The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation
The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for...
Saved in:
Published in | Genes & development Vol. 30; no. 7; pp. 786 - 797 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific
Lats2
conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased
LATS2
mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis. |
---|---|
AbstractList | The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis. The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis. In this study, Aylon et al. performed a screen for proteins that interact with LATS2, a key player in the Hippo pathway. They delineate a new role for LATS2 in the regulation of cholesterol metabolism through direct interaction with and inhibition of the transcription factor SREBP2, a master regulator of cholesterol homeostasis. The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis. The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis. |
Author | Gershoni, Anat Fiel, Maria-Isabel Johnson, Randy L. Biton, Inbal E. Hoshida, Yujin Sun, Xiaochen Oren, Moshe Aylon, Yael Rotkopf, Ron Porat, Ziv Friedman, Scott L. Koh, Anna P. Lee, Youngmin |
AuthorAffiliation | 4 Flow Cytometry Unit, Biological Services Department, The Weizmann Institute of Science, Rehovot 76100, Israel 2 Bioinformatics Unit, Faculty of Biological Services, The Weizmann Institute of Science, Rehovot 76100, Israel 1 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel 6 Department of Biochemistry and Molecular Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA 3 Department of Veterinary Resources, Faculty of Biology, The Weizmann Institute of Science, Rehovot 76100, Israel 5 Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA |
AuthorAffiliation_xml | – name: 4 Flow Cytometry Unit, Biological Services Department, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 2 Bioinformatics Unit, Faculty of Biological Services, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 3 Department of Veterinary Resources, Faculty of Biology, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 6 Department of Biochemistry and Molecular Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA – name: 1 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel – name: 5 Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA |
Author_xml | – sequence: 1 givenname: Yael surname: Aylon fullname: Aylon, Yael – sequence: 2 givenname: Anat surname: Gershoni fullname: Gershoni, Anat – sequence: 3 givenname: Ron surname: Rotkopf fullname: Rotkopf, Ron – sequence: 4 givenname: Inbal E. surname: Biton fullname: Biton, Inbal E. – sequence: 5 givenname: Ziv surname: Porat fullname: Porat, Ziv – sequence: 6 givenname: Anna P. surname: Koh fullname: Koh, Anna P. – sequence: 7 givenname: Xiaochen surname: Sun fullname: Sun, Xiaochen – sequence: 8 givenname: Youngmin surname: Lee fullname: Lee, Youngmin – sequence: 9 givenname: Maria-Isabel surname: Fiel fullname: Fiel, Maria-Isabel – sequence: 10 givenname: Yujin surname: Hoshida fullname: Hoshida, Yujin – sequence: 11 givenname: Scott L. surname: Friedman fullname: Friedman, Scott L. – sequence: 12 givenname: Randy L. surname: Johnson fullname: Johnson, Randy L. – sequence: 13 givenname: Moshe surname: Oren fullname: Oren, Moshe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27013235$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1P3DAQtSpQWaDXHlGOvWSxE39eKgGiH9JKIHZ76MlynAkxSuLUTpD672tYFgESUk8z43nv6XneIdob_AAIfSZ4SQgmp7emXhaCEi7SzD6gBWFU5YwKsYcWWCqcq5KrA3QY4x3GmGPOP6KDQmBSFiVboN-bFrLV2WZdZNPc-5DFeRwDxJhaN7SuclPM1jeX59eZGernLcSshdFMzma29R3ECYLvMmPt3M9devfDMdpvTBfh01M9Qr--XW4ufuSrq-8_L85WuaVSTTlwaak1RtWNBMqkVDXBDaWS1jXjvGKSNwZjWzDLygpza6ki1FRQN6UwIMoj9HWrO85VD7WFYQqm02NwvQl_tTdOv94MrtW3_l5TWfBSsSTw5Ukg-D9z-oruXbTQdWYAP0dNhGQFw5Sp_4AKoSSWJUnQk5e2nv3sTp8AdAuwwccYoNHWTY-XSy5dpwnWDwnrlLDeJpzmB9ryDW2n_A7hH6PoqZ0 |
CitedBy_id | crossref_primary_10_1038_s41392_024_02104_8 crossref_primary_10_1101_gad_299198_117 crossref_primary_10_1074_jbc_REV119_008897 crossref_primary_10_1016_j_jep_2022_116081 crossref_primary_10_3390_cancers15133468 crossref_primary_10_1007_s12272_024_01501_5 crossref_primary_10_1016_j_bbamcr_2021_119201 crossref_primary_10_1016_j_devcel_2022_03_003 crossref_primary_10_1038_cdd_2016_108 crossref_primary_10_1111_jcmm_14262 crossref_primary_10_1016_j_jare_2024_06_005 crossref_primary_10_1038_s43018_022_00473_z crossref_primary_10_1002_mc_23538 crossref_primary_10_1073_pnas_1808968115 crossref_primary_10_3390_biology10060534 crossref_primary_10_1038_s41420_021_00421_3 crossref_primary_10_3389_fbioe_2019_00172 crossref_primary_10_1093_molbev_msaa334 crossref_primary_10_1096_fj_202000393R crossref_primary_10_1111_acel_70022 crossref_primary_10_1002_cbin_11345 crossref_primary_10_3389_fphar_2025_1505117 crossref_primary_10_1096_fj_202002284RR crossref_primary_10_1016_j_exphem_2019_11_002 crossref_primary_10_1146_annurev_pathol_030420_105050 crossref_primary_10_1089_ars_2021_0076 crossref_primary_10_1038_s41556_018_0270_5 crossref_primary_10_3724_abbs_2023035 crossref_primary_10_1016_j_drudis_2022_103347 crossref_primary_10_3389_fphar_2024_1367981 crossref_primary_10_1152_ajpendo_00302_2019 crossref_primary_10_1038_s12276_020_0387_z crossref_primary_10_3389_fonc_2022_916661 crossref_primary_10_1210_endrev_bnac013 crossref_primary_10_1016_j_semcancer_2017_04_010 crossref_primary_10_1038_s41536_024_00359_x crossref_primary_10_1016_j_ceb_2019_07_006 crossref_primary_10_1002_mco2_375 crossref_primary_10_1016_j_devcel_2020_06_025 crossref_primary_10_1016_j_devcel_2022_02_004 crossref_primary_10_3390_cells13151255 crossref_primary_10_1016_j_stem_2023_11_011 crossref_primary_10_12677_ACM_2022_12101354 crossref_primary_10_1002_mco2_27 crossref_primary_10_1016_j_jsbmb_2018_10_018 crossref_primary_10_1016_j_critrevonc_2021_103246 crossref_primary_10_1038_nrgastro_2017_38 crossref_primary_10_1016_j_cellsig_2021_109930 crossref_primary_10_1038_cdd_2017_163 crossref_primary_10_1186_s13046_019_1219_7 crossref_primary_10_3389_fcell_2023_1291686 crossref_primary_10_1038_nrendo_2017_91 crossref_primary_10_1152_ajpcell_00232_2022 crossref_primary_10_1002_lom3_10261 crossref_primary_10_1016_j_jacbts_2019_05_006 crossref_primary_10_1016_j_tem_2018_04_006 crossref_primary_10_1053_j_gastro_2016_10_047 crossref_primary_10_1016_j_cellsig_2025_111627 crossref_primary_10_1016_j_cub_2017_04_048 crossref_primary_10_1186_s12967_022_03543_z crossref_primary_10_1016_j_molcel_2021_04_009 crossref_primary_10_1080_15384101_2020_1806450 crossref_primary_10_1084_jem_20201606 crossref_primary_10_1038_s41598_021_02846_3 crossref_primary_10_1038_cdd_2017_99 crossref_primary_10_1152_ajpgi_00197_2022 crossref_primary_10_1016_j_biopha_2022_113166 crossref_primary_10_1016_j_cmet_2018_07_010 crossref_primary_10_1002_jcb_29265 crossref_primary_10_1002_mco2_70128 crossref_primary_10_3724_abbs_2024025 crossref_primary_10_1016_j_jbc_2022_101779 crossref_primary_10_3390_ijms18050961 crossref_primary_10_3390_cancers12113469 crossref_primary_10_1016_j_biopha_2025_117817 crossref_primary_10_26508_lsa_201800171 crossref_primary_10_3390_genes7060028 crossref_primary_10_1038_nrc_2016_76 crossref_primary_10_1093_gigascience_giaf019 crossref_primary_10_1016_j_cmet_2020_03_010 crossref_primary_10_1038_s41419_021_04203_8 crossref_primary_10_1016_j_jhep_2019_02_022 crossref_primary_10_1080_10985549_2023_2292037 |
Cites_doi | 10.1002/hep.22941 10.1101/gad.1447006 10.1016/S0092-8674(00)80213-5 10.1172/JCI2961 10.1016/j.cmet.2012.09.002 10.1002/hep.510260607 10.1016/j.cmet.2011.03.009 10.1016/j.tem.2007.10.009 10.1101/gad.1938710 10.1073/pnas.0911427107 10.1038/onc.2009.270 10.1038/nrc2222 10.1016/j.cell.2008.06.049 10.1038/ncb2936 10.1073/pnas.1734199100 10.1073/pnas.1319190110 10.1038/nature10137 10.1038/cdd.2013.188 10.1016/j.celrep.2013.11.037 10.1126/science.1092472 10.1016/j.cmet.2013.07.004 10.1016/j.ccr.2009.09.026 10.1016/S0925-4773(02)00338-6 10.1097/01.mco.0000232894.28674.30 10.1038/nrc3876 10.1074/jbc.M302364200 10.1016/j.molmed.2009.09.005 10.1172/JCI200215593 10.1158/1078-0432.CCR-04-1773 10.1016/S1089-3261(05)70168-9 10.1016/j.jhep.2008.12.016 10.1136/gut.2004.053850 10.1016/S0092-8674(00)81304-5 10.1016/S0923-1811(02)00148-2 10.1002/hep.26661 10.1101/cshperspect.a004754 10.1016/j.cell.2014.03.060 10.1136/gutjnl-2012-303179 10.1002/hep.24613 10.1136/gutjnl-2014-306842 10.1101/gad.1954410 10.1073/pnas.1534923100 10.1172/JCI44957 10.1093/jmcb/mjs064 10.1007/s00109-014-1223-5 10.1073/pnas.90.24.11603 10.1053/j.gastro.2011.06.040 10.4161/cc.9.19.13386 10.1073/pnas.0506580102 10.1016/j.jhep.2015.07.008 |
ContentType | Journal Article |
Copyright | 2016 Aylon et al.; Published by Cold Spring Harbor Laboratory Press. 2016 |
Copyright_xml | – notice: 2016 Aylon et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 7TO 8FD FR3 H94 P64 RC3 5PM |
DOI | 10.1101/gad.274167.115 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Aylon et al |
EISSN | 1549-5477 |
EndPage | 797 |
ExternalDocumentID | PMC4826395 27013235 10_1101_gad_274167_115 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIDDK NIH HHS grantid: R01 DK056621 – fundername: NCI NIH HHS grantid: P30 CA016672 – fundername: NCI NIH HHS grantid: P30 CA196521 – fundername: NIDDK NIH HHS grantid: DK099558 – fundername: NIDDK NIH HHS grantid: DK56621 – fundername: NIAAA NIH HHS grantid: R01 AA020709 – fundername: NIAAA NIH HHS grantid: AA020709 – fundername: NIDDK NIH HHS grantid: R01 DK102611 – fundername: NIDDK NIH HHS grantid: R01 DK099558 – fundername: NIDDK NIH HHS grantid: R56 DK056621 – fundername: M.D. Moross Institute for Cancer Research at the Weizmann Institute – fundername: Dr. Miriam and Sheldon G. Adelson Medical Research Foundation – fundername: Estate of John Hunter – fundername: Irma T. Hirschl Trust – fundername: National Institute on Alcohol Abuse and Alcoholism grantid: DK56621; AA020709 – fundername: Center of Excellence grantid: 1779/11 – fundername: Robert Bosch Stiftung grantid: 12.5.8000.0094.2 – fundername: U.S. National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases grantid: DK099558 – fundername: Dr. Harold and Golden Lamport Research Award – fundername: Israel Science Foundation |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XSW YBU YHG YKV YSK CGR CUY CVF ECM EIF NPM 7X8 7TM 7TO 8FD FR3 H94 P64 RC3 5PM |
ID | FETCH-LOGICAL-c489t-e68c4caa9df8e45889d10f4484dd566b586fa00c25c53b06cc4914abedf37ae73 |
ISSN | 0890-9369 1549-5477 |
IngestDate | Thu Aug 21 14:00:07 EDT 2025 Fri Jul 11 06:33:00 EDT 2025 Fri Jul 11 07:24:41 EDT 2025 Thu Apr 03 07:10:21 EDT 2025 Tue Jul 01 01:12:06 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Lats YAP cholesterol fatty liver Hippo p53 |
Language | English |
License | 2016 Aylon et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c489t-e68c4caa9df8e45889d10f4484dd566b586fa00c25c53b06cc4914abedf37ae73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4826395 |
PMID | 27013235 |
PQID | 1777980831 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826395 proquest_miscellaneous_1785250459 proquest_miscellaneous_1777980831 pubmed_primary_27013235 crossref_citationtrail_10_1101_gad_274167_115 crossref_primary_10_1101_gad_274167_115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2016 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111619512050000_30.7.786.45 2021111619512050000_30.7.786.46 2021111619512050000_30.7.786.47 2021111619512050000_30.7.786.48 2021111619512050000_30.7.786.41 2021111619512050000_30.7.786.42 2021111619512050000_30.7.786.43 2021111619512050000_30.7.786.44 2021111619512050000_30.7.786.1 2021111619512050000_30.7.786.49 2021111619512050000_30.7.786.2 2021111619512050000_30.7.786.40 2021111619512050000_30.7.786.12 2021111619512050000_30.7.786.13 2021111619512050000_30.7.786.15 2021111619512050000_30.7.786.10 2021111619512050000_30.7.786.11 2021111619512050000_30.7.786.16 2021111619512050000_30.7.786.17 2021111619512050000_30.7.786.18 2021111619512050000_30.7.786.19 2021111619512050000_30.7.786.50 2021111619512050000_30.7.786.51 2021111619512050000_30.7.786.23 2021111619512050000_30.7.786.24 2021111619512050000_30.7.786.25 2021111619512050000_30.7.786.26 2021111619512050000_30.7.786.20 2021111619512050000_30.7.786.21 2021111619512050000_30.7.786.22 2021111619512050000_30.7.786.27 2021111619512050000_30.7.786.28 2021111619512050000_30.7.786.29 (2021111619512050000_30.7.786.14) 1997; 10 2021111619512050000_30.7.786.34 2021111619512050000_30.7.786.35 2021111619512050000_30.7.786.36 2021111619512050000_30.7.786.37 2021111619512050000_30.7.786.30 2021111619512050000_30.7.786.31 2021111619512050000_30.7.786.32 2021111619512050000_30.7.786.33 2021111619512050000_30.7.786.38 2021111619512050000_30.7.786.39 2021111619512050000_30.7.786.5 2021111619512050000_30.7.786.6 2021111619512050000_30.7.786.3 2021111619512050000_30.7.786.4 2021111619512050000_30.7.786.9 2021111619512050000_30.7.786.7 2021111619512050000_30.7.786.8 12902545 - Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11881-8 18724938 - Cell. 2008 Aug 22;134(4):657-67 12490302 - Mech Dev. 2003 Jan;120(1):117-30 17882277 - Nat Rev Cancer. 2007 Oct;7(10):763-77 14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32 19878874 - Cancer Cell. 2009 Nov 6;16(5):425-38 25592648 - Nat Rev Cancer. 2015 Feb;15(2):73-9 11994399 - J Clin Invest. 2002 May;109(9):1125-31 19441103 - Hepatology. 2009 Jul;50(1):175-84 9110297 - Mod Pathol. 1997 Apr;10(4):348-53 24658687 - Nat Cell Biol. 2014 Apr;16(4):357-66 12670722 - J Dermatol Sci. 2003 Apr;31(2):119-28 23000402 - Cell Metab. 2012 Oct 3;16(4):414-9 23492103 - Gut. 2014 Feb;63(2):344-55 18291668 - Trends Endocrinol Metab. 2008 Mar;19(2):65-73 9397980 - Hepatology. 1997 Dec;26(6):1415-22 24413153 - Cell Death Differ. 2014 Apr;21(4):624-33 20080689 - Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1437-42 21504873 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a004754. doi: 10.1101/cshperspect.a004754 16778563 - Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):358-65 25681399 - Gut. 2015 May;64(5):830-41 23258697 - J Mol Cell Biol. 2013 Apr;5(2):147-50 15951554 - Gut. 2005 Jul;54(7):1024-33 23913408 - Hepatology. 2014 Feb;59(2):471-82 21747166 - J Clin Invest. 2011 Aug;121(8):3343-56 21703998 - Gastroenterology. 2011 Oct;141(4):1393-403, 1403.e1-5 24367099 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E89-98 17015431 - Genes Dev. 2006 Oct 1;20(19):2687-700 8674110 - Cell. 1996 Jun 28;85(7):1037-46 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 9150132 - Cell. 1997 May 2;89(3):331-40 9616204 - J Clin Invest. 1998 Jun 1;101(11):2331-9 24360964 - Cell Rep. 2013 Dec 26;5(6):1650-63 21983984 - Hepatology. 2011 Nov;54(5):1853-63 14704432 - Science. 2004 Feb 6;303(5659):844-8 7903453 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11603-7 20935475 - Cell Cycle. 2010 Oct 1;9(19):3892-903 24906150 - Cell. 2014 Jun 5;157(6):1324-38 21459323 - Cell Metab. 2011 Apr 6;13(4):376-88 26226451 - J Hepatol. 2015 Dec;63(6):1491-501 19855428 - Oncogene. 2009 Dec 17;28(50):4469-79 21654799 - Nature. 2011 Jun 9;474(7350):179-83 19231010 - J Hepatol. 2009 Apr;50(4):789-96 11385966 - Clin Liver Dis. 2001 May;5(2):315-34, v-vi 19822456 - Trends Mol Med. 2009 Nov;15(11):531-41 12734185 - J Biol Chem. 2003 Jul 11;278(28):25395-400 23931760 - Cell Metab. 2013 Aug 6;18(2):296-302 15746036 - Clin Cancer Res. 2005 Feb 15;11(4):1380-5 20675406 - Genes Dev. 2010 Aug 15;24(16):1718-30 21041410 - Genes Dev. 2010 Nov 1;24(21):2420-9 25404244 - J Mol Med (Berl). 2014 Dec;92(12):1229-34 |
References_xml | – ident: 2021111619512050000_30.7.786.21 doi: 10.1002/hep.22941 – ident: 2021111619512050000_30.7.786.4 doi: 10.1101/gad.1447006 – ident: 2021111619512050000_30.7.786.9 doi: 10.1016/S0092-8674(00)80213-5 – ident: 2021111619512050000_30.7.786.17 doi: 10.1172/JCI2961 – ident: 2021111619512050000_30.7.786.36 doi: 10.1016/j.cmet.2012.09.002 – ident: 2021111619512050000_30.7.786.24 doi: 10.1002/hep.510260607 – ident: 2021111619512050000_30.7.786.26 doi: 10.1016/j.cmet.2011.03.009 – ident: 2021111619512050000_30.7.786.34 doi: 10.1016/j.tem.2007.10.009 – ident: 2021111619512050000_30.7.786.8 doi: 10.1101/gad.1938710 – ident: 2021111619512050000_30.7.786.29 doi: 10.1073/pnas.0911427107 – volume: 10 start-page: 348 year: 1997 ident: 2021111619512050000_30.7.786.14 article-title: Characterization of ductular hepatocytes in primary liver allograft failure publication-title: Mod Pathol – ident: 2021111619512050000_30.7.786.5 doi: 10.1038/onc.2009.270 – ident: 2021111619512050000_30.7.786.30 doi: 10.1038/nrc2222 – ident: 2021111619512050000_30.7.786.23 doi: 10.1016/j.cell.2008.06.049 – ident: 2021111619512050000_30.7.786.37 doi: 10.1038/ncb2936 – ident: 2021111619512050000_30.7.786.44 doi: 10.1073/pnas.1734199100 – ident: 2021111619512050000_30.7.786.46 doi: 10.1073/pnas.1319190110 – ident: 2021111619512050000_30.7.786.12 doi: 10.1038/nature10137 – ident: 2021111619512050000_30.7.786.7 doi: 10.1038/cdd.2013.188 – ident: 2021111619512050000_30.7.786.27 doi: 10.1016/j.celrep.2013.11.037 – ident: 2021111619512050000_30.7.786.42 doi: 10.1126/science.1092472 – ident: 2021111619512050000_30.7.786.1 doi: 10.1016/j.cmet.2013.07.004 – ident: 2021111619512050000_30.7.786.51 doi: 10.1016/j.ccr.2009.09.026 – ident: 2021111619512050000_30.7.786.13 doi: 10.1016/S0925-4773(02)00338-6 – ident: 2021111619512050000_30.7.786.39 doi: 10.1097/01.mco.0000232894.28674.30 – ident: 2021111619512050000_30.7.786.31 doi: 10.1038/nrc3876 – ident: 2021111619512050000_30.7.786.47 doi: 10.1074/jbc.M302364200 – ident: 2021111619512050000_30.7.786.3 doi: 10.1016/j.molmed.2009.09.005 – ident: 2021111619512050000_30.7.786.18 doi: 10.1172/JCI200215593 – ident: 2021111619512050000_30.7.786.40 doi: 10.1158/1078-0432.CCR-04-1773 – ident: 2021111619512050000_30.7.786.2 doi: 10.1016/S1089-3261(05)70168-9 – ident: 2021111619512050000_30.7.786.10 doi: 10.1016/j.jhep.2008.12.016 – ident: 2021111619512050000_30.7.786.16 doi: 10.1136/gut.2004.053850 – ident: 2021111619512050000_30.7.786.35 doi: 10.1016/S0092-8674(00)81304-5 – ident: 2021111619512050000_30.7.786.33 doi: 10.1016/S0923-1811(02)00148-2 – ident: 2021111619512050000_30.7.786.32 doi: 10.1002/hep.26661 – ident: 2021111619512050000_30.7.786.48 doi: 10.1101/cshperspect.a004754 – ident: 2021111619512050000_30.7.786.49 doi: 10.1016/j.cell.2014.03.060 – ident: 2021111619512050000_30.7.786.28 doi: 10.1136/gutjnl-2012-303179 – ident: 2021111619512050000_30.7.786.15 doi: 10.1002/hep.24613 – ident: 2021111619512050000_30.7.786.25 doi: 10.1136/gutjnl-2014-306842 – ident: 2021111619512050000_30.7.786.6 doi: 10.1101/gad.1954410 – ident: 2021111619512050000_30.7.786.19 doi: 10.1073/pnas.1534923100 – ident: 2021111619512050000_30.7.786.22 doi: 10.1172/JCI44957 – ident: 2021111619512050000_30.7.786.45 doi: 10.1093/jmcb/mjs064 – ident: 2021111619512050000_30.7.786.11 doi: 10.1007/s00109-014-1223-5 – ident: 2021111619512050000_30.7.786.20 doi: 10.1073/pnas.90.24.11603 – ident: 2021111619512050000_30.7.786.41 doi: 10.1053/j.gastro.2011.06.040 – ident: 2021111619512050000_30.7.786.43 doi: 10.4161/cc.9.19.13386 – ident: 2021111619512050000_30.7.786.38 doi: 10.1073/pnas.0506580102 – ident: 2021111619512050000_30.7.786.50 doi: 10.1016/j.jhep.2015.07.008 – reference: 16778563 - Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):358-65 – reference: 25592648 - Nat Rev Cancer. 2015 Feb;15(2):73-9 – reference: 20675406 - Genes Dev. 2010 Aug 15;24(16):1718-30 – reference: 17882277 - Nat Rev Cancer. 2007 Oct;7(10):763-77 – reference: 21983984 - Hepatology. 2011 Nov;54(5):1853-63 – reference: 12670722 - J Dermatol Sci. 2003 Apr;31(2):119-28 – reference: 19822456 - Trends Mol Med. 2009 Nov;15(11):531-41 – reference: 21459323 - Cell Metab. 2011 Apr 6;13(4):376-88 – reference: 18291668 - Trends Endocrinol Metab. 2008 Mar;19(2):65-73 – reference: 21504873 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a004754. doi: 10.1101/cshperspect.a004754 – reference: 25681399 - Gut. 2015 May;64(5):830-41 – reference: 23492103 - Gut. 2014 Feb;63(2):344-55 – reference: 23258697 - J Mol Cell Biol. 2013 Apr;5(2):147-50 – reference: 12902545 - Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11881-8 – reference: 26226451 - J Hepatol. 2015 Dec;63(6):1491-501 – reference: 24360964 - Cell Rep. 2013 Dec 26;5(6):1650-63 – reference: 19231010 - J Hepatol. 2009 Apr;50(4):789-96 – reference: 25404244 - J Mol Med (Berl). 2014 Dec;92(12):1229-34 – reference: 15951554 - Gut. 2005 Jul;54(7):1024-33 – reference: 7903453 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11603-7 – reference: 19878874 - Cancer Cell. 2009 Nov 6;16(5):425-38 – reference: 24906150 - Cell. 2014 Jun 5;157(6):1324-38 – reference: 24658687 - Nat Cell Biol. 2014 Apr;16(4):357-66 – reference: 18724938 - Cell. 2008 Aug 22;134(4):657-67 – reference: 17015431 - Genes Dev. 2006 Oct 1;20(19):2687-700 – reference: 15746036 - Clin Cancer Res. 2005 Feb 15;11(4):1380-5 – reference: 19855428 - Oncogene. 2009 Dec 17;28(50):4469-79 – reference: 23931760 - Cell Metab. 2013 Aug 6;18(2):296-302 – reference: 23000402 - Cell Metab. 2012 Oct 3;16(4):414-9 – reference: 21747166 - J Clin Invest. 2011 Aug;121(8):3343-56 – reference: 11994399 - J Clin Invest. 2002 May;109(9):1125-31 – reference: 20935475 - Cell Cycle. 2010 Oct 1;9(19):3892-903 – reference: 9397980 - Hepatology. 1997 Dec;26(6):1415-22 – reference: 14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32 – reference: 9150132 - Cell. 1997 May 2;89(3):331-40 – reference: 12490302 - Mech Dev. 2003 Jan;120(1):117-30 – reference: 14704432 - Science. 2004 Feb 6;303(5659):844-8 – reference: 19441103 - Hepatology. 2009 Jul;50(1):175-84 – reference: 20080689 - Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1437-42 – reference: 21041410 - Genes Dev. 2010 Nov 1;24(21):2420-9 – reference: 21703998 - Gastroenterology. 2011 Oct;141(4):1393-403, 1403.e1-5 – reference: 23913408 - Hepatology. 2014 Feb;59(2):471-82 – reference: 8674110 - Cell. 1996 Jun 28;85(7):1037-46 – reference: 24413153 - Cell Death Differ. 2014 Apr;21(4):624-33 – reference: 11385966 - Clin Liver Dis. 2001 May;5(2):315-34, v-vi – reference: 12734185 - J Biol Chem. 2003 Jul 11;278(28):25395-400 – reference: 24367099 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E89-98 – reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 – reference: 9110297 - Mod Pathol. 1997 Apr;10(4):348-53 – reference: 9616204 - J Clin Invest. 1998 Jun 1;101(11):2331-9 – reference: 21654799 - Nature. 2011 Jun 9;474(7350):179-83 |
SSID | ssj0006066 |
Score | 2.483767 |
Snippet | The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma... In this study, Aylon et al. performed a screen for proteins that interact with LATS2, a key player in the Hippo pathway. They delineate a new role for LATS2 in... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 786 |
SubjectTerms | Animals Cholesterol, Dietary - pharmacology Fatty Liver - enzymology Fatty Liver - genetics Gene Deletion Gene Expression Regulation - genetics Hep G2 Cells Homeostasis - genetics Humans Liver - drug effects Liver - enzymology Mice, Knockout Protein Binding Protein-Serine-Threonine Kinases - genetics Protein-Serine-Threonine Kinases - metabolism Research Paper Signal Transduction Sterol Regulatory Element Binding Protein 2 - genetics Sterol Regulatory Element Binding Protein 2 - metabolism Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
Title | The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27013235 https://www.proquest.com/docview/1777980831 https://www.proquest.com/docview/1785250459 https://pubmed.ncbi.nlm.nih.gov/PMC4826395 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviDvlJiMh8VClxIkdJ48bKtoAIbR10vYUObbDKrakWpOH8cJf5_iSNN0GGrxEjePESs_XY5-ez99B6G2kEpEkigZxoWRAU5PfLSBqjdNSE0WE5KVl-X5Ndg_ppyN2NBr9GrCW2qaYyp_X7iv5H6tCG9jV7JL9B8v2D4UG-Az2hSNYGI43tvGX7flBNGnas_p8smqXltdqOeYni8IkBQ72ZzvfbIqgu6pXsDxcWqVW4_usVEJ9OhFStme-mNdwyWqEqVcWIWpNMOpxcuHT9scd995weQw3ura1oozoSd95v25-1MvSEbp7UO4sPIN_rzLSJLPp8I8Ikgz4K95fZWFg6gO6qcX7U5oFjPpKLd7h-kSMAxYfeE_eqWK7M0fcverjbW2B70JNjfROwqGFrWezLoN_aZLrqYc26AlJDvfn7n44Z7fQ7QjiDBuT733up3IT3dkwxL-ZV_2E-99vjr-5qrkSqlxm3A6WMPP76J6PPfC2A9IDNNLVQ3THVSO9eISOAU7YwglbOOE1nHAHJ2zhhAFOeA0n7OGEB3DCQzg9RocfZ_MPu4GvvBFImmZNoJNUUilEpspUm73MmSJhCZE8VQrW_wVLk1KEoYyYZHERJlLSjFBRaFXGXGgeP0FbVV3pZwhDRJwyQUsmdEyl0oUkpCg5kVzAo2I5RkH3zeXSy9Kb6iin-fWWGqN3ff-lE2T5Y883nSFy8JkmESYqXbernHDOs9TU2Ptbn9Rk_CnLxuipM14_XsRNhjKGEfiGWfsORrN980q1OLHa7RTC-Thjz2_8Fi_Q3fWP7SXaas5b_QrWwU3x2mL1N8LptJY |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+LATS2+tumor+suppressor+inhibits+SREBP+and+suppresses+hepatic+cholesterol+accumulation&rft.jtitle=Genes+%26+development&rft.au=Aylon%2C+Yael&rft.au=Gershoni%2C+Anat&rft.au=Rotkopf%2C+Ron&rft.au=Biton%2C+Inbal+E.&rft.date=2016-04-01&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=30&rft.issue=7&rft.spage=786&rft.epage=797&rft_id=info:doi/10.1101%2Fgad.274167.115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gad_274167_115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |