Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density

Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current deliver...

Full description

Saved in:
Bibliographic Details
Published inBrain stimulation Vol. 14; no. 5; pp. 1154 - 1168
Main Authors Unal, Gozde, Swami, Jaiti K., Canela, Carliza, Cohen, Samantha L., Khadka, Niranjan, FallahRad, Mohamad, Short, Baron, Argyelan, Miklos, Sackeim, Harold A., Bikson, Marom
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2021
Elsevier
Online AccessGet full text

Cover

Loading…
Abstract Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes. However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets. We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS). We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models. Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES).
AbstractList Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes.BACKGROUNDImprovements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes.However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets.OBJECTIVEHowever, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets.We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These "adaptive" models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS).METHODSWe developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These "adaptive" models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS).We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models.RESULTSWe demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models.Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES).CONCLUSIONSOur predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES).
Background: Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes. Objective: However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets. Methods: We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS). Results: We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models. Conclusions: Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES).
Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of the ECT stimulus, together with those of the patient's head, determine the impedances measured by the device and govern current delivery to the brain and ECT outcomes. However, the precise relations among physical properties of the stimulus, patient head anatomy, and patient-specific impedance to the passage of current are long-standing questions in ECT research and practice. To this end, we develop a computational framework based on diverse clinical data sets. We developed anatomical MRI-derived models of transcranial electrical stimulation (tES) that included changes in tissue conductivity due to local electrical current flow. These “adaptive” models simulate ECT both during therapeutic stimulation using high current (∼1 A) and when dynamic impedance is measured, as well as prior to stimulation when low current (∼1 mA) is used to measure static impedance. We modeled two scalp layers: a superficial scalp layer with adaptive conductivity that increases with electric field up to a subject-specific maximum (σSS¯), and a deep scalp layer with a subject-specific fixed conductivity (σDS). We demonstrated that variation in these scalp parameters may explain clinical data on subject-specific static impedance and dynamic impedance, their imperfect correlation across subjects, their relationships to seizure threshold, and the role of head anatomy. Adaptive tES models demonstrated that current flow changes local tissue conductivity which in turn shapes current delivery to the brain in a manner not accounted for in fixed tissue conductivity models. Our predictions that variation in individual skin properties, rather than other aspects of anatomy, largely govern the relationship between static impedance, dynamic impedance, and ECT current delivery to the brain, themselves depend on assumptions about tissue properties. Broadly, our novel modeling pipeline opens the door to explore how adaptive-scalp conductivity may impact transcutaneous electrical stimulation (tES).
Author Khadka, Niranjan
Bikson, Marom
FallahRad, Mohamad
Short, Baron
Swami, Jaiti K.
Canela, Carliza
Cohen, Samantha L.
Argyelan, Miklos
Unal, Gozde
Sackeim, Harold A.
Author_xml – sequence: 1
  givenname: Gozde
  surname: Unal
  fullname: Unal, Gozde
  email: gunal000@citymail.cuny.edu
  organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
– sequence: 2
  givenname: Jaiti K.
  orcidid: 0000-0001-5044-1988
  surname: Swami
  fullname: Swami, Jaiti K.
  organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
– sequence: 3
  givenname: Carliza
  surname: Canela
  fullname: Canela, Carliza
  organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
– sequence: 4
  givenname: Samantha L.
  orcidid: 0000-0003-4961-4129
  surname: Cohen
  fullname: Cohen, Samantha L.
  organization: Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
– sequence: 5
  givenname: Niranjan
  orcidid: 0000-0002-4930-5214
  surname: Khadka
  fullname: Khadka, Niranjan
  organization: Department of Psychiatry, Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Harvard Medical School, MA, USA
– sequence: 6
  givenname: Mohamad
  surname: FallahRad
  fullname: FallahRad, Mohamad
  organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
– sequence: 7
  givenname: Baron
  surname: Short
  fullname: Short, Baron
  organization: Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
– sequence: 8
  givenname: Miklos
  surname: Argyelan
  fullname: Argyelan, Miklos
  organization: Center for Neurosciences, The Feinstein Institute for Medical Research, North Shore- Long Island Jewish Health System, Manhasset, NY, 11030, USA
– sequence: 9
  givenname: Harold A.
  orcidid: 0000-0002-1107-4553
  surname: Sackeim
  fullname: Sackeim, Harold A.
  organization: Department of Psychiatry and Radiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA
– sequence: 10
  givenname: Marom
  surname: Bikson
  fullname: Bikson, Marom
  email: bikson@ccny.cuny.edu
  organization: Department of Biomedical Engineering, The City College of New York, CUNY, New York, NY, USA
BookMark eNqFkU1vEzEQhleoSLSFH8DNRw5sau-HvYZTFQVaqRKXInGzZu1x5eC1F3sTyL_HIYBED-XkkTXPO5p5LqqzEANW1WtGV4wyfrVdjSmvGtqwFRUryppn1TkbBK870XdnpZZtXw-cfXlRXeS8pbSXchDn1eHawLy4PRK9SwnDUlsfv5MpGvSZREs26_t3ZPNj9uCCCw_EBeP2zuzAk7zA4jRx04wGgsa3xBwCTP9-QTBkTAX-M4AYDNkth5fVcws-46vf72X1-cPmfn1T3336eLu-vqt1N8ilRmM73g0d1WjGxlpeKsNb3kHTAONiZNa2IMBagFZQa5mUlMlGYq95b2x7Wd2eck2ErZqTmyAdVASnfn3E9KAglT08qqZvbSO4MBbarhdyFNoMTDM6Wkv5gCXrzSlrTvHbDvOiJpc1eg8B4y6XgF40Le16WVrZqVWnmHNC-3c0o-qoTG1VUaaOyhQVqigrjHjEaHe8cQxLuaB_knx_Ios13DtMKmuHRYBxCfVSVnVP0vIRrX2xrcF_xcN_2J8i1sgh
CitedBy_id crossref_primary_10_1016_j_bpsgos_2024_100342
crossref_primary_10_1016_j_brs_2023_03_007
crossref_primary_10_1097_HRP_0000000000000365
crossref_primary_10_1007_s10439_023_03211_3
crossref_primary_10_1088_1741_2552_ac55ae
crossref_primary_10_1016_j_brs_2023_05_008
crossref_primary_10_1017_neu_2023_10
crossref_primary_10_1088_1741_2552_ad7db2
crossref_primary_10_1038_s41386_023_01780_4
crossref_primary_10_1097_YCT_0000000000001069
crossref_primary_10_3389_fpsyt_2023_1092471
crossref_primary_10_1038_s41380_022_01516_8
crossref_primary_10_1038_s41380_024_02567_9
crossref_primary_10_1088_2057_1976_adbf9d
crossref_primary_10_1016_j_brs_2021_09_001
crossref_primary_10_1088_1741_2552_ad625e
Cites_doi 10.1016/j.neuroimage.2005.02.018
10.1016/j.eurpsy.2016.09.005
10.7554/eLife.49115
10.1016/j.brs.2008.03.001
10.1088/0031-9155/61/12/4376
10.1046/j.1440-1819.2001.00795.x
10.1016/j.brs.2012.11.005
10.1007/BF02441041
10.1056/NEJMct075234
10.1016/j.jneumeth.2004.10.020
10.1016/j.nicl.2013.05.011
10.1001/archpsyc.1987.01800160067009
10.1016/0006-3223(95)00053-J
10.1016/j.brs.2009.03.005
10.1016/j.brs.2011.10.001
10.1007/s00406-012-0342-7
10.1088/1361-6560/abb7c1
10.1111/j.1600-0447.1968.tb07648.x
10.1152/ajplegacy.1949.156.3.317
10.3181/00379727-49-13633
10.1111/j.1525-1594.2008.00615.x
10.1016/j.neuroimage.2010.04.252
10.1111/j.1749-6632.1986.tb51266.x
10.1088/1741-2560/5/1/005
10.1001/archpsyc.57.5.425
10.1038/npp.2015.122
10.1007/BF02476917
10.1038/npp.2016.276
10.1016/bs.pbr.2015.08.005
10.1192/bjp.151.2.244
10.1016/S0006-3495(98)74008-1
10.1109/TMAG.2006.871580
10.1016/j.neuroimage.2013.01.042
10.1109/10.301735
10.1038/tp.2016.54
10.1159/000105632
10.1088/1361-6560/61/24/8825
10.1109/86.788470
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOA
DOI 10.1016/j.brs.2021.07.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1876-4754
EndPage 1168
ExternalDocumentID oai_doaj_org_article_253f2767dfa34579b7cd81c10bff068e
10_1016_j_brs_2021_07_012
S1935861X21001510
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
4H-
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABIVO
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SEL
SES
SSH
SSN
SSZ
T5K
Z5R
~G-
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
AAYXX
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c489t-edf464840cedb2ff640cd6364a22a167b1ff3a7affaa370ff19901929e5c65df3
IEDL.DBID .~1
ISSN 1935-861X
1876-4754
IngestDate Wed Aug 27 01:31:27 EDT 2025
Mon Jul 21 11:38:12 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Tue Jul 01 02:09:51 EDT 2025
Fri Feb 23 02:45:01 EST 2024
Tue Aug 26 16:35:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-edf464840cedb2ff640cd6364a22a167b1ff3a7affaa370ff19901929e5c65df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5044-1988
0000-0003-4961-4129
0000-0002-1107-4553
0000-0002-4930-5214
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1935861X21001510
PQID 2557230459
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_253f2767dfa34579b7cd81c10bff068e
proquest_miscellaneous_2557230459
crossref_primary_10_1016_j_brs_2021_07_012
crossref_citationtrail_10_1016_j_brs_2021_07_012
elsevier_sciencedirect_doi_10_1016_j_brs_2021_07_012
elsevier_clinicalkey_doi_10_1016_j_brs_2021_07_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September-October 2021
2021-09-00
20210901
2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September-October 2021
PublicationDecade 2020
PublicationTitle Brain stimulation
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Loo, Bai, Martin, Gálvez, Dokos (bib55) 2015; 31
Maxwell (bib11) 1968; 44
Plonsey, Heppner (bib26) 1967; 29
Sackeim, Long, Luber, Moeller, Prohovnik, Devanand (bib10) 1994; 10
Bai, Gálvez, Dokos, Martin, Bikson, Loo (bib14) 2017; 41
Bai, Loo, Dokos (bib38) 2012; 2012
Ashburner, Friston (bib30) 2005; 26
Yamamoto, Yamamoto (bib22) 1973; 11
Weiner, Rogers, Davidson, Squire (bib4) 1986; 462
Vargas Luna, Krenn, Cortés Ramírez, Mayr (bib19) 2015; 10
Jiang, Truong, Esmaeilpour, Huang, Badran, Bikson (bib23) 2020
van Waarde, van Oudheusden, Verwey, Giltay, van der Mast (bib9) 2013; 263
Peterchev, Rosa, Deng, Prudic, Lisanby (bib1) 2010; 26
Huang, Dmochowski, Su, Datta, Rorden, Parra (bib31) 2013
Lee, Lisanby, Laine, Peterchev (bib37) 2013; 2013
Huang, Liu, Lafon, Friedman, Dayan, Wang (bib42) 2017
Khadka, Bikson (bib48) 2020
Datta, Bikson, Fregni (bib44) 2010; 52
Dmochowski, Datta, Bikson, Su, Parra (bib47) 2011
Sackeim, Prudic, Nobler, Fitzsimons, Lisanby, Payne (bib16) 2008; 1
Argyelan, Lencz, Kaliora, Sarpal, Weissman, Kingsley (bib17) 2016; 6
McCall (bib39) 2019; 35
Sackeim, Decina, Prohovnik, Malitz (bib53) 1987; 44
Russell, Pierce, Townsend (bib27) 1949; 156
Truong, Magerowski, Blackburn, Bikson, Alonso-Alonso (bib25) 2013; 2
Steward, Bakir, Martin, Dokos, Loo (bib35) 2020
Argyelan, Oltedal, Deng, Wade, Bikson, Joanlanne (bib43) 2019; 8
Bikson, Truong, Mourdoukoutas, Aboseria, Khadka, Adair (bib34) 2015; 222
Lee, Deng, Kim, Laine, Lisanby, Peterchev (bib13) 2010; 2010
Shahid, Bikson, Salman, Wen, Ahfock (bib60) 2014
Delva, Brunet, Hawken, Kesteven, Lawson, Lywood (bib6) 2000; 16
Bikson, Dmochowski, Rahman (bib33) 2013; 6
Railton, Fisher, Sinclair, Shrigmankar (bib46) 1987; 151
Dorgan, Reilly (bib20) 1999; 7
Yamamoto, Yamamoto (bib52) 1977; 15
Datta, Truong, Minhas, Parra, Bikson (bib40) 2012; 91
Peterchev, Wagner, Miranda, Nitsche, Paulus, Lisanby (bib2) 2012; 5
Sha, Kenney, Heller, Barker, Howard, Moatamedi (bib50) 2008; 32
Szmurlo, Sawicki, Starzynski, Wincenciak (bib58) 2006; 42
Gomez-Tames, Sugiyama, Laakso, Tanaka, Koyama, Sadato (bib21) 2016; 61
Bossetti, Birdno, Grill (bib29) 2008; 5
Abrams (bib12) 2002
Kibret, Premaratne, Sullivan, Thomson, Fitzgerald (bib32) 2018; 4128
Datta, Bansal, Diaz, Patel, Reato, Bikson (bib24) 2009; 2
Panescu, Webster, Stratbucker (bib49) 1994; 41
Lisanby (bib15) 2007; 357
Chizmadzhev, Indenbom, Kuzmin, Galichenko, Weaver, Potts (bib18) 1998; 74
Lee, Lisanby, Laine, Peterchev (bib36) 2017; 42
Umlauf, Gunter, Tunnicliffe (bib5) 1951; 11
Wake, Sasaki, Watanabe (bib51) 2016; 61
Offner (bib28) 1942; 49
Rosa, Abdo, Lisanby, Peterchev (bib56) 2011; 27
Nadeem, Thorlin, Gandhi, Persson (bib57) 2003; 50
Coffey, Lucke, Weiner, Krystal, Aque (bib8) 1995; 37
Sackeim, Prudic, Devanand, Nobler, Lisanby, Peyser (bib3) 2000; 57
Edwards, Cortes, Datta, Minhas, Wassermann, Bikson (bib41) 2013; 74
Chung, Wong (bib7) 2001; 55
Truong, Magerowski, Pascual-Leone, Alonso-Alonso, Bikson (bib45) 2012
Peterchev, Krystal, Rosa, Lisanby (bib54) 2015; 40
Merrill, Bikson, Jefferys (bib59) 2005; 141
Datta (10.1016/j.brs.2021.07.012_bib24) 2009; 2
Chung (10.1016/j.brs.2021.07.012_bib7) 2001; 55
Truong (10.1016/j.brs.2021.07.012_bib25) 2013; 2
Ashburner (10.1016/j.brs.2021.07.012_bib30) 2005; 26
Khadka (10.1016/j.brs.2021.07.012_bib48) 2020
Peterchev (10.1016/j.brs.2021.07.012_bib1) 2010; 26
Steward (10.1016/j.brs.2021.07.012_bib35) 2020
Wake (10.1016/j.brs.2021.07.012_bib51) 2016; 61
Lee (10.1016/j.brs.2021.07.012_bib37) 2013; 2013
Jiang (10.1016/j.brs.2021.07.012_bib23) 2020
Nadeem (10.1016/j.brs.2021.07.012_bib57) 2003; 50
Sackeim (10.1016/j.brs.2021.07.012_bib3) 2000; 57
Lee (10.1016/j.brs.2021.07.012_bib36) 2017; 42
Rosa (10.1016/j.brs.2021.07.012_bib56) 2011; 27
Dorgan (10.1016/j.brs.2021.07.012_bib20) 1999; 7
Kibret (10.1016/j.brs.2021.07.012_bib32) 2018; 4128
Lee (10.1016/j.brs.2021.07.012_bib13) 2010; 2010
Argyelan (10.1016/j.brs.2021.07.012_bib17) 2016; 6
Gomez-Tames (10.1016/j.brs.2021.07.012_bib21) 2016; 61
Bikson (10.1016/j.brs.2021.07.012_bib34) 2015; 222
Edwards (10.1016/j.brs.2021.07.012_bib41) 2013; 74
Offner (10.1016/j.brs.2021.07.012_bib28) 1942; 49
Yamamoto (10.1016/j.brs.2021.07.012_bib22) 1973; 11
Bai (10.1016/j.brs.2021.07.012_bib38) 2012; 2012
Umlauf (10.1016/j.brs.2021.07.012_bib5) 1951; 11
Chizmadzhev (10.1016/j.brs.2021.07.012_bib18) 1998; 74
Russell (10.1016/j.brs.2021.07.012_bib27) 1949; 156
Panescu (10.1016/j.brs.2021.07.012_bib49) 1994; 41
van Waarde (10.1016/j.brs.2021.07.012_bib9) 2013; 263
Shahid (10.1016/j.brs.2021.07.012_bib60) 2014
Bai (10.1016/j.brs.2021.07.012_bib14) 2017; 41
Plonsey (10.1016/j.brs.2021.07.012_bib26) 1967; 29
Szmurlo (10.1016/j.brs.2021.07.012_bib58) 2006; 42
Peterchev (10.1016/j.brs.2021.07.012_bib54) 2015; 40
McCall (10.1016/j.brs.2021.07.012_bib39) 2019; 35
Huang (10.1016/j.brs.2021.07.012_bib42) 2017
Delva (10.1016/j.brs.2021.07.012_bib6) 2000; 16
Argyelan (10.1016/j.brs.2021.07.012_bib43) 2019; 8
Weiner (10.1016/j.brs.2021.07.012_bib4) 1986; 462
Dmochowski (10.1016/j.brs.2021.07.012_bib47) 2011
Maxwell (10.1016/j.brs.2021.07.012_bib11) 1968; 44
Datta (10.1016/j.brs.2021.07.012_bib40) 2012; 91
Datta (10.1016/j.brs.2021.07.012_bib44) 2010; 52
Lisanby (10.1016/j.brs.2021.07.012_bib15) 2007; 357
Bikson (10.1016/j.brs.2021.07.012_bib33) 2013; 6
Yamamoto (10.1016/j.brs.2021.07.012_bib52) 1977; 15
Loo (10.1016/j.brs.2021.07.012_bib55) 2015; 31
Coffey (10.1016/j.brs.2021.07.012_bib8) 1995; 37
Railton (10.1016/j.brs.2021.07.012_bib46) 1987; 151
Bossetti (10.1016/j.brs.2021.07.012_bib29) 2008; 5
Peterchev (10.1016/j.brs.2021.07.012_bib2) 2012; 5
Abrams (10.1016/j.brs.2021.07.012_bib12) 2002
Sackeim (10.1016/j.brs.2021.07.012_bib16) 2008; 1
Merrill (10.1016/j.brs.2021.07.012_bib59) 2005; 141
Sha (10.1016/j.brs.2021.07.012_bib50) 2008; 32
Sackeim (10.1016/j.brs.2021.07.012_bib10) 1994; 10
Truong (10.1016/j.brs.2021.07.012_bib45) 2012
Sackeim (10.1016/j.brs.2021.07.012_bib53) 1987; 44
Vargas Luna (10.1016/j.brs.2021.07.012_bib19) 2015; 10
Huang (10.1016/j.brs.2021.07.012_bib31) 2013
References_xml – start-page: 10
  year: 2013
  ident: bib31
  article-title: Automated MRI segmentation for individualized modeling of current flow in the human head
  publication-title: J Neural Eng
– volume: 10
  start-page: 93
  year: 1994
  end-page: 123
  ident: bib10
  article-title: Physical properties and quantification of the ECT stimulus: I. Basic principles
  publication-title: Convuls Ther
– volume: 156
  start-page: 317
  year: 1949
  end-page: 321
  ident: bib27
  article-title: Characteristics of tissue impedance in the rat under conditions of electroconvulsive shock stimulation
  publication-title: Am J Physiol
– volume: 2012
  start-page: 2559
  year: 2012
  end-page: 2562
  ident: bib38
  article-title: Effects of electroconvulsive therapy stimulus pulsewidth and amplitude computed with an anatomically-realistic head model
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 44
  start-page: 355
  year: 1987
  end-page: 360
  ident: bib53
  article-title: Seizure threshold in electroconvulsive therapy. Effects of sex, age, electrode placement, and number of treatments
  publication-title: Arch Gen Psychiatr
– volume: 263
  start-page: 167
  year: 2013
  end-page: 175
  ident: bib9
  article-title: Clinical predictors of seizure threshold in electroconvulsive therapy: a prospective study
  publication-title: Eur Arch Psychiatr Clin Neurosci
– volume: 42
  start-page: 1395
  year: 2006
  end-page: 1398
  ident: bib58
  article-title: A comparison of two models of electrodes for ECT simulations
  publication-title: IEEE Trans Magn
– volume: 222
  start-page: 1
  year: 2015
  end-page: 23
  ident: bib34
  article-title: Modeling sequence and quasi-uniform assumption in computational neurostimulation
  publication-title: Prog Brain Res
– start-page: 6
  year: 2017
  ident: bib42
  article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation
  publication-title: Elife
– volume: 11
  start-page: 337
  year: 1973
  end-page: 343
  ident: bib22
  article-title: [Electrical properties of the epidermal stratum corneum]
  publication-title: Iyo Denshi Seitai Kogaku
– start-page: 11
  year: 2014
  ident: bib60
  article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation
  publication-title: J Neural Eng
– volume: 50
  start-page: 900
  year: 2003
  end-page: 907
  ident: bib57
  article-title: Computation of electric and magnetic stimulation in human head using the 3-D impedance method
  publication-title: IEEE (Inst Electr Electron Eng) Trans Biomed Eng
– volume: 41
  start-page: 681
  year: 1994
  end-page: 687
  ident: bib49
  article-title: A nonlinear finite element model of the electrode-electrolyte-skin system
  publication-title: IEEE Trans Biomed Eng
– volume: 1
  start-page: 71
  year: 2008
  end-page: 83
  ident: bib16
  article-title: Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy
  publication-title: Brain Stimul
– volume: 15
  start-page: 219
  year: 1977
  end-page: 227
  ident: bib52
  article-title: Analysis for the change of skin impedance
  publication-title: Med Biol Eng Comput
– volume: 27
  start-page: 341
  year: 2011
  end-page: 342
  ident: bib56
  article-title: Seizure induction with low-amplitude-current (0.5 A) electroconvulsive therapy
  publication-title: J ECT
– volume: 2
  start-page: 201
  year: 2009
  end-page: 207
  ident: bib24
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
– volume: 29
  start-page: 657
  year: 1967
  end-page: 664
  ident: bib26
  article-title: Considerations of quasi-stationarity in electrophysiological systems
  publication-title: Bull Math Biophys
– volume: 6
  start-page: 704
  year: 2013
  end-page: 705
  ident: bib33
  article-title: The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation
  publication-title: Brain Stimul
– volume: 74
  start-page: 843
  year: 1998
  end-page: 856
  ident: bib18
  article-title: Electrical properties of skin at moderate voltages: contribution of appendageal macropores
  publication-title: Biophys J
– volume: 2013
  start-page: 3082
  year: 2013
  end-page: 3085
  ident: bib37
  article-title: Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study
  publication-title: Conf.Proc.IEEE.Eng.Med.Biol.Soc
– volume: 151
  start-page: 244
  year: 1987
  end-page: 247
  ident: bib46
  article-title: Comparison of electrical measurements on constant voltage and constant current ECT machines
  publication-title: Br J Psychiatry
– volume: 6
  year: 2016
  ident: bib17
  article-title: Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy
  publication-title: Transl Psychiatry
– volume: 26
  start-page: 839
  year: 2005
  end-page: 851
  ident: bib30
  article-title: Unified segmentation
  publication-title: Neuroimage
– volume: 16
  start-page: 361
  year: 2000
  end-page: 369
  ident: bib6
  article-title: Electrical dose and seizure threshold: relations to clinical outcome and cognitive effects in bifrontal, bitemporal, and right unilateral ECT
  publication-title: J ECT
– volume: 2
  start-page: 759
  year: 2013
  end-page: 766
  ident: bib25
  article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines
  publication-title: Neuroimage: Clinic
– volume: 37
  start-page: 777
  year: 1995
  end-page: 788
  ident: bib8
  article-title: Seizure threshold in electroconvulsive therapy (ECT) II. The anticonvulsant effect of ECT
  publication-title: Biol Psychiatr
– volume: 61
  start-page: 4376
  year: 2016
  end-page: 4389
  ident: bib51
  article-title: Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies
  publication-title: Phys Med Biol
– year: 2020
  ident: bib48
  article-title: Role of skin tissue layers and ultra-structure in transcutaneous electrical stimulation including tDCS
  publication-title: Phys Med Biol
– volume: 91
  start-page: 3
  year: 2012
  ident: bib40
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front Psychiatr
– volume: 42
  start-page: 1192
  year: 2017
  end-page: 1200
  ident: bib36
  article-title: Minimum electric field exposure for seizure induction with electroconvulsive therapy and magnetic seizure therapy
  publication-title: Neuropsychopharmacology
– volume: 35
  start-page: 144
  year: 2019
  ident: bib39
  publication-title: Handbook of ECT: a guide to electroconvulsive therapy for practitioners
– start-page: 6587
  year: 2012
  end-page: 6590
  ident: bib45
  article-title: Finite Element study of skin and fat delineation in an obese subject for transcranial Direct Current Stimulation
  publication-title: 2012 annual international conference of the IEEE engineering in medicine and biology society (EMBC)
– volume: 40
  start-page: 2076
  year: 2015
  end-page: 2084
  ident: bib54
  article-title: Individualized low-amplitude seizure therapy: minimizing current for electroconvulsive therapy and magnetic seizure therapy
  publication-title: Neuropsychopharmacology
– volume: 357
  start-page: 1939
  year: 2007
  end-page: 1945
  ident: bib15
  article-title: Electroconvulsive therapy for depression
  publication-title: N Engl J Med
– volume: 8
  year: 2019
  ident: bib43
  article-title: Electric field causes volumetric changes in the human brain
  publication-title: Elife
– volume: 52
  start-page: 1268
  year: 2010
  end-page: 1278
  ident: bib44
  article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow
  publication-title: Neuroimage
– volume: 32
  start-page: 639
  year: 2008
  end-page: 643
  ident: bib50
  article-title: A finite element model to identify electrode influence on current distribution in the skin
  publication-title: Artif Organs
– start-page: 8
  year: 2011
  ident: bib47
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J Neural Eng
– volume: 11
  start-page: 129
  year: 1951
  end-page: 138
  ident: bib5
  article-title: Impedance of the human head as observed during electro-shock treatment
  publication-title: Confin Neurol
– volume: 74
  start-page: 266
  year: 2013
  end-page: 275
  ident: bib41
  article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS
  publication-title: Neuroimage
– start-page: 17
  year: 2020
  ident: bib23
  article-title: Enhanced tES and tDCS computational models by meninges emulation
  publication-title: J Neural Eng
– year: 2002
  ident: bib12
  article-title: Electroconvulsive therapy
– volume: 61
  start-page: 8825
  year: 2016
  end-page: 8838
  ident: bib21
  article-title: Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation
  publication-title: Phys Med Biol
– volume: 5
  start-page: 435
  year: 2012
  end-page: 453
  ident: bib2
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
– volume: 7
  start-page: 341
  year: 1999
  end-page: 348
  ident: bib20
  article-title: A model for human skin impedance during surface functional neuromuscular stimulation
  publication-title: IEEE Trans Rehabil Eng
– volume: 4128
  start-page: 8
  year: 2018
  ident: bib32
  article-title: Electroconvulsive therapy (ECT) during pregnancy: quantifying and assessing the electric field strength inside the foetal brain
  publication-title: Sci Rep
– volume: 41
  start-page: 21
  year: 2017
  end-page: 29
  ident: bib14
  article-title: Computational models of Bitemporal, Bifrontal and Right Unilateral ECT predict differential stimulation of brain regions associated with efficacy and cognitive side effects
  publication-title: Eur Psychiatr
– volume: 10
  year: 2015
  ident: bib19
  article-title: Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation
  publication-title: PloS One
– volume: 462
  start-page: 315
  year: 1986
  end-page: 325
  ident: bib4
  article-title: Effects of stimulus parameters on cognitive side effects
  publication-title: Ann N Y Acad Sci
– volume: 31
  start-page: e7
  year: 2015
  end-page: e13
  ident: bib55
  article-title: Revisiting frontoparietal montage in electroconvulsive therapy: clinical observations and computer modeling: a future treatment option for unilateral electroconvulsive therapy
  publication-title: J ECT
– volume: 2010
  start-page: 2045
  year: 2010
  end-page: 2048
  ident: bib13
  article-title: Regional electric field induced by electroconvulsive therapy: a finite element simulation study
  publication-title: Conf proc IEEE eng med biol soc
– volume: 55
  start-page: 105
  year: 2001
  end-page: 110
  ident: bib7
  article-title: Stimulus dose titration for electroconvulsive therapy
  publication-title: Psychiatr Clin Neurosci
– volume: 5
  start-page: 44
  year: 2008
  end-page: 53
  ident: bib29
  article-title: Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation
  publication-title: J Neural Eng
– volume: 141
  start-page: 171
  year: 2005
  end-page: 198
  ident: bib59
  article-title: Electrical stimulation of excitable tissue:design of efficacious and safe protocols
  publication-title: J Neurosci Methods
– volume: 57
  start-page: 425
  year: 2000
  end-page: 434
  ident: bib3
  article-title: A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities
  publication-title: Arch Gen Psychiatr
– volume: 49
  start-page: 571
  year: 1942
  end-page: 575
  ident: bib28
  article-title: Electrical properties of tissues in shock therapy
  publication-title: PSEBM (Proc Soc Exp Biol Med)
– start-page: 304
  year: 2020
  ident: bib35
  article-title: The left anterior right temporal (LART) placement for electroconvulsive therapy: a computational modelling study
  publication-title: Psychiatry Res Neuroimaging
– volume: 26
  start-page: 159
  year: 2010
  end-page: 174
  ident: bib1
  article-title: Electroconvulsive therapy stimulus parameters: rethinking dosage
  publication-title: J ECT
– volume: 44
  start-page: 436
  year: 1968
  end-page: 448
  ident: bib11
  article-title: Electrical factors in electroconvulsive therapy
  publication-title: Acta Psychiatr Scand
– start-page: 8
  year: 2011
  ident: 10.1016/j.brs.2021.07.012_bib47
  article-title: Optimized multi-electrode stimulation increases focality and intensity at target
  publication-title: J Neural Eng
– volume: 26
  start-page: 839
  year: 2005
  ident: 10.1016/j.brs.2021.07.012_bib30
  article-title: Unified segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.018
– volume: 41
  start-page: 21
  year: 2017
  ident: 10.1016/j.brs.2021.07.012_bib14
  article-title: Computational models of Bitemporal, Bifrontal and Right Unilateral ECT predict differential stimulation of brain regions associated with efficacy and cognitive side effects
  publication-title: Eur Psychiatr
  doi: 10.1016/j.eurpsy.2016.09.005
– volume: 8
  year: 2019
  ident: 10.1016/j.brs.2021.07.012_bib43
  article-title: Electric field causes volumetric changes in the human brain
  publication-title: Elife
  doi: 10.7554/eLife.49115
– volume: 1
  start-page: 71
  year: 2008
  ident: 10.1016/j.brs.2021.07.012_bib16
  article-title: Effects of pulse width and electrode placement on the efficacy and cognitive effects of electroconvulsive therapy
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2008.03.001
– start-page: 6587
  year: 2012
  ident: 10.1016/j.brs.2021.07.012_bib45
  article-title: Finite Element study of skin and fat delineation in an obese subject for transcranial Direct Current Stimulation
– volume: 61
  start-page: 4376
  year: 2016
  ident: 10.1016/j.brs.2021.07.012_bib51
  article-title: Conductivities of epidermis, dermis, and subcutaneous tissue at intermediate frequencies
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/61/12/4376
– volume: 55
  start-page: 105
  year: 2001
  ident: 10.1016/j.brs.2021.07.012_bib7
  article-title: Stimulus dose titration for electroconvulsive therapy
  publication-title: Psychiatr Clin Neurosci
  doi: 10.1046/j.1440-1819.2001.00795.x
– volume: 6
  start-page: 704
  year: 2013
  ident: 10.1016/j.brs.2021.07.012_bib33
  article-title: The “quasi-uniform” assumption in animal and computational models of non-invasive electrical stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.11.005
– volume: 15
  start-page: 219
  year: 1977
  ident: 10.1016/j.brs.2021.07.012_bib52
  article-title: Analysis for the change of skin impedance
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02441041
– volume: 35
  start-page: 144
  year: 2019
  ident: 10.1016/j.brs.2021.07.012_bib39
– volume: 357
  start-page: 1939
  year: 2007
  ident: 10.1016/j.brs.2021.07.012_bib15
  article-title: Electroconvulsive therapy for depression
  publication-title: N Engl J Med
  doi: 10.1056/NEJMct075234
– volume: 141
  start-page: 171
  year: 2005
  ident: 10.1016/j.brs.2021.07.012_bib59
  article-title: Electrical stimulation of excitable tissue:design of efficacious and safe protocols
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2004.10.020
– volume: 16
  start-page: 361
  year: 2000
  ident: 10.1016/j.brs.2021.07.012_bib6
  article-title: Electrical dose and seizure threshold: relations to clinical outcome and cognitive effects in bifrontal, bitemporal, and right unilateral ECT
  publication-title: J ECT
– volume: 31
  start-page: e7
  year: 2015
  ident: 10.1016/j.brs.2021.07.012_bib55
  article-title: Revisiting frontoparietal montage in electroconvulsive therapy: clinical observations and computer modeling: a future treatment option for unilateral electroconvulsive therapy
  publication-title: J ECT
– volume: 2
  start-page: 759
  year: 2013
  ident: 10.1016/j.brs.2021.07.012_bib25
  article-title: Computational modeling of transcranial direct current stimulation (tDCS) in obesity: impact of head fat and dose guidelines
  publication-title: Neuroimage: Clinic
  doi: 10.1016/j.nicl.2013.05.011
– start-page: 11
  year: 2014
  ident: 10.1016/j.brs.2021.07.012_bib60
  article-title: The value and cost of complexity in predictive modelling: role of tissue anisotropic conductivity and fibre tracts in neuromodulation
  publication-title: J Neural Eng
– year: 2002
  ident: 10.1016/j.brs.2021.07.012_bib12
– volume: 44
  start-page: 355
  year: 1987
  ident: 10.1016/j.brs.2021.07.012_bib53
  article-title: Seizure threshold in electroconvulsive therapy. Effects of sex, age, electrode placement, and number of treatments
  publication-title: Arch Gen Psychiatr
  doi: 10.1001/archpsyc.1987.01800160067009
– volume: 37
  start-page: 777
  year: 1995
  ident: 10.1016/j.brs.2021.07.012_bib8
  article-title: Seizure threshold in electroconvulsive therapy (ECT) II. The anticonvulsant effect of ECT
  publication-title: Biol Psychiatr
  doi: 10.1016/0006-3223(95)00053-J
– volume: 2010
  start-page: 2045
  year: 2010
  ident: 10.1016/j.brs.2021.07.012_bib13
  article-title: Regional electric field induced by electroconvulsive therapy: a finite element simulation study
– volume: 2013
  start-page: 3082
  year: 2013
  ident: 10.1016/j.brs.2021.07.012_bib37
  article-title: Electric field characteristics of electroconvulsive therapy with individualized current amplitude: a preclinical study
  publication-title: Conf.Proc.IEEE.Eng.Med.Biol.Soc
– volume: 50
  start-page: 900
  year: 2003
  ident: 10.1016/j.brs.2021.07.012_bib57
  article-title: Computation of electric and magnetic stimulation in human head using the 3-D impedance method
  publication-title: IEEE (Inst Electr Electron Eng) Trans Biomed Eng
– volume: 2
  start-page: 201
  year: 2009
  ident: 10.1016/j.brs.2021.07.012_bib24
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.005
– volume: 26
  start-page: 159
  year: 2010
  ident: 10.1016/j.brs.2021.07.012_bib1
  article-title: Electroconvulsive therapy stimulus parameters: rethinking dosage
  publication-title: J ECT
– start-page: 10
  year: 2013
  ident: 10.1016/j.brs.2021.07.012_bib31
  article-title: Automated MRI segmentation for individualized modeling of current flow in the human head
  publication-title: J Neural Eng
– volume: 5
  start-page: 435
  year: 2012
  ident: 10.1016/j.brs.2021.07.012_bib2
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.10.001
– volume: 263
  start-page: 167
  year: 2013
  ident: 10.1016/j.brs.2021.07.012_bib9
  article-title: Clinical predictors of seizure threshold in electroconvulsive therapy: a prospective study
  publication-title: Eur Arch Psychiatr Clin Neurosci
  doi: 10.1007/s00406-012-0342-7
– year: 2020
  ident: 10.1016/j.brs.2021.07.012_bib48
  article-title: Role of skin tissue layers and ultra-structure in transcutaneous electrical stimulation including tDCS
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/abb7c1
– volume: 4128
  start-page: 8
  year: 2018
  ident: 10.1016/j.brs.2021.07.012_bib32
  article-title: Electroconvulsive therapy (ECT) during pregnancy: quantifying and assessing the electric field strength inside the foetal brain
  publication-title: Sci Rep
– volume: 44
  start-page: 436
  year: 1968
  ident: 10.1016/j.brs.2021.07.012_bib11
  article-title: Electrical factors in electroconvulsive therapy
  publication-title: Acta Psychiatr Scand
  doi: 10.1111/j.1600-0447.1968.tb07648.x
– volume: 156
  start-page: 317
  year: 1949
  ident: 10.1016/j.brs.2021.07.012_bib27
  article-title: Characteristics of tissue impedance in the rat under conditions of electroconvulsive shock stimulation
  publication-title: Am J Physiol
  doi: 10.1152/ajplegacy.1949.156.3.317
– volume: 49
  start-page: 571
  year: 1942
  ident: 10.1016/j.brs.2021.07.012_bib28
  article-title: Electrical properties of tissues in shock therapy
  publication-title: PSEBM (Proc Soc Exp Biol Med)
  doi: 10.3181/00379727-49-13633
– volume: 32
  start-page: 639
  year: 2008
  ident: 10.1016/j.brs.2021.07.012_bib50
  article-title: A finite element model to identify electrode influence on current distribution in the skin
  publication-title: Artif Organs
  doi: 10.1111/j.1525-1594.2008.00615.x
– volume: 10
  year: 2015
  ident: 10.1016/j.brs.2021.07.012_bib19
  article-title: Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation
  publication-title: PloS One
– volume: 52
  start-page: 1268
  year: 2010
  ident: 10.1016/j.brs.2021.07.012_bib44
  article-title: Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.252
– volume: 462
  start-page: 315
  year: 1986
  ident: 10.1016/j.brs.2021.07.012_bib4
  article-title: Effects of stimulus parameters on cognitive side effects
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/j.1749-6632.1986.tb51266.x
– volume: 91
  start-page: 3
  year: 2012
  ident: 10.1016/j.brs.2021.07.012_bib40
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front Psychiatr
– volume: 5
  start-page: 44
  year: 2008
  ident: 10.1016/j.brs.2021.07.012_bib29
  article-title: Analysis of the quasi-static approximation for calculating potentials generated by neural stimulation
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/5/1/005
– volume: 57
  start-page: 425
  year: 2000
  ident: 10.1016/j.brs.2021.07.012_bib3
  article-title: A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities
  publication-title: Arch Gen Psychiatr
  doi: 10.1001/archpsyc.57.5.425
– volume: 11
  start-page: 337
  year: 1973
  ident: 10.1016/j.brs.2021.07.012_bib22
  article-title: [Electrical properties of the epidermal stratum corneum]
  publication-title: Iyo Denshi Seitai Kogaku
– volume: 40
  start-page: 2076
  year: 2015
  ident: 10.1016/j.brs.2021.07.012_bib54
  article-title: Individualized low-amplitude seizure therapy: minimizing current for electroconvulsive therapy and magnetic seizure therapy
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.122
– volume: 10
  start-page: 93
  year: 1994
  ident: 10.1016/j.brs.2021.07.012_bib10
  article-title: Physical properties and quantification of the ECT stimulus: I. Basic principles
  publication-title: Convuls Ther
– volume: 29
  start-page: 657
  year: 1967
  ident: 10.1016/j.brs.2021.07.012_bib26
  article-title: Considerations of quasi-stationarity in electrophysiological systems
  publication-title: Bull Math Biophys
  doi: 10.1007/BF02476917
– start-page: 304
  year: 2020
  ident: 10.1016/j.brs.2021.07.012_bib35
  article-title: The left anterior right temporal (LART) placement for electroconvulsive therapy: a computational modelling study
  publication-title: Psychiatry Res Neuroimaging
– volume: 42
  start-page: 1192
  year: 2017
  ident: 10.1016/j.brs.2021.07.012_bib36
  article-title: Minimum electric field exposure for seizure induction with electroconvulsive therapy and magnetic seizure therapy
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2016.276
– volume: 222
  start-page: 1
  year: 2015
  ident: 10.1016/j.brs.2021.07.012_bib34
  article-title: Modeling sequence and quasi-uniform assumption in computational neurostimulation
  publication-title: Prog Brain Res
  doi: 10.1016/bs.pbr.2015.08.005
– volume: 151
  start-page: 244
  year: 1987
  ident: 10.1016/j.brs.2021.07.012_bib46
  article-title: Comparison of electrical measurements on constant voltage and constant current ECT machines
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.151.2.244
– volume: 74
  start-page: 843
  year: 1998
  ident: 10.1016/j.brs.2021.07.012_bib18
  article-title: Electrical properties of skin at moderate voltages: contribution of appendageal macropores
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(98)74008-1
– volume: 42
  start-page: 1395
  year: 2006
  ident: 10.1016/j.brs.2021.07.012_bib58
  article-title: A comparison of two models of electrodes for ECT simulations
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2006.871580
– volume: 2012
  start-page: 2559
  year: 2012
  ident: 10.1016/j.brs.2021.07.012_bib38
  article-title: Effects of electroconvulsive therapy stimulus pulsewidth and amplitude computed with an anatomically-realistic head model
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 74
  start-page: 266
  year: 2013
  ident: 10.1016/j.brs.2021.07.012_bib41
  article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.042
– volume: 41
  start-page: 681
  year: 1994
  ident: 10.1016/j.brs.2021.07.012_bib49
  article-title: A nonlinear finite element model of the electrode-electrolyte-skin system
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/10.301735
– start-page: 6
  year: 2017
  ident: 10.1016/j.brs.2021.07.012_bib42
  article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation
  publication-title: Elife
– volume: 6
  year: 2016
  ident: 10.1016/j.brs.2021.07.012_bib17
  article-title: Subgenual cingulate cortical activity predicts the efficacy of electroconvulsive therapy
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2016.54
– volume: 11
  start-page: 129
  year: 1951
  ident: 10.1016/j.brs.2021.07.012_bib5
  article-title: Impedance of the human head as observed during electro-shock treatment
  publication-title: Confin Neurol
  doi: 10.1159/000105632
– volume: 61
  start-page: 8825
  year: 2016
  ident: 10.1016/j.brs.2021.07.012_bib21
  article-title: Effect of microscopic modeling of skin in electrical and thermal analysis of transcranial direct current stimulation
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/61/24/8825
– volume: 27
  start-page: 341
  year: 2011
  ident: 10.1016/j.brs.2021.07.012_bib56
  article-title: Seizure induction with low-amplitude-current (0.5 A) electroconvulsive therapy
  publication-title: J ECT
– volume: 7
  start-page: 341
  year: 1999
  ident: 10.1016/j.brs.2021.07.012_bib20
  article-title: A model for human skin impedance during surface functional neuromuscular stimulation
  publication-title: IEEE Trans Rehabil Eng
  doi: 10.1109/86.788470
– start-page: 17
  year: 2020
  ident: 10.1016/j.brs.2021.07.012_bib23
  article-title: Enhanced tES and tDCS computational models by meninges emulation
  publication-title: J Neural Eng
SSID ssj0059987
Score 2.3730018
Snippet Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical properties of...
Background: Improvements in electroconvulsive therapy (ECT) outcomes have followed refinement in device electrical output and electrode montage. The physical...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1154
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA_SkxdRq_j8IoJ4EIOb711vz9JSBD218G4hXwNP6r5SX5H335tJdh-th_bibQnJZjczmflNZjJDyPuQeF80u2S6i5opAYH5OFimBi8Kfh5ijngO-f2HOT1X31Z6daPUF8aEtfTAbeE-Cy1BWGMTeKm0HYKNqeeRdwGgM31G6Vt03mxMNRmsixFhmz9Zs97w1ezPrJFd4QrzdAtes3ZycUsj1cT9txTTPyK66p2Tx-TRBBjpsn3oE_Igj0_J4XIsxvKvHf1AawhnPRs_JLtl8pcov2hsaZcYXGz-0Frt5jfdAD0-OvtCMeyu1YWg6_11LIo3i9aRrguMTsgJn2hqxepvNvkx0YBFJeYJaMIA-O3uGTk_OT47OmVTbQUWVT9sWU6gjCrWXcwpCABTnpKRRnkhPDc2cADprQfwXtoOgKMDrWCprKPRCeRzcjBuxvyCUJ0wWCVH30WpQtf7fgCpUsEdJkDow4J08_q6OCUex_oXF26OMPvpCkkcksR11hWSLMjH_ZDLlnXjrs5fkWj7jpgwuzYUNnITG7n72GhBxExyN99JLVK0vGh918xqP2gCLA2I3Dfs3cxTrmxm9ND4MW-uSyetLZ7S6-Hl__ipV-QhTttC4l6Tg-3VdX5TMNQ2vK3b5S-Wxhmr
  priority: 102
  providerName: Directory of Open Access Journals
Title Adaptive current-flow models of ECT: Explaining individual static impedance, dynamic impedance, and brain current density
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1935861X21001510
https://dx.doi.org/10.1016/j.brs.2021.07.012
https://www.proquest.com/docview/2557230459
https://doaj.org/article/253f2767dfa34579b7cd81c10bff068e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZWy4ULAhZEeVRGQhwQobHjR8KtVLsqIPbCrtSb5UcGZbUkVekK9cJvx-MkFeWwSNwSa-xEnvF47PlmhpBXLrAy7uxFJnMvM8HBZdZXOhOV5dF-rnzt8R7yy7laXopPK7k6IosxFgZhlYPu73V60tZDy2yYzdm6aWZfGbrwFFtxTCMkU5iVEBql_N2vPcxDxuOE7j3LMkPq0bOZMF5ugxm7OUv5Oxk_2JtSCv-DLeovZZ12oLP75N5gOtJ5_3cPyFHdPiQn8zYem7_v6GuawJzplvyE7ObBrlGTUd8nYMrguvtJU92bH7QDerq4eE8RgNdXiKDNPjCLYoxR42kTDeqAMvGWhr5s_Z9Ntg3UYXmJ8QM0IBR-u3tELs9OLxbLbKiykHlRVtusDiCUiOe8OOOOA6j4FFShhOXcMqUdAyistgDWFjoHYOhKi1ZVLb2SAYrH5Ljt2voJoTIgbKX2NveFcHlpywoKEaIFohy40k1IPs6v8UMKcqyEcW1GrNmViSwxyBKTaxNZMiFv9l3Wff6N24g_INP2hJg6OzV0m29mkB3DZQFcKx3AFkLqymkfSuZZ7gByVdYTwkeWmzE6NerTOFBz25fFvtOB-P6r28tRpkxc1uirsW3d3UQiKTXe18vq6f8N_YzcxbceDvecHG83N_WLaD9t3TQtkCm5M__4eXk-TbcQvwH7rxwR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZW3QNcELAgytNIiAMiauz4kXAr1a667G4vdKXeLD8yKGhJqtIV6r_Hk0dFOSwSt8jxOJFnPB57Zr4h5J0LLI87e5bI1MtEcHCJ9YVORGF5tJ8LX3q8h7xaqPm1-LKSqyMyG3JhMKyy1_2dTm-1dd8y6Wdzsq6qyVeGLjzFVhxhhCSmWR0jOpUckePp-cV8MShkGU8UunMuywQJBudmG-blNgjazVkL4cn4wfbUovgf7FJ_6et2Ezp7SB701iOddj_4iByV9WNyMq3jyfnHjr6nbTxne1F-QnbTYNeozKjvMJgSuGl-0bb0zU_aAD2dLT9RjMHrikTQap-bRTHNqPK0ijZ1QLH4SENXuf7PJlsH6rDCxPABGjAafrt7Qq7PTpezedIXWki8yIttUgYQSsSjXpx0xwFUfAoqU8JybpnSjgFkVlsAazOdAjD0pkXDqpReyQDZUzKqm7p8RqgMGLlSepv6TLg0t3kBmQjRCFEOXO7GJB3m1_gehRyLYdyYIdzsu4ksMcgSk2oTWTImH_Yk6w6C467On5Fp-46Int02NJtvphcfw2UGXCsdwGZC6sJpH3LmWeoAUpWXY8IHlpshQTWq1DhQddeXxZ7oQIL_RfZ2kCkTVza6a2xdNrexk5Qar-xl8fz_hn5D7s2XV5fm8nxx8YLcxzdddNxLMtpubstX0Zzautf9cvkN9aQdzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+current-flow+models+of+ECT%3A+Explaining+individual+static+impedance%2C+dynamic+impedance%2C+and+brain+current+density&rft.jtitle=Brain+stimulation&rft.au=Unal%2C+Gozde&rft.au=Swami%2C+Jaiti+K&rft.au=Canela%2C+Carliza&rft.au=Cohen%2C+Samantha+L&rft.date=2021-09-01&rft.issn=1876-4754&rft.eissn=1876-4754&rft.volume=14&rft.issue=5&rft.spage=1154&rft_id=info:doi/10.1016%2Fj.brs.2021.07.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-861X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-861X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-861X&client=summon