The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation

The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 30; no. 7; pp. 786 - 797
Main Authors Aylon, Yael, Gershoni, Anat, Rotkopf, Ron, Biton, Inbal E., Porat, Ziv, Koh, Anna P., Sun, Xiaochen, Lee, Youngmin, Fiel, Maria-Isabel, Hoshida, Yujin, Friedman, Scott L., Johnson, Randy L., Oren, Moshe
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.
AbstractList The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.
The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.
In this study, Aylon et al. performed a screen for proteins that interact with LATS2, a key player in the Hippo pathway. They delineate a new role for LATS2 in the regulation of cholesterol metabolism through direct interaction with and inhibition of the transcription factor SREBP2, a master regulator of cholesterol homeostasis. The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.
The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma primarily through hyperactivation of its downstream effector, YAP. The LATS2 tumor suppressor is a core member of the Hippo pathway. A screen for LATS2-interacting proteins in liver-derived cells identified the transcription factor SREBP2, master regulator of cholesterol homeostasis. LATS2 down-regulation caused SREBP activation and accumulation of excessive cholesterol. Likewise, mice harboring liver-specific Lats2 conditional knockout (Lats2-CKO) displayed constitutive SREBP activation and overexpressed SREBP target genes and developed spontaneous fatty liver disease. Interestingly, the impact of LATS2 depletion on SREBP-mediated transcription was clearly distinct from that of YAP overexpression. When challenged with excess dietary cholesterol, Lats2-CKO mice manifested more severe liver damage than wild-type mice. Surprisingly, apoptosis, inflammation, and fibrosis were actually attenuated relative to wild-type mice, in association with impaired p53 activation. Subsequently, Lats2-CKO mice failed to recover effectively from cholesterol-induced damage upon return to a normal diet. Additionally, decreased LATS2 mRNA in association with increased SREBP target gene expression was observed in a subset of human nonalcoholic fatty liver disease cases. Together, these findings further highlight the tight links between tumor suppressors and metabolic homeostasis.
Author Gershoni, Anat
Fiel, Maria-Isabel
Johnson, Randy L.
Biton, Inbal E.
Hoshida, Yujin
Sun, Xiaochen
Oren, Moshe
Aylon, Yael
Rotkopf, Ron
Porat, Ziv
Friedman, Scott L.
Koh, Anna P.
Lee, Youngmin
AuthorAffiliation 4 Flow Cytometry Unit, Biological Services Department, The Weizmann Institute of Science, Rehovot 76100, Israel
2 Bioinformatics Unit, Faculty of Biological Services, The Weizmann Institute of Science, Rehovot 76100, Israel
1 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
6 Department of Biochemistry and Molecular Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
3 Department of Veterinary Resources, Faculty of Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
5 Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
AuthorAffiliation_xml – name: 4 Flow Cytometry Unit, Biological Services Department, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 2 Bioinformatics Unit, Faculty of Biological Services, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 3 Department of Veterinary Resources, Faculty of Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 6 Department of Biochemistry and Molecular Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
– name: 1 Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
– name: 5 Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
Author_xml – sequence: 1
  givenname: Yael
  surname: Aylon
  fullname: Aylon, Yael
– sequence: 2
  givenname: Anat
  surname: Gershoni
  fullname: Gershoni, Anat
– sequence: 3
  givenname: Ron
  surname: Rotkopf
  fullname: Rotkopf, Ron
– sequence: 4
  givenname: Inbal E.
  surname: Biton
  fullname: Biton, Inbal E.
– sequence: 5
  givenname: Ziv
  surname: Porat
  fullname: Porat, Ziv
– sequence: 6
  givenname: Anna P.
  surname: Koh
  fullname: Koh, Anna P.
– sequence: 7
  givenname: Xiaochen
  surname: Sun
  fullname: Sun, Xiaochen
– sequence: 8
  givenname: Youngmin
  surname: Lee
  fullname: Lee, Youngmin
– sequence: 9
  givenname: Maria-Isabel
  surname: Fiel
  fullname: Fiel, Maria-Isabel
– sequence: 10
  givenname: Yujin
  surname: Hoshida
  fullname: Hoshida, Yujin
– sequence: 11
  givenname: Scott L.
  surname: Friedman
  fullname: Friedman, Scott L.
– sequence: 12
  givenname: Randy L.
  surname: Johnson
  fullname: Johnson, Randy L.
– sequence: 13
  givenname: Moshe
  surname: Oren
  fullname: Oren, Moshe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27013235$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1P3DAQtSpQWaDXHlGOvWSxE39eKgGiH9JKIHZ76MlynAkxSuLUTpD672tYFgESUk8z43nv6XneIdob_AAIfSZ4SQgmp7emXhaCEi7SzD6gBWFU5YwKsYcWWCqcq5KrA3QY4x3GmGPOP6KDQmBSFiVboN-bFrLV2WZdZNPc-5DFeRwDxJhaN7SuclPM1jeX59eZGernLcSshdFMzma29R3ECYLvMmPt3M9devfDMdpvTBfh01M9Qr--XW4ufuSrq-8_L85WuaVSTTlwaak1RtWNBMqkVDXBDaWS1jXjvGKSNwZjWzDLygpza6ki1FRQN6UwIMoj9HWrO85VD7WFYQqm02NwvQl_tTdOv94MrtW3_l5TWfBSsSTw5Ukg-D9z-oruXbTQdWYAP0dNhGQFw5Sp_4AKoSSWJUnQk5e2nv3sTp8AdAuwwccYoNHWTY-XSy5dpwnWDwnrlLDeJpzmB9ryDW2n_A7hH6PoqZ0
CitedBy_id crossref_primary_10_1038_s41392_024_02104_8
crossref_primary_10_1101_gad_299198_117
crossref_primary_10_1074_jbc_REV119_008897
crossref_primary_10_1016_j_jep_2022_116081
crossref_primary_10_3390_cancers15133468
crossref_primary_10_1007_s12272_024_01501_5
crossref_primary_10_1016_j_bbamcr_2021_119201
crossref_primary_10_1016_j_devcel_2022_03_003
crossref_primary_10_1038_cdd_2016_108
crossref_primary_10_1111_jcmm_14262
crossref_primary_10_1016_j_jare_2024_06_005
crossref_primary_10_1038_s43018_022_00473_z
crossref_primary_10_1002_mc_23538
crossref_primary_10_1073_pnas_1808968115
crossref_primary_10_3390_biology10060534
crossref_primary_10_1038_s41420_021_00421_3
crossref_primary_10_3389_fbioe_2019_00172
crossref_primary_10_1093_molbev_msaa334
crossref_primary_10_1096_fj_202000393R
crossref_primary_10_1111_acel_70022
crossref_primary_10_1002_cbin_11345
crossref_primary_10_3389_fphar_2025_1505117
crossref_primary_10_1096_fj_202002284RR
crossref_primary_10_1016_j_exphem_2019_11_002
crossref_primary_10_1146_annurev_pathol_030420_105050
crossref_primary_10_1089_ars_2021_0076
crossref_primary_10_1038_s41556_018_0270_5
crossref_primary_10_3724_abbs_2023035
crossref_primary_10_1016_j_drudis_2022_103347
crossref_primary_10_3389_fphar_2024_1367981
crossref_primary_10_1152_ajpendo_00302_2019
crossref_primary_10_1038_s12276_020_0387_z
crossref_primary_10_3389_fonc_2022_916661
crossref_primary_10_1210_endrev_bnac013
crossref_primary_10_1016_j_semcancer_2017_04_010
crossref_primary_10_1038_s41536_024_00359_x
crossref_primary_10_1016_j_ceb_2019_07_006
crossref_primary_10_1002_mco2_375
crossref_primary_10_1016_j_devcel_2020_06_025
crossref_primary_10_1016_j_devcel_2022_02_004
crossref_primary_10_3390_cells13151255
crossref_primary_10_1016_j_stem_2023_11_011
crossref_primary_10_12677_ACM_2022_12101354
crossref_primary_10_1002_mco2_27
crossref_primary_10_1016_j_jsbmb_2018_10_018
crossref_primary_10_1016_j_critrevonc_2021_103246
crossref_primary_10_1038_nrgastro_2017_38
crossref_primary_10_1016_j_cellsig_2021_109930
crossref_primary_10_1038_cdd_2017_163
crossref_primary_10_1186_s13046_019_1219_7
crossref_primary_10_3389_fcell_2023_1291686
crossref_primary_10_1038_nrendo_2017_91
crossref_primary_10_1152_ajpcell_00232_2022
crossref_primary_10_1002_lom3_10261
crossref_primary_10_1016_j_jacbts_2019_05_006
crossref_primary_10_1016_j_tem_2018_04_006
crossref_primary_10_1053_j_gastro_2016_10_047
crossref_primary_10_1016_j_cellsig_2025_111627
crossref_primary_10_1016_j_cub_2017_04_048
crossref_primary_10_1186_s12967_022_03543_z
crossref_primary_10_1016_j_molcel_2021_04_009
crossref_primary_10_1080_15384101_2020_1806450
crossref_primary_10_1084_jem_20201606
crossref_primary_10_1038_s41598_021_02846_3
crossref_primary_10_1038_cdd_2017_99
crossref_primary_10_1152_ajpgi_00197_2022
crossref_primary_10_1016_j_biopha_2022_113166
crossref_primary_10_1016_j_cmet_2018_07_010
crossref_primary_10_1002_jcb_29265
crossref_primary_10_1002_mco2_70128
crossref_primary_10_3724_abbs_2024025
crossref_primary_10_1016_j_jbc_2022_101779
crossref_primary_10_3390_ijms18050961
crossref_primary_10_3390_cancers12113469
crossref_primary_10_1016_j_biopha_2025_117817
crossref_primary_10_26508_lsa_201800171
crossref_primary_10_3390_genes7060028
crossref_primary_10_1038_nrc_2016_76
crossref_primary_10_1093_gigascience_giaf019
crossref_primary_10_1016_j_cmet_2020_03_010
crossref_primary_10_1038_s41419_021_04203_8
crossref_primary_10_1016_j_jhep_2019_02_022
crossref_primary_10_1080_10985549_2023_2292037
Cites_doi 10.1002/hep.22941
10.1101/gad.1447006
10.1016/S0092-8674(00)80213-5
10.1172/JCI2961
10.1016/j.cmet.2012.09.002
10.1002/hep.510260607
10.1016/j.cmet.2011.03.009
10.1016/j.tem.2007.10.009
10.1101/gad.1938710
10.1073/pnas.0911427107
10.1038/onc.2009.270
10.1038/nrc2222
10.1016/j.cell.2008.06.049
10.1038/ncb2936
10.1073/pnas.1734199100
10.1073/pnas.1319190110
10.1038/nature10137
10.1038/cdd.2013.188
10.1016/j.celrep.2013.11.037
10.1126/science.1092472
10.1016/j.cmet.2013.07.004
10.1016/j.ccr.2009.09.026
10.1016/S0925-4773(02)00338-6
10.1097/01.mco.0000232894.28674.30
10.1038/nrc3876
10.1074/jbc.M302364200
10.1016/j.molmed.2009.09.005
10.1172/JCI200215593
10.1158/1078-0432.CCR-04-1773
10.1016/S1089-3261(05)70168-9
10.1016/j.jhep.2008.12.016
10.1136/gut.2004.053850
10.1016/S0092-8674(00)81304-5
10.1016/S0923-1811(02)00148-2
10.1002/hep.26661
10.1101/cshperspect.a004754
10.1016/j.cell.2014.03.060
10.1136/gutjnl-2012-303179
10.1002/hep.24613
10.1136/gutjnl-2014-306842
10.1101/gad.1954410
10.1073/pnas.1534923100
10.1172/JCI44957
10.1093/jmcb/mjs064
10.1007/s00109-014-1223-5
10.1073/pnas.90.24.11603
10.1053/j.gastro.2011.06.040
10.4161/cc.9.19.13386
10.1073/pnas.0506580102
10.1016/j.jhep.2015.07.008
ContentType Journal Article
Copyright 2016 Aylon et al.; Published by Cold Spring Harbor Laboratory Press.
2016
Copyright_xml – notice: 2016 Aylon et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7TO
8FD
FR3
H94
P64
RC3
5PM
DOI 10.1101/gad.274167.115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
MEDLINE - Academic
Genetics Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Aylon et al
EISSN 1549-5477
EndPage 797
ExternalDocumentID PMC4826395
27013235
10_1101_gad_274167_115
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDDK NIH HHS
  grantid: R01 DK056621
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P30 CA196521
– fundername: NIDDK NIH HHS
  grantid: DK099558
– fundername: NIDDK NIH HHS
  grantid: DK56621
– fundername: NIAAA NIH HHS
  grantid: R01 AA020709
– fundername: NIAAA NIH HHS
  grantid: AA020709
– fundername: NIDDK NIH HHS
  grantid: R01 DK102611
– fundername: NIDDK NIH HHS
  grantid: R01 DK099558
– fundername: NIDDK NIH HHS
  grantid: R56 DK056621
– fundername: M.D. Moross Institute for Cancer Research at the Weizmann Institute
– fundername: Dr. Miriam and Sheldon G. Adelson Medical Research Foundation
– fundername: Estate of John Hunter
– fundername: Irma T. Hirschl Trust
– fundername: National Institute on Alcohol Abuse and Alcoholism
  grantid: DK56621; AA020709
– fundername: Center of Excellence
  grantid: 1779/11
– fundername: Robert Bosch Stiftung
  grantid: 12.5.8000.0094.2
– fundername: U.S. National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases
  grantid: DK099558
– fundername: Dr. Harold and Golden Lamport Research Award
– fundername: Israel Science Foundation
GroupedDBID ---
-DZ
-~X
.55
18M
29H
2WC
39C
4.4
53G
5RE
5VS
85S
AAYXX
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AECCQ
AENEX
AETEA
AFFNX
AFOSN
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
W8F
WH7
WOQ
X7M
XSW
YBU
YHG
YKV
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7TO
8FD
FR3
H94
P64
RC3
5PM
ID FETCH-LOGICAL-c489t-e68c4caa9df8e45889d10f4484dd566b586fa00c25c53b06cc4914abedf37ae73
ISSN 0890-9369
1549-5477
IngestDate Thu Aug 21 14:00:07 EDT 2025
Fri Jul 11 06:33:00 EDT 2025
Fri Jul 11 07:24:41 EDT 2025
Thu Apr 03 07:10:21 EDT 2025
Tue Jul 01 01:12:06 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Lats
YAP
cholesterol
fatty liver
Hippo
p53
Language English
License 2016 Aylon et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c489t-e68c4caa9df8e45889d10f4484dd566b586fa00c25c53b06cc4914abedf37ae73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4826395
PMID 27013235
PQID 1777980831
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826395
proquest_miscellaneous_1785250459
proquest_miscellaneous_1777980831
pubmed_primary_27013235
crossref_citationtrail_10_1101_gad_274167_115
crossref_primary_10_1101_gad_274167_115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-01
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genes & development
PublicationTitleAlternate Genes Dev
PublicationYear 2016
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111619512050000_30.7.786.45
2021111619512050000_30.7.786.46
2021111619512050000_30.7.786.47
2021111619512050000_30.7.786.48
2021111619512050000_30.7.786.41
2021111619512050000_30.7.786.42
2021111619512050000_30.7.786.43
2021111619512050000_30.7.786.44
2021111619512050000_30.7.786.1
2021111619512050000_30.7.786.49
2021111619512050000_30.7.786.2
2021111619512050000_30.7.786.40
2021111619512050000_30.7.786.12
2021111619512050000_30.7.786.13
2021111619512050000_30.7.786.15
2021111619512050000_30.7.786.10
2021111619512050000_30.7.786.11
2021111619512050000_30.7.786.16
2021111619512050000_30.7.786.17
2021111619512050000_30.7.786.18
2021111619512050000_30.7.786.19
2021111619512050000_30.7.786.50
2021111619512050000_30.7.786.51
2021111619512050000_30.7.786.23
2021111619512050000_30.7.786.24
2021111619512050000_30.7.786.25
2021111619512050000_30.7.786.26
2021111619512050000_30.7.786.20
2021111619512050000_30.7.786.21
2021111619512050000_30.7.786.22
2021111619512050000_30.7.786.27
2021111619512050000_30.7.786.28
2021111619512050000_30.7.786.29
(2021111619512050000_30.7.786.14) 1997; 10
2021111619512050000_30.7.786.34
2021111619512050000_30.7.786.35
2021111619512050000_30.7.786.36
2021111619512050000_30.7.786.37
2021111619512050000_30.7.786.30
2021111619512050000_30.7.786.31
2021111619512050000_30.7.786.32
2021111619512050000_30.7.786.33
2021111619512050000_30.7.786.38
2021111619512050000_30.7.786.39
2021111619512050000_30.7.786.5
2021111619512050000_30.7.786.6
2021111619512050000_30.7.786.3
2021111619512050000_30.7.786.4
2021111619512050000_30.7.786.9
2021111619512050000_30.7.786.7
2021111619512050000_30.7.786.8
12902545 - Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11881-8
18724938 - Cell. 2008 Aug 22;134(4):657-67
12490302 - Mech Dev. 2003 Jan;120(1):117-30
17882277 - Nat Rev Cancer. 2007 Oct;7(10):763-77
14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32
19878874 - Cancer Cell. 2009 Nov 6;16(5):425-38
25592648 - Nat Rev Cancer. 2015 Feb;15(2):73-9
11994399 - J Clin Invest. 2002 May;109(9):1125-31
19441103 - Hepatology. 2009 Jul;50(1):175-84
9110297 - Mod Pathol. 1997 Apr;10(4):348-53
24658687 - Nat Cell Biol. 2014 Apr;16(4):357-66
12670722 - J Dermatol Sci. 2003 Apr;31(2):119-28
23000402 - Cell Metab. 2012 Oct 3;16(4):414-9
23492103 - Gut. 2014 Feb;63(2):344-55
18291668 - Trends Endocrinol Metab. 2008 Mar;19(2):65-73
9397980 - Hepatology. 1997 Dec;26(6):1415-22
24413153 - Cell Death Differ. 2014 Apr;21(4):624-33
20080689 - Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1437-42
21504873 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a004754. doi: 10.1101/cshperspect.a004754
16778563 - Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):358-65
25681399 - Gut. 2015 May;64(5):830-41
23258697 - J Mol Cell Biol. 2013 Apr;5(2):147-50
15951554 - Gut. 2005 Jul;54(7):1024-33
23913408 - Hepatology. 2014 Feb;59(2):471-82
21747166 - J Clin Invest. 2011 Aug;121(8):3343-56
21703998 - Gastroenterology. 2011 Oct;141(4):1393-403, 1403.e1-5
24367099 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E89-98
17015431 - Genes Dev. 2006 Oct 1;20(19):2687-700
8674110 - Cell. 1996 Jun 28;85(7):1037-46
16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
9150132 - Cell. 1997 May 2;89(3):331-40
9616204 - J Clin Invest. 1998 Jun 1;101(11):2331-9
24360964 - Cell Rep. 2013 Dec 26;5(6):1650-63
21983984 - Hepatology. 2011 Nov;54(5):1853-63
14704432 - Science. 2004 Feb 6;303(5659):844-8
7903453 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11603-7
20935475 - Cell Cycle. 2010 Oct 1;9(19):3892-903
24906150 - Cell. 2014 Jun 5;157(6):1324-38
21459323 - Cell Metab. 2011 Apr 6;13(4):376-88
26226451 - J Hepatol. 2015 Dec;63(6):1491-501
19855428 - Oncogene. 2009 Dec 17;28(50):4469-79
21654799 - Nature. 2011 Jun 9;474(7350):179-83
19231010 - J Hepatol. 2009 Apr;50(4):789-96
11385966 - Clin Liver Dis. 2001 May;5(2):315-34, v-vi
19822456 - Trends Mol Med. 2009 Nov;15(11):531-41
12734185 - J Biol Chem. 2003 Jul 11;278(28):25395-400
23931760 - Cell Metab. 2013 Aug 6;18(2):296-302
15746036 - Clin Cancer Res. 2005 Feb 15;11(4):1380-5
20675406 - Genes Dev. 2010 Aug 15;24(16):1718-30
21041410 - Genes Dev. 2010 Nov 1;24(21):2420-9
25404244 - J Mol Med (Berl). 2014 Dec;92(12):1229-34
References_xml – ident: 2021111619512050000_30.7.786.21
  doi: 10.1002/hep.22941
– ident: 2021111619512050000_30.7.786.4
  doi: 10.1101/gad.1447006
– ident: 2021111619512050000_30.7.786.9
  doi: 10.1016/S0092-8674(00)80213-5
– ident: 2021111619512050000_30.7.786.17
  doi: 10.1172/JCI2961
– ident: 2021111619512050000_30.7.786.36
  doi: 10.1016/j.cmet.2012.09.002
– ident: 2021111619512050000_30.7.786.24
  doi: 10.1002/hep.510260607
– ident: 2021111619512050000_30.7.786.26
  doi: 10.1016/j.cmet.2011.03.009
– ident: 2021111619512050000_30.7.786.34
  doi: 10.1016/j.tem.2007.10.009
– ident: 2021111619512050000_30.7.786.8
  doi: 10.1101/gad.1938710
– ident: 2021111619512050000_30.7.786.29
  doi: 10.1073/pnas.0911427107
– volume: 10
  start-page: 348
  year: 1997
  ident: 2021111619512050000_30.7.786.14
  article-title: Characterization of ductular hepatocytes in primary liver allograft failure
  publication-title: Mod Pathol
– ident: 2021111619512050000_30.7.786.5
  doi: 10.1038/onc.2009.270
– ident: 2021111619512050000_30.7.786.30
  doi: 10.1038/nrc2222
– ident: 2021111619512050000_30.7.786.23
  doi: 10.1016/j.cell.2008.06.049
– ident: 2021111619512050000_30.7.786.37
  doi: 10.1038/ncb2936
– ident: 2021111619512050000_30.7.786.44
  doi: 10.1073/pnas.1734199100
– ident: 2021111619512050000_30.7.786.46
  doi: 10.1073/pnas.1319190110
– ident: 2021111619512050000_30.7.786.12
  doi: 10.1038/nature10137
– ident: 2021111619512050000_30.7.786.7
  doi: 10.1038/cdd.2013.188
– ident: 2021111619512050000_30.7.786.27
  doi: 10.1016/j.celrep.2013.11.037
– ident: 2021111619512050000_30.7.786.42
  doi: 10.1126/science.1092472
– ident: 2021111619512050000_30.7.786.1
  doi: 10.1016/j.cmet.2013.07.004
– ident: 2021111619512050000_30.7.786.51
  doi: 10.1016/j.ccr.2009.09.026
– ident: 2021111619512050000_30.7.786.13
  doi: 10.1016/S0925-4773(02)00338-6
– ident: 2021111619512050000_30.7.786.39
  doi: 10.1097/01.mco.0000232894.28674.30
– ident: 2021111619512050000_30.7.786.31
  doi: 10.1038/nrc3876
– ident: 2021111619512050000_30.7.786.47
  doi: 10.1074/jbc.M302364200
– ident: 2021111619512050000_30.7.786.3
  doi: 10.1016/j.molmed.2009.09.005
– ident: 2021111619512050000_30.7.786.18
  doi: 10.1172/JCI200215593
– ident: 2021111619512050000_30.7.786.40
  doi: 10.1158/1078-0432.CCR-04-1773
– ident: 2021111619512050000_30.7.786.2
  doi: 10.1016/S1089-3261(05)70168-9
– ident: 2021111619512050000_30.7.786.10
  doi: 10.1016/j.jhep.2008.12.016
– ident: 2021111619512050000_30.7.786.16
  doi: 10.1136/gut.2004.053850
– ident: 2021111619512050000_30.7.786.35
  doi: 10.1016/S0092-8674(00)81304-5
– ident: 2021111619512050000_30.7.786.33
  doi: 10.1016/S0923-1811(02)00148-2
– ident: 2021111619512050000_30.7.786.32
  doi: 10.1002/hep.26661
– ident: 2021111619512050000_30.7.786.48
  doi: 10.1101/cshperspect.a004754
– ident: 2021111619512050000_30.7.786.49
  doi: 10.1016/j.cell.2014.03.060
– ident: 2021111619512050000_30.7.786.28
  doi: 10.1136/gutjnl-2012-303179
– ident: 2021111619512050000_30.7.786.15
  doi: 10.1002/hep.24613
– ident: 2021111619512050000_30.7.786.25
  doi: 10.1136/gutjnl-2014-306842
– ident: 2021111619512050000_30.7.786.6
  doi: 10.1101/gad.1954410
– ident: 2021111619512050000_30.7.786.19
  doi: 10.1073/pnas.1534923100
– ident: 2021111619512050000_30.7.786.22
  doi: 10.1172/JCI44957
– ident: 2021111619512050000_30.7.786.45
  doi: 10.1093/jmcb/mjs064
– ident: 2021111619512050000_30.7.786.11
  doi: 10.1007/s00109-014-1223-5
– ident: 2021111619512050000_30.7.786.20
  doi: 10.1073/pnas.90.24.11603
– ident: 2021111619512050000_30.7.786.41
  doi: 10.1053/j.gastro.2011.06.040
– ident: 2021111619512050000_30.7.786.43
  doi: 10.4161/cc.9.19.13386
– ident: 2021111619512050000_30.7.786.38
  doi: 10.1073/pnas.0506580102
– ident: 2021111619512050000_30.7.786.50
  doi: 10.1016/j.jhep.2015.07.008
– reference: 16778563 - Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):358-65
– reference: 25592648 - Nat Rev Cancer. 2015 Feb;15(2):73-9
– reference: 20675406 - Genes Dev. 2010 Aug 15;24(16):1718-30
– reference: 17882277 - Nat Rev Cancer. 2007 Oct;7(10):763-77
– reference: 21983984 - Hepatology. 2011 Nov;54(5):1853-63
– reference: 12670722 - J Dermatol Sci. 2003 Apr;31(2):119-28
– reference: 19822456 - Trends Mol Med. 2009 Nov;15(11):531-41
– reference: 21459323 - Cell Metab. 2011 Apr 6;13(4):376-88
– reference: 18291668 - Trends Endocrinol Metab. 2008 Mar;19(2):65-73
– reference: 21504873 - Cold Spring Harb Perspect Biol. 2011 Jul;3(7). pii: a004754. doi: 10.1101/cshperspect.a004754
– reference: 25681399 - Gut. 2015 May;64(5):830-41
– reference: 23492103 - Gut. 2014 Feb;63(2):344-55
– reference: 23258697 - J Mol Cell Biol. 2013 Apr;5(2):147-50
– reference: 12902545 - Proc Natl Acad Sci U S A. 2003 Sep 30;100 Suppl 1:11881-8
– reference: 26226451 - J Hepatol. 2015 Dec;63(6):1491-501
– reference: 24360964 - Cell Rep. 2013 Dec 26;5(6):1650-63
– reference: 19231010 - J Hepatol. 2009 Apr;50(4):789-96
– reference: 25404244 - J Mol Med (Berl). 2014 Dec;92(12):1229-34
– reference: 15951554 - Gut. 2005 Jul;54(7):1024-33
– reference: 7903453 - Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11603-7
– reference: 19878874 - Cancer Cell. 2009 Nov 6;16(5):425-38
– reference: 24906150 - Cell. 2014 Jun 5;157(6):1324-38
– reference: 24658687 - Nat Cell Biol. 2014 Apr;16(4):357-66
– reference: 18724938 - Cell. 2008 Aug 22;134(4):657-67
– reference: 17015431 - Genes Dev. 2006 Oct 1;20(19):2687-700
– reference: 15746036 - Clin Cancer Res. 2005 Feb 15;11(4):1380-5
– reference: 19855428 - Oncogene. 2009 Dec 17;28(50):4469-79
– reference: 23931760 - Cell Metab. 2013 Aug 6;18(2):296-302
– reference: 23000402 - Cell Metab. 2012 Oct 3;16(4):414-9
– reference: 21747166 - J Clin Invest. 2011 Aug;121(8):3343-56
– reference: 11994399 - J Clin Invest. 2002 May;109(9):1125-31
– reference: 20935475 - Cell Cycle. 2010 Oct 1;9(19):3892-903
– reference: 9397980 - Hepatology. 1997 Dec;26(6):1415-22
– reference: 14512514 - Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12027-32
– reference: 9150132 - Cell. 1997 May 2;89(3):331-40
– reference: 12490302 - Mech Dev. 2003 Jan;120(1):117-30
– reference: 14704432 - Science. 2004 Feb 6;303(5659):844-8
– reference: 19441103 - Hepatology. 2009 Jul;50(1):175-84
– reference: 20080689 - Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1437-42
– reference: 21041410 - Genes Dev. 2010 Nov 1;24(21):2420-9
– reference: 21703998 - Gastroenterology. 2011 Oct;141(4):1393-403, 1403.e1-5
– reference: 23913408 - Hepatology. 2014 Feb;59(2):471-82
– reference: 8674110 - Cell. 1996 Jun 28;85(7):1037-46
– reference: 24413153 - Cell Death Differ. 2014 Apr;21(4):624-33
– reference: 11385966 - Clin Liver Dis. 2001 May;5(2):315-34, v-vi
– reference: 12734185 - J Biol Chem. 2003 Jul 11;278(28):25395-400
– reference: 24367099 - Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):E89-98
– reference: 16199517 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
– reference: 9110297 - Mod Pathol. 1997 Apr;10(4):348-53
– reference: 9616204 - J Clin Invest. 1998 Jun 1;101(11):2331-9
– reference: 21654799 - Nature. 2011 Jun 9;474(7350):179-83
SSID ssj0006066
Score 2.483767
Snippet The Hippo signaling pathway is a major regulator of organ size. In the liver, Hippo pathway deregulation promotes hyperplasia and hepatocellular carcinoma...
In this study, Aylon et al. performed a screen for proteins that interact with LATS2, a key player in the Hippo pathway. They delineate a new role for LATS2 in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 786
SubjectTerms Animals
Cholesterol, Dietary - pharmacology
Fatty Liver - enzymology
Fatty Liver - genetics
Gene Deletion
Gene Expression Regulation - genetics
Hep G2 Cells
Homeostasis - genetics
Humans
Liver - drug effects
Liver - enzymology
Mice, Knockout
Protein Binding
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Research Paper
Signal Transduction
Sterol Regulatory Element Binding Protein 2 - genetics
Sterol Regulatory Element Binding Protein 2 - metabolism
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Title The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation
URI https://www.ncbi.nlm.nih.gov/pubmed/27013235
https://www.proquest.com/docview/1777980831
https://www.proquest.com/docview/1785250459
https://pubmed.ncbi.nlm.nih.gov/PMC4826395
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKEBIviDvlJiMh8VClxIkdJ48bKtoAIbR10vYUObbDKrakWpOH8cJf5_iSNN0GGrxEjePESs_XY5-ez99B6G2kEpEkigZxoWRAU5PfLSBqjdNSE0WE5KVl-X5Ndg_ppyN2NBr9GrCW2qaYyp_X7iv5H6tCG9jV7JL9B8v2D4UG-Az2hSNYGI43tvGX7flBNGnas_p8smqXltdqOeYni8IkBQ72ZzvfbIqgu6pXsDxcWqVW4_usVEJ9OhFStme-mNdwyWqEqVcWIWpNMOpxcuHT9scd995weQw3ura1oozoSd95v25-1MvSEbp7UO4sPIN_rzLSJLPp8I8Ikgz4K95fZWFg6gO6qcX7U5oFjPpKLd7h-kSMAxYfeE_eqWK7M0fcverjbW2B70JNjfROwqGFrWezLoN_aZLrqYc26AlJDvfn7n44Z7fQ7QjiDBuT733up3IT3dkwxL-ZV_2E-99vjr-5qrkSqlxm3A6WMPP76J6PPfC2A9IDNNLVQ3THVSO9eISOAU7YwglbOOE1nHAHJ2zhhAFOeA0n7OGEB3DCQzg9RocfZ_MPu4GvvBFImmZNoJNUUilEpspUm73MmSJhCZE8VQrW_wVLk1KEoYyYZHERJlLSjFBRaFXGXGgeP0FbVV3pZwhDRJwyQUsmdEyl0oUkpCg5kVzAo2I5RkH3zeXSy9Kb6iin-fWWGqN3ff-lE2T5Y883nSFy8JkmESYqXbernHDOs9TU2Ptbn9Rk_CnLxuipM14_XsRNhjKGEfiGWfsORrN980q1OLHa7RTC-Thjz2_8Fi_Q3fWP7SXaas5b_QrWwU3x2mL1N8LptJY
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+LATS2+tumor+suppressor+inhibits+SREBP+and+suppresses+hepatic+cholesterol+accumulation&rft.jtitle=Genes+%26+development&rft.au=Aylon%2C+Yael&rft.au=Gershoni%2C+Anat&rft.au=Rotkopf%2C+Ron&rft.au=Biton%2C+Inbal+E.&rft.date=2016-04-01&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=30&rft.issue=7&rft.spage=786&rft.epage=797&rft_id=info:doi/10.1101%2Fgad.274167.115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gad_274167_115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon