Non‐Interpenetrated Single‐Crystal Covalent Organic Frameworks

Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which p...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 41; pp. 17991 - 17995
Main Authors Liang, Lin, Qiu, Yi, Wang, Wei David, Han, Jing, Luo, Yi, Yu, Wei, Yin, Guan‐Lin, Wang, Zhi‐Peng, Zhang, Lei, Ni, Jianwei, Niu, Jing, Sun, Junliang, Ma, Tianqiong, Wang, Wei
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.10.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state. A 3D single‐crystal COF with a non‐interpenetrated structure was constructed for the first time. The highly open framework provides a unique matrix‐isolation platform to investigate the intrinsic dynamics of individual AIE moiety.
AbstractList Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2 H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×10 4  Hz at 203 K to 1.5×10 7  Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state.
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state 2 H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104  Hz at 203 K to 1.5×107  Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state.Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state 2 H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104  Hz at 203 K to 1.5×107  Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state.
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state(2)H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0x10(4) Hz at 203 K to 1.5x10(7) Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state.
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state. A 3D single‐crystal COF with a non‐interpenetrated structure was constructed for the first time. The highly open framework provides a unique matrix‐isolation platform to investigate the intrinsic dynamics of individual AIE moiety.
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state.
Author Wang, Wei
Yu, Wei
Ma, Tianqiong
Qiu, Yi
Zhang, Lei
Niu, Jing
Wang, Wei David
Han, Jing
Luo, Yi
Wang, Zhi‐Peng
Ni, Jianwei
Sun, Junliang
Liang, Lin
Yin, Guan‐Lin
Author_xml – sequence: 1
  givenname: Lin
  surname: Liang
  fullname: Liang, Lin
  organization: Lanzhou University
– sequence: 2
  givenname: Yi
  surname: Qiu
  fullname: Qiu, Yi
  organization: Peking University
– sequence: 3
  givenname: Wei David
  surname: Wang
  fullname: Wang, Wei David
  organization: Lanzhou University
– sequence: 4
  givenname: Jing
  surname: Han
  fullname: Han, Jing
  organization: Lanzhou University
– sequence: 5
  givenname: Yi
  surname: Luo
  fullname: Luo, Yi
  organization: Stockholm University
– sequence: 6
  givenname: Wei
  surname: Yu
  fullname: Yu, Wei
  organization: Lanzhou University
– sequence: 7
  givenname: Guan‐Lin
  surname: Yin
  fullname: Yin, Guan‐Lin
  organization: Lanzhou University
– sequence: 8
  givenname: Zhi‐Peng
  surname: Wang
  fullname: Wang, Zhi‐Peng
  organization: Lanzhou University
– sequence: 9
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  organization: Peking University
– sequence: 10
  givenname: Jianwei
  surname: Ni
  fullname: Ni, Jianwei
  organization: Lanzhou University
– sequence: 11
  givenname: Jing
  surname: Niu
  fullname: Niu, Jing
  organization: Lanzhou University
– sequence: 12
  givenname: Junliang
  surname: Sun
  fullname: Sun, Junliang
  email: junliang.sun@pku.edu.cn
  organization: Peking University
– sequence: 13
  givenname: Tianqiong
  surname: Ma
  fullname: Ma, Tianqiong
  email: tianqiongma@pku.edu.cn
  organization: Peking University
– sequence: 14
  givenname: Wei
  orcidid: 0000-0002-9263-7927
  surname: Wang
  fullname: Wang, Wei
  email: wang_wei@lzu.edu.cn
  organization: Lanzhou University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185366$$DView record from Swedish Publication Index
BookMark eNqFkU1P4zAQhi0E0tLCdc-V9rIH0vVXEudYCmUrIXrg42pNkkllSO1iJ1v1tj9hf-P-ElwVgYSEONmSn2dmPO-AHFpnkZDvjI4ZpfwXWINjTjmlORf0gByzlLNE5Lk4jHcpRJKrlH0jgxAeI68UzY7J-Y2z___-m9sO_Rotdh46rEe3xi5bjA9Tvw0dtKOp-wMt2m608MvYqBrNPKxw4_xTOCFHDbQBT1_PIbmfXd5NfyfXi6v5dHKdVLKgNElzqFWZKkShalVAAwWCVLKWyECURZXWsiyp5JA1NAOGHGgpG6x4gyKvMzEkZ_u6YYPrvtRrb1bgt9qB0RfmYaKdX-rQa6ZSke3wn3t87d1zj6HTKxMqbFuw6PqguYxbSjOW04j--IA-ut7b-JlIySxnSha7guM9VXkXgsfmbQJG9S4BvUtAvyUQBflBqEwHnXE2btm0n2vFXtuYFrdfNNGTm_nlu_sC8H-fig
CitedBy_id crossref_primary_10_1002_adma_202102290
crossref_primary_10_1021_acscatal_2c05203
crossref_primary_10_1016_j_trechm_2022_01_002
crossref_primary_10_1039_D3CC01970E
crossref_primary_10_1007_s40820_021_00696_2
crossref_primary_10_1021_acssuschemeng_2c07168
crossref_primary_10_1002_ange_202204899
crossref_primary_10_1039_D1GC04741H
crossref_primary_10_1039_D3CS00553D
crossref_primary_10_1021_jacs_4c13256
crossref_primary_10_1002_nadc_20214105947
crossref_primary_10_1039_D2QM00646D
crossref_primary_10_1038_s41570_022_00437_y
crossref_primary_10_1039_D2TC02170F
crossref_primary_10_1007_s11426_023_1640_1
crossref_primary_10_1039_D1CC06164J
crossref_primary_10_1039_D4NR03204G
crossref_primary_10_1002_ange_202304611
crossref_primary_10_1016_j_trechm_2023_09_002
crossref_primary_10_1021_acs_chemmater_1c02382
crossref_primary_10_1021_jacs_1c03739
crossref_primary_10_1016_j_cclet_2024_110294
crossref_primary_10_1039_D1MA00008J
crossref_primary_10_1016_j_ccr_2024_215659
crossref_primary_10_1021_jacs_3c07904
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1002_idm2_12140
crossref_primary_10_1021_acs_langmuir_4c02425
crossref_primary_10_1126_science_abd6406
crossref_primary_10_1016_j_trac_2024_117625
crossref_primary_10_1002_adtp_202100177
crossref_primary_10_1016_j_ccr_2021_213969
crossref_primary_10_1021_acs_analchem_4c00217
crossref_primary_10_1038_s41467_023_35931_4
crossref_primary_10_1002_ange_202412977
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_3390_polym15040887
crossref_primary_10_1021_acs_molpharmaceut_1c00601
crossref_primary_10_1039_D3CS00287J
crossref_primary_10_1002_anie_202304611
crossref_primary_10_1002_ange_202100434
crossref_primary_10_1016_j_rineng_2024_103076
crossref_primary_10_1039_D1CC01857D
crossref_primary_10_1038_s43586_022_00181_z
crossref_primary_10_1021_acs_chemmater_3c03168
crossref_primary_10_1002_adom_202202148
crossref_primary_10_1039_D4CS00703D
crossref_primary_10_1039_D2CC03498K
crossref_primary_10_1021_jacs_4c08951
crossref_primary_10_1016_j_matt_2023_11_020
crossref_primary_10_1107_S2052252524003713
crossref_primary_10_1126_science_adk8680
crossref_primary_10_1021_jacs_1c12708
crossref_primary_10_1016_j_micromeso_2022_112318
crossref_primary_10_1021_jacs_3c13069
crossref_primary_10_1021_jacs_3c13863
crossref_primary_10_1039_D1MA00506E
crossref_primary_10_1002_anie_202100434
crossref_primary_10_1002_adfm_202302637
crossref_primary_10_1007_s12274_022_5307_1
crossref_primary_10_1039_D1SC00738F
crossref_primary_10_1016_j_commatsci_2024_113555
crossref_primary_10_1021_jacs_2c13817
crossref_primary_10_1016_j_bios_2025_117202
crossref_primary_10_1021_acs_chemmater_3c01952
crossref_primary_10_1038_s41596_023_00915_7
crossref_primary_10_1002_anie_202412977
crossref_primary_10_1039_D1MH00809A
crossref_primary_10_1021_jacs_4c10071
crossref_primary_10_1002_anie_202204899
crossref_primary_10_1126_science_adr0936
crossref_primary_10_1039_D0MH01710H
crossref_primary_10_1021_jacs_2c11071
crossref_primary_10_3390_polym16060761
crossref_primary_10_1002_chem_202404423
crossref_primary_10_1039_D2TA01546C
crossref_primary_10_1039_D4QO02211D
Cites_doi 10.1126/science.1192160
10.1021/ja3103154
10.1002/anie.201309362
10.1002/anie.201710633
10.1038/s41467-018-07670-4
10.1021/ja508962m
10.1039/b105159h
10.1126/science.aat7679
10.1007/BF00765044
10.1002/ange.201502912
10.1021/jacs.6b01398
10.1002/anie.202000845
10.1002/anie.201905591
10.1002/ange.201001238
10.1002/bbpc.199500077
10.1021/ja8096256
10.1021/jacs.8b01774
10.1021/ja5092936
10.1126/science.1245875
10.1002/anie.201108462
10.1021/jacs.7b01097
10.1002/ange.201710633
10.1039/b921610c
10.1002/chem.201403811
10.1126/science.aal1585
10.1021/jacs.6b02700
10.1021/ja306042w
10.1038/nchem.1730
10.1002/advs.201801410
10.1038/s41467-020-15281-1
10.1021/acs.chemmater.8b00117
10.1016/j.ssnmr.2012.09.003
10.1021/ja027444a
10.1126/science.1139915
10.1002/anie.201502912
10.1126/science.280.5370.1732
10.1126/science.309.5731.95
10.1126/science.aau1701
10.1021/jacs.7b07657
10.1021/acs.accounts.8b00297
10.1039/b804757j
10.1021/jacs.6b10316
10.1002/ange.201904291
10.1002/ange.201712246
10.1039/c2jm31949g
10.1002/ange.201108462
10.1002/anie.200904599
10.1038/s41467-017-01293-x
10.1126/science.aar7883
10.1021/j100111a037
10.1126/science.1215768
10.1002/anie.201712246
10.1002/anie.202002724
10.1021/jacs.0c00560
10.1002/ange.201310500
10.1002/anie.201904291
10.1021/jacs.6b00652
10.1002/ange.200904599
10.1002/ange.201309362
10.1002/ange.202002724
10.1038/nchem.2008
10.1038/nchem.1265
10.1002/chem.201101383
10.1021/ja003159k
10.1002/adma.201401356
10.1002/ange.202000845
10.1021/ja409033p
10.1002/anie.201310500
10.1002/anie.201001238
10.1038/nchem.2444
10.1080/10408349308051654
10.1021/jacs.8b12177
10.1021/jacs.7b12110
10.1002/ange.201905591
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID AAYXX
CITATION
7TM
K9.
7X8
ADTPV
AOWAS
DG7
DOI 10.1002/anie.202007230
DatabaseName CrossRef
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 17995
ExternalDocumentID oai_DiVA_org_su_185366
10_1002_anie_202007230
ANIE202007230
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21632004; 21871009; 21621061; 21527803
– fundername: Higher Education Discipline Innovation Project
  funderid: 111-2-17
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
7TM
K9.
7X8
.GJ
.HR
.Y3
186
31~
9M8
AAMMB
AANHP
AAYJJ
ABDPE
ABEFU
ACBWZ
ACRPL
ACYXJ
ADNMO
ADTPV
ADXHL
AEFGJ
AETEA
AGCDD
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
AOWAS
ASPBG
AVWKF
AZFZN
DG7
EJD
FEDTE
HF~
HVGLF
H~9
LW6
MVM
NHB
OHT
PALCI
RIWAO
RJQFR
RWH
S10
SAMSI
VH1
WHG
XOL
YYP
ZCG
ZE2
ZGI
ZXP
ZY4
ID FETCH-LOGICAL-c4900-57ad8b58ee38d89afa9ea484d4e1a3b9c5d4bb042a6f06a1e2a0b4fec2fe37d63
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Aug 21 06:45:43 EDT 2025
Thu Jul 10 19:55:05 EDT 2025
Sun Jul 13 05:29:36 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Tue Jul 01 01:17:44 EDT 2025
Wed Jan 22 16:33:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4900-57ad8b58ee38d89afa9ea484d4e1a3b9c5d4bb042a6f06a1e2a0b4fec2fe37d63
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9263-7927
PQID 2446718496
PQPubID 946352
PageCount 5
ParticipantIDs swepub_primary_oai_DiVA_org_su_185366
proquest_miscellaneous_2423056170
proquest_journals_2446718496
crossref_primary_10_1002_anie_202007230
crossref_citationtrail_10_1002_anie_202007230
wiley_primary_10_1002_anie_202007230_ANIE202007230
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 5, 2020
PublicationDateYYYYMMDD 2020-10-05
PublicationDate_xml – month: 10
  year: 2020
  text: October 5, 2020
  day: 05
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2018; 361
2017; 8
1998; 280
1993; 23
2009 2009; 48 121
2020 2020; 59 132
2014; 26
1992; 13
2020; 11
2011; 17
2017; 355
2013; 5
2014; 136
2014; 20
2018; 9
2010; 20
2012; 134
2001
2012 2012; 51 124
2018 2018; 57 130
2015 2015; 54 127
2005; 309
2018; 30
2000; 122
2012; 335
2014; 6
2012; 22
2013; 49–50
2010; 329
2019; 6
2018; 140
2020; 142
1995; 99
2010 2010; 49 122
2009; 131
2017 2017; 56 129
2019; 141
2019 2019; 58 131
2017; 139
2007; 316
2002; 124
1993; 97
2013; 135
2016; 138
2018; 51
2012; 4
2016; 8
2009; 38
2014; 343
e_1_2_6_72_3
e_1_2_6_74_1
e_1_2_6_51_2
e_1_2_6_72_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_70_3
e_1_2_6_70_2
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_32_3
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_76_2
e_1_2_6_36_3
e_1_2_6_38_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_1
e_1_2_6_20_2
e_1_2_6_41_1
e_1_2_6_60_2
e_1_2_6_9_1
e_1_2_6_7_2
e_1_2_6_28_3
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_49_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_3
e_1_2_6_66_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_68_2
e_1_2_6_50_2
e_1_2_6_73_2
e_1_2_6_50_3
e_1_2_6_52_2
e_1_2_6_75_2
e_1_2_6_54_1
e_1_2_6_31_2
e_1_2_6_71_2
e_1_2_6_18_2
e_1_2_6_18_3
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_37_3
e_1_2_6_56_1
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_35_3
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_63_3
e_1_2_6_40_2
e_1_2_6_61_1
e_1_2_6_8_2
e_1_2_6_29_3
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
e_1_2_6_48_2
e_1_2_6_69_2
e_1_2_6_2_2
e_1_2_6_23_1
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_67_1
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 361
  start-page: 35
  year: 2018
  end-page: 35
  publication-title: Science
– volume: 51 124
  start-page: 1885 1921
  year: 2012 2012
  end-page: 1889 1925
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 22
  start-page: 23726
  year: 2012
  end-page: 23740
  publication-title: J. Mater. Chem.
– volume: 59 132
  start-page: 5050 5086
  year: 2020 2020
  end-page: 5091 5129
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 5797
  year: 2016
  end-page: 5800
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 1353
  year: 2009
  end-page: 1379
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 18142
  year: 2017
  end-page: 18145
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 677
  year: 2019
  end-page: 683
  publication-title: J. Am. Chem. Soc.
– volume: 329
  start-page: 424
  year: 2010
  end-page: 428
  publication-title: Science
– volume: 99
  start-page: 1316
  year: 1995
  end-page: 1320
  publication-title: Ber. Bunsen-Ges.
– volume: 23
  start-page: 459
  year: 1993
  end-page: 529
  publication-title: Crit. Rev. Anal. Chem.
– volume: 5
  start-page: 830
  year: 2013
  end-page: 834
  publication-title: Nat. Chem.
– volume: 131
  start-page: 4570
  year: 2009
  end-page: 4571
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 4995
  year: 2017
  end-page: 4998
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 15885
  year: 2014
  end-page: 15888
  publication-title: J. Am. Chem. Soc.
– volume: 309
  start-page: 95
  year: 2005
  publication-title: Science
– volume: 361
  start-page: 48
  year: 2018
  end-page: 52
  publication-title: Science
– volume: 11
  start-page: 1434
  year: 2020
  publication-title: Nat. Commun.
– volume: 122
  start-page: 11559
  year: 2000
  end-page: 11560
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 407
  year: 1992
  end-page: 422
  publication-title: Catal. Lett.
– volume: 53 126
  start-page: 2878 2922
  year: 2014 2014
  end-page: 2882 2926
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 48 121
  start-page: 9954 10139
  year: 2009 2009
  end-page: 9957 10142
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 4
  start-page: 287
  year: 2012
  end-page: 291
  publication-title: Nat. Chem.
– volume: 97
  start-page: 1952
  year: 1993
  end-page: 1960
  publication-title: J. Phys. Chem.
– volume: 142
  start-page: 3736
  year: 2020
  end-page: 3741
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 16313 16531
  year: 2017 2017
  end-page: 16317 16535
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 310
  year: 2016
  end-page: 316
  publication-title: Nat. Chem.
– volume: 134
  start-page: 15061
  year: 2012
  end-page: 15070
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 9244 9376
  year: 2015 2015
  end-page: 9248 9380
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 335
  start-page: 981
  year: 2012
  end-page: 984
  publication-title: Science
– volume: 30
  start-page: 1762
  year: 2018
  end-page: 1768
  publication-title: Chem. Mater.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 124
  start-page: 10656
  year: 2002
  end-page: 10657
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 9770 9872
  year: 2019 2019
  end-page: 9775 9877
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 19596
  year: 2012
  end-page: 19599
  publication-title: J. Am. Chem. Soc.
– volume: 51
  start-page: 2129
  year: 2018
  end-page: 2138
  publication-title: Acc. Chem. Res.
– volume: 361
  start-page: 52
  year: 2018
  end-page: 57
  publication-title: Science
– volume: 136
  start-page: 15485
  year: 2014
  end-page: 15488
  publication-title: J. Am. Chem. Soc.
– volume: 57 130
  start-page: 6042 6150
  year: 2018 2018
  end-page: 6048 6156
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 1858
  year: 2010
  end-page: 1867
  publication-title: J. Mater. Chem.
– volume: 140
  start-page: 5330
  year: 2018
  end-page: 5333
  publication-title: J. Am. Chem. Soc.
– volume: 135
  start-page: 16336
  year: 2013
  end-page: 16339
  publication-title: J. Am. Chem. Soc.
– volume: 49–50
  start-page: 1
  year: 2013
  end-page: 11
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 8
  start-page: 1142
  year: 2017
  publication-title: Nat. Commun.
– volume: 59 132
  start-page: 9868 9952
  year: 2020 2020
  end-page: 9886 9970
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 3302
  year: 2016
  end-page: 3305
  publication-title: J. Am. Chem. Soc.
– volume: 49 122
  start-page: 4791 4901
  year: 2010 2010
  end-page: 4794 4904
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 5234
  year: 2018
  publication-title: Nat. Commun.
– volume: 280
  start-page: 1732
  year: 1998
  end-page: 1735
  publication-title: Science
– volume: 26
  start-page: 5429
  year: 2014
  end-page: 5479
  publication-title: Adv. Mater.
– start-page: 1740
  year: 2001
  end-page: 1741
  publication-title: Chem. Commun.
– volume: 138
  start-page: 15134
  year: 2016
  end-page: 15137
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 15349
  year: 2014
  end-page: 15353
  publication-title: Chem. Eur. J.
– volume: 53 126
  start-page: 1043 1061
  year: 2014 2014
  end-page: 1047 1065
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 774
  year: 2014
  end-page: 778
  publication-title: Nat. Chem.
– volume: 343
  start-page: 272
  year: 2014
  end-page: 277
  publication-title: Science
– volume: 316
  start-page: 268
  year: 2007
  end-page: 272
  publication-title: Science
– volume: 17
  start-page: 13007
  year: 2011
  end-page: 13016
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 4650
  year: 2016
  end-page: 4656
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 11527 11624
  year: 2020 2020
  end-page: 11532 11629
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 892
  year: 2018
  end-page: 895
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_19_2
  doi: 10.1126/science.1192160
– ident: e_1_2_6_23_1
– ident: e_1_2_6_49_2
  doi: 10.1021/ja3103154
– ident: e_1_2_6_72_2
  doi: 10.1002/anie.201309362
– ident: e_1_2_6_32_2
  doi: 10.1002/anie.201710633
– ident: e_1_2_6_46_2
  doi: 10.1038/s41467-018-07670-4
– ident: e_1_2_6_52_2
  doi: 10.1021/ja508962m
– ident: e_1_2_6_65_2
  doi: 10.1039/b105159h
– ident: e_1_2_6_15_2
  doi: 10.1126/science.aat7679
– ident: e_1_2_6_68_2
  doi: 10.1007/BF00765044
– ident: e_1_2_6_50_3
  doi: 10.1002/ange.201502912
– ident: e_1_2_6_76_2
  doi: 10.1021/jacs.6b01398
– ident: e_1_2_6_63_2
  doi: 10.1002/anie.202000845
– ident: e_1_2_6_36_2
  doi: 10.1002/anie.201905591
– ident: e_1_2_6_70_3
  doi: 10.1002/ange.201001238
– ident: e_1_2_6_67_1
– ident: e_1_2_6_73_2
  doi: 10.1002/bbpc.199500077
– ident: e_1_2_6_25_2
  doi: 10.1021/ja8096256
– ident: e_1_2_6_34_2
  doi: 10.1021/jacs.8b01774
– ident: e_1_2_6_42_2
  doi: 10.1021/ja5092936
– ident: e_1_2_6_7_2
  doi: 10.1126/science.1245875
– ident: e_1_2_6_28_2
  doi: 10.1002/anie.201108462
– ident: e_1_2_6_31_2
  doi: 10.1021/jacs.7b01097
– ident: e_1_2_6_32_3
  doi: 10.1002/ange.201710633
– ident: e_1_2_6_39_2
  doi: 10.1039/b921610c
– ident: e_1_2_6_55_1
– ident: e_1_2_6_66_2
  doi: 10.1002/chem.201403811
– ident: e_1_2_6_3_2
  doi: 10.1126/science.aal1585
– ident: e_1_2_6_44_2
  doi: 10.1021/jacs.6b02700
– ident: e_1_2_6_48_2
  doi: 10.1021/ja306042w
– ident: e_1_2_6_14_2
  doi: 10.1038/nchem.1730
– ident: e_1_2_6_27_2
  doi: 10.1002/advs.201801410
– ident: e_1_2_6_8_2
  doi: 10.1038/s41467-020-15281-1
– ident: e_1_2_6_53_2
  doi: 10.1021/acs.chemmater.8b00117
– ident: e_1_2_6_71_2
  doi: 10.1016/j.ssnmr.2012.09.003
– ident: e_1_2_6_6_2
  doi: 10.1021/ja027444a
– ident: e_1_2_6_24_2
  doi: 10.1126/science.1139915
– ident: e_1_2_6_50_2
  doi: 10.1002/anie.201502912
– ident: e_1_2_6_57_2
  doi: 10.1126/science.280.5370.1732
– ident: e_1_2_6_61_1
– ident: e_1_2_6_2_2
  doi: 10.1126/science.309.5731.95
– ident: e_1_2_6_9_1
– ident: e_1_2_6_4_2
  doi: 10.1126/science.aau1701
– ident: e_1_2_6_51_2
  doi: 10.1021/jacs.7b07657
– ident: e_1_2_6_60_2
  doi: 10.1021/acs.accounts.8b00297
– ident: e_1_2_6_58_2
  doi: 10.1039/b804757j
– ident: e_1_2_6_21_2
  doi: 10.1021/jacs.6b10316
– ident: e_1_2_6_26_3
  doi: 10.1002/ange.201904291
– ident: e_1_2_6_35_3
  doi: 10.1002/ange.201712246
– ident: e_1_2_6_40_2
  doi: 10.1039/c2jm31949g
– ident: e_1_2_6_28_3
  doi: 10.1002/ange.201108462
– ident: e_1_2_6_18_2
  doi: 10.1002/anie.200904599
– ident: e_1_2_6_1_1
– ident: e_1_2_6_45_2
  doi: 10.1038/s41467-017-01293-x
– ident: e_1_2_6_12_2
  doi: 10.1126/science.aar7883
– ident: e_1_2_6_69_2
  doi: 10.1021/j100111a037
– ident: e_1_2_6_74_1
– ident: e_1_2_6_56_1
– ident: e_1_2_6_64_1
– ident: e_1_2_6_59_2
  doi: 10.1126/science.1215768
– ident: e_1_2_6_35_2
  doi: 10.1002/anie.201712246
– ident: e_1_2_6_37_2
  doi: 10.1002/anie.202002724
– ident: e_1_2_6_22_2
  doi: 10.1021/jacs.0c00560
– ident: e_1_2_6_29_3
  doi: 10.1002/ange.201310500
– ident: e_1_2_6_17_1
– ident: e_1_2_6_26_2
  doi: 10.1002/anie.201904291
– ident: e_1_2_6_41_1
– ident: e_1_2_6_30_2
  doi: 10.1021/jacs.6b00652
– ident: e_1_2_6_18_3
  doi: 10.1002/ange.200904599
– ident: e_1_2_6_5_1
– ident: e_1_2_6_72_3
  doi: 10.1002/ange.201309362
– ident: e_1_2_6_37_3
  doi: 10.1002/ange.202002724
– ident: e_1_2_6_11_2
  doi: 10.1038/nchem.2008
– ident: e_1_2_6_10_2
  doi: 10.1038/nchem.1265
– ident: e_1_2_6_20_2
  doi: 10.1002/chem.201101383
– ident: e_1_2_6_54_1
  doi: 10.1021/ja003159k
– ident: e_1_2_6_62_2
  doi: 10.1002/adma.201401356
– ident: e_1_2_6_13_1
– ident: e_1_2_6_63_3
  doi: 10.1002/ange.202000845
– ident: e_1_2_6_38_1
– ident: e_1_2_6_16_2
  doi: 10.1021/ja409033p
– ident: e_1_2_6_29_2
  doi: 10.1002/anie.201310500
– ident: e_1_2_6_70_2
  doi: 10.1002/anie.201001238
– ident: e_1_2_6_43_2
  doi: 10.1038/nchem.2444
– ident: e_1_2_6_75_2
  doi: 10.1080/10408349308051654
– ident: e_1_2_6_47_2
  doi: 10.1021/jacs.8b12177
– ident: e_1_2_6_33_2
  doi: 10.1021/jacs.7b12110
– ident: e_1_2_6_36_3
  doi: 10.1002/ange.201905591
SSID ssj0028806
Score 2.5832844
Snippet Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the...
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17991
SubjectTerms 3D COFs
Benzene
Covalence
Crystal growth
Crystal structure
Crystals
Emission analysis
matrix isolation
NMR
non-interpenetrated frameworks
Nuclear magnetic resonance
Single crystals
solid-state NMR
Title Non‐Interpenetrated Single‐Crystal Covalent Organic Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007230
https://www.proquest.com/docview/2446718496
https://www.proquest.com/docview/2423056170
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185366
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EeWlIIGY0qaJ48ZjKVQFiQ5AUTfLdi4IUSWojwEmfgK_kV_COW5Ci4SQYEsU23HsO993zt1nQo6plpoqplzuJeig0HrsSqa0qzWgOdGh0oFJFL7usk6PXvXD_kwWv-WHKDfcjGbk67VRcKlGtS_SUJOBjf6d2WtDGI2LsAnYMqjopuSP8lE4bXpRELjmFPqCtdHza_PV563SDNS09KHzyDU3Pe1VIotO24iTp-pkrKr69Ruf43--ao2sTHGp07SCtE4WIN0gS63iOLhNctbN0o-3dxukiAtkzmobO7do-gaAD1rDFwSaA6eVoeyiJXNslqd22kX412iL9NoXd62OOz2AwdWUe54bNmQcqTACCKI44jKRHCSNaEyhLgPFdRhTpVDtJUs8JuvgS0_RBLSfQNCIWbBNFtMshR3iIBAJolAxSIBTje3JWPoc3T3wJE-AVohbTIDQU3Zyc0jGQFheZV-YkRHlyFTIaVn-2fJy_Fhyv5hPMdXPkUBQw9AqU84q5Kh8jCNqfpfIFLKJKePn_lUDmzixclC-ypBynz_eN0U2fBCjiTCoh2Fbfj63v_RINLuXF-Xd7l8q7ZFlc51HFYb7ZHE8nMABoqOxOsw14BN7swoA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOMCFFgpigZYggXoKZBPHGx-3W1bLaw8UEDfLdiYIsUrQPg701J_Q39hf0nG8CV2kCgmOSWzHsT2eb5yZbwD2mVGGaa59EWRkoLBm6iuujW8MkjoxsTaRDRS-6PPeNTu9jStvQhsL4_gh6gM3Kxnlfm0F3B5IHz2zhtoQbDLw7GEb4eh5WLRpvUur6rJmkAppeboAoyjybR76ircxCI9m68_qpX_ApiMQncWupfLpfgBdddv5nDwcTsb60Px8wej4ru_6CCtTaOq13VpahTnM12CpU2WE-wTf-kX-59dv56dIe2RJbJt6P0j7DZAedIZPhDUHXqeg5UvKzHOBnsbrVh5go3W47h5fdXr-NAeDb5gIAj9uqTTRcYIYJWkiVKYEKpawlGFTRVqYOGVak-QrngVcNTFUgWYZmjDDqJXyaAMW8iLHTfAIi0RJrDlmKJih9lSqQkEWHwZKZMga4FczIM2UoNzmyRhIR60cSjsysh6ZBnytyz86ao7_ltypJlRORXQkCddwUsxM8Abs1Y9pRO0fE5VjMbFlwtLEalETB24h1K-yvNzf72_ashjeydFEWuDDqa2wnNxXeiTb_ZPj-mrrLZV2Yal3dXEuz0_6Z9uwbO-XTobxDiyMhxP8TGBprL-U4vAXD38OGw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYALfUDFQimp1KqntNnE8cbH7W5Xfa5Qoag3y49JVbFKqn0c4MRP4Df2l3Qcb0IXqUKCYxLbcewZzzfOzGeAbWaUYZrrUEQ5OSisbUPFtQmNQTInJtUmcYnC50N-dMlOrtKrB1n8nh-i2XBzmlGt107Bb22-_5s01GVgk3_n9toIRj-FZ4xHmZPr_kVDIBWTdPr8oiQJ3TH0NW1jFO8v1l80Sw-wpucPXYSule0ZLIOqe-1DTr7tzaZ6z_z4g9Dxfz5rBV7NgWnQ9ZK0Ck-wWIMXvfo8uNdwMCyLu5-_fJQirZAVra0NPpPtGyE96I2_E9IcBb2ShJdMWeDTPE0wqOO_Jm_gcnD4pXcUzk9gCA0TURSmHWUznWaISWYzoXIlULGMWYZtlWhhUsu0Jr1XPI-4amOsIs1yNHGOScfyZB2WirLAtxAQEkmyVHPMUTBD7SmrYkH-HkZK5MhaENYTIM2cntydkjGSnlg5lm5kZDMyLdhtyt96Yo5HS27U8ynnCjqRhGo4mWUmeAu2msc0ou5_iSqwnLkyceVgdaiJHS8HzascK3f_5mtXluNrOZlJB3s4tRVXc_uXHsnu8PiwuXr3L5U-wvNP_YE8Ox6evoeX7nYVYZhuwNJ0PMMPhJSmerNShnv4mwzT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Interpenetrated+Single%E2%80%90Crystal+Covalent+Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Lin&rft.au=Qiu%2C+Yi&rft.au=Wang%2C+Wei+David&rft.au=Han%2C+Jing&rft.date=2020-10-05&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=41&rft.spage=17991&rft.epage=17995&rft_id=info:doi/10.1002%2Fanie.202007230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202007230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon