NiAu Single Atom Alloys for the Non-oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen

Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supporte...

Full description

Saved in:
Bibliographic Details
Published inTopics in catalysis Vol. 61; no. 5-6; pp. 475 - 486
Main Authors Giannakakis, Georgios, Trimpalis, Antonios, Shan, Junjun, Qi, Zhen, Cao, Sufeng, Liu, Jilei, Ye, Jianchao, Biener, Juergen, Flytzani-Stephanopoulos, Maria
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2018
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN1022-5528
1572-9028
DOI10.1007/s11244-017-0883-0

Cover

Loading…
Abstract Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supported or unsupported Au surfaces induces resistance to sintering, along with a beneficial effect on the catalytic activity. NiAu alloys prepared here with Ni as the minority component to the limit of atomic dispersion in the gold surfaces, catalyze the reaction beginning below 150 °C. A significant decrease of the apparent activation energy from 96 ± 3 kJ/mol for the monometallic Au to 59 ± 5 kJ/mol for the alloy was found. The Ni dispersion and concentration as a function of gas environment was followed by in situ DRIFTS and by XPS. The stability of the catalyst morphology was investigated through post-reaction microscopy imaging and long-term stability tests under reaction conditions. As shown via dynamic reaction experiments, acetaldehyde and H 2 were selectively produced up to 280 °C. A small drop of selectivity at higher temperatures is attributed to the formation of Ni clusters, as proven by CO-DRIFTS on the used sample. Comparison with samples of higher Ni loading, where Ni clusters are formed, clearly shows that they catalyze the undesired full decomposition of ethanol to CO, CH 4 , and H 2 .
AbstractList Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supported or unsupported Au surfaces induces resistance to sintering, along with a beneficial effect on the catalytic activity. NiAu alloys prepared here with Ni as the minority component to the limit of atomic dispersion in the gold surfaces, catalyze the reaction beginning below 150 °C. A significant decrease of the apparent activation energy from 96 ± 3 kJ/mol for the monometallic Au to 59 ± 5 kJ/mol for the alloy was found. The Ni dispersion and concentration as a function of gas environment was followed by in situ DRIFTS and by XPS. The stability of the catalyst morphology was investigated through post-reaction microscopy imaging and long-term stability tests under reaction conditions. As shown via dynamic reaction experiments, acetaldehyde and H 2 were selectively produced up to 280 °C. A small drop of selectivity at higher temperatures is attributed to the formation of Ni clusters, as proven by CO-DRIFTS on the used sample. Comparison with samples of higher Ni loading, where Ni clusters are formed, clearly shows that they catalyze the undesired full decomposition of ethanol to CO, CH 4 , and H 2 .
Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supported or unsupported Au surfaces induces resistance to sintering, along with a beneficial effect on the catalytic activity. NiAu alloys prepared here with Ni as the minority component to the limit of atomic dispersion in the gold surfaces, catalyze the reaction beginning below 150 °C. A significant decrease of the apparent activation energy from 96 ± 3 kJ/mol for the monometallic Au to 59 ± 5 kJ/mol for the alloy was found. The Ni dispersion and concentration as a function of gas environment was followed by in situ DRIFTS and by XPS. The stability of the catalyst morphology was investigated through post-reaction microscopy imaging and long-term stability tests under reaction conditions. As shown via dynamic reaction experiments, acetaldehyde and H2 were selectively produced up to 280 °C. A small drop of selectivity at higher temperatures is attributed to the formation of Ni clusters, as proven by CO-DRIFTS on the used sample. Comparison with samples of higher Ni loading, where Ni clusters are formed, clearly shows that they catalyze the undesired full decomposition of ethanol to CO, CH4, and H2.
Author Qi, Zhen
Shan, Junjun
Cao, Sufeng
Biener, Juergen
Flytzani-Stephanopoulos, Maria
Giannakakis, Georgios
Trimpalis, Antonios
Ye, Jianchao
Liu, Jilei
Author_xml – sequence: 1
  givenname: Georgios
  surname: Giannakakis
  fullname: Giannakakis, Georgios
  organization: Department of Chemical and Biological Engineering, Tufts University
– sequence: 2
  givenname: Antonios
  surname: Trimpalis
  fullname: Trimpalis, Antonios
  organization: Department of Chemical and Biological Engineering, Tufts University
– sequence: 3
  givenname: Junjun
  surname: Shan
  fullname: Shan, Junjun
  organization: Department of Chemical and Biological Engineering, Tufts University, NICE America Research, Inc
– sequence: 4
  givenname: Zhen
  surname: Qi
  fullname: Qi, Zhen
  organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory
– sequence: 5
  givenname: Sufeng
  surname: Cao
  fullname: Cao, Sufeng
  organization: Department of Chemical and Biological Engineering, Tufts University
– sequence: 6
  givenname: Jilei
  surname: Liu
  fullname: Liu, Jilei
  organization: Department of Chemical and Biological Engineering, Tufts University
– sequence: 7
  givenname: Jianchao
  surname: Ye
  fullname: Ye, Jianchao
  organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory
– sequence: 8
  givenname: Juergen
  surname: Biener
  fullname: Biener, Juergen
  organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory
– sequence: 9
  givenname: Maria
  surname: Flytzani-Stephanopoulos
  fullname: Flytzani-Stephanopoulos, Maria
  email: mflytzan@tufts.edu
  organization: Department of Chemical and Biological Engineering, Tufts University
BackLink https://www.osti.gov/biblio/1470259$$D View this record in Osti.gov
BookMark eNp9kE1PxCAURYnRxM8f4I7oGn3QdkqXjd_JRBfqmjDwOlNTQYExzr-XsZOYmOgKSM5573L3ybbzDgk55nDGAerzyLkoSwa8ZiBlwWCL7PGqFqwBIbfzHYRgVSXkLtmP8QVA8Lpp9gje9-2SPvZuPiBtk3-l7TD4VaSdDzQtkN57x_xnb3XqP5Be4mJlg5-jy2_vqO_oVVpo5weaPG0NJj3YNYNUO0tvN_Ah2en0EPFocx6Q5-urp4tbNn24ubtop8yUskkMq87aohMwk0ZYXRsOcsYNdNxi0ZhJNZkYzavKNvkjM2sKiYYbLQqjkc9EWRyQk3Guj6lX0fQJzcJ459AkxcsaRNVk6HSE3oJ_X2JM6sUvg8u5lIAiI6WESab4SJngYwzYqbfQv-qwUhzUunI1Vq5y5WpduYLs1L-cnOC7qBR0P_xritGMeYubY_jJ9Lf0BUhkl30
CitedBy_id crossref_primary_10_1002_cctc_202101481
crossref_primary_10_1021_acscatal_8b04937
crossref_primary_10_1039_D2CY00383J
crossref_primary_10_1007_s41918_021_00124_4
crossref_primary_10_1039_C9CC04822G
crossref_primary_10_59761_RCR5087
crossref_primary_10_1007_s12274_023_6146_4
crossref_primary_10_1021_jacs_1c09274
crossref_primary_10_1021_acs_chemrev_0c00078
crossref_primary_10_3390_catal10101151
crossref_primary_10_1016_j_apcatb_2021_120162
crossref_primary_10_1126_science_abg8389
crossref_primary_10_1016_j_jcat_2021_06_003
crossref_primary_10_1021_acscatal_0c04615
crossref_primary_10_1021_acscatal_9b04029
crossref_primary_10_1021_jacs_4c05980
crossref_primary_10_1039_D1CP05046J
crossref_primary_10_1007_s10562_020_03517_0
crossref_primary_10_1002_cctc_202201681
crossref_primary_10_1016_j_cattod_2022_06_023
crossref_primary_10_1039_D1EE02518J
crossref_primary_10_1016_j_ijhydene_2021_11_253
crossref_primary_10_1021_acscatal_3c01861
crossref_primary_10_1016_j_jcat_2019_12_016
crossref_primary_10_1016_j_jcat_2020_05_018
crossref_primary_10_1021_acs_jpcc_4c08571
crossref_primary_10_1039_D2CY01662A
crossref_primary_10_1039_D2TA09024D
crossref_primary_10_1002_cjoc_201900185
crossref_primary_10_1021_acs_jpclett_0c03252
crossref_primary_10_1002_ejic_202300052
crossref_primary_10_1016_j_jscs_2019_04_004
crossref_primary_10_1039_D0CY00683A
crossref_primary_10_1007_s11244_020_01267_2
crossref_primary_10_1039_D1RE00396H
crossref_primary_10_1021_acs_chemrev_0c00436
crossref_primary_10_1002_sstr_202000051
crossref_primary_10_1021_acscatal_9b05402
crossref_primary_10_1021_acs_chemrev_0c00797
crossref_primary_10_1021_acs_chemrev_1c00905
crossref_primary_10_1002_ange_202002049
crossref_primary_10_1016_j_apmt_2023_102037
crossref_primary_10_1007_s42114_024_01105_z
crossref_primary_10_1039_D0CS00844C
crossref_primary_10_1021_acscatal_3c03954
crossref_primary_10_1002_admi_202001342
crossref_primary_10_1016_j_recm_2023_05_003
crossref_primary_10_1016_j_ces_2022_117937
crossref_primary_10_1016_j_jhazmat_2021_127427
crossref_primary_10_1038_s41929_022_00839_7
crossref_primary_10_1016_j_nxener_2023_100033
crossref_primary_10_1039_D0CY02479A
crossref_primary_10_1021_acssuschemeng_0c05589
crossref_primary_10_1016_j_fuproc_2021_107092
crossref_primary_10_1021_acscatal_9b00491
crossref_primary_10_1016_j_trechm_2019_01_004
crossref_primary_10_1016_j_actamat_2021_117318
crossref_primary_10_1021_acs_accounts_8b00490
crossref_primary_10_1021_acs_iecr_9b05202
crossref_primary_10_1039_D1GC03809E
crossref_primary_10_1002_anie_202002049
crossref_primary_10_1021_acs_jpcc_3c00571
crossref_primary_10_1021_acscatal_4c00365
crossref_primary_10_1002_cctc_202300545
crossref_primary_10_1007_s40843_023_2713_6
crossref_primary_10_1021_acscatal_3c00275
crossref_primary_10_1002_adma_202003300
crossref_primary_10_1021_acsanm_9b02596
crossref_primary_10_1016_j_ccr_2022_214469
crossref_primary_10_1039_D0CY00904K
crossref_primary_10_1016_j_catcom_2023_106630
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1038_s41467_021_21555_z
crossref_primary_10_1016_j_cattod_2025_115207
crossref_primary_10_1039_D1TA08016D
crossref_primary_10_1002_asia_202300671
crossref_primary_10_1016_j_cattod_2019_04_021
crossref_primary_10_1039_D4NA00433G
crossref_primary_10_1021_acs_chemrev_1c00967
Cites_doi 10.1002/cite.200700029
10.1016/j.susc.2008.12.028
10.1021/acscatal.5b00700
10.1016/j.jcat.2007.08.004
10.1023/A:1010155203247
10.1016/j.jcat.2013.07.012
10.1021/cs4004084
10.1016/S1872-2067(17)62869-9
10.1021/ja0121080
10.1016/j.apcatb.2016.07.010
10.1021/acs.jpcc.6b03473
10.1016/j.apcatb.2014.02.008
10.1039/c3cp51538a
10.1016/j.susc.2016.02.010
10.1021/acs.jpclett.5b02400
10.1016/j.apcata.2009.03.033
10.1021/jp800075y
10.1021/cs300479a
10.1002/cphc.200700325
10.1016/S0920-5861(01)00473-4
10.1007/s11671-009-9298-6
10.1023/A:1019028229377
10.1039/C4CP02141J
10.1021/ie010272q
10.1007/s10853-011-5437-4
10.1126/science.1077229
10.1038/nnano.2011.42
10.1038/376238a0
10.1016/j.jcat.2013.04.023
10.1016/j.apcatb.2016.12.045
10.1016/j.apcatb.2014.10.042
10.1016/j.jcat.2008.06.026
10.1002/chem.201304837
10.1016/j.vacuum.2012.07.005
10.1016/j.proeng.2012.07.425
10.1002/cctc.201700127
10.1016/j.apcatb.2013.04.039
10.1039/b924051a
10.1126/science.1215864
10.1021/jp906531x
10.1016/j.apcatb.2014.06.043
10.1021/cr2000114
10.1016/j.cej.2011.10.043
10.1016/j.apsusc.2012.05.095
10.1016/0304-5102(93)E0331-A
10.1103/PhysRevB.46.7157
10.1016/j.apcata.2011.02.007
10.1021/nn402055k
10.1021/jacs.6b03339
10.1088/0953-8984/23/17/175003
10.1126/science.1085721
10.1039/c0cp02009e
10.1021/ja900822r
10.1126/science.279.5358.1913
10.1016/j.apcata.2005.04.052
10.1126/science.1183591
10.1038/NMAT4824
10.1002/adem.201700389
10.1021/jp2014258
10.1039/C7CY00794A
10.1021/acscatal.6b03293
10.1021/acs.jpcc.5b01357
10.1016/j.jcat.2012.09.022
10.1016/j.apcata.2004.12.048
10.1016/j.apcatb.2004.07.015
10.1016/S0920-5861(01)00479-5
10.1016/S1381-1169(96)00348-2
10.1038/ncomms9550
10.1021/acscatal.6b01275
10.1016/j.apcata.2013.10.024
10.1016/j.apcatb.2009.12.012
10.1016/j.chempr.2017.09.014
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC)
CorporateAuthor_xml – name: Energy Frontier Research Centers (EFRC) (United States). Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC)
DBID AAYXX
CITATION
OTOTI
DOI 10.1007/s11244-017-0883-0
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1572-9028
EndPage 486
ExternalDocumentID 1470259
10_1007_s11244_017_0883_0
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDEX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
AAFGU
AAPBV
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
AEFTE
AESTI
AEVTX
AGGBP
AIMYW
AJDOV
AKQUC
OTOTI
SQXTU
UNUBA
ID FETCH-LOGICAL-c489t-e5fdd3f20b8c2da7c108b1c0f1de39c6566ca155d9528bdc38ec1ca23cae1b243
IEDL.DBID U2A
ISSN 1022-5528
IngestDate Fri May 19 01:07:40 EDT 2023
Fri Jul 25 11:03:02 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Tue Jul 01 01:10:49 EDT 2025
Fri Feb 21 02:36:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5-6
Keywords Gold
Nickel
Hydrogen
Single atom alloys
Ethanol dehydrogenation
Acetaldehyde
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-e5fdd3f20b8c2da7c108b1c0f1de39c6566ca155d9528bdc38ec1ca23cae1b243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0012573
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OpenAccessLink https://www.osti.gov/biblio/1502035
PQID 2030254806
PQPubID 2043828
PageCount 12
ParticipantIDs osti_scitechconnect_1470259
proquest_journals_2030254806
crossref_primary_10_1007_s11244_017_0883_0
crossref_citationtrail_10_1007_s11244_017_0883_0
springer_journals_10_1007_s11244_017_0883_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Topics in catalysis
PublicationTitleAbbrev Top Catal
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Springer
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer
References Madix, Friend, Liu (CR74) 2008; 258
Prieto, Nistor, Nouneh (CR65) 2012; 258
Wang, Darby, Therrien (CR49) 2016; 120
Masoud, Delannoy, Calers (CR28) 2017; 9
Juarez, Biener, Weissmüller, Hodge (CR25) 2017; 1700389
De Souza, Balzaretti, Marcílio, Perez-Lopez (CR53) 2012; 42
Walton, Wincott, Fairley, Carrick (CR58) 2010
Liu, Xu, Haubrich (CR72) 2009; 131
Delannoy, Thrimurthulu, Reddy (CR30) 2014; 16
Wang, Boucher, Yang (CR21) 2014; 154–155
Mattos, Jacobs, Davis, Noronha (CR54) 2012; 112
Sanchez-Sanchez, Navarro Yerga, Kondarides (CR2) 2010; 114
Boucher, Marcinkowski, Liriano (CR40) 2013; 7
Wang, Liang, Geng (CR61) 2009; 4
Sandoval, Louis, Zanella (CR31) 2013; 140–141
Skriver, Rosengaard (CR64) 1992; 46
Fu, Deng, Saltsburg, Flytzani-Stephanopoulos (CR16) 2005
Hammer, Norskov (CR9) 1995; 376
Claus (CR12) 2005
Lucci, Darby, Mattera (CR48) 2016; 7
Santacesaria, Carotenuto, Tesser, Di Serio (CR6) 2012; 179
Hutchings (CR14) 2002; 72
Sun, Xia (CR60) 2002; 298
Zhang, Diao, Williams, Monnier (CR36) 2014
Schimpf, Lucas, Mohr (CR11) 2002
Garbarino, Wang, Valsamakis (CR22) 2017; 200
Guan, Hensen (CR37) 2013; 305
Tedsree, Li, Jones (CR55) 2011; 6
Griffin, Rodriguez, Montemore (CR34) 2013; 307
Shan, Lucci, Liu (CR41) 2016; 650
Boucher, Zugic, Cladaras (CR45) 2013; 15
Poncelet, Centeno, Molina (CR69) 2005; 288
Aich, Wei, Basan (CR39) 2015
Liu, Lucci, Yang (CR46) 2016; 138
Jørgensen, Egholm Christiansen, Dahl Thomsen, Christensen (CR73) 2007; 251
El Kolli, Delannoy, Louis (CR33) 2013
CR44
Moya, Martins, Schmal (CR68) 2011; 396
Lim, Lee, Ahn (CR32) 2015; 165
Carter, Althahban, Nowicka (CR35) 2016
Mavrikakis, Stoltze, Nørskov (CR8) 2000; 64
Besenbacher, Chorkendorff, Clausen (CR26) 1998; 279
Shan, Janvelyan, Li (CR4) 2017; 205
Zugic, Wang, Heine (CR10) 2016
Deng, Frenkel, Si, Stephanopoulos (CR17) 2008; 112
Tyo, Yin, Di Vece (CR13) 2012; 2
Guan, Hensen (CR50) 2009; 361
D’Addato, Grillo, Altieri (CR66) 2011; 23
Kyriakou, Boucher, Jewell (CR38) 2012; 335
Tu, Chen, Li (CR5) 1994; 89
Yi, Si, Saltsburg, Flytzani-Stephanopoulos (CR18) 2010
Mihaylov, Knözinger, Hadjiivanov, Gates (CR67) 2007; 79
Fu, Saltsburg, Flytzani-Stephanopoulos (CR15) 2003; 301
Chai, Liu, Li (CR59) 2014; 38
Tynkova, Sidorenko, Voloshko (CR62) 2013; 87
Ruban, Hammer, Stoltze (CR52) 1997
Boucher, Goergen, Yi, Flytzani-Stephanopoulos (CR20) 2011; 13
Rodriguez, Hanson, Frenkel (CR57) 2002; 124
CR51
Tu, Chen (CR7) 2001; 40
Elmasry, Gaber, Khater (CR56) 1998; 52
Suzuki, Yamaguchi, Matsushita (CR27) 2013; 3
Yi, Si, Saltsburg, Flytzani-Stephanopoulos (CR19) 2010; 3
Tenney, He, Roberts (CR63) 2011
Mihaylov, Tsoncheva, Hadjiivanov (CR70) 2011; 46
Sun, Karim, Mei (CR1) 2015; 162
Lucci, Liu, Marcinkowski (CR42) 2015
Eckert, Fleischmann, Jira (CR3) 2012
Liu, Shan, Lucci (CR47) 2017
Trant, Jones, Gustafson (CR71) 2009; 603
Wittstock, Zielasek, Biener (CR24) 2010; 327
Xu, Siler, Madix, Friend (CR29) 2014; 20
Pei, Liu, Wang (CR43) 2015; 5
Haruta (CR23) 2007; 8
B Hammer (883_CR9) 1995; 376
G Garbarino (883_CR22) 2017; 200
YJ Tu (883_CR5) 1994; 89
B Zugic (883_CR10) 2016
M Haruta (883_CR23) 2007; 8
Y Zhang (883_CR36) 2014
MB Boucher (883_CR45) 2013; 15
P Aich (883_CR39) 2015
HL Skriver (883_CR64) 1992; 46
MB Boucher (883_CR40) 2013; 7
P Claus (883_CR12) 2005
B Xu (883_CR29) 2014; 20
P Prieto (883_CR65) 2012; 258
Z-T Wang (883_CR49) 2016; 120
X Liu (883_CR72) 2009; 131
Y-J Tu (883_CR7) 2001; 40
JH Carter (883_CR35) 2016
A Tynkova (883_CR62) 2013; 87
FR Lucci (883_CR42) 2015
M Mavrikakis (883_CR8) 2000; 64
J Liu (883_CR46) 2016; 138
N Yi (883_CR19) 2010; 3
L Delannoy (883_CR30) 2014; 16
MB Griffin (883_CR34) 2013; 307
A Ruban (883_CR52) 1997
MB Boucher (883_CR20) 2011; 13
K Suzuki (883_CR27) 2013; 3
EC Tyo (883_CR13) 2012; 2
JE Lim (883_CR32) 2015; 165
JA Rodriguez (883_CR57) 2002; 124
N Kolli El (883_CR33) 2013
883_CR44
N Masoud (883_CR28) 2017; 9
J Sun (883_CR1) 2015; 162
M Eckert (883_CR3) 2012
MC Sanchez-Sanchez (883_CR2) 2010; 114
GJ Hutchings (883_CR14) 2002; 72
G Souza De (883_CR53) 2012; 42
AG Trant (883_CR71) 2009; 603
SF Moya (883_CR68) 2011; 396
J Shan (883_CR41) 2016; 650
LV Mattos (883_CR54) 2012; 112
B Jørgensen (883_CR73) 2007; 251
SA Tenney (883_CR63) 2011
883_CR51
S D’Addato (883_CR66) 2011; 23
M Mihaylov (883_CR70) 2011; 46
RJ Madix (883_CR74) 2008; 258
FR Lucci (883_CR48) 2016; 7
MAA Elmasry (883_CR56) 1998; 52
Y Guan (883_CR37) 2013; 305
M Chai (883_CR59) 2014; 38
Q Fu (883_CR15) 2003; 301
A Sandoval (883_CR31) 2013; 140–141
YQ Wang (883_CR61) 2009; 4
Y Guan (883_CR50) 2009; 361
C Wang (883_CR21) 2014; 154–155
T Juarez (883_CR25) 2017; 1700389
J Walton (883_CR58) 2010
K Tedsree (883_CR55) 2011; 6
G Poncelet (883_CR69) 2005; 288
GX Pei (883_CR43) 2015; 5
A Wittstock (883_CR24) 2010; 327
F Besenbacher (883_CR26) 1998; 279
S Schimpf (883_CR11) 2002
J Shan (883_CR4) 2017; 205
E Santacesaria (883_CR6) 2012; 179
Y Sun (883_CR60) 2002; 298
M Mihaylov (883_CR67) 2007; 79
Q Fu (883_CR16) 2005
G Kyriakou (883_CR38) 2012; 335
W Deng (883_CR17) 2008; 112
N Yi (883_CR18) 2010
J Liu (883_CR47) 2017
References_xml – year: 2005
  ident: CR16
  article-title: Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction
  publication-title: Appl Catal B Environ
– volume: 79
  start-page: 795
  year: 2007
  end-page: 806
  ident: CR67
  article-title: Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.200700029
– volume: 603
  start-page: 571
  year: 2009
  end-page: 579
  ident: CR71
  article-title: Alloy formation in the Au{1 1 1}/Ni system—an investigation with scanning tunnelling microscopy and medium energy ion scattering
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2008.12.028
– volume: 5
  start-page: 3717
  year: 2015
  end-page: 3725
  ident: CR43
  article-title: Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00700
– volume: 251
  start-page: 332
  year: 2007
  end-page: 337
  ident: CR73
  article-title: Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: efficient routes to acetic acid and ethyl acetate
  publication-title: J Catal
  doi: 10.1016/j.jcat.2007.08.004
– ident: CR51
– volume: 52
  start-page: 489
  year: 1998
  end-page: 495
  ident: CR56
  article-title: Thermal decomposition of Ni(II) and Fe(III) nitrates and their mixture
  publication-title: J Therm Anal Calorim
  doi: 10.1023/A:1010155203247
– volume: 307
  start-page: 111
  year: 2013
  end-page: 120
  ident: CR34
  article-title: The selective oxidation of ethylene glycol and 1,2-propanediol on Au, Pd, and Au-Pd bimetallic catalysts
  publication-title: J Catal
  doi: 10.1016/j.jcat.2013.07.012
– volume: 3
  start-page: 1845
  year: 2013
  end-page: 1849
  ident: CR27
  article-title: Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure
  publication-title: ACS Catal
  doi: 10.1021/cs4004084
– volume: 38
  start-page: 1338
  year: 2014
  end-page: 1346
  ident: CR59
  article-title: SiO2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(17)62869-9
– volume: 124
  start-page: 346
  year: 2002
  end-page: 354
  ident: CR57
  article-title: Experimental and theoretical studies on the reaction of H with NiO: role of O vacancies and mechanism for oxide reduction
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0121080
– volume: 200
  start-page: 458
  year: 2017
  end-page: 468
  ident: CR22
  article-title: Acido-basicity of lanthana/alumina catalysts and their activity in ethanol conversion
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2016.07.010
– year: 1997
  ident: CR52
  article-title: Surface electronic structure and reactivity of transition and noble metals
  publication-title: J Mol Catal A Chem
– volume: 120
  start-page: 13574
  year: 2016
  end-page: 13580
  ident: CR49
  article-title: Preparation, structure, and surface chemistry of Ni–Au single atom alloys
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b03473
– year: 2013
  ident: CR33
  article-title: Bimetallic Au-Pd catalysts for selective hydrogenation of butadiene: Influence of the preparation method on catalytic properties
  publication-title: J Catal
– volume: 154–155
  start-page: 142
  year: 2014
  end-page: 152
  ident: CR21
  article-title: ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2014.02.008
– volume: 15
  start-page: 12187
  year: 2013
  end-page: 12196
  ident: CR45
  article-title: Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp51538a
– volume: 650
  start-page: 121
  year: 2016
  end-page: 129
  ident: CR41
  article-title: Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2016.02.010
– year: 2010
  ident: CR58
  publication-title: Peak Fitting with CasaXPS
– volume: 7
  start-page: 480
  year: 2016
  end-page: 485
  ident: CR48
  article-title: Controlling hydrogen activation, spillover, and desorption with Pd-Au single-atom alloys
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b02400
– volume: 361
  start-page: 49
  year: 2009
  end-page: 56
  ident: CR50
  article-title: Ethanol dehydrogenation by gold catalysts: the effect of the gold particle size and the presence of oxygen
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2009.03.033
– volume: 112
  start-page: 12834
  year: 2008
  end-page: 12840
  ident: CR17
  article-title: Reaction-relevant Au structures in the low temperature WGS reaction on Au–CeO2
  publication-title: J Phys Chem C
  doi: 10.1021/jp800075y
– volume: 2
  start-page: 2409
  year: 2012
  end-page: 2423
  ident: CR13
  article-title: Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: the effect of particle size on activity and selectivity
  publication-title: ACS Catal
  doi: 10.1021/cs300479a
– volume: 8
  start-page: 1911
  year: 2007
  end-page: 1913
  ident: CR23
  article-title: New generation of gold catalysts: nanoporous foams and tubes—is unsupported gold catalytically active?
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200700325
– volume: 72
  start-page: 11
  year: 2002
  end-page: 17
  ident: CR14
  article-title: Gold catalysis in chemical processing
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(01)00473-4
– volume: 1700389
  start-page: 1
  year: 2017
  end-page: 23
  ident: CR25
  article-title: Nanoporous metals with structural hierarchy: a review
  publication-title: Adv Eng Mater
– volume: 4
  start-page: 684
  year: 2009
  end-page: 688
  ident: CR61
  article-title: Coalescence behavior of gold nanoparticles
  publication-title: Nanoscale Res Lett
  doi: 10.1007/s11671-009-9298-6
– volume: 64
  start-page: 101
  year: 2000
  end-page: 106
  ident: CR8
  article-title: Making gold less noble
  publication-title: Catal Lett
  doi: 10.1023/A:1019028229377
– start-page: 191
  year: 2012
  end-page: 207
  ident: CR3
  article-title: Acetaldehyde
  publication-title: Ullmann’s Encycl. Ind. Chem
– volume: 16
  start-page: 26514
  year: 2014
  end-page: 26527
  ident: CR30
  article-title: Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP02141J
– volume: 40
  start-page: 5889
  year: 2001
  end-page: 5893
  ident: CR7
  article-title: Effects of alkali metal oxide additives on Cu/SiO catalyst in the dehydrogenation of ethanol
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie010272q
– volume: 46
  start-page: 7144
  year: 2011
  end-page: 7151
  ident: CR70
  article-title: Structure sensitivity of methanol decomposition on Ni/SiO2 catalysts
  publication-title: J Mater Sci
  doi: 10.1007/s10853-011-5437-4
– volume: 298
  start-page: 2176
  year: 2002
  end-page: 2179
  ident: CR60
  article-title: Shape-controlled synthesis of gold and silver nanoparticles
  publication-title: Science
  doi: 10.1126/science.1077229
– volume: 6
  start-page: 302
  year: 2011
  end-page: 307
  ident: CR55
  article-title: Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.42
– volume: 376
  start-page: 238
  year: 1995
  end-page: 240
  ident: CR9
  article-title: Why gold is the noblest of all metals
  publication-title: Nature
  doi: 10.1038/376238a0
– volume: 305
  start-page: 135
  year: 2013
  end-page: 145
  ident: CR37
  article-title: Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts
  publication-title: J Catal
  doi: 10.1016/j.jcat.2013.04.023
– year: 2011
  ident: CR63
  article-title: CO-induced diffusion of Ni atoms to the surface of Ni-Au clusters on TiO2(110)
  publication-title: J Phys Chem C
– volume: 205
  start-page: 541
  year: 2017
  end-page: 550
  ident: CR4
  article-title: Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2016.12.045
– volume: 165
  start-page: 495
  year: 2015
  end-page: 502
  ident: CR32
  article-title: Oxygen reduction reaction on electrodeposited PtAu alloy catalysts in the presence of phosphoric acid
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2014.10.042
– volume: 258
  start-page: 410
  year: 2008
  end-page: 413
  ident: CR74
  article-title: Anticipating catalytic oxidation reactions on gold at high pressure (including liquid phase) from ultrahigh vacuum studies
  publication-title: J Catal
  doi: 10.1016/j.jcat.2008.06.026
– year: 2016
  ident: CR10
  article-title: Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts
  publication-title: Nat Mater
– year: 2017
  ident: CR47
  article-title: Palladium-gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne
  publication-title: Catal Sci Technol
– volume: 20
  start-page: 4646
  year: 2014
  end-page: 4652
  ident: CR29
  article-title: Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface
  publication-title: Chem Eur J
  doi: 10.1002/chem.201304837
– volume: 87
  start-page: 69
  year: 2013
  end-page: 74
  ident: CR62
  article-title: Interdiffusion in Au(120 nm)/Ni(70 nm) thin films at the low-temperature annealing in the different atmospheres
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2012.07.005
– volume: 42
  start-page: 335
  year: 2012
  end-page: 345
  ident: CR53
  article-title: Decomposition of ethanol over Ni-Al catalysts: effect of copper addition
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2012.07.425
– year: 2010
  ident: CR18
  article-title: Steam reforming of methanol over ceria and gold-ceria nanoshapes
  publication-title: Appl Catal B Environ
– volume: 9
  start-page: 2418
  year: 2017
  end-page: 2425
  ident: CR28
  article-title: Silica-supported Au–Ag catalysts for the selective hydrogenation of butadiene
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700127
– volume: 140–141
  start-page: 363
  year: 2013
  end-page: 377
  ident: CR31
  article-title: Improved activity and stability in CO oxidation of bimetallic Au-Cu/TiO2 catalysts prepared by deposition-precipitation with urea
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2013.04.039
– volume: 3
  start-page: 831
  year: 2010
  ident: CR19
  article-title: Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions
  publication-title: Energy Environ Sci
  doi: 10.1039/b924051a
– volume: 335
  start-page: 1209
  year: 2012
  end-page: 1212
  ident: CR38
  article-title: Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations
  publication-title: Science
  doi: 10.1126/science.1215864
– year: 2005
  ident: CR12
  article-title: Heterogeneously catalysed hydrogenation using gold catalysts
  publication-title: Appl Catal A Gen
– year: 2014
  ident: CR36
  article-title: Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition
  publication-title: Appl Catal A Gen
– year: 2002
  ident: CR11
  article-title: Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions
  publication-title: Catal Today
– volume: 114
  start-page: 3873
  year: 2010
  end-page: 3882
  ident: CR2
  article-title: Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3
  publication-title: J Phys Chem A
  doi: 10.1021/jp906531x
– year: 2015
  ident: CR39
  article-title: Single-atom alloy Pd-Ag catalyst for selective hydrogenation of acrolein
  publication-title: J Phys Chem C
– volume: 162
  start-page: 141
  year: 2015
  end-page: 148
  ident: CR1
  article-title: New insights into reaction mechanisms of ethanol steam reforming on Co-ZrO2
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2014.06.043
– ident: CR44
– volume: 112
  start-page: 4094
  year: 2012
  end-page: 4123
  ident: CR54
  article-title: Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation
  publication-title: Chem Rev
  doi: 10.1021/cr2000114
– year: 2015
  ident: CR42
  article-title: Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit
  publication-title: Nat Commun doi
– volume: 179
  start-page: 209
  year: 2012
  end-page: 220
  ident: CR6
  article-title: Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.10.043
– volume: 258
  start-page: 8807
  year: 2012
  end-page: 8813
  ident: CR65
  article-title: XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2012.05.095
– volume: 89
  start-page: 179
  year: 1994
  end-page: 189
  ident: CR5
  article-title: Characterization of unsupported copper-chromium catalysts for ethanol dehydrogenation
  publication-title: J Mol Catal
  doi: 10.1016/0304-5102(93)E0331-A
– volume: 46
  start-page: 7157
  year: 1992
  end-page: 7168
  ident: CR64
  article-title: Surface energy and work function of elemental metals
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.46.7157
– volume: 396
  start-page: 159
  year: 2011
  end-page: 169
  ident: CR68
  article-title: Monodispersed and nanostructrured Ni/SiO2 catalyst and its activity for non oxidative methane activation
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2011.02.007
– volume: 7
  start-page: 6181
  year: 2013
  end-page: 6187
  ident: CR40
  article-title: Molecular-scale perspective of water-catalyzed methanol dehydrogenation to formaldehyde
  publication-title: ACS Nano
  doi: 10.1021/nn402055k
– volume: 138
  start-page: 6396
  year: 2016
  end-page: 6399
  ident: CR46
  article-title: Tackling CO poisoning with single-atom alloy catalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b03339
– volume: 23
  start-page: 175003
  year: 2011
  ident: CR66
  article-title: Structure and stability of nickel/nickel oxide core–shell nanoparticles
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/23/17/175003
– volume: 301
  start-page: 935
  year: 2003
  end-page: 938
  ident: CR15
  article-title: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts
  publication-title: Science
  doi: 10.1126/science.1085721
– volume: 13
  start-page: 2517
  year: 2011
  end-page: 2527
  ident: CR20
  article-title: “Shape effects” in metal oxide supported nanoscale gold catalysts
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c0cp02009e
– year: 2016
  ident: CR35
  article-title: Synergy and anti-synergy between palladium and gold in nanoparticles dispersed on a reducible support
  publication-title: ACS Catal
– volume: 131
  start-page: 5757
  year: 2009
  end-page: 5759
  ident: CR72
  article-title: Surface-mediated self-coupling of ethanol on gold
  publication-title: J Am Chem Soc
  doi: 10.1021/ja900822r
– volume: 279
  start-page: 1913
  year: 1998
  end-page: 1915
  ident: CR26
  article-title: Design of a surface alloy catalyst for steam reforming
  publication-title: Science
  doi: 10.1126/science.279.5358.1913
– volume: 288
  start-page: 232
  year: 2005
  end-page: 242
  ident: CR69
  article-title: Characterization of reduced α-alumina-supported nickel catalysts by spectroscopic and chemisorption measurements
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2005.04.052
– volume: 327
  start-page: 319
  year: 2010
  end-page: 322
  ident: CR24
  article-title: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature
  publication-title: Science
  doi: 10.1126/science.1183591
– volume: 16
  start-page: 26514
  year: 2014
  ident: 883_CR30
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP02141J
– volume: 335
  start-page: 1209
  year: 2012
  ident: 883_CR38
  publication-title: Science
  doi: 10.1126/science.1215864
– volume: 288
  start-page: 232
  year: 2005
  ident: 883_CR69
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2005.04.052
– year: 2016
  ident: 883_CR10
  publication-title: Nat Mater
  doi: 10.1038/NMAT4824
– volume: 154–155
  start-page: 142
  year: 2014
  ident: 883_CR21
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2014.02.008
– volume: 5
  start-page: 3717
  year: 2015
  ident: 883_CR43
  publication-title: ACS Catal
  doi: 10.1021/acscatal.5b00700
– volume: 251
  start-page: 332
  year: 2007
  ident: 883_CR73
  publication-title: J Catal
  doi: 10.1016/j.jcat.2007.08.004
– volume: 1700389
  start-page: 1
  year: 2017
  ident: 883_CR25
  publication-title: Adv Eng Mater
  doi: 10.1002/adem.201700389
– volume: 376
  start-page: 238
  year: 1995
  ident: 883_CR9
  publication-title: Nature
  doi: 10.1038/376238a0
– year: 2011
  ident: 883_CR63
  publication-title: J Phys Chem C
  doi: 10.1021/jp2014258
– volume: 72
  start-page: 11
  year: 2002
  ident: 883_CR14
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(01)00473-4
– year: 2017
  ident: 883_CR47
  publication-title: Catal Sci Technol
  doi: 10.1039/C7CY00794A
– volume-title: Peak Fitting with CasaXPS
  year: 2010
  ident: 883_CR58
– volume: 279
  start-page: 1913
  year: 1998
  ident: 883_CR26
  publication-title: Science
  doi: 10.1126/science.279.5358.1913
– ident: 883_CR44
  doi: 10.1021/acscatal.6b03293
– volume: 46
  start-page: 7157
  year: 1992
  ident: 883_CR64
  publication-title: Phys Rev B
  doi: 10.1103/PhysRevB.46.7157
– volume: 179
  start-page: 209
  year: 2012
  ident: 883_CR6
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2011.10.043
– volume: 124
  start-page: 346
  year: 2002
  ident: 883_CR57
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0121080
– volume: 20
  start-page: 4646
  year: 2014
  ident: 883_CR29
  publication-title: Chem Eur J
  doi: 10.1002/chem.201304837
– volume: 23
  start-page: 175003
  year: 2011
  ident: 883_CR66
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/23/17/175003
– volume: 3
  start-page: 831
  year: 2010
  ident: 883_CR19
  publication-title: Energy Environ Sci
  doi: 10.1039/b924051a
– volume: 64
  start-page: 101
  year: 2000
  ident: 883_CR8
  publication-title: Catal Lett
  doi: 10.1023/A:1019028229377
– year: 2015
  ident: 883_CR39
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.5b01357
– volume: 165
  start-page: 495
  year: 2015
  ident: 883_CR32
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2014.10.042
– year: 2013
  ident: 883_CR33
  publication-title: J Catal
  doi: 10.1016/j.jcat.2012.09.022
– volume: 603
  start-page: 571
  year: 2009
  ident: 883_CR71
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2008.12.028
– volume: 2
  start-page: 2409
  year: 2012
  ident: 883_CR13
  publication-title: ACS Catal
  doi: 10.1021/cs300479a
– volume: 6
  start-page: 302
  year: 2011
  ident: 883_CR55
  publication-title: Nat Nanotechnol
  doi: 10.1038/nnano.2011.42
– year: 2005
  ident: 883_CR12
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2004.12.048
– volume: 13
  start-page: 2517
  year: 2011
  ident: 883_CR20
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c0cp02009e
– volume: 4
  start-page: 684
  year: 2009
  ident: 883_CR61
  publication-title: Nanoscale Res Lett
  doi: 10.1007/s11671-009-9298-6
– volume: 205
  start-page: 541
  year: 2017
  ident: 883_CR4
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2016.12.045
– volume: 7
  start-page: 6181
  year: 2013
  ident: 883_CR40
  publication-title: ACS Nano
  doi: 10.1021/nn402055k
– year: 2005
  ident: 883_CR16
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2004.07.015
– volume: 258
  start-page: 8807
  year: 2012
  ident: 883_CR65
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2012.05.095
– volume: 298
  start-page: 2176
  year: 2002
  ident: 883_CR60
  publication-title: Science
  doi: 10.1126/science.1077229
– volume: 112
  start-page: 4094
  year: 2012
  ident: 883_CR54
  publication-title: Chem Rev
  doi: 10.1021/cr2000114
– volume: 131
  start-page: 5757
  year: 2009
  ident: 883_CR72
  publication-title: J Am Chem Soc
  doi: 10.1021/ja900822r
– volume: 87
  start-page: 69
  year: 2013
  ident: 883_CR62
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2012.07.005
– year: 2002
  ident: 883_CR11
  publication-title: Catal Today
  doi: 10.1016/S0920-5861(01)00479-5
– volume: 162
  start-page: 141
  year: 2015
  ident: 883_CR1
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2014.06.043
– volume: 301
  start-page: 935
  year: 2003
  ident: 883_CR15
  publication-title: Science
  doi: 10.1126/science.1085721
– volume: 114
  start-page: 3873
  year: 2010
  ident: 883_CR2
  publication-title: J Phys Chem A
  doi: 10.1021/jp906531x
– year: 1997
  ident: 883_CR52
  publication-title: J Mol Catal A Chem
  doi: 10.1016/S1381-1169(96)00348-2
– volume: 8
  start-page: 1911
  year: 2007
  ident: 883_CR23
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200700325
– volume: 89
  start-page: 179
  year: 1994
  ident: 883_CR5
  publication-title: J Mol Catal
  doi: 10.1016/0304-5102(93)E0331-A
– volume: 396
  start-page: 159
  year: 2011
  ident: 883_CR68
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2011.02.007
– volume: 112
  start-page: 12834
  year: 2008
  ident: 883_CR17
  publication-title: J Phys Chem C
  doi: 10.1021/jp800075y
– year: 2015
  ident: 883_CR42
  publication-title: Nat Commun doi
  doi: 10.1038/ncomms9550
– volume: 140–141
  start-page: 363
  year: 2013
  ident: 883_CR31
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2013.04.039
– volume: 361
  start-page: 49
  year: 2009
  ident: 883_CR50
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2009.03.033
– volume: 9
  start-page: 2418
  year: 2017
  ident: 883_CR28
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700127
– volume: 138
  start-page: 6396
  year: 2016
  ident: 883_CR46
  publication-title: J Am Chem Soc
  doi: 10.1021/jacs.6b03339
– year: 2016
  ident: 883_CR35
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b01275
– year: 2014
  ident: 883_CR36
  publication-title: Appl Catal A Gen
  doi: 10.1016/j.apcata.2013.10.024
– volume: 42
  start-page: 335
  year: 2012
  ident: 883_CR53
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2012.07.425
– volume: 305
  start-page: 135
  year: 2013
  ident: 883_CR37
  publication-title: J Catal
  doi: 10.1016/j.jcat.2013.04.023
– volume: 7
  start-page: 480
  year: 2016
  ident: 883_CR48
  publication-title: J Phys Chem Lett
  doi: 10.1021/acs.jpclett.5b02400
– volume: 38
  start-page: 1338
  year: 2014
  ident: 883_CR59
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(17)62869-9
– volume: 327
  start-page: 319
  year: 2010
  ident: 883_CR24
  publication-title: Science
  doi: 10.1126/science.1183591
– volume: 650
  start-page: 121
  year: 2016
  ident: 883_CR41
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2016.02.010
– year: 2010
  ident: 883_CR18
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2009.12.012
– volume: 3
  start-page: 1845
  year: 2013
  ident: 883_CR27
  publication-title: ACS Catal
  doi: 10.1021/cs4004084
– volume: 15
  start-page: 12187
  year: 2013
  ident: 883_CR45
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/c3cp51538a
– volume: 79
  start-page: 795
  year: 2007
  ident: 883_CR67
  publication-title: Chem Ing Tech
  doi: 10.1002/cite.200700029
– volume: 46
  start-page: 7144
  year: 2011
  ident: 883_CR70
  publication-title: J Mater Sci
  doi: 10.1007/s10853-011-5437-4
– volume: 307
  start-page: 111
  year: 2013
  ident: 883_CR34
  publication-title: J Catal
  doi: 10.1016/j.jcat.2013.07.012
– start-page: 191
  volume-title: Ullmann’s Encycl. Ind. Chem
  year: 2012
  ident: 883_CR3
– volume: 52
  start-page: 489
  year: 1998
  ident: 883_CR56
  publication-title: J Therm Anal Calorim
  doi: 10.1023/A:1010155203247
– volume: 200
  start-page: 458
  year: 2017
  ident: 883_CR22
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2016.07.010
– volume: 120
  start-page: 13574
  year: 2016
  ident: 883_CR49
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.6b03473
– volume: 258
  start-page: 410
  year: 2008
  ident: 883_CR74
  publication-title: J Catal
  doi: 10.1016/j.jcat.2008.06.026
– volume: 40
  start-page: 5889
  year: 2001
  ident: 883_CR7
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie010272q
– ident: 883_CR51
  doi: 10.1016/j.chempr.2017.09.014
SSID ssj0021799
Score 2.4912078
Snippet Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 475
SubjectTerms Acetaldehyde
Catalysis
catalysis (heterogeneous), mesostructured materials, materials and chemistry by design, synthesis (novel materials)
Catalytic activity
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Clusters
Dehydrogenation
Dispersion
Dynamic stability
Ethanol
Gold
Hydrogen storage
Industrial Chemistry/Chemical Engineering
Original Paper
Pharmacy
Physical Chemistry
Selectivity
Stability tests
Title NiAu Single Atom Alloys for the Non-oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen
URI https://link.springer.com/article/10.1007/s11244-017-0883-0
https://www.proquest.com/docview/2030254806
https://www.osti.gov/biblio/1470259
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1RT9wwDIAjdDxsL2hjTDtgKA97AkVq05S2jwXudmLiXuAkeKpSx9WQSoO4Io1_j91rOTFtSDz1oW4r2XH8uU4cIX4gMb6zxhK52UwZ8iBl48SqEm1kgXgWAt47fDE_ni3M-XV83e_jXg6r3YeSZDdTrze7cShSPKuSZ0SK8vTNmFJ3HtYLnb9kWdzirCtxcpYV63QoZf7rFa-C0ciTU70Czb9qo13ImX4SWz0rynxl3M9iA5tt8eF0OKLti8D5bf4oL-nhGmXe-juZ17V_WkoiUUlkJ-e-Uf7Preu6e8sz_P3kHjwNmc4c0ldywn_OfS1bL3NAAnHHMiht4-SsF94Ri-nk6nSm-nMTFJg0axXGlXNRpYMyBe1sAmGQliEEVegwyoAJDixxhMtIPaWDKEUIweoILIalNtFXMWp8g9-ERMSEwijoEoyhVCytqgSrJE6iEsBoMxbBoMAC-qbifLZFXazbIbPOC9J5wTovgrE4fHnkftVR4y3hPbZKQTjAPW2BF_9AS_lKQqyWjcX-YKyid71loWna0tzF7ngsjgYDrm__91O775LeEx8JndLV0sd9MWofHvE74UlbHojNfHpyMufrz5tfk4NueD4DHirfoQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9lAulKfYPsAHTiBXieM0yTFqtyy03QtbqZwsezwRFWlcdbMS5dczziZdtQKknjNxkhmP55vM-DNjH5AwvjPKEHIzhVDkQcKkmREWTWKA8CxEYe_w2exgeq6-XqQX_T7uxdDtPpQku5V6vdkthCIRVlXyjERQnr6hKAVPR2yj_Pz9ZHKXZwWSs67IGfKsVOZDMfNvg9wLRyNPbnUPaj6ojnZB53iLzYfXXfWa_NxftnYffj9gcnzk9zxnz3oQysvVrHnBnmDzkm0eDme_vWI4uyyX_BsNVyMvW3_Fy7r2twtOEJcTZOQz3wj_69J1tOH8CH_cuhtPc7GzM_cVn4Rf8r7mreclICF8F2SQm8bxaS_8mp0fT-aHU9EfyCBA5UUrMK2cSyoZ2RykMxnEUW5jiKrYYVJAgIZgCKC4grRuHSQ5QgxGJmAwtlIlb9io8Q2-ZRwRM4rPIC0oRTleXlUZVlmaJRZASTVm0WAXDT1beTg0o9ZrnuWgP03600F_Ohqzj3e3XK-oOv4nvBOMrQlnBLJcCF1F0FIilBEILMZsd5gDuvfphZa0HspAj3cwZp8Gk64v__NR24-Sfs82p_OzU336ZXayw54SPstX_ZW7bNTeLHGPMFBr3_Vz_g9UXPxC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEF7kBPVFbFU8W-s--KQsTTabJnkMbY-rbQ9BD_q2bGYnWEizpZeC_ffO5JIeFS34nNkEZnZ2vsnMfiPEJySM751xhNxcoQx5kHJp5lSFLnFAeBYivjt8vjiYL83Xi_RimHO6Grvdx5Lk-k4DszS13f61r_c3F984LCk-YclLEkU5-1M6jWPu6Vrq8j7jYrqzvtzJGVeq87Gs-bdXPAhMk0AO9gB0_lEn7cPP7JV4OeBGWa4NvSWeYLstnh-O49peC1xclrfyOy1uUJZduJJl04S7lSRUKgnlyUVoVfh16Xumb3mEP-_8TaDt05tGhloe81_00MguyBKQQLlnGZSu9XI-CL8Ry9nxj8O5GmYoKDB50SlMa--TWkdVDtq7DOIor2KI6thjUgCjOXCEKXxB6qk8JDlCDE4n4DCutEneikkbWnwnJCJmFFJBV2AMpWV5XWdYZ2mWVABGm6mIRgVaGAjGec5FYzfUyKxzSzq3rHMbTcXn-yXXa3aNx4R32CqWoAHz2wI3AkFHuUtGuK2Yit3RWHZww5XVdIRpZrQ7mIovowE3j__5qff_Jf1RPPt2NLNnJ4vTHfGCEFW-7ojcFZPu5hY_EGrpqr1-Z_4GxZ7jwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiAu+Single+Atom+Alloys+for+the+Non-oxidative+Dehydrogenation+of+Ethanol+to+Acetaldehyde+and+Hydrogen&rft.jtitle=Topics+in+catalysis&rft.au=Giannakakis%2C+Georgios&rft.au=Trimpalis%2C+Antonios&rft.au=Shan%2C+Junjun&rft.au=Qi%2C+Zhen&rft.date=2018-05-01&rft.pub=Springer+US&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=61&rft.issue=5-6&rft.spage=475&rft.epage=486&rft_id=info:doi/10.1007%2Fs11244-017-0883-0&rft.externalDocID=10_1007_s11244_017_0883_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon