Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case
We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate: - Δ u + λ 1 u = μ 1 u 2 ∗ - 1 + β u 2 ∗ 2 - 1 v 2 ∗ 2 , x ∈ Ω , - Δ v + λ 2 v = μ 2 v 2 ∗ - 1 + β v 2 ∗ 2 - 1 u 2 ∗ 2 , x ∈ Ω , u ≥ 0 , v ≥ 0 in Ω , u = v = 0 on ∂ Ω . Here Ω ⊂ R N is a smooth bounded d...
Saved in:
Published in | Calculus of variations and partial differential equations Vol. 52; no. 1-2; pp. 423 - 467 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2015
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0944-2669 1432-0835 |
DOI | 10.1007/s00526-014-0717-x |
Cover
Loading…
Abstract | We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate:
-
Δ
u
+
λ
1
u
=
μ
1
u
2
∗
-
1
+
β
u
2
∗
2
-
1
v
2
∗
2
,
x
∈
Ω
,
-
Δ
v
+
λ
2
v
=
μ
2
v
2
∗
-
1
+
β
v
2
∗
2
-
1
u
2
∗
2
,
x
∈
Ω
,
u
≥
0
,
v
≥
0
in
Ω
,
u
=
v
=
0
on
∂
Ω
.
Here
Ω
⊂
R
N
is a smooth bounded domain,
2
∗
:
=
2
N
N
-
2
is the Sobolev critical exponent,
-
λ
1
(
Ω
)
<
λ
1
,
λ
2
<
0
,
μ
1
,
μ
2
>
0
and
β
≠
0
, where
λ
1
(
Ω
)
is the first eigenvalue of
-
Δ
with the Dirichlet boundary condition. When
β
=
0
, this is just the well-known Brezis–Nirenberg problem. The special case
N
=
4
was studied by the authors in (Arch Ration Mech Anal 205:515–551,
2012
). In this paper we consider
the higher dimensional case
N
≥
5
. It is interesting that we can prove the existence of a positive least energy solution
(
u
β
,
v
β
)
for any
β
≠
0
(which can not hold in the special case
N
=
4
). We also study the limit behavior of
(
u
β
,
v
β
)
as
β
→
-
∞
and phase separation is expected. In particular,
u
β
-
v
β
will converge to
sign-changing solutions
of the Brezis–Nirenberg problem, provided
N
≥
6
. In case
λ
1
=
λ
2
, the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case
N
=
4
. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We study the following nonlinear Schrodinger system which is related to Bose-Einstein condensate: ... ...Here ... is a smooth bounded domain, ... is the Sobolev critical exponent, ..., ... and ..., where ... is the first eigenvalue of ... with the Dirichlet boundary condition. When ..., this is just the well-known Brezis-Nirenberg problem. The special case ... was studied by the authors in (Arch Ration Mech Anal 205:515-551, 2012). In this paper we consider the higher dimensional case ... It is interesting that we can prove the existence of a positive least energy solution ... for any ... (which can not hold in the special case ...). We also study the limit behavior of ... as ... and phase separation is expected. In particular, ... will converge to sign-changing solutions of the Brezis-Nirenberg problem, provided ... In case ..., the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case ... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We study the following nonlinear Schrödinger system which is related to Bose-Einstein condensate: ...Here ... is a smooth bounded domain, ... is the Sobolev critical exponent, ..., ... and ..., where ... is the first eigenvalue of ... with the Dirichlet boundary condition. When ..., this is just the well-known Brezis-Nirenberg problem. The special case ... was studied by the authors in (Arch Ration Mech Anal 205:515-551, 2012 ). In this paper we consider the higher dimensional case ... It is interesting that we can prove the existence of a positive least energy solution ... for any ... (which can not hold in the special case ...). We also study the limit behavior of ... as ... and phase separation is expected. In particular, ... will converge to sign-changing solutions of the Brezis-Nirenberg problem, provided ... In case ..., the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case ... We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate: - Δ u + λ 1 u = μ 1 u 2 ∗ - 1 + β u 2 ∗ 2 - 1 v 2 ∗ 2 , x ∈ Ω , - Δ v + λ 2 v = μ 2 v 2 ∗ - 1 + β v 2 ∗ 2 - 1 u 2 ∗ 2 , x ∈ Ω , u ≥ 0 , v ≥ 0 in Ω , u = v = 0 on ∂ Ω . Here Ω ⊂ R N is a smooth bounded domain, 2 ∗ : = 2 N N - 2 is the Sobolev critical exponent, - λ 1 ( Ω ) < λ 1 , λ 2 < 0 , μ 1 , μ 2 > 0 and β ≠ 0 , where λ 1 ( Ω ) is the first eigenvalue of - Δ with the Dirichlet boundary condition. When β = 0 , this is just the well-known Brezis–Nirenberg problem. The special case N = 4 was studied by the authors in (Arch Ration Mech Anal 205:515–551, 2012 ). In this paper we consider the higher dimensional case N ≥ 5 . It is interesting that we can prove the existence of a positive least energy solution ( u β , v β ) for any β ≠ 0 (which can not hold in the special case N = 4 ). We also study the limit behavior of ( u β , v β ) as β → - ∞ and phase separation is expected. In particular, u β - v β will converge to sign-changing solutions of the Brezis–Nirenberg problem, provided N ≥ 6 . In case λ 1 = λ 2 , the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case N = 4 . |
Author | Zou, Wenming Chen, Zhijie |
Author_xml | – sequence: 1 givenname: Zhijie surname: Chen fullname: Chen, Zhijie organization: Department of Mathematical Sciences, Tsinghua University, Center for Advanced Study in Theoretical Sciences, National Taiwan University – sequence: 2 givenname: Wenming surname: Zou fullname: Zou, Wenming email: wzou@math.tsinghua.edu.cn organization: Department of Mathematical Sciences, Tsinghua University |
BookMark | eNp9kc-K1TAUh4OM4J3RB3AXcOOmetIkTeNOBv_BgIK6Drnp6W2G3qaTpM6dJ_CNfAFfzNS6kAFdBU6-78fh_M7J2RQmJOQpgxcMQL1MALJuKmCiAsVUdXpAdkzwuoKWyzOyAy1EVTeNfkTOU7oGYLKtxY58_xSSz_4b0hFtyhQnjIc7msK4ZB-mRO3U0XmwCWnC2Ua7TmkfInVhmUfs6Gc3xJ8_Oj8dMFK8Wezm3fo8UBdLtrMjxdNc9p3yKzr4w1DAzh9xSoUsn66kPyYPezsmfPLnvSBf3775cvm-uvr47sPl66vKiVbnCkXd8lbtcc-EhRZarZXg6EQHDND2IPa8d7yXVtdMYiclWsU7XWtQvZCMX5DnW-4cw82CKZujTw7H0U4YlmRY0wA0QrSqoM_uoddhiWXhlRJC6gYUL5TaKBdDShF743z-fYMcrR8NA7MWZLaCTCnIrAWZUzHZPXOO_mjj3X-denNSYdeL_7XTP6Vf_NGorg |
CitedBy_id | crossref_primary_10_1002_mana_201500348 crossref_primary_10_1007_s00526_019_1694_x crossref_primary_10_1016_j_jmaa_2022_126360 crossref_primary_10_1016_j_jmaa_2024_128424 crossref_primary_10_1112_jlms_12170 crossref_primary_10_1216_rmj_2020_50_1661 crossref_primary_10_1007_s00526_017_1252_3 crossref_primary_10_1007_s11784_024_01099_7 crossref_primary_10_1186_s13660_016_1179_9 crossref_primary_10_1016_j_jde_2023_08_021 crossref_primary_10_1016_j_nonrwa_2019_01_015 crossref_primary_10_3934_era_2021088 crossref_primary_10_1007_s12220_024_01655_0 crossref_primary_10_1007_s11854_023_0315_y crossref_primary_10_1016_j_matpur_2019_09_004 crossref_primary_10_1016_j_jde_2023_12_001 crossref_primary_10_1186_s13661_017_0758_0 crossref_primary_10_1515_ans_2023_0162 crossref_primary_10_1007_s00526_020_01803_8 crossref_primary_10_1002_mma_3598 crossref_primary_10_3934_dcdsb_2021115 crossref_primary_10_1112_jlms_70040 crossref_primary_10_1186_s13661_017_0834_5 crossref_primary_10_1007_s11784_021_00923_8 crossref_primary_10_1063_1_5081794 crossref_primary_10_1002_mma_6785 crossref_primary_10_1002_mma_6862 crossref_primary_10_1016_j_na_2019_111643 crossref_primary_10_1515_ans_2017_6019 crossref_primary_10_1016_j_jde_2021_03_051 crossref_primary_10_1016_j_jmaa_2023_127835 crossref_primary_10_1093_imrn_rnv016 crossref_primary_10_1515_ans_2019_2049 crossref_primary_10_1007_s00208_015_1177_0 crossref_primary_10_1360_SSM_2024_0127 crossref_primary_10_1007_s11784_021_00891_z crossref_primary_10_1112_plms_12073 crossref_primary_10_3934_dcds_2016_36_3357 crossref_primary_10_1186_s13661_022_01603_3 crossref_primary_10_1016_j_jmaa_2018_10_069 crossref_primary_10_1007_s11854_018_0071_6 crossref_primary_10_1088_1361_6544_ac24e5 crossref_primary_10_1007_s10473_020_0513_y crossref_primary_10_1007_s13324_024_00878_2 crossref_primary_10_1002_mma_4034 crossref_primary_10_1016_j_jde_2023_04_039 crossref_primary_10_3934_cpaa_2025021 crossref_primary_10_1007_s00030_021_00701_y crossref_primary_10_1007_s00209_024_03660_z crossref_primary_10_1007_s00033_020_1270_4 crossref_primary_10_1007_s12220_021_00645_w crossref_primary_10_1016_j_jde_2017_02_053 crossref_primary_10_1142_S1664360724500024 crossref_primary_10_1016_j_jfa_2022_109497 crossref_primary_10_1016_j_aml_2021_107900 crossref_primary_10_1080_00036811_2016_1157588 crossref_primary_10_1515_anona_2020_0136 crossref_primary_10_1155_2018_4312083 crossref_primary_10_1080_17476933_2020_1870453 crossref_primary_10_1007_s00209_022_03130_4 crossref_primary_10_1007_s00526_018_1479_7 crossref_primary_10_1016_j_na_2023_113348 crossref_primary_10_1007_s00009_017_0909_7 crossref_primary_10_1515_ans_2017_6042 crossref_primary_10_1515_anona_2021_0202 crossref_primary_10_1016_j_jmaa_2024_128252 crossref_primary_10_1007_s00526_017_1283_9 crossref_primary_10_1007_s00526_016_1091_7 crossref_primary_10_1186_s13661_018_1016_9 crossref_primary_10_1002_mma_9952 crossref_primary_10_1007_s11784_016_0360_6 crossref_primary_10_1080_00036811_2021_1877681 crossref_primary_10_1007_s00030_019_0572_8 crossref_primary_10_1155_2020_9841640 crossref_primary_10_3934_era_2022140 crossref_primary_10_1007_s00526_019_1540_1 crossref_primary_10_1007_s11784_021_00878_w crossref_primary_10_14232_ejqtde_2023_1_20 crossref_primary_10_1007_s12220_021_00842_7 crossref_primary_10_1016_j_jfa_2023_109882 crossref_primary_10_1016_j_na_2021_112694 crossref_primary_10_1007_s10231_018_0820_2 |
Cites_doi | 10.1088/1751-8113/43/21/213001 10.1002/cpa.3160360405 10.1016/0022-1236(73)90051-7 10.1007/s00205-009-0288-8 10.1016/j.jde.2006.07.002 10.1007/BF00381159 10.1016/j.aim.2004.08.006 10.1007/s00205-006-0013-9 10.1090/S0894-0347-08-00593-6 10.1016/0022-1236(86)90094-7 10.1007/s00526-012-0568-2 10.1016/S0370-1573(97)00073-2 10.1112/jlms/jdl020 10.3934/cpaa.2013.12.1259 10.1007/s00205-012-0513-8 10.1103/PhysRevLett.78.3594 10.1088/0951-7715/21/2/006 10.1007/s00526-009-0265-y 10.1007/BF02418013 10.1007/s00220-008-0546-x 10.1007/s00205-008-0121-9 10.1016/j.anihpc.2010.01.009 10.1103/PhysRevLett.82.2661 10.1007/978-1-4612-4146-1 10.1515/ans-2004-0411 10.4310/jdg/1214433725 10.1002/cpa.20309 10.1007/978-3-642-61798-0 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2014 Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2014 – notice: Springer-Verlag Berlin Heidelberg 2015 |
DBID | AAYXX CITATION JQ2 7TB 7U5 8FD FR3 H8D KR7 L7M |
DOI | 10.1007/s00526-014-0717-x |
DatabaseName | CrossRef ProQuest Computer Science Collection Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef ProQuest Computer Science Collection Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-0835 |
EndPage | 467 |
ExternalDocumentID | 3555452611 10_1007_s00526_014_0717_x |
Genre | Feature |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PQQKQ PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7Z Z88 Z8T Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ JQ2 7TB 7U5 8FD FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c489t-e428387beb14a080899743ec4d010eaf04b3fc3f5a9215ed55ea73d92907f4513 |
IEDL.DBID | U2A |
ISSN | 0944-2669 |
IngestDate | Fri Jul 11 10:26:56 EDT 2025 Fri Jul 25 19:41:14 EDT 2025 Tue Jul 01 04:34:17 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Fri Feb 21 02:35:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | 35J50 35B40 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-e428387beb14a080899743ec4d010eaf04b3fc3f5a9215ed55ea73d92907f4513 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1644596073 |
PQPubID | 32028 |
PageCount | 45 |
ParticipantIDs | proquest_miscellaneous_1660064487 proquest_journals_1644596073 crossref_citationtrail_10_1007_s00526_014_0717_x crossref_primary_10_1007_s00526_014_0717_x springer_journals_10_1007_s00526_014_0717_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Calculus of variations and partial differential equations |
PublicationTitleAbbrev | Calc. Var |
PublicationYear | 2015 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Akhmediev, Ankiewicz (CR2) 1999; 82 Esry, Greene, Burke, Bohn (CR20) 1997; 78 Wei, Weth (CR36) 2008; 21 CR38 Wei, Yao (CR37) 2012; 11 CR12 Brezis, Kato (CR8) 1979; 58 CR32 CR31 Conti, Terracini, Verzini (CR17) 2005; 195 Liu, Wang (CR27) 2004; 4 Maia, Montefusco, Pellacci (CR28) 2006; 229 Kim (CR23) 2013; 12 Kivshar, Luther-Davies (CR24) 1998; 298 Caffarelli, Roquejoffre (CR11) 2007; 183 Chen, Zou (CR15) 2012; 25 Wei, Weth (CR35) 2008; 190 Aubin (CR1) 1976; 11 Caffarelli, Lin (CR10) 2008; 21 Schechter, Zou (CR33) 2010; 197 Chen, Zou (CR14) 2013; 48 Brezis, Nirenberg (CR9) 1983; 36 Ambrosetti, Rabinowitz (CR5) 1973; 14 Abdellaoui, Felli, Peral (CR3) 2009; 34 CR25 Noris, Tavares, Terracini, Verzini (CR29) 2010; 63 CR22 Talenti (CR34) 1976; 110 Sirakov (CR30) 2007; 271 Dancer, Wei, Weth (CR19) 2010; 27 Adimurthi (CR6) 1994; 127 Ambrosetti, Colorado (CR4) 2007; 75 Devillanova, Solimini (CR18) 2002; 7 Liu, Wang (CR26) 2008; 282 Bartsch, Dancer, Wang (CR7) 2010; 37 Frantzeskakis (CR21) 2010; 43 Chen, Zou (CR16) 2012; 205 Cerami, Solimini, Struwe (CR13) 1986; 69 S Kim (717_CR23) 2013; 12 A Ambrosetti (717_CR5) 1973; 14 717_CR3 717_CR30 Z Chen (717_CR16) 2012; 205 717_CR31 H Brezis (717_CR8) 1979; 58 H Brezis (717_CR9) 1983; 36 G Devillanova (717_CR18) 2002; 7 N Akhmediev (717_CR2) 1999; 82 M Conti (717_CR17) 2005; 195 B Esry (717_CR20) 1997; 78 717_CR38 717_CR37 717_CR12 A Ambrosetti (717_CR4) 2007; 75 717_CR32 G Cerami (717_CR13) 1986; 69 G Talenti (717_CR34) 1976; 110 Z Chen (717_CR14) 2013; 48 DJ Frantzeskakis (717_CR21) 2010; 43 B Noris (717_CR29) 2010; 63 LA Caffarelli (717_CR10) 2008; 21 T Aubin (717_CR1) 1976; 11 N Dancer (717_CR19) 2010; 27 L Maia (717_CR28) 2006; 229 J Wei (717_CR35) 2008; 190 YuS Kivshar (717_CR24) 1998; 298 SL Adimurthi (717_CR6) 1994; 127 Z Chen (717_CR15) 2012; 25 LA Caffarelli (717_CR11) 2007; 183 Z Liu (717_CR27) 2004; 4 717_CR25 J Wei (717_CR36) 2008; 21 M Schechter (717_CR33) 2010; 197 717_CR22 Z Liu (717_CR26) 2008; 282 T Bartsch (717_CR7) 2010; 37 |
References_xml | – ident: CR22 – volume: 63 start-page: 267 year: 2010 end-page: 302 ident: CR29 article-title: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition publication-title: Commun. Pure Appl. Math. – volume: 7 start-page: 1257 year: 2002 end-page: 1280 ident: CR18 article-title: Concentration estimates and multiple solutions to elliptic problems at critical growth publication-title: Adv. Differ. Equ. – volume: 11 start-page: 1003 year: 2012 end-page: 1011 ident: CR37 article-title: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations publication-title: Commun. Pure. Appl. Anal. – volume: 43 start-page: 213001 year: 2010 ident: CR21 article-title: Dark solitons in atomic Bose-Einstein condesates: from theory to experiments publication-title: J. Phys. A doi: 10.1088/1751-8113/43/21/213001 – volume: 36 start-page: 437 year: 1983 end-page: 477 ident: CR9 article-title: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160360405 – ident: CR12 – volume: 14 start-page: 349 year: 1973 end-page: 381 ident: CR5 article-title: Dual variational methods in critical point theory and applications publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(73)90051-7 – volume: 4 start-page: 563 year: 2004 end-page: 574 ident: CR27 article-title: On the Ambrosetti–Rabinowitz superlinear condition publication-title: Adv. Nonlinear Studies – volume: 197 start-page: 337 year: 2010 end-page: 356 ident: CR33 article-title: On the Brezis–Nirenberg problem publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0288-8 – volume: 229 start-page: 743 year: 2006 end-page: 767 ident: CR28 article-title: Positive solutions for a weakly coupled nonlinear Schrödinger systems publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2006.07.002 – volume: 127 start-page: 219 year: 1994 end-page: 229 ident: CR6 article-title: Yadava, An elementary proof of the uniqueness of positive radial solutions of a quasilinear dirichlet problem publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00381159 – volume: 195 start-page: 524 year: 2005 end-page: 560 ident: CR17 article-title: Asymptotic estimates for the spatial segregation of competitive systems publication-title: Adv. Math. doi: 10.1016/j.aim.2004.08.006 – volume: 183 start-page: 457 year: 2007 end-page: 487 ident: CR11 article-title: Uniform Höder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-006-0013-9 – volume: 21 start-page: 847 year: 2008 end-page: 862 ident: CR10 article-title: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-08-00593-6 – volume: 69 start-page: 289 year: 1986 end-page: 306 ident: CR13 article-title: Some existence results for superlinear elliptic boundary value problems involving critical exponents publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(86)90094-7 – volume: 271 start-page: 199 year: 2007 end-page: 221 ident: CR30 article-title: Least energy solitary waves for a system of nonlinear Schrödinger equations in $$^n$$ n publication-title: Commun. Math. Phys. – volume: 48 start-page: 695 year: 2013 end-page: 711 ident: CR14 article-title: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system publication-title: Calc. Var. PDE doi: 10.1007/s00526-012-0568-2 – volume: 298 start-page: 81 year: 1998 end-page: 197 ident: CR24 article-title: Dark optical solitons: physics and applications publication-title: Phys. Rep. doi: 10.1016/S0370-1573(97)00073-2 – ident: CR25 – volume: 75 start-page: 67 year: 2007 end-page: 82 ident: CR4 article-title: Standing waves of some coupled nonlinear Schrödinger equations publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/jdl020 – volume: 12 start-page: 1259 year: 2013 end-page: 1277 ident: CR23 article-title: On vector solutions for coupled nonlinear Schrödinger equations with critical exponents publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2013.12.1259 – volume: 205 start-page: 515 year: 2012 end-page: 551 ident: CR16 article-title: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-012-0513-8 – volume: 78 start-page: 3594 year: 1997 end-page: 3597 ident: CR20 article-title: Hartree–Fock theory for double condesates publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.3594 – volume: 21 start-page: 305 year: 2008 end-page: 317 ident: CR36 article-title: Asymptotic behaviour of solutions of planar elliptic systems with strong competition publication-title: Nonlinearity doi: 10.1088/0951-7715/21/2/006 – volume: 58 start-page: 137 year: 1979 end-page: 151 ident: CR8 article-title: Remarks on the Schrodinger operator with singular complex potentials publication-title: J. Math. Pures Appl. – volume: 11 start-page: 573 year: 1976 end-page: 598 ident: CR1 article-title: Problemes isoperimetriques et espaces de Sobolev publication-title: J. Differ. Geom. – volume: 37 start-page: 345 year: 2010 end-page: 361 ident: CR7 article-title: A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system publication-title: Calc. Var. PDE doi: 10.1007/s00526-009-0265-y – ident: CR38 – volume: 34 start-page: 97 year: 2009 end-page: 137 ident: CR3 article-title: Some remarks on systems of elliptic equations doubly critical in the whole $$\cal R^N$$ R N publication-title: Calc. Var. PDE – ident: CR31 – volume: 110 start-page: 352 year: 1976 end-page: 372 ident: CR34 article-title: Best constant in Sobolev inequality publication-title: Ann. Mat. Pure Appl. doi: 10.1007/BF02418013 – ident: CR32 – volume: 282 start-page: 721 year: 2008 end-page: 731 ident: CR26 article-title: Multiple bound states of nonlinear Schrödinger systems publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0546-x – volume: 190 start-page: 83 year: 2008 end-page: 106 ident: CR35 article-title: Radial solutions and phase separation in a system of two coupled Schrödinger equations publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0121-9 – volume: 25 start-page: 527 year: 2012 end-page: 542 ident: CR15 article-title: On the Brezis–Nirenberg problem in a ball publication-title: Differ. Integr. Equ. – volume: 27 start-page: 953 year: 2010 end-page: 969 ident: CR19 article-title: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger systems publication-title: Ann. Inst. H. Poincaré AN. doi: 10.1016/j.anihpc.2010.01.009 – volume: 82 start-page: 2661 year: 1999 end-page: 2664 ident: CR2 article-title: Partially coherent solitons on a finite background publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.2661 – volume: 69 start-page: 289 year: 1986 ident: 717_CR13 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(86)90094-7 – volume: 21 start-page: 305 year: 2008 ident: 717_CR36 publication-title: Nonlinearity doi: 10.1088/0951-7715/21/2/006 – ident: 717_CR38 doi: 10.1007/978-1-4612-4146-1 – volume: 298 start-page: 81 year: 1998 ident: 717_CR24 publication-title: Phys. Rep. doi: 10.1016/S0370-1573(97)00073-2 – volume: 78 start-page: 3594 year: 1997 ident: 717_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.3594 – volume: 197 start-page: 337 year: 2010 ident: 717_CR33 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-009-0288-8 – volume: 21 start-page: 847 year: 2008 ident: 717_CR10 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-08-00593-6 – ident: 717_CR12 – ident: 717_CR31 – ident: 717_CR37 – volume: 82 start-page: 2661 year: 1999 ident: 717_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.82.2661 – volume: 7 start-page: 1257 year: 2002 ident: 717_CR18 publication-title: Adv. Differ. Equ. – volume: 127 start-page: 219 year: 1994 ident: 717_CR6 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00381159 – volume: 12 start-page: 1259 year: 2013 ident: 717_CR23 publication-title: Commun. Pure Appl. Anal. doi: 10.3934/cpaa.2013.12.1259 – volume: 183 start-page: 457 year: 2007 ident: 717_CR11 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-006-0013-9 – volume: 4 start-page: 563 year: 2004 ident: 717_CR27 publication-title: Adv. Nonlinear Studies doi: 10.1515/ans-2004-0411 – volume: 58 start-page: 137 year: 1979 ident: 717_CR8 publication-title: J. Math. Pures Appl. – volume: 11 start-page: 573 year: 1976 ident: 717_CR1 publication-title: J. Differ. Geom. doi: 10.4310/jdg/1214433725 – volume: 63 start-page: 267 year: 2010 ident: 717_CR29 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20309 – ident: 717_CR25 – volume: 110 start-page: 352 year: 1976 ident: 717_CR34 publication-title: Ann. Mat. Pure Appl. doi: 10.1007/BF02418013 – ident: 717_CR22 doi: 10.1007/978-3-642-61798-0 – volume: 43 start-page: 213001 year: 2010 ident: 717_CR21 publication-title: J. Phys. A doi: 10.1088/1751-8113/43/21/213001 – volume: 37 start-page: 345 year: 2010 ident: 717_CR7 publication-title: Calc. Var. PDE doi: 10.1007/s00526-009-0265-y – volume: 205 start-page: 515 year: 2012 ident: 717_CR16 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-012-0513-8 – volume: 36 start-page: 437 year: 1983 ident: 717_CR9 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.3160360405 – volume: 48 start-page: 695 year: 2013 ident: 717_CR14 publication-title: Calc. Var. PDE doi: 10.1007/s00526-012-0568-2 – volume: 190 start-page: 83 year: 2008 ident: 717_CR35 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-008-0121-9 – ident: 717_CR30 – volume: 195 start-page: 524 year: 2005 ident: 717_CR17 publication-title: Adv. Math. doi: 10.1016/j.aim.2004.08.006 – ident: 717_CR32 – volume: 75 start-page: 67 year: 2007 ident: 717_CR4 publication-title: J. Lond. Math. Soc. doi: 10.1112/jlms/jdl020 – volume: 25 start-page: 527 year: 2012 ident: 717_CR15 publication-title: Differ. Integr. Equ. – volume: 14 start-page: 349 year: 1973 ident: 717_CR5 publication-title: J. Funct. Anal. doi: 10.1016/0022-1236(73)90051-7 – ident: 717_CR3 – volume: 282 start-page: 721 year: 2008 ident: 717_CR26 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-008-0546-x – volume: 27 start-page: 953 year: 2010 ident: 717_CR19 publication-title: Ann. Inst. H. Poincaré AN. doi: 10.1016/j.anihpc.2010.01.009 – volume: 229 start-page: 743 year: 2006 ident: 717_CR28 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2006.07.002 |
SSID | ssj0015824 |
Score | 2.4108386 |
Snippet | We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate:
-
Δ
u
+
λ
1
u
=
μ
1
u
2
∗
-
1
+
β
u
2
∗
2
-
1
v
2
∗
2
,
x
∈
Ω... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We study the following nonlinear Schrödinger system which is related to... (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We study the following nonlinear Schrodinger system which is related to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 423 |
SubjectTerms | Analysis Applied mathematics Bose-Einstein condensates Calculus of variations Calculus of Variations and Optimal Control; Optimization Classification Control Dirichlet problem Eigenvalues Exponents Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Partial differential equations Phase separation Schrodinger equation Schroedinger equation Systems Theory Texts Theoretical |
Title | Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case |
URI | https://link.springer.com/article/10.1007/s00526-014-0717-x https://www.proquest.com/docview/1644596073 https://www.proquest.com/docview/1660064487 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bSsQwEA2yvuiDeMX1xgg-KYVqk03r2yJeUBRBF9an0iYT9mHp1u2u-Af-kT_gjzlJL15QweemSekkmXMymTOM7clUmkMMaX2nHeNxcsleJLXvKUng2USRCN055PVN56LHL_uiX-VxF_Vt9zok6XbqJtnNSZMQ9eU26UZ6BBxnBVF3O617R90mdCBCV8mWaAv3yPtEdSjzpy6-OqMPhPktKOp8zdkiW6hAInRLqy6xGcyW2fx1o7BarLCXW3fb6glhaKvvALocPmhmEiSZhnxAPgoKLPW9RxkQQgU1muZD1HCnBuO3V-0-APCxlPwuwB7MgqoKIAA-56OM_NIxDNyFENC2GkCp5AGKel9lvbPT-5MLryqq4CkeRhMPrcJaKFPao3lCcJH4FoEIVFwTM8PE-DwNjAqMSCJCA6iFwEQGmlCULw3ZMlhjrYxGXmdA8MAkIo1C5QdcmyDyuQm5CDDsGOSJbjO__ruxqhTHbeGLYdxoJTuDxGSQ2Bokfm6z_eaVvJTb-KvxVm2yuFp5RUz0jwuiZTJos93mMa0ZGwhJMhxNbZuOhWLE1drsoDb1py5-G3DjX6032RyhK1Ge12yx1mQ8xW1CMJN0h812zx-uTnfczH0HRHHsgg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5Vy6HlAPQHsfy0g9RTq6Cg2OuEG0LAFlhUqYtET1Fij7USq-xCdhHiBXgjXqAv1rHz0xa1lTjHsRN7xvONx_MNwEeVK7tLMet33rOBYJMcJMqEgVYMnm2SyNifQw7Oe_0LcXIpL-s87rK57d6EJP1O3Sa7eWoSdn2FS7pRAQPHBcEuuOzAwv7x99PDNnggY1_Llh0XEbD9SZpg5t86-dMc_cKYT8Ki3tocLcOw-c7qksnVznyW7-j7JxSOz_yRFViq0SfuV-LyGl5Q8QYWBy11a_kWHr76a1y3hGNX1gfJJwdiK6KYFQanIzZ-WFJFHD4pkKEv6sl8OiaD3_To5sej8Z-EdF1xiZfoTnxR15UVkO6mk4IN3h6O_E0TNK7MQEURgpp7fwcXR4fDg35QV2sItIiTWUCOui1WOW_-ImMcyo4coxPSwrDLR5kNRR5ZHVmZJQwzyEhJmYoMw7NQWRaSaBU6BY-8Bsi4w2YyT2IdRsLYKAmFjYWMKO5ZEpnpQtgsWqprKnNXUWOctiTMfo5TnuPUzXF614VP7SvTisfjf403G0lIa5UuU_YrhWR_T0Vd2G4fszK6CEtW0GTu2vQcxmMnsAufm8X_rYt_Dbj-rNYf4GV_ODhLz76cn27AK4ZwsjoU2oTO7GZOWwyTZvn7Wi1-AgjSCvA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBelhbI9lO4f85ptN-jTiolTS5Hdt7ItZO0aAm0gb8aWTuQhOF7slHyDfqN9gX2xnuQ_3UY32LNlSegk3e90d79j7Fhm0gwwovOdDY3PSSX7sdSBrySBZxPHInLvkFeT4XjGL-Zi3tQ5Ldto99YlWec0WJamvOoX2vS7xDdHU0JmMLcJONInELlHt_HAxnTNTs87N4KIXFVbMmG4T5oobt2aj3Xxu2J6QJt_OEid3hkdsoMGMMJ5LeFnbAfz5-zpVce2Wr5gd1MXeXWLsLSVeABdPh90uwrSXEOxIH0FJdZc36scCK2CWm2KJWq4Vov1zx_aTQDwe03_XYJ9pAXVFEMA3BarnNboDBYuOAS0rQxQs3qAot5fstnoy82nsd8UWPAVj-LKR8u2FsmM7mueEnQk24sABSquyUrD1AQ8C40KjUhjQgaohcBUhpoQVSANyTV8xXZzGvk1A4IKJhVZHKkg5NqEccBNxEWI0dAgT7XHgnZ1E9Wwj9siGMuk4012AklIIIkVSLL12Mful6Km3vhX414rsqQ5hWVCpiAXZKLJ0GMfus90fqxTJM1xtbFthhaWkd3msZNW1L908bcB3_xX6_dsf_p5lHz7Ork8Yk8IdIn6GafHdqv1Bt8SsKmyd27z3gOen_Id |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+least+energy+solutions+and+phase+separation+for+coupled+Schr%C3%B6dinger+equations+with+critical+exponent%3A+higher+dimensional+case&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Chen%2C+Zhijie&rft.au=Zou%2C+Wenming&rft.date=2015-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=52&rft.issue=1-2&rft.spage=423&rft_id=info:doi/10.1007%2Fs00526-014-0717-x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3555452611 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon |