NiAu Single Atom Alloys for the Non-oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen
Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supporte...
Saved in:
Published in | Topics in catalysis Vol. 61; no. 5-6; pp. 475 - 486 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2018
Springer Nature B.V Springer |
Subjects | |
Online Access | Get full text |
ISSN | 1022-5528 1572-9028 |
DOI | 10.1007/s11244-017-0883-0 |
Cover
Loading…
Abstract | Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supported or unsupported Au surfaces induces resistance to sintering, along with a beneficial effect on the catalytic activity. NiAu alloys prepared here with Ni as the minority component to the limit of atomic dispersion in the gold surfaces, catalyze the reaction beginning below 150 °C. A significant decrease of the apparent activation energy from 96 ± 3 kJ/mol for the monometallic Au to 59 ± 5 kJ/mol for the alloy was found. The Ni dispersion and concentration as a function of gas environment was followed by in situ DRIFTS and by XPS. The stability of the catalyst morphology was investigated through post-reaction microscopy imaging and long-term stability tests under reaction conditions. As shown via dynamic reaction experiments, acetaldehyde and H
2
were selectively produced up to 280 °C. A small drop of selectivity at higher temperatures is attributed to the formation of Ni clusters, as proven by CO-DRIFTS on the used sample. Comparison with samples of higher Ni loading, where Ni clusters are formed, clearly shows that they catalyze the undesired full decomposition of ethanol to CO, CH
4
, and H
2
. |
---|---|
AbstractList | Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supported or unsupported Au surfaces induces resistance to sintering, along with a beneficial effect on the catalytic activity. NiAu alloys prepared here with Ni as the minority component to the limit of atomic dispersion in the gold surfaces, catalyze the reaction beginning below 150 °C. A significant decrease of the apparent activation energy from 96 ± 3 kJ/mol for the monometallic Au to 59 ± 5 kJ/mol for the alloy was found. The Ni dispersion and concentration as a function of gas environment was followed by in situ DRIFTS and by XPS. The stability of the catalyst morphology was investigated through post-reaction microscopy imaging and long-term stability tests under reaction conditions. As shown via dynamic reaction experiments, acetaldehyde and H
2
were selectively produced up to 280 °C. A small drop of selectivity at higher temperatures is attributed to the formation of Ni clusters, as proven by CO-DRIFTS on the used sample. Comparison with samples of higher Ni loading, where Ni clusters are formed, clearly shows that they catalyze the undesired full decomposition of ethanol to CO, CH
4
, and H
2
. Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold is only active at temperatures higher than 250 °C for this reaction. We demonstrate that addition of a small amount of Ni on either supported or unsupported Au surfaces induces resistance to sintering, along with a beneficial effect on the catalytic activity. NiAu alloys prepared here with Ni as the minority component to the limit of atomic dispersion in the gold surfaces, catalyze the reaction beginning below 150 °C. A significant decrease of the apparent activation energy from 96 ± 3 kJ/mol for the monometallic Au to 59 ± 5 kJ/mol for the alloy was found. The Ni dispersion and concentration as a function of gas environment was followed by in situ DRIFTS and by XPS. The stability of the catalyst morphology was investigated through post-reaction microscopy imaging and long-term stability tests under reaction conditions. As shown via dynamic reaction experiments, acetaldehyde and H2 were selectively produced up to 280 °C. A small drop of selectivity at higher temperatures is attributed to the formation of Ni clusters, as proven by CO-DRIFTS on the used sample. Comparison with samples of higher Ni loading, where Ni clusters are formed, clearly shows that they catalyze the undesired full decomposition of ethanol to CO, CH4, and H2. |
Author | Qi, Zhen Shan, Junjun Cao, Sufeng Biener, Juergen Flytzani-Stephanopoulos, Maria Giannakakis, Georgios Trimpalis, Antonios Ye, Jianchao Liu, Jilei |
Author_xml | – sequence: 1 givenname: Georgios surname: Giannakakis fullname: Giannakakis, Georgios organization: Department of Chemical and Biological Engineering, Tufts University – sequence: 2 givenname: Antonios surname: Trimpalis fullname: Trimpalis, Antonios organization: Department of Chemical and Biological Engineering, Tufts University – sequence: 3 givenname: Junjun surname: Shan fullname: Shan, Junjun organization: Department of Chemical and Biological Engineering, Tufts University, NICE America Research, Inc – sequence: 4 givenname: Zhen surname: Qi fullname: Qi, Zhen organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory – sequence: 5 givenname: Sufeng surname: Cao fullname: Cao, Sufeng organization: Department of Chemical and Biological Engineering, Tufts University – sequence: 6 givenname: Jilei surname: Liu fullname: Liu, Jilei organization: Department of Chemical and Biological Engineering, Tufts University – sequence: 7 givenname: Jianchao surname: Ye fullname: Ye, Jianchao organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory – sequence: 8 givenname: Juergen surname: Biener fullname: Biener, Juergen organization: Nanoscale Synthesis and Characterization Laboratory, Lawrence Livermore National Laboratory – sequence: 9 givenname: Maria surname: Flytzani-Stephanopoulos fullname: Flytzani-Stephanopoulos, Maria email: mflytzan@tufts.edu organization: Department of Chemical and Biological Engineering, Tufts University |
BackLink | https://www.osti.gov/biblio/1470259$$D View this record in Osti.gov |
BookMark | eNp9kE1PxCAURYnRxM8f4I7oGn3QdkqXjd_JRBfqmjDwOlNTQYExzr-XsZOYmOgKSM5573L3ybbzDgk55nDGAerzyLkoSwa8ZiBlwWCL7PGqFqwBIbfzHYRgVSXkLtmP8QVA8Lpp9gje9-2SPvZuPiBtk3-l7TD4VaSdDzQtkN57x_xnb3XqP5Be4mJlg5-jy2_vqO_oVVpo5weaPG0NJj3YNYNUO0tvN_Ah2en0EPFocx6Q5-urp4tbNn24ubtop8yUskkMq87aohMwk0ZYXRsOcsYNdNxi0ZhJNZkYzavKNvkjM2sKiYYbLQqjkc9EWRyQk3Guj6lX0fQJzcJ459AkxcsaRNVk6HSE3oJ_X2JM6sUvg8u5lIAiI6WESab4SJngYwzYqbfQv-qwUhzUunI1Vq5y5WpduYLs1L-cnOC7qBR0P_xritGMeYubY_jJ9Lf0BUhkl30 |
CitedBy_id | crossref_primary_10_1002_cctc_202101481 crossref_primary_10_1021_acscatal_8b04937 crossref_primary_10_1039_D2CY00383J crossref_primary_10_1007_s41918_021_00124_4 crossref_primary_10_1039_C9CC04822G crossref_primary_10_59761_RCR5087 crossref_primary_10_1007_s12274_023_6146_4 crossref_primary_10_1021_jacs_1c09274 crossref_primary_10_1021_acs_chemrev_0c00078 crossref_primary_10_3390_catal10101151 crossref_primary_10_1016_j_apcatb_2021_120162 crossref_primary_10_1126_science_abg8389 crossref_primary_10_1016_j_jcat_2021_06_003 crossref_primary_10_1021_acscatal_0c04615 crossref_primary_10_1021_acscatal_9b04029 crossref_primary_10_1021_jacs_4c05980 crossref_primary_10_1039_D1CP05046J crossref_primary_10_1007_s10562_020_03517_0 crossref_primary_10_1002_cctc_202201681 crossref_primary_10_1016_j_cattod_2022_06_023 crossref_primary_10_1039_D1EE02518J crossref_primary_10_1016_j_ijhydene_2021_11_253 crossref_primary_10_1021_acscatal_3c01861 crossref_primary_10_1016_j_jcat_2019_12_016 crossref_primary_10_1016_j_jcat_2020_05_018 crossref_primary_10_1021_acs_jpcc_4c08571 crossref_primary_10_1039_D2CY01662A crossref_primary_10_1039_D2TA09024D crossref_primary_10_1002_cjoc_201900185 crossref_primary_10_1021_acs_jpclett_0c03252 crossref_primary_10_1002_ejic_202300052 crossref_primary_10_1016_j_jscs_2019_04_004 crossref_primary_10_1039_D0CY00683A crossref_primary_10_1007_s11244_020_01267_2 crossref_primary_10_1039_D1RE00396H crossref_primary_10_1021_acs_chemrev_0c00436 crossref_primary_10_1002_sstr_202000051 crossref_primary_10_1021_acscatal_9b05402 crossref_primary_10_1021_acs_chemrev_0c00797 crossref_primary_10_1021_acs_chemrev_1c00905 crossref_primary_10_1002_ange_202002049 crossref_primary_10_1016_j_apmt_2023_102037 crossref_primary_10_1007_s42114_024_01105_z crossref_primary_10_1039_D0CS00844C crossref_primary_10_1021_acscatal_3c03954 crossref_primary_10_1002_admi_202001342 crossref_primary_10_1016_j_recm_2023_05_003 crossref_primary_10_1016_j_ces_2022_117937 crossref_primary_10_1016_j_jhazmat_2021_127427 crossref_primary_10_1038_s41929_022_00839_7 crossref_primary_10_1016_j_nxener_2023_100033 crossref_primary_10_1039_D0CY02479A crossref_primary_10_1021_acssuschemeng_0c05589 crossref_primary_10_1016_j_fuproc_2021_107092 crossref_primary_10_1021_acscatal_9b00491 crossref_primary_10_1016_j_trechm_2019_01_004 crossref_primary_10_1016_j_actamat_2021_117318 crossref_primary_10_1021_acs_accounts_8b00490 crossref_primary_10_1021_acs_iecr_9b05202 crossref_primary_10_1039_D1GC03809E crossref_primary_10_1002_anie_202002049 crossref_primary_10_1021_acs_jpcc_3c00571 crossref_primary_10_1021_acscatal_4c00365 crossref_primary_10_1002_cctc_202300545 crossref_primary_10_1007_s40843_023_2713_6 crossref_primary_10_1021_acscatal_3c00275 crossref_primary_10_1002_adma_202003300 crossref_primary_10_1021_acsanm_9b02596 crossref_primary_10_1016_j_ccr_2022_214469 crossref_primary_10_1039_D0CY00904K crossref_primary_10_1016_j_catcom_2023_106630 crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1038_s41467_021_21555_z crossref_primary_10_1016_j_cattod_2025_115207 crossref_primary_10_1039_D1TA08016D crossref_primary_10_1002_asia_202300671 crossref_primary_10_1016_j_cattod_2019_04_021 crossref_primary_10_1039_D4NA00433G crossref_primary_10_1021_acs_chemrev_1c00967 |
Cites_doi | 10.1002/cite.200700029 10.1016/j.susc.2008.12.028 10.1021/acscatal.5b00700 10.1016/j.jcat.2007.08.004 10.1023/A:1010155203247 10.1016/j.jcat.2013.07.012 10.1021/cs4004084 10.1016/S1872-2067(17)62869-9 10.1021/ja0121080 10.1016/j.apcatb.2016.07.010 10.1021/acs.jpcc.6b03473 10.1016/j.apcatb.2014.02.008 10.1039/c3cp51538a 10.1016/j.susc.2016.02.010 10.1021/acs.jpclett.5b02400 10.1016/j.apcata.2009.03.033 10.1021/jp800075y 10.1021/cs300479a 10.1002/cphc.200700325 10.1016/S0920-5861(01)00473-4 10.1007/s11671-009-9298-6 10.1023/A:1019028229377 10.1039/C4CP02141J 10.1021/ie010272q 10.1007/s10853-011-5437-4 10.1126/science.1077229 10.1038/nnano.2011.42 10.1038/376238a0 10.1016/j.jcat.2013.04.023 10.1016/j.apcatb.2016.12.045 10.1016/j.apcatb.2014.10.042 10.1016/j.jcat.2008.06.026 10.1002/chem.201304837 10.1016/j.vacuum.2012.07.005 10.1016/j.proeng.2012.07.425 10.1002/cctc.201700127 10.1016/j.apcatb.2013.04.039 10.1039/b924051a 10.1126/science.1215864 10.1021/jp906531x 10.1016/j.apcatb.2014.06.043 10.1021/cr2000114 10.1016/j.cej.2011.10.043 10.1016/j.apsusc.2012.05.095 10.1016/0304-5102(93)E0331-A 10.1103/PhysRevB.46.7157 10.1016/j.apcata.2011.02.007 10.1021/nn402055k 10.1021/jacs.6b03339 10.1088/0953-8984/23/17/175003 10.1126/science.1085721 10.1039/c0cp02009e 10.1021/ja900822r 10.1126/science.279.5358.1913 10.1016/j.apcata.2005.04.052 10.1126/science.1183591 10.1038/NMAT4824 10.1002/adem.201700389 10.1021/jp2014258 10.1039/C7CY00794A 10.1021/acscatal.6b03293 10.1021/acs.jpcc.5b01357 10.1016/j.jcat.2012.09.022 10.1016/j.apcata.2004.12.048 10.1016/j.apcatb.2004.07.015 10.1016/S0920-5861(01)00479-5 10.1016/S1381-1169(96)00348-2 10.1038/ncomms9550 10.1021/acscatal.6b01275 10.1016/j.apcata.2013.10.024 10.1016/j.apcatb.2009.12.012 10.1016/j.chempr.2017.09.014 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) |
CorporateAuthor_xml | – name: Energy Frontier Research Centers (EFRC) (United States). Integrated Mesoscale Architectures for Sustainable Catalysis (IMASC) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1007/s11244-017-0883-0 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1572-9028 |
EndPage | 486 |
ExternalDocumentID | 1470259 10_1007_s11244_017_0883_0 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDEX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ AAFGU AAPBV ABFGW ABKAS ABPTK ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ADMDM AEFTE AESTI AEVTX AGGBP AIMYW AJDOV AKQUC OTOTI SQXTU UNUBA |
ID | FETCH-LOGICAL-c489t-e5fdd3f20b8c2da7c108b1c0f1de39c6566ca155d9528bdc38ec1ca23cae1b243 |
IEDL.DBID | U2A |
ISSN | 1022-5528 |
IngestDate | Fri May 19 01:07:40 EDT 2023 Fri Jul 25 11:03:02 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 01:10:49 EDT 2025 Fri Feb 21 02:36:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5-6 |
Keywords | Gold Nickel Hydrogen Single atom alloys Ethanol dehydrogenation Acetaldehyde |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-e5fdd3f20b8c2da7c108b1c0f1de39c6566ca155d9528bdc38ec1ca23cae1b243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0012573 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
OpenAccessLink | https://www.osti.gov/biblio/1502035 |
PQID | 2030254806 |
PQPubID | 2043828 |
PageCount | 12 |
ParticipantIDs | osti_scitechconnect_1470259 proquest_journals_2030254806 crossref_primary_10_1007_s11244_017_0883_0 crossref_citationtrail_10_1007_s11244_017_0883_0 springer_journals_10_1007_s11244_017_0883_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Topics in catalysis |
PublicationTitleAbbrev | Top Catal |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V Springer |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer |
References | Madix, Friend, Liu (CR74) 2008; 258 Prieto, Nistor, Nouneh (CR65) 2012; 258 Wang, Darby, Therrien (CR49) 2016; 120 Masoud, Delannoy, Calers (CR28) 2017; 9 Juarez, Biener, Weissmüller, Hodge (CR25) 2017; 1700389 De Souza, Balzaretti, Marcílio, Perez-Lopez (CR53) 2012; 42 Walton, Wincott, Fairley, Carrick (CR58) 2010 Liu, Xu, Haubrich (CR72) 2009; 131 Delannoy, Thrimurthulu, Reddy (CR30) 2014; 16 Wang, Boucher, Yang (CR21) 2014; 154–155 Mattos, Jacobs, Davis, Noronha (CR54) 2012; 112 Sanchez-Sanchez, Navarro Yerga, Kondarides (CR2) 2010; 114 Boucher, Marcinkowski, Liriano (CR40) 2013; 7 Wang, Liang, Geng (CR61) 2009; 4 Sandoval, Louis, Zanella (CR31) 2013; 140–141 Skriver, Rosengaard (CR64) 1992; 46 Fu, Deng, Saltsburg, Flytzani-Stephanopoulos (CR16) 2005 Hammer, Norskov (CR9) 1995; 376 Claus (CR12) 2005 Lucci, Darby, Mattera (CR48) 2016; 7 Santacesaria, Carotenuto, Tesser, Di Serio (CR6) 2012; 179 Hutchings (CR14) 2002; 72 Sun, Xia (CR60) 2002; 298 Zhang, Diao, Williams, Monnier (CR36) 2014 Schimpf, Lucas, Mohr (CR11) 2002 Garbarino, Wang, Valsamakis (CR22) 2017; 200 Guan, Hensen (CR37) 2013; 305 Tedsree, Li, Jones (CR55) 2011; 6 Griffin, Rodriguez, Montemore (CR34) 2013; 307 Shan, Lucci, Liu (CR41) 2016; 650 Boucher, Zugic, Cladaras (CR45) 2013; 15 Poncelet, Centeno, Molina (CR69) 2005; 288 Aich, Wei, Basan (CR39) 2015 Liu, Lucci, Yang (CR46) 2016; 138 Jørgensen, Egholm Christiansen, Dahl Thomsen, Christensen (CR73) 2007; 251 El Kolli, Delannoy, Louis (CR33) 2013 CR44 Moya, Martins, Schmal (CR68) 2011; 396 Lim, Lee, Ahn (CR32) 2015; 165 Carter, Althahban, Nowicka (CR35) 2016 Mavrikakis, Stoltze, Nørskov (CR8) 2000; 64 Besenbacher, Chorkendorff, Clausen (CR26) 1998; 279 Shan, Janvelyan, Li (CR4) 2017; 205 Zugic, Wang, Heine (CR10) 2016 Deng, Frenkel, Si, Stephanopoulos (CR17) 2008; 112 Tyo, Yin, Di Vece (CR13) 2012; 2 Guan, Hensen (CR50) 2009; 361 D’Addato, Grillo, Altieri (CR66) 2011; 23 Kyriakou, Boucher, Jewell (CR38) 2012; 335 Tu, Chen, Li (CR5) 1994; 89 Yi, Si, Saltsburg, Flytzani-Stephanopoulos (CR18) 2010 Mihaylov, Knözinger, Hadjiivanov, Gates (CR67) 2007; 79 Fu, Saltsburg, Flytzani-Stephanopoulos (CR15) 2003; 301 Chai, Liu, Li (CR59) 2014; 38 Tynkova, Sidorenko, Voloshko (CR62) 2013; 87 Ruban, Hammer, Stoltze (CR52) 1997 Boucher, Goergen, Yi, Flytzani-Stephanopoulos (CR20) 2011; 13 Rodriguez, Hanson, Frenkel (CR57) 2002; 124 CR51 Tu, Chen (CR7) 2001; 40 Elmasry, Gaber, Khater (CR56) 1998; 52 Suzuki, Yamaguchi, Matsushita (CR27) 2013; 3 Yi, Si, Saltsburg, Flytzani-Stephanopoulos (CR19) 2010; 3 Tenney, He, Roberts (CR63) 2011 Mihaylov, Tsoncheva, Hadjiivanov (CR70) 2011; 46 Sun, Karim, Mei (CR1) 2015; 162 Lucci, Liu, Marcinkowski (CR42) 2015 Eckert, Fleischmann, Jira (CR3) 2012 Liu, Shan, Lucci (CR47) 2017 Trant, Jones, Gustafson (CR71) 2009; 603 Wittstock, Zielasek, Biener (CR24) 2010; 327 Xu, Siler, Madix, Friend (CR29) 2014; 20 Pei, Liu, Wang (CR43) 2015; 5 Haruta (CR23) 2007; 8 B Hammer (883_CR9) 1995; 376 G Garbarino (883_CR22) 2017; 200 YJ Tu (883_CR5) 1994; 89 B Zugic (883_CR10) 2016 M Haruta (883_CR23) 2007; 8 Y Zhang (883_CR36) 2014 MB Boucher (883_CR45) 2013; 15 P Aich (883_CR39) 2015 HL Skriver (883_CR64) 1992; 46 MB Boucher (883_CR40) 2013; 7 P Claus (883_CR12) 2005 B Xu (883_CR29) 2014; 20 P Prieto (883_CR65) 2012; 258 Z-T Wang (883_CR49) 2016; 120 X Liu (883_CR72) 2009; 131 Y-J Tu (883_CR7) 2001; 40 JH Carter (883_CR35) 2016 A Tynkova (883_CR62) 2013; 87 FR Lucci (883_CR42) 2015 M Mavrikakis (883_CR8) 2000; 64 J Liu (883_CR46) 2016; 138 N Yi (883_CR19) 2010; 3 L Delannoy (883_CR30) 2014; 16 MB Griffin (883_CR34) 2013; 307 A Ruban (883_CR52) 1997 MB Boucher (883_CR20) 2011; 13 K Suzuki (883_CR27) 2013; 3 EC Tyo (883_CR13) 2012; 2 JE Lim (883_CR32) 2015; 165 JA Rodriguez (883_CR57) 2002; 124 N Kolli El (883_CR33) 2013 883_CR44 N Masoud (883_CR28) 2017; 9 J Sun (883_CR1) 2015; 162 M Eckert (883_CR3) 2012 MC Sanchez-Sanchez (883_CR2) 2010; 114 GJ Hutchings (883_CR14) 2002; 72 G Souza De (883_CR53) 2012; 42 AG Trant (883_CR71) 2009; 603 SF Moya (883_CR68) 2011; 396 J Shan (883_CR41) 2016; 650 LV Mattos (883_CR54) 2012; 112 B Jørgensen (883_CR73) 2007; 251 SA Tenney (883_CR63) 2011 883_CR51 S D’Addato (883_CR66) 2011; 23 M Mihaylov (883_CR70) 2011; 46 RJ Madix (883_CR74) 2008; 258 FR Lucci (883_CR48) 2016; 7 MAA Elmasry (883_CR56) 1998; 52 Y Guan (883_CR37) 2013; 305 M Chai (883_CR59) 2014; 38 Q Fu (883_CR15) 2003; 301 A Sandoval (883_CR31) 2013; 140–141 YQ Wang (883_CR61) 2009; 4 Y Guan (883_CR50) 2009; 361 C Wang (883_CR21) 2014; 154–155 T Juarez (883_CR25) 2017; 1700389 J Walton (883_CR58) 2010 K Tedsree (883_CR55) 2011; 6 G Poncelet (883_CR69) 2005; 288 GX Pei (883_CR43) 2015; 5 A Wittstock (883_CR24) 2010; 327 F Besenbacher (883_CR26) 1998; 279 S Schimpf (883_CR11) 2002 J Shan (883_CR4) 2017; 205 E Santacesaria (883_CR6) 2012; 179 Y Sun (883_CR60) 2002; 298 M Mihaylov (883_CR67) 2007; 79 Q Fu (883_CR16) 2005 G Kyriakou (883_CR38) 2012; 335 W Deng (883_CR17) 2008; 112 N Yi (883_CR18) 2010 J Liu (883_CR47) 2017 |
References_xml | – year: 2005 ident: CR16 article-title: Activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction publication-title: Appl Catal B Environ – volume: 79 start-page: 795 year: 2007 end-page: 806 ident: CR67 article-title: Characterization of the oxidation states of supported gold species by IR spectroscopy of adsorbed CO publication-title: Chem Ing Tech doi: 10.1002/cite.200700029 – volume: 603 start-page: 571 year: 2009 end-page: 579 ident: CR71 article-title: Alloy formation in the Au{1 1 1}/Ni system—an investigation with scanning tunnelling microscopy and medium energy ion scattering publication-title: Surf Sci doi: 10.1016/j.susc.2008.12.028 – volume: 5 start-page: 3717 year: 2015 end-page: 3725 ident: CR43 article-title: Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene publication-title: ACS Catal doi: 10.1021/acscatal.5b00700 – volume: 251 start-page: 332 year: 2007 end-page: 337 ident: CR73 article-title: Aerobic oxidation of aqueous ethanol using heterogeneous gold catalysts: efficient routes to acetic acid and ethyl acetate publication-title: J Catal doi: 10.1016/j.jcat.2007.08.004 – ident: CR51 – volume: 52 start-page: 489 year: 1998 end-page: 495 ident: CR56 article-title: Thermal decomposition of Ni(II) and Fe(III) nitrates and their mixture publication-title: J Therm Anal Calorim doi: 10.1023/A:1010155203247 – volume: 307 start-page: 111 year: 2013 end-page: 120 ident: CR34 article-title: The selective oxidation of ethylene glycol and 1,2-propanediol on Au, Pd, and Au-Pd bimetallic catalysts publication-title: J Catal doi: 10.1016/j.jcat.2013.07.012 – volume: 3 start-page: 1845 year: 2013 end-page: 1849 ident: CR27 article-title: Aerobic oxidative esterification of aldehydes with alcohols by gold-nickel oxide nanoparticle catalysts with a core-shell structure publication-title: ACS Catal doi: 10.1021/cs4004084 – volume: 38 start-page: 1338 year: 2014 end-page: 1346 ident: CR59 article-title: SiO2-supported Au-Ni bimetallic catalyst for the selective hydrogenation of acetylene publication-title: Chin J Catal doi: 10.1016/S1872-2067(17)62869-9 – volume: 124 start-page: 346 year: 2002 end-page: 354 ident: CR57 article-title: Experimental and theoretical studies on the reaction of H with NiO: role of O vacancies and mechanism for oxide reduction publication-title: J Am Chem Soc doi: 10.1021/ja0121080 – volume: 200 start-page: 458 year: 2017 end-page: 468 ident: CR22 article-title: Acido-basicity of lanthana/alumina catalysts and their activity in ethanol conversion publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.07.010 – year: 1997 ident: CR52 article-title: Surface electronic structure and reactivity of transition and noble metals publication-title: J Mol Catal A Chem – volume: 120 start-page: 13574 year: 2016 end-page: 13580 ident: CR49 article-title: Preparation, structure, and surface chemistry of Ni–Au single atom alloys publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b03473 – year: 2013 ident: CR33 article-title: Bimetallic Au-Pd catalysts for selective hydrogenation of butadiene: Influence of the preparation method on catalytic properties publication-title: J Catal – volume: 154–155 start-page: 142 year: 2014 end-page: 152 ident: CR21 article-title: ZnO-modified zirconia as gold catalyst support for the low-temperature methanol steam reforming reaction publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2014.02.008 – volume: 15 start-page: 12187 year: 2013 end-page: 12196 ident: CR45 article-title: Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp51538a – volume: 650 start-page: 121 year: 2016 end-page: 129 ident: CR41 article-title: Water co-catalyzed selective dehydrogenation of methanol to formaldehyde and hydrogen publication-title: Surf Sci doi: 10.1016/j.susc.2016.02.010 – year: 2010 ident: CR58 publication-title: Peak Fitting with CasaXPS – volume: 7 start-page: 480 year: 2016 end-page: 485 ident: CR48 article-title: Controlling hydrogen activation, spillover, and desorption with Pd-Au single-atom alloys publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b02400 – volume: 361 start-page: 49 year: 2009 end-page: 56 ident: CR50 article-title: Ethanol dehydrogenation by gold catalysts: the effect of the gold particle size and the presence of oxygen publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2009.03.033 – volume: 112 start-page: 12834 year: 2008 end-page: 12840 ident: CR17 article-title: Reaction-relevant Au structures in the low temperature WGS reaction on Au–CeO2 publication-title: J Phys Chem C doi: 10.1021/jp800075y – volume: 2 start-page: 2409 year: 2012 end-page: 2423 ident: CR13 article-title: Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: the effect of particle size on activity and selectivity publication-title: ACS Catal doi: 10.1021/cs300479a – volume: 8 start-page: 1911 year: 2007 end-page: 1913 ident: CR23 article-title: New generation of gold catalysts: nanoporous foams and tubes—is unsupported gold catalytically active? publication-title: ChemPhysChem doi: 10.1002/cphc.200700325 – volume: 72 start-page: 11 year: 2002 end-page: 17 ident: CR14 article-title: Gold catalysis in chemical processing publication-title: Catal Today doi: 10.1016/S0920-5861(01)00473-4 – volume: 1700389 start-page: 1 year: 2017 end-page: 23 ident: CR25 article-title: Nanoporous metals with structural hierarchy: a review publication-title: Adv Eng Mater – volume: 4 start-page: 684 year: 2009 end-page: 688 ident: CR61 article-title: Coalescence behavior of gold nanoparticles publication-title: Nanoscale Res Lett doi: 10.1007/s11671-009-9298-6 – volume: 64 start-page: 101 year: 2000 end-page: 106 ident: CR8 article-title: Making gold less noble publication-title: Catal Lett doi: 10.1023/A:1019028229377 – start-page: 191 year: 2012 end-page: 207 ident: CR3 article-title: Acetaldehyde publication-title: Ullmann’s Encycl. Ind. Chem – volume: 16 start-page: 26514 year: 2014 end-page: 26527 ident: CR30 article-title: Selective hydrogenation of butadiene over TiO2 supported copper, gold and gold-copper catalysts prepared by deposition-precipitation publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP02141J – volume: 40 start-page: 5889 year: 2001 end-page: 5893 ident: CR7 article-title: Effects of alkali metal oxide additives on Cu/SiO catalyst in the dehydrogenation of ethanol publication-title: Ind Eng Chem Res doi: 10.1021/ie010272q – volume: 46 start-page: 7144 year: 2011 end-page: 7151 ident: CR70 article-title: Structure sensitivity of methanol decomposition on Ni/SiO2 catalysts publication-title: J Mater Sci doi: 10.1007/s10853-011-5437-4 – volume: 298 start-page: 2176 year: 2002 end-page: 2179 ident: CR60 article-title: Shape-controlled synthesis of gold and silver nanoparticles publication-title: Science doi: 10.1126/science.1077229 – volume: 6 start-page: 302 year: 2011 end-page: 307 ident: CR55 article-title: Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst publication-title: Nat Nanotechnol doi: 10.1038/nnano.2011.42 – volume: 376 start-page: 238 year: 1995 end-page: 240 ident: CR9 article-title: Why gold is the noblest of all metals publication-title: Nature doi: 10.1038/376238a0 – volume: 305 start-page: 135 year: 2013 end-page: 145 ident: CR37 article-title: Selective oxidation of ethanol to acetaldehyde by Au-Ir catalysts publication-title: J Catal doi: 10.1016/j.jcat.2013.04.023 – year: 2011 ident: CR63 article-title: CO-induced diffusion of Ni atoms to the surface of Ni-Au clusters on TiO2(110) publication-title: J Phys Chem C – volume: 205 start-page: 541 year: 2017 end-page: 550 ident: CR4 article-title: Selective non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen on highly dilute NiCu alloys publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.12.045 – volume: 165 start-page: 495 year: 2015 end-page: 502 ident: CR32 article-title: Oxygen reduction reaction on electrodeposited PtAu alloy catalysts in the presence of phosphoric acid publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2014.10.042 – volume: 258 start-page: 410 year: 2008 end-page: 413 ident: CR74 article-title: Anticipating catalytic oxidation reactions on gold at high pressure (including liquid phase) from ultrahigh vacuum studies publication-title: J Catal doi: 10.1016/j.jcat.2008.06.026 – year: 2016 ident: CR10 article-title: Dynamic restructuring drives catalytic activity on nanoporous gold–silver alloy catalysts publication-title: Nat Mater – year: 2017 ident: CR47 article-title: Palladium-gold single atom alloy catalysts for liquid phase selective hydrogenation of 1-hexyne publication-title: Catal Sci Technol – volume: 20 start-page: 4646 year: 2014 end-page: 4652 ident: CR29 article-title: Ag/Au mixed sites promote oxidative coupling of methanol on the alloy surface publication-title: Chem Eur J doi: 10.1002/chem.201304837 – volume: 87 start-page: 69 year: 2013 end-page: 74 ident: CR62 article-title: Interdiffusion in Au(120 nm)/Ni(70 nm) thin films at the low-temperature annealing in the different atmospheres publication-title: Vacuum doi: 10.1016/j.vacuum.2012.07.005 – volume: 42 start-page: 335 year: 2012 end-page: 345 ident: CR53 article-title: Decomposition of ethanol over Ni-Al catalysts: effect of copper addition publication-title: Procedia Eng doi: 10.1016/j.proeng.2012.07.425 – year: 2010 ident: CR18 article-title: Steam reforming of methanol over ceria and gold-ceria nanoshapes publication-title: Appl Catal B Environ – volume: 9 start-page: 2418 year: 2017 end-page: 2425 ident: CR28 article-title: Silica-supported Au–Ag catalysts for the selective hydrogenation of butadiene publication-title: ChemCatChem doi: 10.1002/cctc.201700127 – volume: 140–141 start-page: 363 year: 2013 end-page: 377 ident: CR31 article-title: Improved activity and stability in CO oxidation of bimetallic Au-Cu/TiO2 catalysts prepared by deposition-precipitation with urea publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2013.04.039 – volume: 3 start-page: 831 year: 2010 ident: CR19 article-title: Active gold species on cerium oxide nanoshapes for methanol steam reforming and the water gas shift reactions publication-title: Energy Environ Sci doi: 10.1039/b924051a – volume: 335 start-page: 1209 year: 2012 end-page: 1212 ident: CR38 article-title: Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations publication-title: Science doi: 10.1126/science.1215864 – year: 2005 ident: CR12 article-title: Heterogeneously catalysed hydrogenation using gold catalysts publication-title: Appl Catal A Gen – year: 2014 ident: CR36 article-title: Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition publication-title: Appl Catal A Gen – year: 2002 ident: CR11 article-title: Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions publication-title: Catal Today – volume: 114 start-page: 3873 year: 2010 end-page: 3882 ident: CR2 article-title: Mechanistic aspects of the ethanol steam reforming reaction for hydrogen production on Pt, Ni, and PtNi catalysts supported on gamma-Al2O3 publication-title: J Phys Chem A doi: 10.1021/jp906531x – year: 2015 ident: CR39 article-title: Single-atom alloy Pd-Ag catalyst for selective hydrogenation of acrolein publication-title: J Phys Chem C – volume: 162 start-page: 141 year: 2015 end-page: 148 ident: CR1 article-title: New insights into reaction mechanisms of ethanol steam reforming on Co-ZrO2 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2014.06.043 – ident: CR44 – volume: 112 start-page: 4094 year: 2012 end-page: 4123 ident: CR54 article-title: Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation publication-title: Chem Rev doi: 10.1021/cr2000114 – year: 2015 ident: CR42 article-title: Selective hydrogenation of 1,3-butadiene on platinum–copper alloys at the single-atom limit publication-title: Nat Commun doi – volume: 179 start-page: 209 year: 2012 end-page: 220 ident: CR6 article-title: Ethanol dehydrogenation to ethyl acetate by using copper and copper chromite catalysts publication-title: Chem Eng J doi: 10.1016/j.cej.2011.10.043 – volume: 258 start-page: 8807 year: 2012 end-page: 8813 ident: CR65 article-title: XPS study of silver, nickel and bimetallic silver-nickel nanoparticles prepared by seed-mediated growth publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2012.05.095 – volume: 89 start-page: 179 year: 1994 end-page: 189 ident: CR5 article-title: Characterization of unsupported copper-chromium catalysts for ethanol dehydrogenation publication-title: J Mol Catal doi: 10.1016/0304-5102(93)E0331-A – volume: 46 start-page: 7157 year: 1992 end-page: 7168 ident: CR64 article-title: Surface energy and work function of elemental metals publication-title: Phys Rev B doi: 10.1103/PhysRevB.46.7157 – volume: 396 start-page: 159 year: 2011 end-page: 169 ident: CR68 article-title: Monodispersed and nanostructrured Ni/SiO2 catalyst and its activity for non oxidative methane activation publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2011.02.007 – volume: 7 start-page: 6181 year: 2013 end-page: 6187 ident: CR40 article-title: Molecular-scale perspective of water-catalyzed methanol dehydrogenation to formaldehyde publication-title: ACS Nano doi: 10.1021/nn402055k – volume: 138 start-page: 6396 year: 2016 end-page: 6399 ident: CR46 article-title: Tackling CO poisoning with single-atom alloy catalysts publication-title: J Am Chem Soc doi: 10.1021/jacs.6b03339 – volume: 23 start-page: 175003 year: 2011 ident: CR66 article-title: Structure and stability of nickel/nickel oxide core–shell nanoparticles publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/23/17/175003 – volume: 301 start-page: 935 year: 2003 end-page: 938 ident: CR15 article-title: Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts publication-title: Science doi: 10.1126/science.1085721 – volume: 13 start-page: 2517 year: 2011 end-page: 2527 ident: CR20 article-title: “Shape effects” in metal oxide supported nanoscale gold catalysts publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp02009e – year: 2016 ident: CR35 article-title: Synergy and anti-synergy between palladium and gold in nanoparticles dispersed on a reducible support publication-title: ACS Catal – volume: 131 start-page: 5757 year: 2009 end-page: 5759 ident: CR72 article-title: Surface-mediated self-coupling of ethanol on gold publication-title: J Am Chem Soc doi: 10.1021/ja900822r – volume: 279 start-page: 1913 year: 1998 end-page: 1915 ident: CR26 article-title: Design of a surface alloy catalyst for steam reforming publication-title: Science doi: 10.1126/science.279.5358.1913 – volume: 288 start-page: 232 year: 2005 end-page: 242 ident: CR69 article-title: Characterization of reduced α-alumina-supported nickel catalysts by spectroscopic and chemisorption measurements publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2005.04.052 – volume: 327 start-page: 319 year: 2010 end-page: 322 ident: CR24 article-title: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature publication-title: Science doi: 10.1126/science.1183591 – volume: 16 start-page: 26514 year: 2014 ident: 883_CR30 publication-title: Phys Chem Chem Phys doi: 10.1039/C4CP02141J – volume: 335 start-page: 1209 year: 2012 ident: 883_CR38 publication-title: Science doi: 10.1126/science.1215864 – volume: 288 start-page: 232 year: 2005 ident: 883_CR69 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2005.04.052 – year: 2016 ident: 883_CR10 publication-title: Nat Mater doi: 10.1038/NMAT4824 – volume: 154–155 start-page: 142 year: 2014 ident: 883_CR21 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2014.02.008 – volume: 5 start-page: 3717 year: 2015 ident: 883_CR43 publication-title: ACS Catal doi: 10.1021/acscatal.5b00700 – volume: 251 start-page: 332 year: 2007 ident: 883_CR73 publication-title: J Catal doi: 10.1016/j.jcat.2007.08.004 – volume: 1700389 start-page: 1 year: 2017 ident: 883_CR25 publication-title: Adv Eng Mater doi: 10.1002/adem.201700389 – volume: 376 start-page: 238 year: 1995 ident: 883_CR9 publication-title: Nature doi: 10.1038/376238a0 – year: 2011 ident: 883_CR63 publication-title: J Phys Chem C doi: 10.1021/jp2014258 – volume: 72 start-page: 11 year: 2002 ident: 883_CR14 publication-title: Catal Today doi: 10.1016/S0920-5861(01)00473-4 – year: 2017 ident: 883_CR47 publication-title: Catal Sci Technol doi: 10.1039/C7CY00794A – volume-title: Peak Fitting with CasaXPS year: 2010 ident: 883_CR58 – volume: 279 start-page: 1913 year: 1998 ident: 883_CR26 publication-title: Science doi: 10.1126/science.279.5358.1913 – ident: 883_CR44 doi: 10.1021/acscatal.6b03293 – volume: 46 start-page: 7157 year: 1992 ident: 883_CR64 publication-title: Phys Rev B doi: 10.1103/PhysRevB.46.7157 – volume: 179 start-page: 209 year: 2012 ident: 883_CR6 publication-title: Chem Eng J doi: 10.1016/j.cej.2011.10.043 – volume: 124 start-page: 346 year: 2002 ident: 883_CR57 publication-title: J Am Chem Soc doi: 10.1021/ja0121080 – volume: 20 start-page: 4646 year: 2014 ident: 883_CR29 publication-title: Chem Eur J doi: 10.1002/chem.201304837 – volume: 23 start-page: 175003 year: 2011 ident: 883_CR66 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/23/17/175003 – volume: 3 start-page: 831 year: 2010 ident: 883_CR19 publication-title: Energy Environ Sci doi: 10.1039/b924051a – volume: 64 start-page: 101 year: 2000 ident: 883_CR8 publication-title: Catal Lett doi: 10.1023/A:1019028229377 – year: 2015 ident: 883_CR39 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.5b01357 – volume: 165 start-page: 495 year: 2015 ident: 883_CR32 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2014.10.042 – year: 2013 ident: 883_CR33 publication-title: J Catal doi: 10.1016/j.jcat.2012.09.022 – volume: 603 start-page: 571 year: 2009 ident: 883_CR71 publication-title: Surf Sci doi: 10.1016/j.susc.2008.12.028 – volume: 2 start-page: 2409 year: 2012 ident: 883_CR13 publication-title: ACS Catal doi: 10.1021/cs300479a – volume: 6 start-page: 302 year: 2011 ident: 883_CR55 publication-title: Nat Nanotechnol doi: 10.1038/nnano.2011.42 – year: 2005 ident: 883_CR12 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2004.12.048 – volume: 13 start-page: 2517 year: 2011 ident: 883_CR20 publication-title: Phys Chem Chem Phys doi: 10.1039/c0cp02009e – volume: 4 start-page: 684 year: 2009 ident: 883_CR61 publication-title: Nanoscale Res Lett doi: 10.1007/s11671-009-9298-6 – volume: 205 start-page: 541 year: 2017 ident: 883_CR4 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.12.045 – volume: 7 start-page: 6181 year: 2013 ident: 883_CR40 publication-title: ACS Nano doi: 10.1021/nn402055k – year: 2005 ident: 883_CR16 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2004.07.015 – volume: 258 start-page: 8807 year: 2012 ident: 883_CR65 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2012.05.095 – volume: 298 start-page: 2176 year: 2002 ident: 883_CR60 publication-title: Science doi: 10.1126/science.1077229 – volume: 112 start-page: 4094 year: 2012 ident: 883_CR54 publication-title: Chem Rev doi: 10.1021/cr2000114 – volume: 131 start-page: 5757 year: 2009 ident: 883_CR72 publication-title: J Am Chem Soc doi: 10.1021/ja900822r – volume: 87 start-page: 69 year: 2013 ident: 883_CR62 publication-title: Vacuum doi: 10.1016/j.vacuum.2012.07.005 – year: 2002 ident: 883_CR11 publication-title: Catal Today doi: 10.1016/S0920-5861(01)00479-5 – volume: 162 start-page: 141 year: 2015 ident: 883_CR1 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2014.06.043 – volume: 301 start-page: 935 year: 2003 ident: 883_CR15 publication-title: Science doi: 10.1126/science.1085721 – volume: 114 start-page: 3873 year: 2010 ident: 883_CR2 publication-title: J Phys Chem A doi: 10.1021/jp906531x – year: 1997 ident: 883_CR52 publication-title: J Mol Catal A Chem doi: 10.1016/S1381-1169(96)00348-2 – volume: 8 start-page: 1911 year: 2007 ident: 883_CR23 publication-title: ChemPhysChem doi: 10.1002/cphc.200700325 – volume: 89 start-page: 179 year: 1994 ident: 883_CR5 publication-title: J Mol Catal doi: 10.1016/0304-5102(93)E0331-A – volume: 396 start-page: 159 year: 2011 ident: 883_CR68 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2011.02.007 – volume: 112 start-page: 12834 year: 2008 ident: 883_CR17 publication-title: J Phys Chem C doi: 10.1021/jp800075y – year: 2015 ident: 883_CR42 publication-title: Nat Commun doi doi: 10.1038/ncomms9550 – volume: 140–141 start-page: 363 year: 2013 ident: 883_CR31 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2013.04.039 – volume: 361 start-page: 49 year: 2009 ident: 883_CR50 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2009.03.033 – volume: 9 start-page: 2418 year: 2017 ident: 883_CR28 publication-title: ChemCatChem doi: 10.1002/cctc.201700127 – volume: 138 start-page: 6396 year: 2016 ident: 883_CR46 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b03339 – year: 2016 ident: 883_CR35 publication-title: ACS Catal doi: 10.1021/acscatal.6b01275 – year: 2014 ident: 883_CR36 publication-title: Appl Catal A Gen doi: 10.1016/j.apcata.2013.10.024 – volume: 42 start-page: 335 year: 2012 ident: 883_CR53 publication-title: Procedia Eng doi: 10.1016/j.proeng.2012.07.425 – volume: 305 start-page: 135 year: 2013 ident: 883_CR37 publication-title: J Catal doi: 10.1016/j.jcat.2013.04.023 – volume: 7 start-page: 480 year: 2016 ident: 883_CR48 publication-title: J Phys Chem Lett doi: 10.1021/acs.jpclett.5b02400 – volume: 38 start-page: 1338 year: 2014 ident: 883_CR59 publication-title: Chin J Catal doi: 10.1016/S1872-2067(17)62869-9 – volume: 327 start-page: 319 year: 2010 ident: 883_CR24 publication-title: Science doi: 10.1126/science.1183591 – volume: 650 start-page: 121 year: 2016 ident: 883_CR41 publication-title: Surf Sci doi: 10.1016/j.susc.2016.02.010 – year: 2010 ident: 883_CR18 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2009.12.012 – volume: 3 start-page: 1845 year: 2013 ident: 883_CR27 publication-title: ACS Catal doi: 10.1021/cs4004084 – volume: 15 start-page: 12187 year: 2013 ident: 883_CR45 publication-title: Phys Chem Chem Phys doi: 10.1039/c3cp51538a – volume: 79 start-page: 795 year: 2007 ident: 883_CR67 publication-title: Chem Ing Tech doi: 10.1002/cite.200700029 – volume: 46 start-page: 7144 year: 2011 ident: 883_CR70 publication-title: J Mater Sci doi: 10.1007/s10853-011-5437-4 – volume: 307 start-page: 111 year: 2013 ident: 883_CR34 publication-title: J Catal doi: 10.1016/j.jcat.2013.07.012 – start-page: 191 volume-title: Ullmann’s Encycl. Ind. Chem year: 2012 ident: 883_CR3 – volume: 52 start-page: 489 year: 1998 ident: 883_CR56 publication-title: J Therm Anal Calorim doi: 10.1023/A:1010155203247 – volume: 200 start-page: 458 year: 2017 ident: 883_CR22 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2016.07.010 – volume: 120 start-page: 13574 year: 2016 ident: 883_CR49 publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.6b03473 – volume: 258 start-page: 410 year: 2008 ident: 883_CR74 publication-title: J Catal doi: 10.1016/j.jcat.2008.06.026 – volume: 40 start-page: 5889 year: 2001 ident: 883_CR7 publication-title: Ind Eng Chem Res doi: 10.1021/ie010272q – ident: 883_CR51 doi: 10.1016/j.chempr.2017.09.014 |
SSID | ssj0021799 |
Score | 2.4912078 |
Snippet | Gold is examined here as an alternative to copper for the selective dehydrogenation of ethanol to acetaldehyde and hydrogen. Despite its high selectivity, gold... |
SourceID | osti proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 475 |
SubjectTerms | Acetaldehyde Catalysis catalysis (heterogeneous), mesostructured materials, materials and chemistry by design, synthesis (novel materials) Catalytic activity Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Clusters Dehydrogenation Dispersion Dynamic stability Ethanol Gold Hydrogen storage Industrial Chemistry/Chemical Engineering Original Paper Pharmacy Physical Chemistry Selectivity Stability tests |
Title | NiAu Single Atom Alloys for the Non-oxidative Dehydrogenation of Ethanol to Acetaldehyde and Hydrogen |
URI | https://link.springer.com/article/10.1007/s11244-017-0883-0 https://www.proquest.com/docview/2030254806 https://www.osti.gov/biblio/1470259 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1RT9wwDIAjdDxsL2hjTDtgKA97AkVq05S2jwXudmLiXuAkeKpSx9WQSoO4Io1_j91rOTFtSDz1oW4r2XH8uU4cIX4gMb6zxhK52UwZ8iBl48SqEm1kgXgWAt47fDE_ni3M-XV83e_jXg6r3YeSZDdTrze7cShSPKuSZ0SK8vTNmFJ3HtYLnb9kWdzirCtxcpYV63QoZf7rFa-C0ciTU70Czb9qo13ImX4SWz0rynxl3M9iA5tt8eF0OKLti8D5bf4oL-nhGmXe-juZ17V_WkoiUUlkJ-e-Uf7Preu6e8sz_P3kHjwNmc4c0ldywn_OfS1bL3NAAnHHMiht4-SsF94Ri-nk6nSm-nMTFJg0axXGlXNRpYMyBe1sAmGQliEEVegwyoAJDixxhMtIPaWDKEUIweoILIalNtFXMWp8g9-ERMSEwijoEoyhVCytqgSrJE6iEsBoMxbBoMAC-qbifLZFXazbIbPOC9J5wTovgrE4fHnkftVR4y3hPbZKQTjAPW2BF_9AS_lKQqyWjcX-YKyid71loWna0tzF7ngsjgYDrm__91O775LeEx8JndLV0sd9MWofHvE74UlbHojNfHpyMufrz5tfk4NueD4DHirfoQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQ9lAulKfYPsAHTiBXieM0yTFqtyy03QtbqZwsezwRFWlcdbMS5dczziZdtQKknjNxkhmP55vM-DNjH5AwvjPKEHIzhVDkQcKkmREWTWKA8CxEYe_w2exgeq6-XqQX_T7uxdDtPpQku5V6vdkthCIRVlXyjERQnr6hKAVPR2yj_Pz9ZHKXZwWSs67IGfKsVOZDMfNvg9wLRyNPbnUPaj6ojnZB53iLzYfXXfWa_NxftnYffj9gcnzk9zxnz3oQysvVrHnBnmDzkm0eDme_vWI4uyyX_BsNVyMvW3_Fy7r2twtOEJcTZOQz3wj_69J1tOH8CH_cuhtPc7GzM_cVn4Rf8r7mreclICF8F2SQm8bxaS_8mp0fT-aHU9EfyCBA5UUrMK2cSyoZ2RykMxnEUW5jiKrYYVJAgIZgCKC4grRuHSQ5QgxGJmAwtlIlb9io8Q2-ZRwRM4rPIC0oRTleXlUZVlmaJRZASTVm0WAXDT1beTg0o9ZrnuWgP03600F_Ohqzj3e3XK-oOv4nvBOMrQlnBLJcCF1F0FIilBEILMZsd5gDuvfphZa0HspAj3cwZp8Gk64v__NR24-Sfs82p_OzU336ZXayw54SPstX_ZW7bNTeLHGPMFBr3_Vz_g9UXPxC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9RAEF7kBPVFbFU8W-s--KQsTTabJnkMbY-rbQ9BD_q2bGYnWEizpZeC_ffO5JIeFS34nNkEZnZ2vsnMfiPEJySM751xhNxcoQx5kHJp5lSFLnFAeBYivjt8vjiYL83Xi_RimHO6Grvdx5Lk-k4DszS13f61r_c3F984LCk-YclLEkU5-1M6jWPu6Vrq8j7jYrqzvtzJGVeq87Gs-bdXPAhMk0AO9gB0_lEn7cPP7JV4OeBGWa4NvSWeYLstnh-O49peC1xclrfyOy1uUJZduJJl04S7lSRUKgnlyUVoVfh16Xumb3mEP-_8TaDt05tGhloe81_00MguyBKQQLlnGZSu9XI-CL8Ry9nxj8O5GmYoKDB50SlMa--TWkdVDtq7DOIor2KI6thjUgCjOXCEKXxB6qk8JDlCDE4n4DCutEneikkbWnwnJCJmFFJBV2AMpWV5XWdYZ2mWVABGm6mIRgVaGAjGec5FYzfUyKxzSzq3rHMbTcXn-yXXa3aNx4R32CqWoAHz2wI3AkFHuUtGuK2Yit3RWHZww5XVdIRpZrQ7mIovowE3j__5qff_Jf1RPPt2NLNnJ4vTHfGCEFW-7ojcFZPu5hY_EGrpqr1-Z_4GxZ7jwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NiAu+Single+Atom+Alloys+for+the+Non-oxidative+Dehydrogenation+of+Ethanol+to+Acetaldehyde+and+Hydrogen&rft.jtitle=Topics+in+catalysis&rft.au=Giannakakis%2C+Georgios&rft.au=Trimpalis%2C+Antonios&rft.au=Shan%2C+Junjun&rft.au=Qi%2C+Zhen&rft.date=2018-05-01&rft.pub=Springer+US&rft.issn=1022-5528&rft.eissn=1572-9028&rft.volume=61&rft.issue=5-6&rft.spage=475&rft.epage=486&rft_id=info:doi/10.1007%2Fs11244-017-0883-0&rft.externalDocID=10_1007_s11244_017_0883_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-5528&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-5528&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-5528&client=summon |