Involvement of MRE11A and XPA gene polymorphisms in the modulation of DNA double-strand break repair activity: A genotype–phenotype correlation study
► We analyzed 768 SNPs in DNA repair genes and H2AX phosphorylation levels. ► We found an association between SNPs in MRE11A and XPA with DSBR activity. ► We suggested that DSBR requires both DSBR and non-DSBR systems. ► Further functional experiments to better investigate DNA repair interplays are...
Saved in:
Published in | DNA repair Vol. 10; no. 10; pp. 1044 - 1050 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
10.10.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1568-7864 1568-7856 1568-7856 |
DOI | 10.1016/j.dnarep.2011.08.003 |
Cover
Abstract | ► We analyzed 768 SNPs in DNA repair genes and H2AX phosphorylation levels. ► We found an association between SNPs in MRE11A and XPA with DSBR activity. ► We suggested that DSBR requires both DSBR and non-DSBR systems. ► Further functional experiments to better investigate DNA repair interplays are needed.
DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to see if any associations exist between DNA repair gene polymorphisms and phenotypic profiles of DSB repair (DSBR) we performed a genotype–phenotype correlation study in 118 young healthy subjects (mean age 25.8
±
6.7
years). Subjects were genotyped for 768 single nucleotide polymorphisms (SNPs) with a custom Illumina Golden Gate Assay, and an H2AX histone phosphorylation assay was done to test DSBR capacity.
We found that H2AX phosphorylation at 1
h was significantly lower in subjects heterozygous (no variant homozygotes were observed) for the
XPA gene SNP rs3176683 (
p-value
=
0.005), while dephosphorylation was significantly higher in subjects carrying the variant allele in three
MRE11A gene SNPs: rs1014666, rs476137 and rs2508784 (
p-value
=
0.003, 0.003 and 0.008, respectively). An additive effect of low-activity DNA repair alleles was associated with altered DSBR activity, as demonstrated by both H2AX phosphorylation at 1
h (
p-trend <0.0001) and γH2AX dephosphorylation at 3
h (
p-trend <0.0001).
Our study revealed that in addition to SNPs of genes that are well-established players in DSBR, non-DSBR genes, such as the
XPA gene that is mainly involved in the nucleotide excision repair pathway, can also influence DSBR in healthy subjects. This suggests that successful DSBR may require both DSBR and non-DSBR mechanisms. |
---|---|
AbstractList | DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to see if any associations exist between DNA repair gene polymorphisms and phenotypic profiles of DSB repair (DSBR) we performed a genotype-phenotype correlation study in 118 young healthy subjects (mean age 25.8±6.7years). Subjects were genotyped for 768 single nucleotide polymorphisms (SNPs) with a custom Illumina Golden Gate Assay, and an H2AX histone phosphorylation assay was done to test DSBR capacity. We found that H2AX phosphorylation at 1h was significantly lower in subjects heterozygous (no variant homozygotes were observed) for the XPA gene SNP rs3176683 (p-value=0.005), while dephosphorylation was significantly higher in subjects carrying the variant allele in three MRE11A gene SNPs: rs1014666, rs476137 and rs2508784 (p-value=0.003, 0.003 and 0.008, respectively). An additive effect of low-activity DNA repair alleles was associated with altered DSBR activity, as demonstrated by both H2AX phosphorylation at 1 h (p-trend <0.0001) and γH2AX dephosphorylation at 3h (p-trend <0.0001). Our study revealed that in addition to SNPs of genes that are well-established players in DSBR, non-DSBR genes, such as the XPA gene that is mainly involved in the nucleotide excision repair pathway, can also influence DSBR in healthy subjects. This suggests that successful DSBR may require both DSBR and non-DSBR mechanisms. DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to see if any associations exist between DNA repair gene polymorphisms and phenotypic profiles of DSB repair (DSBR) we performed a genotype-phenotype correlation study in 118 young healthy subjects (mean age 25.8+/-6.7years). Subjects were genotyped for 768 single nucleotide polymorphisms (SNPs) with a custom Illumina Golden Gate Assay, and an H2AX histone phosphorylation assay was done to test DSBR capacity. We found that H2AX phosphorylation at 1h was significantly lower in subjects heterozygous (no variant homozygotes were observed) for the XPA gene SNP rs3176683 (p-value=0.005), while dephosphorylation was significantly higher in subjects carrying the variant allele in three MRE11A gene SNPs: rs1014666, rs476137 and rs2508784 (p-value=0.003, 0.003 and 0.008, respectively). An additive effect of low-activity DNA repair alleles was associated with altered DSBR activity, as demonstrated by both H2AX phosphorylation at 1h (p-trend <0.0001) and gamma H2AX dephosphorylation at 3h (p-trend <0.0001). Our study revealed that in addition to SNPs of genes that are well-established players in DSBR, non-DSBR genes, such as the XPA gene that is mainly involved in the nucleotide excision repair pathway, can also influence DSBR in healthy subjects. This suggests that successful DSBR may require both DSBR and non-DSBR mechanisms. DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to see if any associations exist between DNA repair gene polymorphisms and phenotypic profiles of DSB repair (DSBR) we performed a genotype-phenotype correlation study in 118 young healthy subjects (mean age 25.8±6.7years). Subjects were genotyped for 768 single nucleotide polymorphisms (SNPs) with a custom Illumina Golden Gate Assay, and an H2AX histone phosphorylation assay was done to test DSBR capacity. We found that H2AX phosphorylation at 1h was significantly lower in subjects heterozygous (no variant homozygotes were observed) for the XPA gene SNP rs3176683 (p-value=0.005), while dephosphorylation was significantly higher in subjects carrying the variant allele in three MRE11A gene SNPs: rs1014666, rs476137 and rs2508784 (p-value=0.003, 0.003 and 0.008, respectively). An additive effect of low-activity DNA repair alleles was associated with altered DSBR activity, as demonstrated by both H2AX phosphorylation at 1 h (p-trend <0.0001) and γH2AX dephosphorylation at 3h (p-trend <0.0001). Our study revealed that in addition to SNPs of genes that are well-established players in DSBR, non-DSBR genes, such as the XPA gene that is mainly involved in the nucleotide excision repair pathway, can also influence DSBR in healthy subjects. This suggests that successful DSBR may require both DSBR and non-DSBR mechanisms.DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to see if any associations exist between DNA repair gene polymorphisms and phenotypic profiles of DSB repair (DSBR) we performed a genotype-phenotype correlation study in 118 young healthy subjects (mean age 25.8±6.7years). Subjects were genotyped for 768 single nucleotide polymorphisms (SNPs) with a custom Illumina Golden Gate Assay, and an H2AX histone phosphorylation assay was done to test DSBR capacity. We found that H2AX phosphorylation at 1h was significantly lower in subjects heterozygous (no variant homozygotes were observed) for the XPA gene SNP rs3176683 (p-value=0.005), while dephosphorylation was significantly higher in subjects carrying the variant allele in three MRE11A gene SNPs: rs1014666, rs476137 and rs2508784 (p-value=0.003, 0.003 and 0.008, respectively). An additive effect of low-activity DNA repair alleles was associated with altered DSBR activity, as demonstrated by both H2AX phosphorylation at 1 h (p-trend <0.0001) and γH2AX dephosphorylation at 3h (p-trend <0.0001). Our study revealed that in addition to SNPs of genes that are well-established players in DSBR, non-DSBR genes, such as the XPA gene that is mainly involved in the nucleotide excision repair pathway, can also influence DSBR in healthy subjects. This suggests that successful DSBR may require both DSBR and non-DSBR mechanisms. ► We analyzed 768 SNPs in DNA repair genes and H2AX phosphorylation levels. ► We found an association between SNPs in MRE11A and XPA with DSBR activity. ► We suggested that DSBR requires both DSBR and non-DSBR systems. ► Further functional experiments to better investigate DNA repair interplays are needed. DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to see if any associations exist between DNA repair gene polymorphisms and phenotypic profiles of DSB repair (DSBR) we performed a genotype–phenotype correlation study in 118 young healthy subjects (mean age 25.8 ± 6.7 years). Subjects were genotyped for 768 single nucleotide polymorphisms (SNPs) with a custom Illumina Golden Gate Assay, and an H2AX histone phosphorylation assay was done to test DSBR capacity. We found that H2AX phosphorylation at 1 h was significantly lower in subjects heterozygous (no variant homozygotes were observed) for the XPA gene SNP rs3176683 ( p-value = 0.005), while dephosphorylation was significantly higher in subjects carrying the variant allele in three MRE11A gene SNPs: rs1014666, rs476137 and rs2508784 ( p-value = 0.003, 0.003 and 0.008, respectively). An additive effect of low-activity DNA repair alleles was associated with altered DSBR activity, as demonstrated by both H2AX phosphorylation at 1 h ( p-trend <0.0001) and γH2AX dephosphorylation at 3 h ( p-trend <0.0001). Our study revealed that in addition to SNPs of genes that are well-established players in DSBR, non-DSBR genes, such as the XPA gene that is mainly involved in the nucleotide excision repair pathway, can also influence DSBR in healthy subjects. This suggests that successful DSBR may require both DSBR and non-DSBR mechanisms. |
Author | Minieri, Valentina Rocchietti, Elisa Cibrario Allione, Alessandra Ricceri, Fulvio Guarrera, Simonetta Matullo, Giuseppe Rosa, Fabio Pezzotti, Annamaria Porcedda, Paola Voglino, Floriana Turinetto, Valentina Giachino, Claudia Accomasso, Lisa Orlando, Luca Polidoro, Silvia |
Author_xml | – sequence: 1 givenname: Fulvio surname: Ricceri fullname: Ricceri, Fulvio organization: Human Genetics Foundation – HuGeF, Turin, Italy – sequence: 2 givenname: Paola surname: Porcedda fullname: Porcedda, Paola organization: Department of Clinical and Biological Sciences, University of Turin, Turin, Italy – sequence: 3 givenname: Alessandra surname: Allione fullname: Allione, Alessandra organization: Human Genetics Foundation – HuGeF, Turin, Italy – sequence: 4 givenname: Valentina surname: Turinetto fullname: Turinetto, Valentina organization: Department of Clinical and Biological Sciences, University of Turin, Turin, Italy – sequence: 5 givenname: Silvia surname: Polidoro fullname: Polidoro, Silvia organization: Human Genetics Foundation – HuGeF, Turin, Italy – sequence: 6 givenname: Simonetta surname: Guarrera fullname: Guarrera, Simonetta organization: Human Genetics Foundation – HuGeF, Turin, Italy – sequence: 7 givenname: Fabio surname: Rosa fullname: Rosa, Fabio organization: Human Genetics Foundation – HuGeF, Turin, Italy – sequence: 8 givenname: Floriana surname: Voglino fullname: Voglino, Floriana organization: Human Genetics Foundation – HuGeF, Turin, Italy – sequence: 9 givenname: Annamaria surname: Pezzotti fullname: Pezzotti, Annamaria organization: Human Genetics Foundation – HuGeF, Turin, Italy – sequence: 10 givenname: Valentina surname: Minieri fullname: Minieri, Valentina organization: Department of Clinical and Biological Sciences, University of Turin, Turin, Italy – sequence: 11 givenname: Lisa surname: Accomasso fullname: Accomasso, Lisa organization: Department of Clinical and Biological Sciences, University of Turin, Turin, Italy – sequence: 12 givenname: Elisa Cibrario surname: Rocchietti fullname: Rocchietti, Elisa Cibrario organization: Department of Clinical and Biological Sciences, University of Turin, Turin, Italy – sequence: 13 givenname: Luca surname: Orlando fullname: Orlando, Luca organization: Department of Clinical and Biological Sciences, University of Turin, Turin, Italy – sequence: 14 givenname: Claudia surname: Giachino fullname: Giachino, Claudia organization: Department of Clinical and Biological Sciences, University of Turin, Turin, Italy – sequence: 15 givenname: Giuseppe surname: Matullo fullname: Matullo, Giuseppe email: giuseppe.matullo@unito.it organization: Human Genetics Foundation – HuGeF, Turin, Italy |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24603791$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21880556$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu1DAYhSNURC_wBgh5g1gl2Lk4dhdIo1KgUrkIgcTO8th_GA-JndrOSNnxDl30_XgSkk4KEgu6shffd2wdnePkwDoLSfKU4IxgQl9uM22lhz7LMSEZZhnGxYPkiFSUpTWr6MGfOy0Pk-MQthiTqqb0UXKYE8ZwVdGj5ObC7ly7gw5sRK5B7z-fE7JC0mr07dMKfQcLqHft2Dnfb0zoAjIWxQ2gzumhldE4O2uvP6yQdsO6hTREP9trD_IHmv4njUdSRbMzcTxFt5Eujj38-nndb5Y7Us57WOJCHPT4OHnYyDbAk-U8Sb6-Of9y9i69_Pj24mx1maqS8Zg2tCqKAjecQEMVZgS0YiVda0JIxaucca5yWUtNmobjeq0VLxWGWpagilxDcZK82Of23l0NEKLoTFDQttKCG4LgOC-qsq7JvSTjNC8x4XQiny3ksO5Ai96bTvpR3LU-Ac8XQAYl22YqTJnwlyspLmo-P3m655R3IXhohDLxtqSpY9MKgsU8BbEV-ymIeQoCMzFNYZLLf-S7_Hu0V3sNptZ3BrwIyoBVoI0HFYV25v8BvwGrN9Hg |
CitedBy_id | crossref_primary_10_1002_ijc_32417 crossref_primary_10_1016_j_mrfmmm_2013_08_005 crossref_primary_10_1128_MCB_00202_14 crossref_primary_10_1371_journal_pone_0059385 crossref_primary_10_1016_j_mrfmmm_2013_05_001 crossref_primary_10_1016_j_dnarep_2016_02_006 crossref_primary_10_1093_annonc_mdu014 crossref_primary_10_3390_ijms21062182 crossref_primary_10_1016_j_mrrev_2013_02_001 crossref_primary_10_1002_ijc_28186 crossref_primary_10_1093_rpd_ncx125 crossref_primary_10_1371_journal_pone_0061253 |
Cites_doi | 10.1002/humu.20170 10.1093/jnci/djn437 10.1016/S0378-1119(99)00489-8 10.1126/science.1108297 10.1186/1471-2350-9-69 10.1038/nature08467 10.1002/cyto.a.20566 10.1016/j.dnarep.2008.07.009 10.1128/MCB.25.13.5363-5379.2005 10.1093/jnci/92.11.874 10.1093/emboj/cdg541 10.1007/s10549-008-0084-4 10.1158/0008-5472.CAN-05-3403 10.1269/jrr.08065 10.1074/jbc.M602826200 10.7150/ijms.4.59 10.1007/978-3-642-46870-4_7 10.1093/carcin/21.3.453 10.1126/science.1056154 10.1093/emboj/cdg630 10.1126/science.1091496 10.1016/j.mrfmmm.2005.03.007 10.1667/RR3003 10.1016/S0921-8777(01)00092-1 10.1093/mutage/geq042 10.1038/sj.onc.1210880 10.1093/bioinformatics/bth457 10.1016/j.lungcan.2010.11.018 10.1016/j.dnarep.2004.04.009 10.1139/O07-069 10.1086/319501 10.1021/bi048105s 10.1038/nature01368 10.1038/35077232 10.1016/j.dnarep.2006.03.009 10.1007/978-0-387-09599-8_4 10.1016/j.dnarep.2008.01.018 10.2174/138920209788488544 10.1016/j.ijrobp.2006.06.029 10.1080/10428190600909743 10.4161/cc.4.6.1715 10.1086/379378 |
ContentType | Journal Article |
Copyright | 2011 Elsevier B.V. 2015 INIST-CNRS Copyright © 2011 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier B.V. – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 |
DOI | 10.1016/j.dnarep.2011.08.003 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1568-7856 |
EndPage | 1050 |
ExternalDocumentID | 21880556 24603791 10_1016_j_dnarep_2011_08_003 S1568786411002096 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABFYP ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ H~9 IH2 IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSJ SSP SSU SSZ T5K ZGI ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 |
ID | FETCH-LOGICAL-c489t-f653330f91ef6c081edc846bd1115952899c2a7ad1ff907bdc94c0e7a4ec32de3 |
IEDL.DBID | AIKHN |
ISSN | 1568-7864 1568-7856 |
IngestDate | Thu Sep 04 23:51:42 EDT 2025 Fri Sep 05 12:41:21 EDT 2025 Thu Apr 03 06:59:53 EDT 2025 Mon Jul 21 09:18:22 EDT 2025 Tue Jul 01 04:11:44 EDT 2025 Thu Apr 24 23:05:58 EDT 2025 Fri Feb 23 02:32:40 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | H2AX phosphorylation XPA IR MRE11A Double-strand break repair PBMC DNA repair MRN complex DSB ICL MAF SNP LD NER DSBR Correlation Phosphorylation Genotype Double strand break Double stranded DNA Phenotype Gene Repair Polymorphism |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-f653330f91ef6c081edc846bd1115952899c2a7ad1ff907bdc94c0e7a4ec32de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21880556 |
PQID | 896240196 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_902354771 proquest_miscellaneous_896240196 pubmed_primary_21880556 pascalfrancis_primary_24603791 crossref_citationtrail_10_1016_j_dnarep_2011_08_003 crossref_primary_10_1016_j_dnarep_2011_08_003 elsevier_sciencedirect_doi_10_1016_j_dnarep_2011_08_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-10 |
PublicationDateYYYYMMDD | 2011-10-10 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: Netherlands |
PublicationTitle | DNA repair |
PublicationTitleAlternate | DNA Repair (Amst) |
PublicationYear | 2011 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | de Boer, Hoeijmakers (bib0135) 2000; 21 Qian, Zhang, Zhang, Zhou, Yu, Chen (bib0215) 2011; 73 Zhang, Rohde, Wu (bib0045) 2009; 10 Dronkert, Kanaar (bib0165) 2001; 486 Berwick, Vineis (bib0015) 2000; 92 Wood, Mitchell, Lindahl (bib0055) 2005; 577 Colton, Xu, Wang, Wang (bib0185) 2006; 281 Jackson, Bartek (bib0040) 2009; 461 Porcedda, Turinetto, Brusco, Cavalieri, Lantelme, Orlando, Ricardi, Amoroso, Gregori, Giachino (bib0070) 2008; 73 Loizidou, Michael, Neuhausen, Newbold, Marcou, Kakouri, Daniel, Papadopoulos, Malas, Hadjisavvas, Kyriacou (bib0120) 2009; 115 Vineis, Manuguerra, Kavvoura, Guarrera, Allione, Rosa, Di Gregorio, Polidoro, Saletta, Ioannidis, Matullo (bib0025) 2009; 101 Palli, Polidoro, D’Errico, Saieva, Guarrera, Calcagnile, Sera, Allione, Gemma, Zanna, Filomena, Testai, Caini, Moretti, Gomez-Miguel, Nesi, Luzzi, Ottini, Masala, Matullo, Dogliotti (bib0210) 2010; 25 Carson, Schwartz, Stracker, Lilley, Lee, Weitzman (bib0110) 2003; 22 Kiyohara, Yoshimasu (bib0220) 2007; 4 Cecchini, Girouard, Huels, Sanche, Hunting (bib0170) 2005; 44 Wood, Mitchell, Sgouros, Lindahl (bib0050) 2001; 291 Goode, Ulrich, Potter (bib0020) 2002; 11 Lavin (bib0035) 2007; 26 Carles, Monzo, Amat, Jansa, Artells, Navarro, Foro, Alameda, Gayete, Gel, Miguel, Albanell, Fabregat (bib0155) 2006; 66 Zhang, Rohde, Emami, Hammond, Casey, Mehta, Jeevarajan, Pierson, Wu (bib0160) 2008; 7 Lee, Paull (bib0190) 2004; 304 Paull, Lee (bib0205) 2005; 4 Coutinho, Xie, Du, Brusco, Krainer, Gatti (bib0065) 2005; 25 Stephens, Smith, Donnelly (bib0080) 2001; 68 Iijima, Ohara, Seki, Tauchi (bib0030) 2008; 49 Bakkenist, Kastan (bib0105) 2003; 421 Camenisch, Nageli (bib0145) 2008; 637 Mogi, Oh (bib0175) 2006; 5 Lee, Paull (bib0195) 2005; 308 Rajewsky, Engelbergs, Thomale, Schweer (bib0010) 1998; 154 Stephens, Donnelly (bib0085) 2003; 73 Taylor, Groom, Byrd (bib0090) 2004; 3 Wu, Shell, Yang, Zou (bib0180) 2006; 66 Friedberg, Walker, Siede (bib0005) 2006 Rollinson, Kesby, Morgan (bib0125) 2006; 47 MacPhail, Banath, Yu, Chu, Olive (bib0060) 2003; 159 Choudhury, Elliott, Iles, Churchman, Bristow, Bishop, Kiltie (bib0115) 2008; 9 Croteau, Peng, Van Houten (bib0150) 2008; 7 Batty, Wood (bib0140) 2000; 241 Barrett, Fry, Maller, Daly (bib0075) 2005; 21 You, Chahwan, Bailis, Hunter, Russell (bib0200) 2005; 25 Uziel, Lerenthal, Moyal, Andegeko, Mittelman, Shiloh (bib0100) 2003; 22 Hoeijmakers (bib0130) 2001; 411 Williams, Williams, Tainer (bib0095) 2007; 85 Bakkenist (10.1016/j.dnarep.2011.08.003_bib0105) 2003; 421 Zhang (10.1016/j.dnarep.2011.08.003_bib0045) 2009; 10 Friedberg (10.1016/j.dnarep.2011.08.003_bib0005) 2006 Lee (10.1016/j.dnarep.2011.08.003_bib0190) 2004; 304 Rajewsky (10.1016/j.dnarep.2011.08.003_bib0010) 1998; 154 Vineis (10.1016/j.dnarep.2011.08.003_bib0025) 2009; 101 Jackson (10.1016/j.dnarep.2011.08.003_bib0040) 2009; 461 Wood (10.1016/j.dnarep.2011.08.003_bib0050) 2001; 291 Stephens (10.1016/j.dnarep.2011.08.003_bib0085) 2003; 73 de Boer (10.1016/j.dnarep.2011.08.003_bib0135) 2000; 21 You (10.1016/j.dnarep.2011.08.003_bib0200) 2005; 25 Berwick (10.1016/j.dnarep.2011.08.003_bib0015) 2000; 92 Porcedda (10.1016/j.dnarep.2011.08.003_bib0070) 2008; 73 Batty (10.1016/j.dnarep.2011.08.003_bib0140) 2000; 241 Iijima (10.1016/j.dnarep.2011.08.003_bib0030) 2008; 49 Lavin (10.1016/j.dnarep.2011.08.003_bib0035) 2007; 26 MacPhail (10.1016/j.dnarep.2011.08.003_bib0060) 2003; 159 Choudhury (10.1016/j.dnarep.2011.08.003_bib0115) 2008; 9 Camenisch (10.1016/j.dnarep.2011.08.003_bib0145) 2008; 637 Goode (10.1016/j.dnarep.2011.08.003_bib0020) 2002; 11 Mogi (10.1016/j.dnarep.2011.08.003_bib0175) 2006; 5 Lee (10.1016/j.dnarep.2011.08.003_bib0195) 2005; 308 Cecchini (10.1016/j.dnarep.2011.08.003_bib0170) 2005; 44 Uziel (10.1016/j.dnarep.2011.08.003_bib0100) 2003; 22 Wood (10.1016/j.dnarep.2011.08.003_bib0055) 2005; 577 Williams (10.1016/j.dnarep.2011.08.003_bib0095) 2007; 85 Carles (10.1016/j.dnarep.2011.08.003_bib0155) 2006; 66 Loizidou (10.1016/j.dnarep.2011.08.003_bib0120) 2009; 115 Rollinson (10.1016/j.dnarep.2011.08.003_bib0125) 2006; 47 Coutinho (10.1016/j.dnarep.2011.08.003_bib0065) 2005; 25 Carson (10.1016/j.dnarep.2011.08.003_bib0110) 2003; 22 Kiyohara (10.1016/j.dnarep.2011.08.003_bib0220) 2007; 4 Barrett (10.1016/j.dnarep.2011.08.003_bib0075) 2005; 21 Wu (10.1016/j.dnarep.2011.08.003_bib0180) 2006; 66 Palli (10.1016/j.dnarep.2011.08.003_bib0210) 2010; 25 Dronkert (10.1016/j.dnarep.2011.08.003_bib0165) 2001; 486 Croteau (10.1016/j.dnarep.2011.08.003_bib0150) 2008; 7 Colton (10.1016/j.dnarep.2011.08.003_bib0185) 2006; 281 Taylor (10.1016/j.dnarep.2011.08.003_bib0090) 2004; 3 Stephens (10.1016/j.dnarep.2011.08.003_bib0080) 2001; 68 Paull (10.1016/j.dnarep.2011.08.003_bib0205) 2005; 4 Qian (10.1016/j.dnarep.2011.08.003_bib0215) 2011; 73 Hoeijmakers (10.1016/j.dnarep.2011.08.003_bib0130) 2001; 411 Zhang (10.1016/j.dnarep.2011.08.003_bib0160) 2008; 7 |
References_xml | – volume: 11 start-page: 1513 year: 2002 end-page: 1530 ident: bib0020 article-title: Polymorphisms in DNA repair genes and associations with cancer risk publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 73 start-page: 508 year: 2008 end-page: 516 ident: bib0070 article-title: A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia publication-title: Cytometry A – volume: 3 start-page: 1219 year: 2004 end-page: 1225 ident: bib0090 article-title: Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis publication-title: DNA Repair (Amst) – volume: 241 start-page: 193 year: 2000 end-page: 204 ident: bib0140 article-title: Damage recognition in nucleotide excision repair of DNA publication-title: Gene – volume: 154 start-page: 127 year: 1998 end-page: 146 ident: bib0010 article-title: Relevance of DNA repair to carcinogenesis and cancer therapy publication-title: Recent Results Cancer Res. – volume: 5 start-page: 731 year: 2006 end-page: 740 ident: bib0175 article-title: gamma-H2AX formation in response to interstrand crosslinks requires XPF in human cells publication-title: DNA Repair (Amst) – volume: 21 start-page: 263 year: 2005 end-page: 265 ident: bib0075 article-title: Haploview: analysis and visualization of LD and haplotype maps publication-title: Bioinformatics – volume: 101 start-page: 24 year: 2009 end-page: 36 ident: bib0025 article-title: A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility publication-title: J. Natl. Cancer Inst. – volume: 115 start-page: 623 year: 2009 end-page: 627 ident: bib0120 article-title: DNA-repair genetic polymorphisms and risk of breast cancer in Cyprus publication-title: Breast Cancer Res. Treat. – volume: 461 start-page: 1071 year: 2009 end-page: 1078 ident: bib0040 article-title: The DNA-damage response in human biology and disease publication-title: Nature – volume: 47 start-page: 2567 year: 2006 end-page: 2583 ident: bib0125 article-title: Haplotypic variation in MRE11, RAD50 and NBS1 and risk of non-Hodgkin's lymphoma publication-title: Leuk. Lymphoma – volume: 68 start-page: 978 year: 2001 end-page: 989 ident: bib0080 article-title: A new statistical method for haplotype reconstruction from population data publication-title: Am. J. Hum. Genet. – volume: 85 start-page: 509 year: 2007 end-page: 520 ident: bib0095 article-title: Mre11–Rad50–Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template publication-title: Biochem. Cell Biol. – volume: 577 start-page: 275 year: 2005 end-page: 283 ident: bib0055 article-title: Human DNA repair genes publication-title: Mutat. Res. – volume: 22 start-page: 5612 year: 2003 end-page: 5621 ident: bib0100 article-title: Requirement of the MRN complex for ATM activation by DNA damage publication-title: Embo J. – volume: 304 start-page: 93 year: 2004 end-page: 96 ident: bib0190 article-title: Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex publication-title: Science – volume: 49 start-page: 451 year: 2008 end-page: 464 ident: bib0030 article-title: Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage publication-title: J. Radiat. Res. (Tokyo) – volume: 411 start-page: 366 year: 2001 end-page: 374 ident: bib0130 article-title: Genome maintenance mechanisms for preventing cancer publication-title: Nature – volume: 281 start-page: 27117 year: 2006 ident: bib0185 article-title: The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair-facilitated cell survival with cisplatin treatment publication-title: J. Biol. Chem. – volume: 92 start-page: 874 year: 2000 end-page: 897 ident: bib0015 article-title: Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review publication-title: J. Natl. Cancer Inst. – volume: 25 start-page: 118 year: 2005 end-page: 124 ident: bib0065 article-title: Functional significance of a deep intronic mutation in the ATM gene and evidence for an alternative exon 28a publication-title: Hum. Mutat. – volume: 66 start-page: 2997 year: 2006 end-page: 3005 ident: bib0180 article-title: Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation publication-title: Cancer Res. – volume: 25 start-page: 569 year: 2010 end-page: 575 ident: bib0210 article-title: Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer publication-title: Mutagenesis – volume: 25 start-page: 5363 year: 2005 end-page: 5379 ident: bib0200 article-title: ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1 publication-title: Mol. Cell. Biol. – volume: 21 start-page: 453 year: 2000 end-page: 460 ident: bib0135 article-title: Nucleotide excision repair and human syndromes publication-title: Carcinogenesis – volume: 44 start-page: 1932 year: 2005 end-page: 1940 ident: bib0170 article-title: Interstrand cross-links: a new type of gamma-ray damage in bromodeoxyuridine-substituted DNA publication-title: Biochemistry – volume: 9 start-page: 69 year: 2008 ident: bib0115 article-title: Analysis of variants in DNA damage signalling genes in bladder cancer publication-title: BMC Med. Genet. – volume: 73 start-page: 138 year: 2011 end-page: 146 ident: bib0215 article-title: Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk publication-title: Lung Cancer – volume: 291 start-page: 1284 year: 2001 end-page: 1289 ident: bib0050 article-title: Human DNA repair genes publication-title: Science – volume: 10 start-page: 250 year: 2009 end-page: 258 ident: bib0045 article-title: Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair publication-title: Curr. Genomics – volume: 7 start-page: 1835 year: 2008 end-page: 1845 ident: bib0160 article-title: Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest publication-title: DNA Repair (Amst) – volume: 308 start-page: 551 year: 2005 end-page: 554 ident: bib0195 article-title: ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex publication-title: Science – volume: 4 start-page: 737 year: 2005 end-page: 740 ident: bib0205 article-title: The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM publication-title: Cell Cycle – volume: 421 start-page: 499 year: 2003 end-page: 506 ident: bib0105 article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation publication-title: Nature – volume: 66 start-page: 1022 year: 2006 end-page: 1030 ident: bib0155 article-title: Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer publication-title: Int. J. Radiat. Oncol. Biol. Phys. – year: 2006 ident: bib0005 article-title: DNA Repair and Mutagenesis – volume: 22 start-page: 6610 year: 2003 end-page: 6620 ident: bib0110 article-title: The Mre11 complex is required for ATM activation and the G2/M checkpoint publication-title: Embo J. – volume: 7 start-page: 819 year: 2008 end-page: 826 ident: bib0150 article-title: DNA repair gets physical: mapping an XPA-binding site on ERCC1 publication-title: DNA Repair (Amst) – volume: 4 start-page: 59 year: 2007 end-page: 71 ident: bib0220 article-title: Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis publication-title: Int. J. Med. Sci. – volume: 637 start-page: 28 year: 2008 end-page: 38 ident: bib0145 article-title: XPA gene, its product and biological roles publication-title: Adv. Exp. Med. Biol. – volume: 486 start-page: 217 year: 2001 end-page: 247 ident: bib0165 article-title: Repair of DNA interstrand cross-links publication-title: Mutat. Res. – volume: 26 start-page: 7749 year: 2007 end-page: 7758 ident: bib0035 article-title: ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks publication-title: Oncogene – volume: 159 start-page: 759 year: 2003 end-page: 767 ident: bib0060 article-title: Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells publication-title: Radiat. Res. – volume: 73 start-page: 1162 year: 2003 end-page: 1169 ident: bib0085 article-title: A comparison of bayesian methods for haplotype reconstruction from population genotype data publication-title: Am. J. Hum. Genet. – volume: 25 start-page: 118 year: 2005 ident: 10.1016/j.dnarep.2011.08.003_bib0065 article-title: Functional significance of a deep intronic mutation in the ATM gene and evidence for an alternative exon 28a publication-title: Hum. Mutat. doi: 10.1002/humu.20170 – volume: 11 start-page: 1513 year: 2002 ident: 10.1016/j.dnarep.2011.08.003_bib0020 article-title: Polymorphisms in DNA repair genes and associations with cancer risk publication-title: Cancer Epidemiol. Biomarkers Prev. – volume: 101 start-page: 24 year: 2009 ident: 10.1016/j.dnarep.2011.08.003_bib0025 article-title: A field synopsis on low-penetrance variants in DNA repair genes and cancer susceptibility publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djn437 – volume: 241 start-page: 193 year: 2000 ident: 10.1016/j.dnarep.2011.08.003_bib0140 article-title: Damage recognition in nucleotide excision repair of DNA publication-title: Gene doi: 10.1016/S0378-1119(99)00489-8 – volume: 308 start-page: 551 year: 2005 ident: 10.1016/j.dnarep.2011.08.003_bib0195 article-title: ATM activation by DNA double-strand breaks through the Mre11–Rad50–Nbs1 complex publication-title: Science doi: 10.1126/science.1108297 – volume: 9 start-page: 69 year: 2008 ident: 10.1016/j.dnarep.2011.08.003_bib0115 article-title: Analysis of variants in DNA damage signalling genes in bladder cancer publication-title: BMC Med. Genet. doi: 10.1186/1471-2350-9-69 – volume: 461 start-page: 1071 year: 2009 ident: 10.1016/j.dnarep.2011.08.003_bib0040 article-title: The DNA-damage response in human biology and disease publication-title: Nature doi: 10.1038/nature08467 – volume: 73 start-page: 508 year: 2008 ident: 10.1016/j.dnarep.2011.08.003_bib0070 article-title: A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia publication-title: Cytometry A doi: 10.1002/cyto.a.20566 – volume: 7 start-page: 1835 year: 2008 ident: 10.1016/j.dnarep.2011.08.003_bib0160 article-title: Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2008.07.009 – volume: 25 start-page: 5363 year: 2005 ident: 10.1016/j.dnarep.2011.08.003_bib0200 article-title: ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.13.5363-5379.2005 – volume: 92 start-page: 874 year: 2000 ident: 10.1016/j.dnarep.2011.08.003_bib0015 article-title: Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/92.11.874 – volume: 22 start-page: 5612 year: 2003 ident: 10.1016/j.dnarep.2011.08.003_bib0100 article-title: Requirement of the MRN complex for ATM activation by DNA damage publication-title: Embo J. doi: 10.1093/emboj/cdg541 – volume: 115 start-page: 623 year: 2009 ident: 10.1016/j.dnarep.2011.08.003_bib0120 article-title: DNA-repair genetic polymorphisms and risk of breast cancer in Cyprus publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-008-0084-4 – volume: 66 start-page: 2997 year: 2006 ident: 10.1016/j.dnarep.2011.08.003_bib0180 article-title: Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-3403 – volume: 49 start-page: 451 year: 2008 ident: 10.1016/j.dnarep.2011.08.003_bib0030 article-title: Dancing on damaged chromatin: functions of ATM and the RAD50/MRE11/NBS1 complex in cellular responses to DNA damage publication-title: J. Radiat. Res. (Tokyo) doi: 10.1269/jrr.08065 – volume: 281 start-page: 27117 year: 2006 ident: 10.1016/j.dnarep.2011.08.003_bib0185 article-title: The involvement of ataxia-telangiectasia mutated protein activation in nucleotide excision repair-facilitated cell survival with cisplatin treatment publication-title: J. Biol. Chem. doi: 10.1074/jbc.M602826200 – volume: 4 start-page: 59 year: 2007 ident: 10.1016/j.dnarep.2011.08.003_bib0220 article-title: Genetic polymorphisms in the nucleotide excision repair pathway and lung cancer risk: a meta-analysis publication-title: Int. J. Med. Sci. doi: 10.7150/ijms.4.59 – volume: 154 start-page: 127 year: 1998 ident: 10.1016/j.dnarep.2011.08.003_bib0010 article-title: Relevance of DNA repair to carcinogenesis and cancer therapy publication-title: Recent Results Cancer Res. doi: 10.1007/978-3-642-46870-4_7 – volume: 21 start-page: 453 year: 2000 ident: 10.1016/j.dnarep.2011.08.003_bib0135 article-title: Nucleotide excision repair and human syndromes publication-title: Carcinogenesis doi: 10.1093/carcin/21.3.453 – volume: 291 start-page: 1284 year: 2001 ident: 10.1016/j.dnarep.2011.08.003_bib0050 article-title: Human DNA repair genes publication-title: Science doi: 10.1126/science.1056154 – volume: 22 start-page: 6610 year: 2003 ident: 10.1016/j.dnarep.2011.08.003_bib0110 article-title: The Mre11 complex is required for ATM activation and the G2/M checkpoint publication-title: Embo J. doi: 10.1093/emboj/cdg630 – volume: 304 start-page: 93 year: 2004 ident: 10.1016/j.dnarep.2011.08.003_bib0190 article-title: Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex publication-title: Science doi: 10.1126/science.1091496 – volume: 577 start-page: 275 year: 2005 ident: 10.1016/j.dnarep.2011.08.003_bib0055 article-title: Human DNA repair genes publication-title: Mutat. Res. doi: 10.1016/j.mrfmmm.2005.03.007 – volume: 159 start-page: 759 year: 2003 ident: 10.1016/j.dnarep.2011.08.003_bib0060 article-title: Cell cycle-dependent expression of phosphorylated histone H2AX: reduced expression in unirradiated but not X-irradiated G1-phase cells publication-title: Radiat. Res. doi: 10.1667/RR3003 – volume: 486 start-page: 217 year: 2001 ident: 10.1016/j.dnarep.2011.08.003_bib0165 article-title: Repair of DNA interstrand cross-links publication-title: Mutat. Res. doi: 10.1016/S0921-8777(01)00092-1 – volume: 25 start-page: 569 year: 2010 ident: 10.1016/j.dnarep.2011.08.003_bib0210 article-title: Polymorphic DNA repair and metabolic genes: a multigenic study on gastric cancer publication-title: Mutagenesis doi: 10.1093/mutage/geq042 – volume: 26 start-page: 7749 year: 2007 ident: 10.1016/j.dnarep.2011.08.003_bib0035 article-title: ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks publication-title: Oncogene doi: 10.1038/sj.onc.1210880 – year: 2006 ident: 10.1016/j.dnarep.2011.08.003_bib0005 – volume: 21 start-page: 263 year: 2005 ident: 10.1016/j.dnarep.2011.08.003_bib0075 article-title: Haploview: analysis and visualization of LD and haplotype maps publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth457 – volume: 73 start-page: 138 year: 2011 ident: 10.1016/j.dnarep.2011.08.003_bib0215 article-title: Association of genetic polymorphisms in DNA repair pathway genes with non-small cell lung cancer risk publication-title: Lung Cancer doi: 10.1016/j.lungcan.2010.11.018 – volume: 3 start-page: 1219 year: 2004 ident: 10.1016/j.dnarep.2011.08.003_bib0090 article-title: Ataxia-telangiectasia-like disorder (ATLD)-its clinical presentation and molecular basis publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2004.04.009 – volume: 85 start-page: 509 year: 2007 ident: 10.1016/j.dnarep.2011.08.003_bib0095 article-title: Mre11–Rad50–Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template publication-title: Biochem. Cell Biol. doi: 10.1139/O07-069 – volume: 68 start-page: 978 year: 2001 ident: 10.1016/j.dnarep.2011.08.003_bib0080 article-title: A new statistical method for haplotype reconstruction from population data publication-title: Am. J. Hum. Genet. doi: 10.1086/319501 – volume: 44 start-page: 1932 year: 2005 ident: 10.1016/j.dnarep.2011.08.003_bib0170 article-title: Interstrand cross-links: a new type of gamma-ray damage in bromodeoxyuridine-substituted DNA publication-title: Biochemistry doi: 10.1021/bi048105s – volume: 421 start-page: 499 year: 2003 ident: 10.1016/j.dnarep.2011.08.003_bib0105 article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation publication-title: Nature doi: 10.1038/nature01368 – volume: 411 start-page: 366 year: 2001 ident: 10.1016/j.dnarep.2011.08.003_bib0130 article-title: Genome maintenance mechanisms for preventing cancer publication-title: Nature doi: 10.1038/35077232 – volume: 5 start-page: 731 year: 2006 ident: 10.1016/j.dnarep.2011.08.003_bib0175 article-title: gamma-H2AX formation in response to interstrand crosslinks requires XPF in human cells publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2006.03.009 – volume: 637 start-page: 28 year: 2008 ident: 10.1016/j.dnarep.2011.08.003_bib0145 article-title: XPA gene, its product and biological roles publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-09599-8_4 – volume: 7 start-page: 819 year: 2008 ident: 10.1016/j.dnarep.2011.08.003_bib0150 article-title: DNA repair gets physical: mapping an XPA-binding site on ERCC1 publication-title: DNA Repair (Amst) doi: 10.1016/j.dnarep.2008.01.018 – volume: 10 start-page: 250 year: 2009 ident: 10.1016/j.dnarep.2011.08.003_bib0045 article-title: Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair publication-title: Curr. Genomics doi: 10.2174/138920209788488544 – volume: 66 start-page: 1022 year: 2006 ident: 10.1016/j.dnarep.2011.08.003_bib0155 article-title: Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2006.06.029 – volume: 47 start-page: 2567 year: 2006 ident: 10.1016/j.dnarep.2011.08.003_bib0125 article-title: Haplotypic variation in MRE11, RAD50 and NBS1 and risk of non-Hodgkin's lymphoma publication-title: Leuk. Lymphoma doi: 10.1080/10428190600909743 – volume: 4 start-page: 737 year: 2005 ident: 10.1016/j.dnarep.2011.08.003_bib0205 article-title: The Mre11/Rad50/Nbs1 complex and its role as a DNA double-strand break sensor for ATM publication-title: Cell Cycle doi: 10.4161/cc.4.6.1715 – volume: 73 start-page: 1162 year: 2003 ident: 10.1016/j.dnarep.2011.08.003_bib0085 article-title: A comparison of bayesian methods for haplotype reconstruction from population genotype data publication-title: Am. J. Hum. Genet. doi: 10.1086/379378 |
SSID | ssj0015766 |
Score | 2.04554 |
Snippet | ► We analyzed 768 SNPs in DNA repair genes and H2AX phosphorylation levels. ► We found an association between SNPs in MRE11A and XPA with DSBR activity. ► We... DNA double-strand breaks (DSB) are the most lethal form of ionizing radiation-induced DNA damage, and failure to repair them results in cell death. In order to... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1044 |
SubjectTerms | Adult Alleles Bacteriology Biological and medical sciences DNA Breaks, Double-Stranded DNA repair DNA Repair - genetics DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Double-strand break repair Female Fundamental and applied biological sciences. Psychology Genetic Association Studies Growth, nutrition, cell differenciation H2AX phosphorylation Haplotypes Histones - chemistry Humans Male Microbiology Middle Aged Molecular and cellular biology Molecular genetics MRE11 Homologue Protein MRE11A Mutagenesis. Repair Phosphorylation Polymorphism, Single Nucleotide - genetics Radiation, Ionizing Xeroderma Pigmentosum Group A Protein - genetics XPA |
Title | Involvement of MRE11A and XPA gene polymorphisms in the modulation of DNA double-strand break repair activity: A genotype–phenotype correlation study |
URI | https://dx.doi.org/10.1016/j.dnarep.2011.08.003 https://www.ncbi.nlm.nih.gov/pubmed/21880556 https://www.proquest.com/docview/896240196 https://www.proquest.com/docview/902354771 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbarRBICEHLozxWc0Dcwm4SPxJuYWm1BbFCQKW9RY7tSIHdJNrHoRfEf-DA_-OXMHacrSpUVeIWRR7HyYzH3zjj-Qh5GUmqlYlokKgCAxSTSJxSEoEcx9W9LCVjymX5zvj0nL6fs_kemfRnYWxapff9nU933trfGfmvOWqravQFI49EJJzaomcRIvF9chDFKWcDcpCdfZjOdj8TEFK7Q0bYPrAC_Qk6l-ala7ky7WUtz549698V6m4r1_jdyo7w4npE6lam0_vknoeUkHWjfkD2TH1IjrIaw-nlBbwCl-Tpds8Pya23_dXtSU_1dkR-n9XopVzl8A00JXz8fBKGGchaw_xTBmhjBtpmcbFsUCvVermGqgZEjrBstKf_smLvZhnoZlssTGA3UFAa4235HfDNZbUCe4TCMlW8AddlY3d___z8ZZPM3DUoyxTiu3Nlbx-S89OTr5Np4BkbAkWTdBOUHNFjPC7T0JRcIdowWiHAKTR6VJYyG9ypSAqp0QwwKi-0SqkaGyGpUXGkTfyIDOqmNk8IIG7gQhhZYIRFC8qTpNBpwpnACItTFh-TuNdSrnw5c8uqscj7vLVveafb3Oo2t2SbY5QKdlJtV87jhvaiN4D8ilnmuOLcIDm8Yi-7x0WUj2ORhscEegPKUd32P42sTbNd50nKEWeha7y-SWrLFFEhsJfHne1d9m8r7DHGn_730J-RO5HPdAzHz8lgs9qaFwi9NsWQ7L_-EQ79BPsL7YwvfQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESoSQtDyKI8yB8QtbB6OnfQWllZbaFcIWmlvlmM7UmA3ifZx6AXxH3ro_-svYewkW1WoqsQtWnm82cxk_I3383yEvA8l1cqE1EtUjgWKSSS-UhKBHMPVvShkHCvH8h2z0Rn9MoknG2TYn4WxtMou97c53WXr7pNB9zQHTVkOfmDlkfCEUdv0LEQkfo_cp3HELa_v4-81zyNAQO2OGOFozw7vz885kpeu5Nw01508e-2sf9enR41c4FMrWrmL2_GoW5cOn5DHHaCErL3np2TDVNtkJ6uwmJ6dwwdwFE-3d75NHnzqr7aGvdDbDrk8qjBHub7hS6gLOPl-EAQZyErD5FsGGGEGmnp6PqvRJ-VitoCyAsSNMKt1J_5lzT6PM9D1Kp8az26foDVW2_IX4C-X5RzsAQqrU7EPbsra7v1e_bmwFDN3DcrqhHTTuaa3z8jZ4cHpcOR1eg2eokm69AqG2DHyizQwBVOINYxWCG9yjfk0TmNb2qlQcqkxCLAmz7VKqfINl9SoKNQmek42q7oyLwkgamCcG5ljfUVzypIk12nCYo71FUMv75Ko95JQXTNzq6kxFT1r7adofSusb4WV2vTRyltbNW0zjzvG8z4AxI2gFLje3GG5dyNe1l8XUuZHPA12CfQBJNDd9l8aWZl6tRBJyhBlYWK8fUhqmxRRznGWF23sXc9v--vFMXv137f-jmyNTk-OxfHR-Otr8jDsOI-B_4ZsLucr8xZB2DLfcy_ZX4m3MEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Involvement+of+MRE11A+and+XPA+gene+polymorphisms+in+the+modulation+of+DNA+double-strand+break+repair+activity%3A+A+genotype%E2%80%93phenotype+correlation+study&rft.jtitle=DNA+repair&rft.au=Ricceri%2C+Fulvio&rft.au=Porcedda%2C+Paola&rft.au=Allione%2C+Alessandra&rft.au=Turinetto%2C+Valentina&rft.date=2011-10-10&rft.issn=1568-7864&rft.volume=10&rft.issue=10&rft.spage=1044&rft.epage=1050&rft_id=info:doi/10.1016%2Fj.dnarep.2011.08.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dnarep_2011_08_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-7864&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-7864&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-7864&client=summon |