm-83_GLDytFSatlyBJA8RNfibd2nigtcGSsO33G66C45DB0AX9Gmby-yInaIpsM8x8cc51y_QNOf0x2LsEP8hJ0fHnyeHUVDqIao1JkQUWVVAdbqDIStlS0BYUOsEOvRuStoxFiyRiAmZVXg1Fzp1AKA8JDJQkPibfyUbTVt43cYRxNQgo9rmVhEN9ZDiogpE1Vc25TY6yfs9dhsbhEYOVzgXlYONehIgxP2tm_PtQBczcmDzSTuy-l7l3_VsyTPhTubsN2xwd0weDsnU1whaH8uxX-tP6Pi6SwFGt-uehlDpFBa_k3GCk14LpmwZ6EzrQuESDPTShssad8l_lgVd_ZpRs_n_yr4gt1DUJcEp8xdtrW8WvmXCJyWxat-iPwCo00SDg |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KC-te1q77StdtGoy9ObVk2ZbZU0nXJVsTytYyMwpCtuVRQu3QJFD21-_OshM6tjH2ZGSfsL5O-ul0-h3AGxFHZSzy0rOxCT0pitJTEVeesRTWios89uk28ngSDS_kxzRMN-BddxfG8UOsDG6kGc18TQpOBunDNWvobJ73cU-F-_Ut1PaA4jYcf15zR9GVTedwSG5cPO6YZ31x2OW8sxZtUbPe_g5o3sWtzcJzsgOXXZGdv8m0v1xk_fzHL2yO_1mnXXjQAlJ25EbQQ9iw1R5sD7o4cHtwb9wevz-C6VHFrtbEHDWlFjVDDMlcgC1Wl00qu8LFsWDmO84Y82tm2jGAr8ju24gsiSCimmOe0YjhtGtnuPtndM3CGYkfw8XJ-_PB0GujNXi5THzfK5TIjFIyMb4qhcoNIodAINyjo1cjEWbxErEY50WGs3MhI2WM8a1JeCZNaFXwBDarurLPgOEukBsblDxUCHCUNRGCpsQvglJFRGDfg9ddv-mZI-XQjn5ZaGxBTS3Yg7dNh64EzM2UnNjiUH-dfNDpNzkI09TXZz046Hpct_o71zzCRYJMdBH-a_UZG56OU0xl62UjExMvlOR_k1G-JEgX9uCpG02rAiHYTKSQMZa0GRN_rIo--zKg5_6_Cr6C7eH5-FSfjiafnsN9xHih89E8gM3FzdK-QBy1yF42-vITrFwWJg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbQJg1e2BgwOjYwEuItne06jvM4dSsrsKoCJiJ4sJzERlNFUq2thPjruYuTVkOAEE-Rk7Nin399Z5-_I-SlSJRPROEjl9g4kqL0kVZcR9ZhWCsuioThbeTLibq4km-yOGu9KvEuTOCHWG-44cho5msc4PPSn2xIQ-eLog8mFZjr21IB8EVA9H5DHYU3NoO_IXpx8aQjnmXipMt5aynaRq1-_x3OvA1bm3VntEu-dCUO7iaz_mqZ94sfv5A5_l-V9sj9Fo7S09B_HpA7rtond4ddFLh9snPZHr4_JLPTil5vaDlqTC1rCgiShvBatPZNKr-GpbGk9ivMF4tv1LY9AF7hrm8jskJ6iGoBecZjCpOum4PtT_GSRdgifkSuRucfhxdRG6shKmTKWFRqkVutZWqZ9kIXFnDDQADYw4NXKwFkcQ9IjPMyh7m5lEpba5mzKc-ljZ0ePCZbVV25J4SCDcitG3gea4A32lkFkCll5cBrhfT1PfKiazYzD5QcJpAvCwMaNKjBHnnVtOdawN7M0IUtic2nyWuTfZbDOMuYmfbIUdfgph29C8MVLBG4QafgX-vPoHg8TLGVq1eNTIKsUJL_TUYziYAu7pGD0JnWBQKomUohEyhp0yX-WBUz_TDE5-G_Cj4nO9OzkXk3nrx9Su4BwIuDg-YR2VrerNwxgKhl_qwZLT8BWJwU1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+into+the+origin+of+the+biased+agonism+associated+with+the+urotensin+II+receptor+activation&rft.jtitle=Journal+of+peptide+science&rft.au=Brancaccio%2C+Diego&rft.au=Merlino%2C+Francesco&rft.au=Limatola%2C+Antonio&rft.au=Yousif%2C+Ali+Munaim&rft.date=2015-05-01&rft.eissn=1099-1387&rft.volume=21&rft.issue=5&rft.spage=392&rft_id=info:doi/10.1002%2Fpsc.2740&rft_id=info%3Apmid%2F25694247&rft.externalDocID=25694247 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1075-2617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1075-2617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1075-2617&client=summon |