Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density
Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current deliver...
Saved in:
Published in | Brain stimulation Vol. 14; no. 5; pp. 1154 - 1168 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2021
Elsevier |
Online Access | Get full text |
Cover
Loading…
Abstract | Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes.
However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets.
We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS).
We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models.
Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES). |
---|---|
AbstractList | Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes.BACKGROUNDImprovements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes.However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets.OBJECTIVEHowever, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets.We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These "adaptive" models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS).METHODSWe developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These "adaptive" models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS).We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models.RESULTSWe demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models.Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES).CONCLUSIONSOur predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES). Background: Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes. Objective: However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets. Methods: We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS). Results: We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models. Conclusions: Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES). Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes. However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets. We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS). We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models. Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES). |
Author | Khadka, Niranjan Bikson, Marom FallahRad, Mohamad Short, Baron Swami, Jaiti K. Canela, Carliza Cohen, Samantha L. Argyelan, Miklos Unal, Gozde Sackeim, Harold A. |
Author_xml | – sequence: 1 givenname: Gozde surname: Unal fullname: Unal, Gozde email: gunal000@citymail.cuny.edu organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA – sequence: 2 givenname: Jaiti K. orcidid: 0000-0001-5044-1988 surname: Swami fullname: Swami, Jaiti K. organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA – sequence: 3 givenname: Carliza surname: Canela fullname: Canela, Carliza organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA – sequence: 4 givenname: Samantha L. orcidid: 0000-0003-4961-4129 surname: Cohen fullname: Cohen, Samantha L. organization: Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA – sequence: 5 givenname: Niranjan orcidid: 0000-0002-4930-5214 surname: Khadka fullname: Khadka, Niranjan organization: Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, MA, USA – sequence: 6 givenname: Mohamad surname: FallahRad fullname: FallahRad, Mohamad organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA – sequence: 7 givenname: Baron surname: Short fullname: Short, Baron organization: Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA – sequence: 8 givenname: Miklos surname: Argyelan fullname: Argyelan, Miklos organization: Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore- Long Island Jewish Health System, Manhasset, NY, 11030, USA – sequence: 9 givenname: Harold A. orcidid: 0000-0002-1107-4553 surname: Sackeim fullname: Sackeim, Harold A. organization: Department of Psychiatry and Radiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA – sequence: 10 givenname: Marom surname: Bikson fullname: Bikson, Marom email: bikson@ccny.cuny.edu organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA |
BookMark | eNqFkU1vEzEQhleoSLSFH8DNRw5sau-HvYZTFQVaqRKXInGzZu1x5eC1F3sTyL_HIYBED-XkkTXPO5p5LqqzEANW1WtGV4wyfrVdjSmvGtqwFRUryppn1TkbBK870XdnpZZtXw-cfXlRXeS8pbSXchDn1eHawLy4PRK9SwnDUlsfv5MpGvSZREs26_t3ZPNj9uCCCw_EBeP2zuzAk7zA4jRx04wGgsa3xBwCTP9-QTBkTAX-M4AYDNkth5fVcws-46vf72X1-cPmfn1T3336eLu-vqt1N8ilRmM73g0d1WjGxlpeKsNb3kHTAONiZNa2IMBagFZQa5mUlMlGYq95b2x7Wd2eck2ErZqTmyAdVASnfn3E9KAglT08qqZvbSO4MBbarhdyFNoMTDM6Wkv5gCXrzSlrTvHbDvOiJpc1eg8B4y6XgF40Le16WVrZqVWnmHNC-3c0o-qoTG1VUaaOyhQVqigrjHjEaHe8cQxLuaB_knx_Ios13DtMKmuHRYBxCfVSVnVP0vIRrX2xrcF_xcN_2J8i1sgh |
CitedBy_id | crossref_primary_10_1016_j_bpsgos_2024_100342 crossref_primary_10_1016_j_brs_2023_03_007 crossref_primary_10_1097_HRP_0000000000000365 crossref_primary_10_1007_s10439_023_03211_3 crossref_primary_10_1088_1741_2552_ac55ae crossref_primary_10_1016_j_brs_2023_05_008 crossref_primary_10_1017_neu_2023_10 crossref_primary_10_1088_1741_2552_ad7db2 crossref_primary_10_1038_s41386_023_01780_4 crossref_primary_10_1097_YCT_0000000000001069 crossref_primary_10_3389_fpsyt_2023_1092471 crossref_primary_10_1038_s41380_022_01516_8 crossref_primary_10_1038_s41380_024_02567_9 crossref_primary_10_1088_2057_1976_adbf9d crossref_primary_10_1016_j_brs_2021_09_001 crossref_primary_10_1088_1741_2552_ad625e |
Cites_doi | 10.1016/j.neuroimage.2005.02.018 10.1016/j.eurpsy.2016.09.005 10.7554/eLife.49115 10.1016/j.brs.2008.03.001 10.1088/0031-9155/61/12/4376 10.1046/j.1440-1819.2001.00795.x 10.1016/j.brs.2012.11.005 10.1007/BF02441041 10.1056/NEJMct075234 10.1016/j.jneumeth.2004.10.020 10.1016/j.nicl.2013.05.011 10.1001/archpsyc.1987.01800160067009 10.1016/0006-3223(95)00053-J 10.1016/j.brs.2009.03.005 10.1016/j.brs.2011.10.001 10.1007/s00406-012-0342-7 10.1088/1361-6560/abb7c1 10.1111/j.1600-0447.1968.tb07648.x 10.1152/ajplegacy.1949.156.3.317 10.3181/00379727-49-13633 10.1111/j.1525-1594.2008.00615.x 10.1016/j.neuroimage.2010.04.252 10.1111/j.1749-6632.1986.tb51266.x 10.1088/1741-2560/5/1/005 10.1001/archpsyc.57.5.425 10.1038/npp.2015.122 10.1007/BF02476917 10.1038/npp.2016.276 10.1016/bs.pbr.2015.08.005 10.1192/bjp.151.2.244 10.1016/S0006-3495(98)74008-1 10.1109/TMAG.2006.871580 10.1016/j.neuroimage.2013.01.042 10.1109/10.301735 10.1038/tp.2016.54 10.1159/000105632 10.1088/1361-6560/61/24/8825 10.1109/86.788470 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.brs.2021.07.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1876-4754 |
EndPage | 1168 |
ExternalDocumentID | oai_doaj_org_article_253f2767dfa34579b7cd81c10bff068e 10_1016_j_brs_2021_07_012 S1935861X21001510 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 23N 4.4 457 4G. 4H- 53G 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABIVO ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EJD EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SEL SES SSH SSN SSZ T5K Z5R ~G- 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG AAYXX AGRNS CITATION 7X8 |
ID | FETCH-LOGICAL-c489t-edf464840cedb2ff640cd6364a22a167b1ff3a7affaa370ff19901929e5c65df3 |
IEDL.DBID | .~1 |
ISSN | 1935-861X 1876-4754 |
IngestDate | Wed Aug 27 01:31:27 EDT 2025 Mon Jul 21 11:38:12 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Tue Jul 01 02:09:51 EDT 2025 Fri Feb 23 02:45:01 EST 2024 Tue Aug 26 16:35:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-edf464840cedb2ff640cd6364a22a167b1ff3a7affaa370ff19901929e5c65df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5044-1988 0000-0003-4961-4129 0000-0002-1107-4553 0000-0002-4930-5214 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1935861X21001510 |
PQID | 2557230459 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_253f2767dfa34579b7cd81c10bff068e proquest_miscellaneous_2557230459 crossref_primary_10_1016_j_brs_2021_07_012 crossref_citationtrail_10_1016_j_brs_2021_07_012 elsevier_sciencedirect_doi_10_1016_j_brs_2021_07_012 elsevier_clinicalkey_doi_10_1016_j_brs_2021_07_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September-October 2021 2021-09-00 20210901 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September-October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Brain stimulation |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Loo, Bai, Martin, Gálvez, Dokos (bib55) 2015; 31 Maxwell (bib11) 1968; 44 Plonsey, Heppner (bib26) 1967; 29 Sackeim, Long, Luber, Moeller, Prohovnik, Devanand (bib10) 1994; 10 Bai, Gálvez, Dokos, Martin, Bikson, Loo (bib14) 2017; 41 Bai, Loo, Dokos (bib38) 2012; 2012 Ashburner, Friston (bib30) 2005; 26 Yamamoto, Yamamoto (bib22) 1973; 11 Weiner, Rogers, Davidson, Squire (bib4) 1986; 462 Vargas Luna, Krenn, Cortés Ramírez, Mayr (bib19) 2015; 10 Jiang, Truong, Esmaeilpour, Huang, Badran, Bikson (bib23) 2020 van Waarde, van Oudheusden, Verwey, Giltay, van der Mast (bib9) 2013; 263 Peterchev, Rosa, Deng, Prudic, Lisanby (bib1) 2010; 26 Huang, Dmochowski, Su, Datta, Rorden, Parra (bib31) 2013 Lee, Lisanby, Laine, Peterchev (bib37) 2013; 2013 Huang, Liu, Lafon, Friedman, Dayan, Wang (bib42) 2017 Khadka, Bikson (bib48) 2020 Datta, Bikson, Fregni (bib44) 2010; 52 Dmochowski, Datta, Bikson, Su, Parra (bib47) 2011 Sackeim, Prudic, Nobler, Fitzsimons, Lisanby, Payne (bib16) 2008; 1 Argyelan, Lencz, Kaliora, Sarpal, Weissman, Kingsley (bib17) 2016; 6 McCall (bib39) 2019; 35 Sackeim, Decina, Prohovnik, Malitz (bib53) 1987; 44 Russell, Pierce, Townsend (bib27) 1949; 156 Truong, Magerowski, Blackburn, Bikson, Alonso-Alonso (bib25) 2013; 2 Steward, Bakir, Martin, Dokos, Loo (bib35) 2020 Argyelan, Oltedal, Deng, Wade, Bikson, Joanlanne (bib43) 2019; 8 Bikson, Truong, Mourdoukoutas, Aboseria, Khadka, Adair (bib34) 2015; 222 Lee, Deng, Kim, Laine, Lisanby, Peterchev (bib13) 2010; 2010 Shahid, Bikson, Salman, Wen, Ahfock (bib60) 2014 Delva, Brunet, Hawken, Kesteven, Lawson, Lywood (bib6) 2000; 16 Bikson, Dmochowski, Rahman (bib33) 2013; 6 Railton, Fisher, Sinclair, Shrigmankar (bib46) 1987; 151 Dorgan, Reilly (bib20) 1999; 7 Yamamoto, Yamamoto (bib52) 1977; 15 Datta, Truong, Minhas, Parra, Bikson (bib40) 2012; 91 Peterchev, Wagner, Miranda, Nitsche, Paulus, Lisanby (bib2) 2012; 5 Sha, Kenney, Heller, Barker, Howard, Moatamedi (bib50) 2008; 32 Szmurlo, Sawicki, Starzynski, Wincenciak (bib58) 2006; 42 Gomez-Tames, Sugiyama, Laakso, Tanaka, Koyama, Sadato (bib21) 2016; 61 Bossetti, Birdno, Grill (bib29) 2008; 5 Abrams (bib12) 2002 Kibret, Premaratne, Sullivan, Thomson, Fitzgerald (bib32) 2018; 4128 Datta, Bansal, Diaz, Patel, Reato, Bikson (bib24) 2009; 2 Panescu, Webster, Stratbucker (bib49) 1994; 41 Lisanby (bib15) 2007; 357 Chizmadzhev, Indenbom, Kuzmin, Galichenko, Weaver, Potts (bib18) 1998; 74 Lee, Lisanby, Laine, Peterchev (bib36) 2017; 42 Umlauf, Gunter, Tunnicliffe (bib5) 1951; 11 Wake, Sasaki, Watanabe (bib51) 2016; 61 Offner (bib28) 1942; 49 Rosa, Abdo, Lisanby, Peterchev (bib56) 2011; 27 Nadeem, Thorlin, Gandhi, Persson (bib57) 2003; 50 Coffey, Lucke, Weiner, Krystal, Aque (bib8) 1995; 37 Sackeim, Prudic, Devanand, Nobler, Lisanby, Peyser (bib3) 2000; 57 Edwards, Cortes, Datta, Minhas, Wassermann, Bikson (bib41) 2013; 74 Chung, Wong (bib7) 2001; 55 Truong, Magerowski, Pascual-Leone, Alonso-Alonso, Bikson (bib45) 2012 Peterchev, Krystal, Rosa, Lisanby (bib54) 2015; 40 Merrill, Bikson, Jefferys (bib59) 2005; 141 Datta (10.1016/j.brs.2021.07.012_bib24) 2009; 2 Chung (10.1016/j.brs.2021.07.012_bib7) 2001; 55 Truong (10.1016/j.brs.2021.07.012_bib25) 2013; 2 Ashburner (10.1016/j.brs.2021.07.012_bib30) 2005; 26 Khadka (10.1016/j.brs.2021.07.012_bib48) 2020 Peterchev (10.1016/j.brs.2021.07.012_bib1) 2010; 26 Steward (10.1016/j.brs.2021.07.012_bib35) 2020 Wake (10.1016/j.brs.2021.07.012_bib51) 2016; 61 Lee (10.1016/j.brs.2021.07.012_bib37) 2013; 2013 Jiang (10.1016/j.brs.2021.07.012_bib23) 2020 Nadeem (10.1016/j.brs.2021.07.012_bib57) 2003; 50 Sackeim (10.1016/j.brs.2021.07.012_bib3) 2000; 57 Lee (10.1016/j.brs.2021.07.012_bib36) 2017; 42 Rosa (10.1016/j.brs.2021.07.012_bib56) 2011; 27 Dorgan (10.1016/j.brs.2021.07.012_bib20) 1999; 7 Kibret (10.1016/j.brs.2021.07.012_bib32) 2018; 4128 Lee (10.1016/j.brs.2021.07.012_bib13) 2010; 2010 Argyelan (10.1016/j.brs.2021.07.012_bib17) 2016; 6 Gomez-Tames (10.1016/j.brs.2021.07.012_bib21) 2016; 61 Bikson (10.1016/j.brs.2021.07.012_bib34) 2015; 222 Edwards (10.1016/j.brs.2021.07.012_bib41) 2013; 74 Offner (10.1016/j.brs.2021.07.012_bib28) 1942; 49 Yamamoto (10.1016/j.brs.2021.07.012_bib22) 1973; 11 Bai (10.1016/j.brs.2021.07.012_bib38) 2012; 2012 Umlauf (10.1016/j.brs.2021.07.012_bib5) 1951; 11 Chizmadzhev (10.1016/j.brs.2021.07.012_bib18) 1998; 74 Russell (10.1016/j.brs.2021.07.012_bib27) 1949; 156 Panescu (10.1016/j.brs.2021.07.012_bib49) 1994; 41 van Waarde (10.1016/j.brs.2021.07.012_bib9) 2013; 263 Shahid (10.1016/j.brs.2021.07.012_bib60) 2014 Bai (10.1016/j.brs.2021.07.012_bib14) 2017; 41 Plonsey (10.1016/j.brs.2021.07.012_bib26) 1967; 29 Szmurlo (10.1016/j.brs.2021.07.012_bib58) 2006; 42 Peterchev (10.1016/j.brs.2021.07.012_bib54) 2015; 40 McCall (10.1016/j.brs.2021.07.012_bib39) 2019; 35 Huang (10.1016/j.brs.2021.07.012_bib42) 2017 Delva (10.1016/j.brs.2021.07.012_bib6) 2000; 16 Argyelan (10.1016/j.brs.2021.07.012_bib43) 2019; 8 Weiner (10.1016/j.brs.2021.07.012_bib4) 1986; 462 Dmochowski (10.1016/j.brs.2021.07.012_bib47) 2011 Maxwell (10.1016/j.brs.2021.07.012_bib11) 1968; 44 Datta (10.1016/j.brs.2021.07.012_bib40) 2012; 91 Datta (10.1016/j.brs.2021.07.012_bib44) 2010; 52 Lisanby (10.1016/j.brs.2021.07.012_bib15) 2007; 357 Bikson (10.1016/j.brs.2021.07.012_bib33) 2013; 6 Yamamoto (10.1016/j.brs.2021.07.012_bib52) 1977; 15 Loo (10.1016/j.brs.2021.07.012_bib55) 2015; 31 Coffey (10.1016/j.brs.2021.07.012_bib8) 1995; 37 Railton (10.1016/j.brs.2021.07.012_bib46) 1987; 151 Bossetti (10.1016/j.brs.2021.07.012_bib29) 2008; 5 Peterchev (10.1016/j.brs.2021.07.012_bib2) 2012; 5 Abrams (10.1016/j.brs.2021.07.012_bib12) 2002 Sackeim (10.1016/j.brs.2021.07.012_bib16) 2008; 1 Merrill (10.1016/j.brs.2021.07.012_bib59) 2005; 141 Sha (10.1016/j.brs.2021.07.012_bib50) 2008; 32 Sackeim (10.1016/j.brs.2021.07.012_bib10) 1994; 10 Truong (10.1016/j.brs.2021.07.012_bib45) 2012 Sackeim (10.1016/j.brs.2021.07.012_bib53) 1987; 44 Vargas Luna (10.1016/j.brs.2021.07.012_bib19) 2015; 10 Huang (10.1016/j.brs.2021.07.012_bib31) 2013 |
References_xml | – start-page: 10 year: 2013 ident: bib31 article-title: Automated MRI segmentation for individualized modeling of current flow in the human head publication-title: J Neural Eng – volume: 10 start-page: 93 year: 1994 end-page: 123 ident: bib10 article-title: Physical properties and quantification of the ECT stimulus: I. Basic principles publication-title: Convuls Ther – volume: 156 start-page: 317 year: 1949 end-page: 321 ident: bib27 article-title: Characteristics of tissue impedance in the rat under conditions of electroconvulsive shock stimulation publication-title: Am J Physiol – volume: 2012 start-page: 2559 year: 2012 end-page: 2562 ident: bib38 article-title: Effects of electroconvulsive therapy stimulus pulsewidth and amplitude computed with an anatomically-realistic head model publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 44 start-page: 355 year: 1987 end-page: 360 ident: bib53 article-title: Seizure threshold in electroconvulsive therapy. Effects of sex, age, electrode placement, and number of treatments publication-title: Arch Gen Psychiatr – volume: 263 start-page: 167 year: 2013 end-page: 175 ident: bib9 article-title: Clinical predictors of seizure threshold in electroconvulsive therapy: a prospective study publication-title: Eur Arch Psychiatr Clin Neurosci – volume: 42 start-page: 1395 year: 2006 end-page: 1398 ident: bib58 article-title: A comparison of two models of electrodes for ECT simulations publication-title: IEEE Trans Magn – volume: 222 start-page: 1 year: 2015 end-page: 23 ident: bib34 article-title: Modeling sequence and quasi-uniform assumption in computational neurostimulation publication-title: Prog Brain Res – start-page: 6 year: 2017 ident: bib42 article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation publication-title: Elife – volume: 11 start-page: 337 year: 1973 end-page: 343 ident: bib22 article-title: [Electrical properties of the epidermal stratum corneum] publication-title: Iyo Denshi Seitai Kogaku – start-page: 11 year: 2014 ident: bib60 article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation publication-title: J Neural Eng – volume: 50 start-page: 900 year: 2003 end-page: 907 ident: bib57 article-title: Computation of electric and magnetic stimulation in human head using the 3-D impedance method publication-title: IEEE (Inst Electr Electron Eng) Trans Biomed Eng – volume: 41 start-page: 681 year: 1994 end-page: 687 ident: bib49 article-title: A nonlinear finite element model of the electrode-electrolyte-skin system publication-title: IEEE Trans Biomed Eng – volume: 1 start-page: 71 year: 2008 end-page: 83 ident: bib16 article-title: Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy publication-title: Brain Stimul – volume: 15 start-page: 219 year: 1977 end-page: 227 ident: bib52 article-title: Analysis for the change of skin impedance publication-title: Med Biol Eng Comput – volume: 27 start-page: 341 year: 2011 end-page: 342 ident: bib56 article-title: Seizure induction with low-amplitude-current (0.5 A) electroconvulsive therapy publication-title: J ECT – volume: 2 start-page: 201 year: 2009 end-page: 207 ident: bib24 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul – volume: 29 start-page: 657 year: 1967 end-page: 664 ident: bib26 article-title: Considerations of quasi-stationarity in electrophysiological systems publication-title: Bull Math Biophys – volume: 6 start-page: 704 year: 2013 end-page: 705 ident: bib33 article-title: The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation publication-title: Brain Stimul – volume: 74 start-page: 843 year: 1998 end-page: 856 ident: bib18 article-title: Electrical properties of skin at moderate voltages: contribution of appendageal macropores publication-title: Biophys J – volume: 2013 start-page: 3082 year: 2013 end-page: 3085 ident: bib37 article-title: Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study publication-title: Conf.Proc.IEEE.Eng.Med.Biol.Soc – volume: 151 start-page: 244 year: 1987 end-page: 247 ident: bib46 article-title: Comparison of electrical measurements on constant voltage and constant current ECT machines publication-title: Br J Psychiatry – volume: 6 year: 2016 ident: bib17 article-title: Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy publication-title: Transl Psychiatry – volume: 26 start-page: 839 year: 2005 end-page: 851 ident: bib30 article-title: Unified segmentation publication-title: Neuroimage – volume: 16 start-page: 361 year: 2000 end-page: 369 ident: bib6 article-title: Electrical dose and seizure threshold: relations to clinical outcome and cognitive effects in bifrontal, bitemporal, and right unilateral ECT publication-title: J ECT – volume: 2 start-page: 759 year: 2013 end-page: 766 ident: bib25 article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines publication-title: Neuroimage: Clinic – volume: 37 start-page: 777 year: 1995 end-page: 788 ident: bib8 article-title: Seizure threshold in electroconvulsive therapy (ECT) II. The anticonvulsant effect of ECT publication-title: Biol Psychiatr – volume: 61 start-page: 4376 year: 2016 end-page: 4389 ident: bib51 article-title: Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies publication-title: Phys Med Biol – year: 2020 ident: bib48 article-title: Role of skin tissue layers and ultra-structure in transcutaneous electrical stimulation including tDCS publication-title: Phys Med Biol – volume: 91 start-page: 3 year: 2012 ident: bib40 article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models publication-title: Front Psychiatr – volume: 42 start-page: 1192 year: 2017 end-page: 1200 ident: bib36 article-title: Minimum electric field exposure for seizure induction with electroconvulsive therapy and magnetic seizure therapy publication-title: Neuropsychopharmacology – volume: 35 start-page: 144 year: 2019 ident: bib39 publication-title: Handbook of ECT: a guide to electroconvulsive therapy for practitioners – start-page: 6587 year: 2012 end-page: 6590 ident: bib45 article-title: Finite Element study of skin and fat delineation in an obese subject for transcranial Direct Current Stimulation publication-title: 2012 annual international conference of the IEEE engineering in medicine and biology society (EMBC) – volume: 40 start-page: 2076 year: 2015 end-page: 2084 ident: bib54 article-title: Individualized low-amplitude seizure therapy: minimizing current for electroconvulsive therapy and magnetic seizure therapy publication-title: Neuropsychopharmacology – volume: 357 start-page: 1939 year: 2007 end-page: 1945 ident: bib15 article-title: Electroconvulsive therapy for depression publication-title: N Engl J Med – volume: 8 year: 2019 ident: bib43 article-title: Electric field causes volumetric changes in the human brain publication-title: Elife – volume: 52 start-page: 1268 year: 2010 end-page: 1278 ident: bib44 article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow publication-title: Neuroimage – volume: 32 start-page: 639 year: 2008 end-page: 643 ident: bib50 article-title: A finite element model to identify electrode influence on current distribution in the skin publication-title: Artif Organs – start-page: 8 year: 2011 ident: bib47 article-title: Optimized multi-electrode stimulation increases focality and intensity at target publication-title: J Neural Eng – volume: 11 start-page: 129 year: 1951 end-page: 138 ident: bib5 article-title: Impedance of the human head as observed during electro-shock treatment publication-title: Confin Neurol – volume: 74 start-page: 266 year: 2013 end-page: 275 ident: bib41 article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS publication-title: Neuroimage – start-page: 17 year: 2020 ident: bib23 article-title: Enhanced tES and tDCS computational models by meninges emulation publication-title: J Neural Eng – year: 2002 ident: bib12 article-title: Electroconvulsive therapy – volume: 61 start-page: 8825 year: 2016 end-page: 8838 ident: bib21 article-title: Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation publication-title: Phys Med Biol – volume: 5 start-page: 435 year: 2012 end-page: 453 ident: bib2 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul – volume: 7 start-page: 341 year: 1999 end-page: 348 ident: bib20 article-title: A model for human skin impedance during surface functional neuromuscular stimulation publication-title: IEEE Trans Rehabil Eng – volume: 4128 start-page: 8 year: 2018 ident: bib32 article-title: Electroconvulsive therapy (ECT) during pregnancy: quantifying and assessing the electric field strength inside the foetal brain publication-title: Sci Rep – volume: 41 start-page: 21 year: 2017 end-page: 29 ident: bib14 article-title: Computational models of Bitemporal, Bifrontal and Right Unilateral ECT predict differential stimulation of brain regions associated with efficacy and cognitive side effects publication-title: Eur Psychiatr – volume: 10 year: 2015 ident: bib19 article-title: Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation publication-title: PloS One – volume: 462 start-page: 315 year: 1986 end-page: 325 ident: bib4 article-title: Effects of stimulus parameters on cognitive side effects publication-title: Ann N Y Acad Sci – volume: 31 start-page: e7 year: 2015 end-page: e13 ident: bib55 article-title: Revisiting frontoparietal montage in electroconvulsive therapy: clinical observations and computer modeling: a future treatment option for unilateral electroconvulsive therapy publication-title: J ECT – volume: 2010 start-page: 2045 year: 2010 end-page: 2048 ident: bib13 article-title: Regional electric field induced by electroconvulsive therapy: a finite element simulation study publication-title: Conf proc IEEE eng med biol soc – volume: 55 start-page: 105 year: 2001 end-page: 110 ident: bib7 article-title: Stimulus dose titration for electroconvulsive therapy publication-title: Psychiatr Clin Neurosci – volume: 5 start-page: 44 year: 2008 end-page: 53 ident: bib29 article-title: Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation publication-title: J Neural Eng – volume: 141 start-page: 171 year: 2005 end-page: 198 ident: bib59 article-title: Electrical stimulation of excitable tissue:design of efficacious and safe protocols publication-title: J Neurosci Methods – volume: 57 start-page: 425 year: 2000 end-page: 434 ident: bib3 article-title: A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities publication-title: Arch Gen Psychiatr – volume: 49 start-page: 571 year: 1942 end-page: 575 ident: bib28 article-title: Electrical properties of tissues in shock therapy publication-title: PSEBM (Proc Soc Exp Biol Med) – start-page: 304 year: 2020 ident: bib35 article-title: The left anterior right temporal (LART) placement for electroconvulsive therapy: a computational modelling study publication-title: Psychiatry Res Neuroimaging – volume: 26 start-page: 159 year: 2010 end-page: 174 ident: bib1 article-title: Electroconvulsive therapy stimulus parameters: rethinking dosage publication-title: J ECT – volume: 44 start-page: 436 year: 1968 end-page: 448 ident: bib11 article-title: Electrical factors in electroconvulsive therapy publication-title: Acta Psychiatr Scand – start-page: 8 year: 2011 ident: 10.1016/j.brs.2021.07.012_bib47 article-title: Optimized multi-electrode stimulation increases focality and intensity at target publication-title: J Neural Eng – volume: 26 start-page: 839 year: 2005 ident: 10.1016/j.brs.2021.07.012_bib30 article-title: Unified segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.018 – volume: 41 start-page: 21 year: 2017 ident: 10.1016/j.brs.2021.07.012_bib14 article-title: Computational models of Bitemporal, Bifrontal and Right Unilateral ECT predict differential stimulation of brain regions associated with efficacy and cognitive side effects publication-title: Eur Psychiatr doi: 10.1016/j.eurpsy.2016.09.005 – volume: 8 year: 2019 ident: 10.1016/j.brs.2021.07.012_bib43 article-title: Electric field causes volumetric changes in the human brain publication-title: Elife doi: 10.7554/eLife.49115 – volume: 1 start-page: 71 year: 2008 ident: 10.1016/j.brs.2021.07.012_bib16 article-title: Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy publication-title: Brain Stimul doi: 10.1016/j.brs.2008.03.001 – start-page: 6587 year: 2012 ident: 10.1016/j.brs.2021.07.012_bib45 article-title: Finite Element study of skin and fat delineation in an obese subject for transcranial Direct Current Stimulation – volume: 61 start-page: 4376 year: 2016 ident: 10.1016/j.brs.2021.07.012_bib51 article-title: Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies publication-title: Phys Med Biol doi: 10.1088/0031-9155/61/12/4376 – volume: 55 start-page: 105 year: 2001 ident: 10.1016/j.brs.2021.07.012_bib7 article-title: Stimulus dose titration for electroconvulsive therapy publication-title: Psychiatr Clin Neurosci doi: 10.1046/j.1440-1819.2001.00795.x – volume: 6 start-page: 704 year: 2013 ident: 10.1016/j.brs.2021.07.012_bib33 article-title: The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2012.11.005 – volume: 15 start-page: 219 year: 1977 ident: 10.1016/j.brs.2021.07.012_bib52 article-title: Analysis for the change of skin impedance publication-title: Med Biol Eng Comput doi: 10.1007/BF02441041 – volume: 35 start-page: 144 year: 2019 ident: 10.1016/j.brs.2021.07.012_bib39 – volume: 357 start-page: 1939 year: 2007 ident: 10.1016/j.brs.2021.07.012_bib15 article-title: Electroconvulsive therapy for depression publication-title: N Engl J Med doi: 10.1056/NEJMct075234 – volume: 141 start-page: 171 year: 2005 ident: 10.1016/j.brs.2021.07.012_bib59 article-title: Electrical stimulation of excitable tissue:design of efficacious and safe protocols publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2004.10.020 – volume: 16 start-page: 361 year: 2000 ident: 10.1016/j.brs.2021.07.012_bib6 article-title: Electrical dose and seizure threshold: relations to clinical outcome and cognitive effects in bifrontal, bitemporal, and right unilateral ECT publication-title: J ECT – volume: 31 start-page: e7 year: 2015 ident: 10.1016/j.brs.2021.07.012_bib55 article-title: Revisiting frontoparietal montage in electroconvulsive therapy: clinical observations and computer modeling: a future treatment option for unilateral electroconvulsive therapy publication-title: J ECT – volume: 2 start-page: 759 year: 2013 ident: 10.1016/j.brs.2021.07.012_bib25 article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines publication-title: Neuroimage: Clinic doi: 10.1016/j.nicl.2013.05.011 – start-page: 11 year: 2014 ident: 10.1016/j.brs.2021.07.012_bib60 article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation publication-title: J Neural Eng – year: 2002 ident: 10.1016/j.brs.2021.07.012_bib12 – volume: 44 start-page: 355 year: 1987 ident: 10.1016/j.brs.2021.07.012_bib53 article-title: Seizure threshold in electroconvulsive therapy. Effects of sex, age, electrode placement, and number of treatments publication-title: Arch Gen Psychiatr doi: 10.1001/archpsyc.1987.01800160067009 – volume: 37 start-page: 777 year: 1995 ident: 10.1016/j.brs.2021.07.012_bib8 article-title: Seizure threshold in electroconvulsive therapy (ECT) II. The anticonvulsant effect of ECT publication-title: Biol Psychiatr doi: 10.1016/0006-3223(95)00053-J – volume: 2010 start-page: 2045 year: 2010 ident: 10.1016/j.brs.2021.07.012_bib13 article-title: Regional electric field induced by electroconvulsive therapy: a finite element simulation study – volume: 2013 start-page: 3082 year: 2013 ident: 10.1016/j.brs.2021.07.012_bib37 article-title: Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study publication-title: Conf.Proc.IEEE.Eng.Med.Biol.Soc – volume: 50 start-page: 900 year: 2003 ident: 10.1016/j.brs.2021.07.012_bib57 article-title: Computation of electric and magnetic stimulation in human head using the 3-D impedance method publication-title: IEEE (Inst Electr Electron Eng) Trans Biomed Eng – volume: 2 start-page: 201 year: 2009 ident: 10.1016/j.brs.2021.07.012_bib24 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.005 – volume: 26 start-page: 159 year: 2010 ident: 10.1016/j.brs.2021.07.012_bib1 article-title: Electroconvulsive therapy stimulus parameters: rethinking dosage publication-title: J ECT – start-page: 10 year: 2013 ident: 10.1016/j.brs.2021.07.012_bib31 article-title: Automated MRI segmentation for individualized modeling of current flow in the human head publication-title: J Neural Eng – volume: 5 start-page: 435 year: 2012 ident: 10.1016/j.brs.2021.07.012_bib2 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul doi: 10.1016/j.brs.2011.10.001 – volume: 263 start-page: 167 year: 2013 ident: 10.1016/j.brs.2021.07.012_bib9 article-title: Clinical predictors of seizure threshold in electroconvulsive therapy: a prospective study publication-title: Eur Arch Psychiatr Clin Neurosci doi: 10.1007/s00406-012-0342-7 – year: 2020 ident: 10.1016/j.brs.2021.07.012_bib48 article-title: Role of skin tissue layers and ultra-structure in transcutaneous electrical stimulation including tDCS publication-title: Phys Med Biol doi: 10.1088/1361-6560/abb7c1 – volume: 4128 start-page: 8 year: 2018 ident: 10.1016/j.brs.2021.07.012_bib32 article-title: Electroconvulsive therapy (ECT) during pregnancy: quantifying and assessing the electric field strength inside the foetal brain publication-title: Sci Rep – volume: 44 start-page: 436 year: 1968 ident: 10.1016/j.brs.2021.07.012_bib11 article-title: Electrical factors in electroconvulsive therapy publication-title: Acta Psychiatr Scand doi: 10.1111/j.1600-0447.1968.tb07648.x – volume: 156 start-page: 317 year: 1949 ident: 10.1016/j.brs.2021.07.012_bib27 article-title: Characteristics of tissue impedance in the rat under conditions of electroconvulsive shock stimulation publication-title: Am J Physiol doi: 10.1152/ajplegacy.1949.156.3.317 – volume: 49 start-page: 571 year: 1942 ident: 10.1016/j.brs.2021.07.012_bib28 article-title: Electrical properties of tissues in shock therapy publication-title: PSEBM (Proc Soc Exp Biol Med) doi: 10.3181/00379727-49-13633 – volume: 32 start-page: 639 year: 2008 ident: 10.1016/j.brs.2021.07.012_bib50 article-title: A finite element model to identify electrode influence on current distribution in the skin publication-title: Artif Organs doi: 10.1111/j.1525-1594.2008.00615.x – volume: 10 year: 2015 ident: 10.1016/j.brs.2021.07.012_bib19 article-title: Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation publication-title: PloS One – volume: 52 start-page: 1268 year: 2010 ident: 10.1016/j.brs.2021.07.012_bib44 article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.252 – volume: 462 start-page: 315 year: 1986 ident: 10.1016/j.brs.2021.07.012_bib4 article-title: Effects of stimulus parameters on cognitive side effects publication-title: Ann N Y Acad Sci doi: 10.1111/j.1749-6632.1986.tb51266.x – volume: 91 start-page: 3 year: 2012 ident: 10.1016/j.brs.2021.07.012_bib40 article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models publication-title: Front Psychiatr – volume: 5 start-page: 44 year: 2008 ident: 10.1016/j.brs.2021.07.012_bib29 article-title: Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation publication-title: J Neural Eng doi: 10.1088/1741-2560/5/1/005 – volume: 57 start-page: 425 year: 2000 ident: 10.1016/j.brs.2021.07.012_bib3 article-title: A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities publication-title: Arch Gen Psychiatr doi: 10.1001/archpsyc.57.5.425 – volume: 11 start-page: 337 year: 1973 ident: 10.1016/j.brs.2021.07.012_bib22 article-title: [Electrical properties of the epidermal stratum corneum] publication-title: Iyo Denshi Seitai Kogaku – volume: 40 start-page: 2076 year: 2015 ident: 10.1016/j.brs.2021.07.012_bib54 article-title: Individualized low-amplitude seizure therapy: minimizing current for electroconvulsive therapy and magnetic seizure therapy publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.122 – volume: 10 start-page: 93 year: 1994 ident: 10.1016/j.brs.2021.07.012_bib10 article-title: Physical properties and quantification of the ECT stimulus: I. Basic principles publication-title: Convuls Ther – volume: 29 start-page: 657 year: 1967 ident: 10.1016/j.brs.2021.07.012_bib26 article-title: Considerations of quasi-stationarity in electrophysiological systems publication-title: Bull Math Biophys doi: 10.1007/BF02476917 – start-page: 304 year: 2020 ident: 10.1016/j.brs.2021.07.012_bib35 article-title: The left anterior right temporal (LART) placement for electroconvulsive therapy: a computational modelling study publication-title: Psychiatry Res Neuroimaging – volume: 42 start-page: 1192 year: 2017 ident: 10.1016/j.brs.2021.07.012_bib36 article-title: Minimum electric field exposure for seizure induction with electroconvulsive therapy and magnetic seizure therapy publication-title: Neuropsychopharmacology doi: 10.1038/npp.2016.276 – volume: 222 start-page: 1 year: 2015 ident: 10.1016/j.brs.2021.07.012_bib34 article-title: Modeling sequence and quasi-uniform assumption in computational neurostimulation publication-title: Prog Brain Res doi: 10.1016/bs.pbr.2015.08.005 – volume: 151 start-page: 244 year: 1987 ident: 10.1016/j.brs.2021.07.012_bib46 article-title: Comparison of electrical measurements on constant voltage and constant current ECT machines publication-title: Br J Psychiatry doi: 10.1192/bjp.151.2.244 – volume: 74 start-page: 843 year: 1998 ident: 10.1016/j.brs.2021.07.012_bib18 article-title: Electrical properties of skin at moderate voltages: contribution of appendageal macropores publication-title: Biophys J doi: 10.1016/S0006-3495(98)74008-1 – volume: 42 start-page: 1395 year: 2006 ident: 10.1016/j.brs.2021.07.012_bib58 article-title: A comparison of two models of electrodes for ECT simulations publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2006.871580 – volume: 2012 start-page: 2559 year: 2012 ident: 10.1016/j.brs.2021.07.012_bib38 article-title: Effects of electroconvulsive therapy stimulus pulsewidth and amplitude computed with an anatomically-realistic head model publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 74 start-page: 266 year: 2013 ident: 10.1016/j.brs.2021.07.012_bib41 article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.042 – volume: 41 start-page: 681 year: 1994 ident: 10.1016/j.brs.2021.07.012_bib49 article-title: A nonlinear finite element model of the electrode-electrolyte-skin system publication-title: IEEE Trans Biomed Eng doi: 10.1109/10.301735 – start-page: 6 year: 2017 ident: 10.1016/j.brs.2021.07.012_bib42 article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation publication-title: Elife – volume: 6 year: 2016 ident: 10.1016/j.brs.2021.07.012_bib17 article-title: Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy publication-title: Transl Psychiatry doi: 10.1038/tp.2016.54 – volume: 11 start-page: 129 year: 1951 ident: 10.1016/j.brs.2021.07.012_bib5 article-title: Impedance of the human head as observed during electro-shock treatment publication-title: Confin Neurol doi: 10.1159/000105632 – volume: 61 start-page: 8825 year: 2016 ident: 10.1016/j.brs.2021.07.012_bib21 article-title: Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation publication-title: Phys Med Biol doi: 10.1088/1361-6560/61/24/8825 – volume: 27 start-page: 341 year: 2011 ident: 10.1016/j.brs.2021.07.012_bib56 article-title: Seizure induction with low-amplitude-current (0.5 A) electroconvulsive therapy publication-title: J ECT – volume: 7 start-page: 341 year: 1999 ident: 10.1016/j.brs.2021.07.012_bib20 article-title: A model for human skin impedance during surface functional neuromuscular stimulation publication-title: IEEE Trans Rehabil Eng doi: 10.1109/86.788470 – start-page: 17 year: 2020 ident: 10.1016/j.brs.2021.07.012_bib23 article-title: Enhanced tES and tDCS computational models by meninges emulation publication-title: J Neural Eng |
SSID | ssj0059987 |
Score | 2.3730018 |
Snippet | Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of... Background: Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical... |
SourceID | doaj proquest crossref elsevier |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1154 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_SkxdRq_j8IoJ4EIOb711vz9JSBD218G4hXwNP6r5SX5H335tJdh-th_bibQnJZjczmflNZjJDyPuQeF80u2S6i5opAYH5OFimBi8Kfh5ijngO-f2HOT1X31Z6daPUF8aEtfTAbeE-Cy1BWGMTeKm0HYKNqeeRdwGgM31G6Vt03mxMNRmsixFhmz9Zs97w1ezPrJFd4QrzdAtes3ZycUsj1cT9txTTPyK66p2Tx-TRBBjpsn3oE_Igj0_J4XIsxvKvHf1AawhnPRs_JLtl8pcov2hsaZcYXGz-0Frt5jfdAD0-OvtCMeyu1YWg6_11LIo3i9aRrguMTsgJn2hqxepvNvkx0YBFJeYJaMIA-O3uGTk_OT47OmVTbQUWVT9sWU6gjCrWXcwpCABTnpKRRnkhPDc2cADprQfwXtoOgKMDrWCprKPRCeRzcjBuxvyCUJ0wWCVH30WpQtf7fgCpUsEdJkDow4J08_q6OCUex_oXF26OMPvpCkkcksR11hWSLMjH_ZDLlnXjrs5fkWj7jpgwuzYUNnITG7n72GhBxExyN99JLVK0vGh918xqP2gCLA2I3Dfs3cxTrmxm9ND4MW-uSyetLZ7S6-Hl__ipV-QhTttC4l6Tg-3VdX5TMNQ2vK3b5S-Wxhmr priority: 102 providerName: Directory of Open Access Journals |
Title | Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X21001510 https://dx.doi.org/10.1016/j.brs.2021.07.012 https://www.proquest.com/docview/2557230459 https://doaj.org/article/253f2767dfa34579b7cd81c10bff068e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWy4ULAhZEeVRGQhwQobHjR8KtVLsqIPbCrtSb5UcGZbUkVekK9cJvx-MkFeWwSNwSa-xEnvF47PlmhpBXLrAy7uxFJnMvM8HBZdZXOhOV5dF-rnzt8R7yy7laXopPK7k6IosxFgZhlYPu73V60tZDy2yYzdm6aWZfGbrwFFtxTCMkU5iVEBql_N2vPcxDxuOE7j3LMkPq0bOZMF5ugxm7OUv5Oxk_2JtSCv-DLeovZZ12oLP75N5gOtJ5_3cPyFHdPiQn8zYem7_v6GuawJzplvyE7ObBrlGTUd8nYMrguvtJU92bH7QDerq4eE8RgNdXiKDNPjCLYoxR42kTDeqAMvGWhr5s_Z9Ntg3UYXmJ8QM0IBR-u3tELs9OLxbLbKiykHlRVtusDiCUiOe8OOOOA6j4FFShhOXcMqUdAyistgDWFjoHYOhKi1ZVLb2SAYrH5Ljt2voJoTIgbKX2NveFcHlpywoKEaIFohy40k1IPs6v8UMKcqyEcW1GrNmViSwxyBKTaxNZMiFv9l3Wff6N24g_INP2hJg6OzV0m29mkB3DZQFcKx3AFkLqymkfSuZZ7gByVdYTwkeWmzE6NerTOFBz25fFvtOB-P6r28tRpkxc1uirsW3d3UQiKTXe18vq6f8N_YzcxbceDvecHG83N_WLaD9t3TQtkCm5M__4eXk-TbcQvwH7rxwR |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZW3QNcELAgytNIiAMiauz4kXAr1a667G4vdKXeLD8yKGhJqtIV6r_Hk0dFOSwSt8jxOJFnPB57Zr4h5J0LLI87e5bI1MtEcHCJ9YVORGF5tJ8LX3q8h7xaqPm1-LKSqyMyG3JhMKyy1_2dTm-1dd8y6Wdzsq6qyVeGLjzFVhxhhCSmWR0jOpUckePp-cV8MShkGU8UunMuywQJBudmG-blNgjazVkL4cn4wfbUovgf7FJ_6et2Ezp7SB701iOddj_4iByV9WNyMq3jyfnHjr6nbTxne1F-QnbTYNeozKjvMJgSuGl-0bb0zU_aAD2dLT9RjMHrikTQap-bRTHNqPK0ijZ1QLH4SENXuf7PJlsH6rDCxPABGjAafrt7Qq7PTpezedIXWki8yIttUgYQSsSjXpx0xwFUfAoqU8JybpnSjgFkVlsAazOdAjD0pkXDqpReyQDZUzKqm7p8RqgMGLlSepv6TLg0t3kBmQjRCFEOXO7GJB3m1_gehRyLYdyYIdzsu4ksMcgSk2oTWTImH_Yk6w6C467On5Fp-46Int02NJtvphcfw2UGXCsdwGZC6sJpH3LmWeoAUpWXY8IHlpshQTWq1DhQddeXxZ7oQIL_RfZ2kCkTVza6a2xdNrexk5Qar-xl8fz_hn5D7s2XV5fm8nxx8YLcxzdddNxLMtpubstX0Zzautf9cvkN9aQdzQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+current-flow+models+of+ECT%3A+Explaining+individual+static+impedance%2C+dynamic+impedance%2C+and+brain+current+density&rft.jtitle=Brain+stimulation&rft.au=Unal%2C+Gozde&rft.au=Swami%2C+Jaiti+K&rft.au=Canela%2C+Carliza&rft.au=Cohen%2C+Samantha+L&rft.date=2021-09-01&rft.issn=1876-4754&rft.eissn=1876-4754&rft.volume=14&rft.issue=5&rft.spage=1154&rft_id=info:doi/10.1016%2Fj.brs.2021.07.012&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon |