Non‐Interpenetrated Single‐Crystal Covalent Organic Frameworks
Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which p...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 41; pp. 17991 - 17995 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.10.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state.
A 3D single‐crystal COF with a non‐interpenetrated structure was constructed for the first time. The highly open framework provides a unique matrix‐isolation platform to investigate the intrinsic dynamics of individual AIE moiety. |
---|---|
AbstractList | Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state
2
H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×10
4
Hz at 203 K to 1.5×10
7
Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state. Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state 2 H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state.Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state 2 H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state. Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the exploration of structure-oriented applications. Herein we report for the first time a non-interpenetrated single-crystal COF, LZU-306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU-306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation-induced-emission moiety. Solid-state(2)H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0x10(4) Hz at 203 K to 1.5x10(7) Hz at 293 K. This research not only explores a new paradigm for single-crystal growth of open frameworks, but also provides a unique matrix-isolation platform to reticulate functional moieties into a well-defined and isolated state. Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state. A 3D single‐crystal COF with a non‐interpenetrated structure was constructed for the first time. The highly open framework provides a unique matrix‐isolation platform to investigate the intrinsic dynamics of individual AIE moiety. Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the exploration of structure‐oriented applications. Herein we report for the first time a non‐interpenetrated single‐crystal COF, LZU‐306, which possesses the open structure constructed exclusively via covalent assembly. With a high void volume of 80 %, LZU‐306 was applied to investigate the intrinsic dynamics of reticulated tetraphenylethylene (TPE) as the individual aggregation‐induced‐emission moiety. Solid‐state 2H NMR investigation has determined that the rotation of benzene rings in TPE, being the freest among the reported cases, is as fast as 1.0×104 Hz at 203 K to 1.5×107 Hz at 293 K. This research not only explores a new paradigm for single‐crystal growth of open frameworks, but also provides a unique matrix‐isolation platform to reticulate functional moieties into a well‐defined and isolated state. |
Author | Wang, Wei Yu, Wei Ma, Tianqiong Qiu, Yi Zhang, Lei Niu, Jing Wang, Wei David Han, Jing Luo, Yi Wang, Zhi‐Peng Ni, Jianwei Sun, Junliang Liang, Lin Yin, Guan‐Lin |
Author_xml | – sequence: 1 givenname: Lin surname: Liang fullname: Liang, Lin organization: Lanzhou University – sequence: 2 givenname: Yi surname: Qiu fullname: Qiu, Yi organization: Peking University – sequence: 3 givenname: Wei David surname: Wang fullname: Wang, Wei David organization: Lanzhou University – sequence: 4 givenname: Jing surname: Han fullname: Han, Jing organization: Lanzhou University – sequence: 5 givenname: Yi surname: Luo fullname: Luo, Yi organization: Stockholm University – sequence: 6 givenname: Wei surname: Yu fullname: Yu, Wei organization: Lanzhou University – sequence: 7 givenname: Guan‐Lin surname: Yin fullname: Yin, Guan‐Lin organization: Lanzhou University – sequence: 8 givenname: Zhi‐Peng surname: Wang fullname: Wang, Zhi‐Peng organization: Lanzhou University – sequence: 9 givenname: Lei surname: Zhang fullname: Zhang, Lei organization: Peking University – sequence: 10 givenname: Jianwei surname: Ni fullname: Ni, Jianwei organization: Lanzhou University – sequence: 11 givenname: Jing surname: Niu fullname: Niu, Jing organization: Lanzhou University – sequence: 12 givenname: Junliang surname: Sun fullname: Sun, Junliang email: junliang.sun@pku.edu.cn organization: Peking University – sequence: 13 givenname: Tianqiong surname: Ma fullname: Ma, Tianqiong email: tianqiongma@pku.edu.cn organization: Peking University – sequence: 14 givenname: Wei orcidid: 0000-0002-9263-7927 surname: Wang fullname: Wang, Wei email: wang_wei@lzu.edu.cn organization: Lanzhou University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185366$$DView record from Swedish Publication Index |
BookMark | eNqFkU1P4zAQhi0E0tLCdc-V9rIH0vVXEudYCmUrIXrg42pNkkllSO1iJ1v1tj9hf-P-ElwVgYSEONmSn2dmPO-AHFpnkZDvjI4ZpfwXWINjTjmlORf0gByzlLNE5Lk4jHcpRJKrlH0jgxAeI68UzY7J-Y2z___-m9sO_Rotdh46rEe3xi5bjA9Tvw0dtKOp-wMt2m608MvYqBrNPKxw4_xTOCFHDbQBT1_PIbmfXd5NfyfXi6v5dHKdVLKgNElzqFWZKkShalVAAwWCVLKWyECURZXWsiyp5JA1NAOGHGgpG6x4gyKvMzEkZ_u6YYPrvtRrb1bgt9qB0RfmYaKdX-rQa6ZSke3wn3t87d1zj6HTKxMqbFuw6PqguYxbSjOW04j--IA-ut7b-JlIySxnSha7guM9VXkXgsfmbQJG9S4BvUtAvyUQBflBqEwHnXE2btm0n2vFXtuYFrdfNNGTm_nlu_sC8H-fig |
CitedBy_id | crossref_primary_10_1002_adma_202102290 crossref_primary_10_1021_acscatal_2c05203 crossref_primary_10_1016_j_trechm_2022_01_002 crossref_primary_10_1039_D3CC01970E crossref_primary_10_1007_s40820_021_00696_2 crossref_primary_10_1021_acssuschemeng_2c07168 crossref_primary_10_1002_ange_202204899 crossref_primary_10_1039_D1GC04741H crossref_primary_10_1039_D3CS00553D crossref_primary_10_1021_jacs_4c13256 crossref_primary_10_1002_nadc_20214105947 crossref_primary_10_1039_D2QM00646D crossref_primary_10_1038_s41570_022_00437_y crossref_primary_10_1039_D2TC02170F crossref_primary_10_1007_s11426_023_1640_1 crossref_primary_10_1039_D1CC06164J crossref_primary_10_1039_D4NR03204G crossref_primary_10_1002_ange_202304611 crossref_primary_10_1016_j_trechm_2023_09_002 crossref_primary_10_1021_acs_chemmater_1c02382 crossref_primary_10_1021_jacs_1c03739 crossref_primary_10_1016_j_cclet_2024_110294 crossref_primary_10_1039_D1MA00008J crossref_primary_10_1016_j_ccr_2024_215659 crossref_primary_10_1021_jacs_3c07904 crossref_primary_10_1039_D1CS00983D crossref_primary_10_1002_idm2_12140 crossref_primary_10_1021_acs_langmuir_4c02425 crossref_primary_10_1126_science_abd6406 crossref_primary_10_1016_j_trac_2024_117625 crossref_primary_10_1002_adtp_202100177 crossref_primary_10_1016_j_ccr_2021_213969 crossref_primary_10_1021_acs_analchem_4c00217 crossref_primary_10_1038_s41467_023_35931_4 crossref_primary_10_1002_ange_202412977 crossref_primary_10_1039_D0NA00537A crossref_primary_10_3390_polym15040887 crossref_primary_10_1021_acs_molpharmaceut_1c00601 crossref_primary_10_1039_D3CS00287J crossref_primary_10_1002_anie_202304611 crossref_primary_10_1002_ange_202100434 crossref_primary_10_1016_j_rineng_2024_103076 crossref_primary_10_1039_D1CC01857D crossref_primary_10_1038_s43586_022_00181_z crossref_primary_10_1021_acs_chemmater_3c03168 crossref_primary_10_1002_adom_202202148 crossref_primary_10_1039_D4CS00703D crossref_primary_10_1039_D2CC03498K crossref_primary_10_1021_jacs_4c08951 crossref_primary_10_1016_j_matt_2023_11_020 crossref_primary_10_1107_S2052252524003713 crossref_primary_10_1126_science_adk8680 crossref_primary_10_1021_jacs_1c12708 crossref_primary_10_1016_j_micromeso_2022_112318 crossref_primary_10_1021_jacs_3c13069 crossref_primary_10_1021_jacs_3c13863 crossref_primary_10_1039_D1MA00506E crossref_primary_10_1002_anie_202100434 crossref_primary_10_1002_adfm_202302637 crossref_primary_10_1007_s12274_022_5307_1 crossref_primary_10_1039_D1SC00738F crossref_primary_10_1016_j_commatsci_2024_113555 crossref_primary_10_1021_jacs_2c13817 crossref_primary_10_1016_j_bios_2025_117202 crossref_primary_10_1021_acs_chemmater_3c01952 crossref_primary_10_1038_s41596_023_00915_7 crossref_primary_10_1002_anie_202412977 crossref_primary_10_1039_D1MH00809A crossref_primary_10_1021_jacs_4c10071 crossref_primary_10_1002_anie_202204899 crossref_primary_10_1126_science_adr0936 crossref_primary_10_1039_D0MH01710H crossref_primary_10_1021_jacs_2c11071 crossref_primary_10_3390_polym16060761 crossref_primary_10_1002_chem_202404423 crossref_primary_10_1039_D2TA01546C crossref_primary_10_1039_D4QO02211D |
Cites_doi | 10.1126/science.1192160 10.1021/ja3103154 10.1002/anie.201309362 10.1002/anie.201710633 10.1038/s41467-018-07670-4 10.1021/ja508962m 10.1039/b105159h 10.1126/science.aat7679 10.1007/BF00765044 10.1002/ange.201502912 10.1021/jacs.6b01398 10.1002/anie.202000845 10.1002/anie.201905591 10.1002/ange.201001238 10.1002/bbpc.199500077 10.1021/ja8096256 10.1021/jacs.8b01774 10.1021/ja5092936 10.1126/science.1245875 10.1002/anie.201108462 10.1021/jacs.7b01097 10.1002/ange.201710633 10.1039/b921610c 10.1002/chem.201403811 10.1126/science.aal1585 10.1021/jacs.6b02700 10.1021/ja306042w 10.1038/nchem.1730 10.1002/advs.201801410 10.1038/s41467-020-15281-1 10.1021/acs.chemmater.8b00117 10.1016/j.ssnmr.2012.09.003 10.1021/ja027444a 10.1126/science.1139915 10.1002/anie.201502912 10.1126/science.280.5370.1732 10.1126/science.309.5731.95 10.1126/science.aau1701 10.1021/jacs.7b07657 10.1021/acs.accounts.8b00297 10.1039/b804757j 10.1021/jacs.6b10316 10.1002/ange.201904291 10.1002/ange.201712246 10.1039/c2jm31949g 10.1002/ange.201108462 10.1002/anie.200904599 10.1038/s41467-017-01293-x 10.1126/science.aar7883 10.1021/j100111a037 10.1126/science.1215768 10.1002/anie.201712246 10.1002/anie.202002724 10.1021/jacs.0c00560 10.1002/ange.201310500 10.1002/anie.201904291 10.1021/jacs.6b00652 10.1002/ange.200904599 10.1002/ange.201309362 10.1002/ange.202002724 10.1038/nchem.2008 10.1038/nchem.1265 10.1002/chem.201101383 10.1021/ja003159k 10.1002/adma.201401356 10.1002/ange.202000845 10.1021/ja409033p 10.1002/anie.201310500 10.1002/anie.201001238 10.1038/nchem.2444 10.1080/10408349308051654 10.1021/jacs.8b12177 10.1021/jacs.7b12110 10.1002/ange.201905591 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | AAYXX CITATION 7TM K9. 7X8 ADTPV AOWAS DG7 |
DOI | 10.1002/anie.202007230 |
DatabaseName | CrossRef Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 17995 |
ExternalDocumentID | oai_DiVA_org_su_185366 10_1002_anie_202007230 ANIE202007230 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21632004; 21871009; 21621061; 21527803 – fundername: Higher Education Discipline Innovation Project funderid: 111-2-17 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX ABDBF ABJNI AEYWJ AGHNM AGYGG CITATION 7TM K9. 7X8 .GJ .HR .Y3 186 31~ 9M8 AAMMB AANHP AAYJJ ABDPE ABEFU ACBWZ ACRPL ACYXJ ADNMO ADTPV ADXHL AEFGJ AETEA AGCDD AGQPQ AGXDD AI. AIDQK AIDYY AOWAS ASPBG AVWKF AZFZN DG7 EJD FEDTE HF~ HVGLF H~9 LW6 MVM NHB OHT PALCI RIWAO RJQFR RWH S10 SAMSI VH1 WHG XOL YYP ZCG ZE2 ZGI ZXP ZY4 |
ID | FETCH-LOGICAL-c4900-57ad8b58ee38d89afa9ea484d4e1a3b9c5d4bb042a6f06a1e2a0b4fec2fe37d63 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Aug 21 06:45:43 EDT 2025 Thu Jul 10 19:55:05 EDT 2025 Sun Jul 13 05:29:36 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Tue Jul 01 01:17:44 EDT 2025 Wed Jan 22 16:33:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4900-57ad8b58ee38d89afa9ea484d4e1a3b9c5d4bb042a6f06a1e2a0b4fec2fe37d63 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9263-7927 |
PQID | 2446718496 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_185366 proquest_miscellaneous_2423056170 proquest_journals_2446718496 crossref_primary_10_1002_anie_202007230 crossref_citationtrail_10_1002_anie_202007230 wiley_primary_10_1002_anie_202007230_ANIE202007230 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 5, 2020 |
PublicationDateYYYYMMDD | 2020-10-05 |
PublicationDate_xml | – month: 10 year: 2020 text: October 5, 2020 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2018; 361 2017; 8 1998; 280 1993; 23 2009 2009; 48 121 2020 2020; 59 132 2014; 26 1992; 13 2020; 11 2011; 17 2017; 355 2013; 5 2014; 136 2014; 20 2018; 9 2010; 20 2012; 134 2001 2012 2012; 51 124 2018 2018; 57 130 2015 2015; 54 127 2005; 309 2018; 30 2000; 122 2012; 335 2014; 6 2012; 22 2013; 49–50 2010; 329 2019; 6 2018; 140 2020; 142 1995; 99 2010 2010; 49 122 2009; 131 2017 2017; 56 129 2019; 141 2019 2019; 58 131 2017; 139 2007; 316 2002; 124 1993; 97 2013; 135 2016; 138 2018; 51 2012; 4 2016; 8 2009; 38 2014; 343 e_1_2_6_72_3 e_1_2_6_74_1 e_1_2_6_51_2 e_1_2_6_72_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_70_3 e_1_2_6_70_2 e_1_2_6_19_2 e_1_2_6_13_1 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_32_3 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_76_2 e_1_2_6_36_3 e_1_2_6_38_1 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_1 e_1_2_6_20_2 e_1_2_6_41_1 e_1_2_6_60_2 e_1_2_6_9_1 e_1_2_6_7_2 e_1_2_6_28_3 e_1_2_6_5_1 e_1_2_6_3_2 e_1_2_6_1_1 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_3 e_1_2_6_66_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_68_2 e_1_2_6_50_2 e_1_2_6_73_2 e_1_2_6_50_3 e_1_2_6_52_2 e_1_2_6_75_2 e_1_2_6_54_1 e_1_2_6_31_2 e_1_2_6_71_2 e_1_2_6_18_2 e_1_2_6_18_3 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_37_3 e_1_2_6_56_1 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_35_3 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_63_3 e_1_2_6_40_2 e_1_2_6_61_1 e_1_2_6_8_2 e_1_2_6_29_3 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_48_2 e_1_2_6_69_2 e_1_2_6_2_2 e_1_2_6_23_1 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_67_1 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 361 start-page: 35 year: 2018 end-page: 35 publication-title: Science – volume: 51 124 start-page: 1885 1921 year: 2012 2012 end-page: 1889 1925 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 22 start-page: 23726 year: 2012 end-page: 23740 publication-title: J. Mater. Chem. – volume: 59 132 start-page: 5050 5086 year: 2020 2020 end-page: 5091 5129 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 5797 year: 2016 end-page: 5800 publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 1353 year: 2009 end-page: 1379 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 18142 year: 2017 end-page: 18145 publication-title: J. Am. Chem. Soc. – volume: 141 start-page: 677 year: 2019 end-page: 683 publication-title: J. Am. Chem. Soc. – volume: 329 start-page: 424 year: 2010 end-page: 428 publication-title: Science – volume: 99 start-page: 1316 year: 1995 end-page: 1320 publication-title: Ber. Bunsen-Ges. – volume: 23 start-page: 459 year: 1993 end-page: 529 publication-title: Crit. Rev. Anal. Chem. – volume: 5 start-page: 830 year: 2013 end-page: 834 publication-title: Nat. Chem. – volume: 131 start-page: 4570 year: 2009 end-page: 4571 publication-title: J. Am. Chem. Soc. – volume: 139 start-page: 4995 year: 2017 end-page: 4998 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 15885 year: 2014 end-page: 15888 publication-title: J. Am. Chem. Soc. – volume: 309 start-page: 95 year: 2005 publication-title: Science – volume: 361 start-page: 48 year: 2018 end-page: 52 publication-title: Science – volume: 11 start-page: 1434 year: 2020 publication-title: Nat. Commun. – volume: 122 start-page: 11559 year: 2000 end-page: 11560 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 407 year: 1992 end-page: 422 publication-title: Catal. Lett. – volume: 53 126 start-page: 2878 2922 year: 2014 2014 end-page: 2882 2926 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 48 121 start-page: 9954 10139 year: 2009 2009 end-page: 9957 10142 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 4 start-page: 287 year: 2012 end-page: 291 publication-title: Nat. Chem. – volume: 97 start-page: 1952 year: 1993 end-page: 1960 publication-title: J. Phys. Chem. – volume: 142 start-page: 3736 year: 2020 end-page: 3741 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 16313 16531 year: 2017 2017 end-page: 16317 16535 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 310 year: 2016 end-page: 316 publication-title: Nat. Chem. – volume: 134 start-page: 15061 year: 2012 end-page: 15070 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 9244 9376 year: 2015 2015 end-page: 9248 9380 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 335 start-page: 981 year: 2012 end-page: 984 publication-title: Science – volume: 30 start-page: 1762 year: 2018 end-page: 1768 publication-title: Chem. Mater. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 355 year: 2017 publication-title: Science – volume: 124 start-page: 10656 year: 2002 end-page: 10657 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 9770 9872 year: 2019 2019 end-page: 9775 9877 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 19596 year: 2012 end-page: 19599 publication-title: J. Am. Chem. Soc. – volume: 51 start-page: 2129 year: 2018 end-page: 2138 publication-title: Acc. Chem. Res. – volume: 361 start-page: 52 year: 2018 end-page: 57 publication-title: Science – volume: 136 start-page: 15485 year: 2014 end-page: 15488 publication-title: J. Am. Chem. Soc. – volume: 57 130 start-page: 6042 6150 year: 2018 2018 end-page: 6048 6156 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 1858 year: 2010 end-page: 1867 publication-title: J. Mater. Chem. – volume: 140 start-page: 5330 year: 2018 end-page: 5333 publication-title: J. Am. Chem. Soc. – volume: 135 start-page: 16336 year: 2013 end-page: 16339 publication-title: J. Am. Chem. Soc. – volume: 49–50 start-page: 1 year: 2013 end-page: 11 publication-title: Solid State Nucl. Magn. Reson. – volume: 8 start-page: 1142 year: 2017 publication-title: Nat. Commun. – volume: 59 132 start-page: 9868 9952 year: 2020 2020 end-page: 9886 9970 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 3302 year: 2016 end-page: 3305 publication-title: J. Am. Chem. Soc. – volume: 49 122 start-page: 4791 4901 year: 2010 2010 end-page: 4794 4904 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 5234 year: 2018 publication-title: Nat. Commun. – volume: 280 start-page: 1732 year: 1998 end-page: 1735 publication-title: Science – volume: 26 start-page: 5429 year: 2014 end-page: 5479 publication-title: Adv. Mater. – start-page: 1740 year: 2001 end-page: 1741 publication-title: Chem. Commun. – volume: 138 start-page: 15134 year: 2016 end-page: 15137 publication-title: J. Am. Chem. Soc. – volume: 20 start-page: 15349 year: 2014 end-page: 15353 publication-title: Chem. Eur. J. – volume: 53 126 start-page: 1043 1061 year: 2014 2014 end-page: 1047 1065 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 774 year: 2014 end-page: 778 publication-title: Nat. Chem. – volume: 343 start-page: 272 year: 2014 end-page: 277 publication-title: Science – volume: 316 start-page: 268 year: 2007 end-page: 272 publication-title: Science – volume: 17 start-page: 13007 year: 2011 end-page: 13016 publication-title: Chem. Eur. J. – volume: 138 start-page: 4650 year: 2016 end-page: 4656 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 11527 11624 year: 2020 2020 end-page: 11532 11629 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 892 year: 2018 end-page: 895 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_19_2 doi: 10.1126/science.1192160 – ident: e_1_2_6_23_1 – ident: e_1_2_6_49_2 doi: 10.1021/ja3103154 – ident: e_1_2_6_72_2 doi: 10.1002/anie.201309362 – ident: e_1_2_6_32_2 doi: 10.1002/anie.201710633 – ident: e_1_2_6_46_2 doi: 10.1038/s41467-018-07670-4 – ident: e_1_2_6_52_2 doi: 10.1021/ja508962m – ident: e_1_2_6_65_2 doi: 10.1039/b105159h – ident: e_1_2_6_15_2 doi: 10.1126/science.aat7679 – ident: e_1_2_6_68_2 doi: 10.1007/BF00765044 – ident: e_1_2_6_50_3 doi: 10.1002/ange.201502912 – ident: e_1_2_6_76_2 doi: 10.1021/jacs.6b01398 – ident: e_1_2_6_63_2 doi: 10.1002/anie.202000845 – ident: e_1_2_6_36_2 doi: 10.1002/anie.201905591 – ident: e_1_2_6_70_3 doi: 10.1002/ange.201001238 – ident: e_1_2_6_67_1 – ident: e_1_2_6_73_2 doi: 10.1002/bbpc.199500077 – ident: e_1_2_6_25_2 doi: 10.1021/ja8096256 – ident: e_1_2_6_34_2 doi: 10.1021/jacs.8b01774 – ident: e_1_2_6_42_2 doi: 10.1021/ja5092936 – ident: e_1_2_6_7_2 doi: 10.1126/science.1245875 – ident: e_1_2_6_28_2 doi: 10.1002/anie.201108462 – ident: e_1_2_6_31_2 doi: 10.1021/jacs.7b01097 – ident: e_1_2_6_32_3 doi: 10.1002/ange.201710633 – ident: e_1_2_6_39_2 doi: 10.1039/b921610c – ident: e_1_2_6_55_1 – ident: e_1_2_6_66_2 doi: 10.1002/chem.201403811 – ident: e_1_2_6_3_2 doi: 10.1126/science.aal1585 – ident: e_1_2_6_44_2 doi: 10.1021/jacs.6b02700 – ident: e_1_2_6_48_2 doi: 10.1021/ja306042w – ident: e_1_2_6_14_2 doi: 10.1038/nchem.1730 – ident: e_1_2_6_27_2 doi: 10.1002/advs.201801410 – ident: e_1_2_6_8_2 doi: 10.1038/s41467-020-15281-1 – ident: e_1_2_6_53_2 doi: 10.1021/acs.chemmater.8b00117 – ident: e_1_2_6_71_2 doi: 10.1016/j.ssnmr.2012.09.003 – ident: e_1_2_6_6_2 doi: 10.1021/ja027444a – ident: e_1_2_6_24_2 doi: 10.1126/science.1139915 – ident: e_1_2_6_50_2 doi: 10.1002/anie.201502912 – ident: e_1_2_6_57_2 doi: 10.1126/science.280.5370.1732 – ident: e_1_2_6_61_1 – ident: e_1_2_6_2_2 doi: 10.1126/science.309.5731.95 – ident: e_1_2_6_9_1 – ident: e_1_2_6_4_2 doi: 10.1126/science.aau1701 – ident: e_1_2_6_51_2 doi: 10.1021/jacs.7b07657 – ident: e_1_2_6_60_2 doi: 10.1021/acs.accounts.8b00297 – ident: e_1_2_6_58_2 doi: 10.1039/b804757j – ident: e_1_2_6_21_2 doi: 10.1021/jacs.6b10316 – ident: e_1_2_6_26_3 doi: 10.1002/ange.201904291 – ident: e_1_2_6_35_3 doi: 10.1002/ange.201712246 – ident: e_1_2_6_40_2 doi: 10.1039/c2jm31949g – ident: e_1_2_6_28_3 doi: 10.1002/ange.201108462 – ident: e_1_2_6_18_2 doi: 10.1002/anie.200904599 – ident: e_1_2_6_1_1 – ident: e_1_2_6_45_2 doi: 10.1038/s41467-017-01293-x – ident: e_1_2_6_12_2 doi: 10.1126/science.aar7883 – ident: e_1_2_6_69_2 doi: 10.1021/j100111a037 – ident: e_1_2_6_74_1 – ident: e_1_2_6_56_1 – ident: e_1_2_6_64_1 – ident: e_1_2_6_59_2 doi: 10.1126/science.1215768 – ident: e_1_2_6_35_2 doi: 10.1002/anie.201712246 – ident: e_1_2_6_37_2 doi: 10.1002/anie.202002724 – ident: e_1_2_6_22_2 doi: 10.1021/jacs.0c00560 – ident: e_1_2_6_29_3 doi: 10.1002/ange.201310500 – ident: e_1_2_6_17_1 – ident: e_1_2_6_26_2 doi: 10.1002/anie.201904291 – ident: e_1_2_6_41_1 – ident: e_1_2_6_30_2 doi: 10.1021/jacs.6b00652 – ident: e_1_2_6_18_3 doi: 10.1002/ange.200904599 – ident: e_1_2_6_5_1 – ident: e_1_2_6_72_3 doi: 10.1002/ange.201309362 – ident: e_1_2_6_37_3 doi: 10.1002/ange.202002724 – ident: e_1_2_6_11_2 doi: 10.1038/nchem.2008 – ident: e_1_2_6_10_2 doi: 10.1038/nchem.1265 – ident: e_1_2_6_20_2 doi: 10.1002/chem.201101383 – ident: e_1_2_6_54_1 doi: 10.1021/ja003159k – ident: e_1_2_6_62_2 doi: 10.1002/adma.201401356 – ident: e_1_2_6_13_1 – ident: e_1_2_6_63_3 doi: 10.1002/ange.202000845 – ident: e_1_2_6_38_1 – ident: e_1_2_6_16_2 doi: 10.1021/ja409033p – ident: e_1_2_6_29_2 doi: 10.1002/anie.201310500 – ident: e_1_2_6_70_2 doi: 10.1002/anie.201001238 – ident: e_1_2_6_43_2 doi: 10.1038/nchem.2444 – ident: e_1_2_6_75_2 doi: 10.1080/10408349308051654 – ident: e_1_2_6_47_2 doi: 10.1021/jacs.8b12177 – ident: e_1_2_6_33_2 doi: 10.1021/jacs.7b12110 – ident: e_1_2_6_36_3 doi: 10.1002/ange.201905591 |
SSID | ssj0028806 |
Score | 2.5832844 |
Snippet | Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open‐structured single‐crystal COFs prevents the... Growth of covalent organic frameworks (COFs) as single crystals is extremely challenging. Inaccessibility of open-structured single-crystal COFs prevents the... |
SourceID | swepub proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17991 |
SubjectTerms | 3D COFs Benzene Covalence Crystal growth Crystal structure Crystals Emission analysis matrix isolation NMR non-interpenetrated frameworks Nuclear magnetic resonance Single crystals solid-state NMR |
Title | Non‐Interpenetrated Single‐Crystal Covalent Organic Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202007230 https://www.proquest.com/docview/2446718496 https://www.proquest.com/docview/2423056170 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-185366 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EeWlIIGY0qaJ48ZjKVQFiQ5AUTfLdi4IUSWojwEmfgK_kV_COW5Ci4SQYEsU23HsO993zt1nQo6plpoqplzuJeig0HrsSqa0qzWgOdGh0oFJFL7usk6PXvXD_kwWv-WHKDfcjGbk67VRcKlGtS_SUJOBjf6d2WtDGI2LsAnYMqjopuSP8lE4bXpRELjmFPqCtdHza_PV563SDNS09KHzyDU3Pe1VIotO24iTp-pkrKr69Ruf43--ao2sTHGp07SCtE4WIN0gS63iOLhNctbN0o-3dxukiAtkzmobO7do-gaAD1rDFwSaA6eVoeyiJXNslqd22kX412iL9NoXd62OOz2AwdWUe54bNmQcqTACCKI44jKRHCSNaEyhLgPFdRhTpVDtJUs8JuvgS0_RBLSfQNCIWbBNFtMshR3iIBAJolAxSIBTje3JWPoc3T3wJE-AVohbTIDQU3Zyc0jGQFheZV-YkRHlyFTIaVn-2fJy_Fhyv5hPMdXPkUBQw9AqU84q5Kh8jCNqfpfIFLKJKePn_lUDmzixclC-ypBynz_eN0U2fBCjiTCoh2Fbfj63v_RINLuXF-Xd7l8q7ZFlc51HFYb7ZHE8nMABoqOxOsw14BN7swoA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOMCFFgpigZYggXoKZBPHGx-3W1bLaw8UEDfLdiYIsUrQPg701J_Q39hf0nG8CV2kCgmOSWzHsT2eb5yZbwD2mVGGaa59EWRkoLBm6iuujW8MkjoxsTaRDRS-6PPeNTu9jStvQhsL4_gh6gM3Kxnlfm0F3B5IHz2zhtoQbDLw7GEb4eh5WLRpvUur6rJmkAppeboAoyjybR76ircxCI9m68_qpX_ApiMQncWupfLpfgBdddv5nDwcTsb60Px8wej4ru_6CCtTaOq13VpahTnM12CpU2WE-wTf-kX-59dv56dIe2RJbJt6P0j7DZAedIZPhDUHXqeg5UvKzHOBnsbrVh5go3W47h5fdXr-NAeDb5gIAj9uqTTRcYIYJWkiVKYEKpawlGFTRVqYOGVak-QrngVcNTFUgWYZmjDDqJXyaAMW8iLHTfAIi0RJrDlmKJih9lSqQkEWHwZKZMga4FczIM2UoNzmyRhIR60cSjsysh6ZBnytyz86ao7_ltypJlRORXQkCddwUsxM8Abs1Y9pRO0fE5VjMbFlwtLEalETB24h1K-yvNzf72_ashjeydFEWuDDqa2wnNxXeiTb_ZPj-mrrLZV2Yal3dXEuz0_6Z9uwbO-XTobxDiyMhxP8TGBprL-U4vAXD38OGw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkYALfUDFQimp1KqntNnE8cbH7W5Xfa5Qoag3y49JVbFKqn0c4MRP4Df2l3Qcb0IXqUKCYxLbcewZzzfOzGeAbWaUYZrrUEQ5OSisbUPFtQmNQTInJtUmcYnC50N-dMlOrtKrB1n8nh-i2XBzmlGt107Bb22-_5s01GVgk3_n9toIRj-FZ4xHmZPr_kVDIBWTdPr8oiQJ3TH0NW1jFO8v1l80Sw-wpucPXYSule0ZLIOqe-1DTr7tzaZ6z_z4g9Dxfz5rBV7NgWnQ9ZK0Ck-wWIMXvfo8uNdwMCyLu5-_fJQirZAVra0NPpPtGyE96I2_E9IcBb2ShJdMWeDTPE0wqOO_Jm_gcnD4pXcUzk9gCA0TURSmHWUznWaISWYzoXIlULGMWYZtlWhhUsu0Jr1XPI-4amOsIs1yNHGOScfyZB2WirLAtxAQEkmyVHPMUTBD7SmrYkH-HkZK5MhaENYTIM2cntydkjGSnlg5lm5kZDMyLdhtyt96Yo5HS27U8ynnCjqRhGo4mWUmeAu2msc0ou5_iSqwnLkyceVgdaiJHS8HzascK3f_5mtXluNrOZlJB3s4tRVXc_uXHsnu8PiwuXr3L5U-wvNP_YE8Ox6evoeX7nYVYZhuwNJ0PMMPhJSmerNShnv4mwzT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90Interpenetrated+Single%E2%80%90Crystal+Covalent+Organic+Frameworks&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liang%2C+Lin&rft.au=Qiu%2C+Yi&rft.au=Wang%2C+Wei+David&rft.au=Han%2C+Jing&rft.date=2020-10-05&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=41&rft.spage=17991&rft.epage=17995&rft_id=info:doi/10.1002%2Fanie.202007230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_anie_202007230 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |