Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case

We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate: - Δ u + λ 1 u = μ 1 u 2 ∗ - 1 + β u 2 ∗ 2 - 1 v 2 ∗ 2 , x ∈ Ω , - Δ v + λ 2 v = μ 2 v 2 ∗ - 1 + β v 2 ∗ 2 - 1 u 2 ∗ 2 , x ∈ Ω , u ≥ 0 , v ≥ 0 in Ω , u = v = 0 on ∂ Ω . Here Ω ⊂ R N is a smooth bounded d...

Full description

Saved in:
Bibliographic Details
Published inCalculus of variations and partial differential equations Vol. 52; no. 1-2; pp. 423 - 467
Main Authors Chen, Zhijie, Zou, Wenming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-2669
1432-0835
DOI10.1007/s00526-014-0717-x

Cover

Loading…
Abstract We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate: - Δ u + λ 1 u = μ 1 u 2 ∗ - 1 + β u 2 ∗ 2 - 1 v 2 ∗ 2 , x ∈ Ω , - Δ v + λ 2 v = μ 2 v 2 ∗ - 1 + β v 2 ∗ 2 - 1 u 2 ∗ 2 , x ∈ Ω , u ≥ 0 , v ≥ 0 in Ω , u = v = 0 on ∂ Ω . Here Ω ⊂ R N is a smooth bounded domain, 2 ∗ : = 2 N N - 2 is the Sobolev critical exponent, - λ 1 ( Ω ) < λ 1 , λ 2 < 0 , μ 1 , μ 2 > 0 and β ≠ 0 , where λ 1 ( Ω ) is the first eigenvalue of - Δ with the Dirichlet boundary condition. When β = 0 , this is just the well-known Brezis–Nirenberg problem. The special case N = 4 was studied by the authors in (Arch Ration Mech Anal 205:515–551, 2012 ). In this paper we consider the higher dimensional case N ≥ 5 . It is interesting that we can prove the existence of a positive least energy solution ( u β , v β ) for any β ≠ 0 (which can not hold in the special case N = 4 ). We also study the limit behavior of ( u β , v β ) as β → - ∞ and phase separation is expected. In particular, u β - v β will converge to sign-changing solutions of the Brezis–Nirenberg problem, provided N ≥ 6 . In case λ 1 = λ 2 , the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case N = 4 .
AbstractList (ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We study the following nonlinear Schrodinger system which is related to Bose-Einstein condensate: ... ...Here ... is a smooth bounded domain, ... is the Sobolev critical exponent, ..., ... and ..., where ... is the first eigenvalue of ... with the Dirichlet boundary condition. When ..., this is just the well-known Brezis-Nirenberg problem. The special case ... was studied by the authors in (Arch Ration Mech Anal 205:515-551, 2012). In this paper we consider the higher dimensional case ... It is interesting that we can prove the existence of a positive least energy solution ... for any ... (which can not hold in the special case ...). We also study the limit behavior of ... as ... and phase separation is expected. In particular, ... will converge to sign-changing solutions of the Brezis-Nirenberg problem, provided ... In case ..., the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case ...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We study the following nonlinear Schrödinger system which is related to Bose-Einstein condensate: ...Here ... is a smooth bounded domain, ... is the Sobolev critical exponent, ..., ... and ..., where ... is the first eigenvalue of ... with the Dirichlet boundary condition. When ..., this is just the well-known Brezis-Nirenberg problem. The special case ... was studied by the authors in (Arch Ration Mech Anal 205:515-551, 2012 ). In this paper we consider the higher dimensional case ... It is interesting that we can prove the existence of a positive least energy solution ... for any ... (which can not hold in the special case ...). We also study the limit behavior of ... as ... and phase separation is expected. In particular, ... will converge to sign-changing solutions of the Brezis-Nirenberg problem, provided ... In case ..., the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case ...
We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate: - Δ u + λ 1 u = μ 1 u 2 ∗ - 1 + β u 2 ∗ 2 - 1 v 2 ∗ 2 , x ∈ Ω , - Δ v + λ 2 v = μ 2 v 2 ∗ - 1 + β v 2 ∗ 2 - 1 u 2 ∗ 2 , x ∈ Ω , u ≥ 0 , v ≥ 0 in Ω , u = v = 0 on ∂ Ω . Here Ω ⊂ R N is a smooth bounded domain, 2 ∗ : = 2 N N - 2 is the Sobolev critical exponent, - λ 1 ( Ω ) < λ 1 , λ 2 < 0 , μ 1 , μ 2 > 0 and β ≠ 0 , where λ 1 ( Ω ) is the first eigenvalue of - Δ with the Dirichlet boundary condition. When β = 0 , this is just the well-known Brezis–Nirenberg problem. The special case N = 4 was studied by the authors in (Arch Ration Mech Anal 205:515–551, 2012 ). In this paper we consider the higher dimensional case N ≥ 5 . It is interesting that we can prove the existence of a positive least energy solution ( u β , v β ) for any β ≠ 0 (which can not hold in the special case N = 4 ). We also study the limit behavior of ( u β , v β ) as β → - ∞ and phase separation is expected. In particular, u β - v β will converge to sign-changing solutions of the Brezis–Nirenberg problem, provided N ≥ 6 . In case λ 1 = λ 2 , the classification of the least energy solutions is also studied. It turns out that some quite different phenomena appear comparing to the special case N = 4 .
Author Zou, Wenming
Chen, Zhijie
Author_xml – sequence: 1
  givenname: Zhijie
  surname: Chen
  fullname: Chen, Zhijie
  organization: Department of Mathematical Sciences, Tsinghua University, Center for Advanced Study in Theoretical Sciences, National Taiwan University
– sequence: 2
  givenname: Wenming
  surname: Zou
  fullname: Zou, Wenming
  email: wzou@math.tsinghua.edu.cn
  organization: Department of Mathematical Sciences, Tsinghua University
BookMark eNp9kc-K1TAUh4OM4J3RB3AXcOOmetIkTeNOBv_BgIK6Drnp6W2G3qaTpM6dJ_CNfAFfzNS6kAFdBU6-78fh_M7J2RQmJOQpgxcMQL1MALJuKmCiAsVUdXpAdkzwuoKWyzOyAy1EVTeNfkTOU7oGYLKtxY58_xSSz_4b0hFtyhQnjIc7msK4ZB-mRO3U0XmwCWnC2Ua7TmkfInVhmUfs6Gc3xJ8_Oj8dMFK8Wezm3fo8UBdLtrMjxdNc9p3yKzr4w1DAzh9xSoUsn66kPyYPezsmfPLnvSBf3775cvm-uvr47sPl66vKiVbnCkXd8lbtcc-EhRZarZXg6EQHDND2IPa8d7yXVtdMYiclWsU7XWtQvZCMX5DnW-4cw82CKZujTw7H0U4YlmRY0wA0QrSqoM_uoddhiWXhlRJC6gYUL5TaKBdDShF743z-fYMcrR8NA7MWZLaCTCnIrAWZUzHZPXOO_mjj3X-denNSYdeL_7XTP6Vf_NGorg
CitedBy_id crossref_primary_10_1002_mana_201500348
crossref_primary_10_1007_s00526_019_1694_x
crossref_primary_10_1016_j_jmaa_2022_126360
crossref_primary_10_1016_j_jmaa_2024_128424
crossref_primary_10_1112_jlms_12170
crossref_primary_10_1216_rmj_2020_50_1661
crossref_primary_10_1007_s00526_017_1252_3
crossref_primary_10_1007_s11784_024_01099_7
crossref_primary_10_1186_s13660_016_1179_9
crossref_primary_10_1016_j_jde_2023_08_021
crossref_primary_10_1016_j_nonrwa_2019_01_015
crossref_primary_10_3934_era_2021088
crossref_primary_10_1007_s12220_024_01655_0
crossref_primary_10_1007_s11854_023_0315_y
crossref_primary_10_1016_j_matpur_2019_09_004
crossref_primary_10_1016_j_jde_2023_12_001
crossref_primary_10_1186_s13661_017_0758_0
crossref_primary_10_1515_ans_2023_0162
crossref_primary_10_1007_s00526_020_01803_8
crossref_primary_10_1002_mma_3598
crossref_primary_10_3934_dcdsb_2021115
crossref_primary_10_1112_jlms_70040
crossref_primary_10_1186_s13661_017_0834_5
crossref_primary_10_1007_s11784_021_00923_8
crossref_primary_10_1063_1_5081794
crossref_primary_10_1002_mma_6785
crossref_primary_10_1002_mma_6862
crossref_primary_10_1016_j_na_2019_111643
crossref_primary_10_1515_ans_2017_6019
crossref_primary_10_1016_j_jde_2021_03_051
crossref_primary_10_1016_j_jmaa_2023_127835
crossref_primary_10_1093_imrn_rnv016
crossref_primary_10_1515_ans_2019_2049
crossref_primary_10_1007_s00208_015_1177_0
crossref_primary_10_1360_SSM_2024_0127
crossref_primary_10_1007_s11784_021_00891_z
crossref_primary_10_1112_plms_12073
crossref_primary_10_3934_dcds_2016_36_3357
crossref_primary_10_1186_s13661_022_01603_3
crossref_primary_10_1016_j_jmaa_2018_10_069
crossref_primary_10_1007_s11854_018_0071_6
crossref_primary_10_1088_1361_6544_ac24e5
crossref_primary_10_1007_s10473_020_0513_y
crossref_primary_10_1007_s13324_024_00878_2
crossref_primary_10_1002_mma_4034
crossref_primary_10_1016_j_jde_2023_04_039
crossref_primary_10_3934_cpaa_2025021
crossref_primary_10_1007_s00030_021_00701_y
crossref_primary_10_1007_s00209_024_03660_z
crossref_primary_10_1007_s00033_020_1270_4
crossref_primary_10_1007_s12220_021_00645_w
crossref_primary_10_1016_j_jde_2017_02_053
crossref_primary_10_1142_S1664360724500024
crossref_primary_10_1016_j_jfa_2022_109497
crossref_primary_10_1016_j_aml_2021_107900
crossref_primary_10_1080_00036811_2016_1157588
crossref_primary_10_1515_anona_2020_0136
crossref_primary_10_1155_2018_4312083
crossref_primary_10_1080_17476933_2020_1870453
crossref_primary_10_1007_s00209_022_03130_4
crossref_primary_10_1007_s00526_018_1479_7
crossref_primary_10_1016_j_na_2023_113348
crossref_primary_10_1007_s00009_017_0909_7
crossref_primary_10_1515_ans_2017_6042
crossref_primary_10_1515_anona_2021_0202
crossref_primary_10_1016_j_jmaa_2024_128252
crossref_primary_10_1007_s00526_017_1283_9
crossref_primary_10_1007_s00526_016_1091_7
crossref_primary_10_1186_s13661_018_1016_9
crossref_primary_10_1002_mma_9952
crossref_primary_10_1007_s11784_016_0360_6
crossref_primary_10_1080_00036811_2021_1877681
crossref_primary_10_1007_s00030_019_0572_8
crossref_primary_10_1155_2020_9841640
crossref_primary_10_3934_era_2022140
crossref_primary_10_1007_s00526_019_1540_1
crossref_primary_10_1007_s11784_021_00878_w
crossref_primary_10_14232_ejqtde_2023_1_20
crossref_primary_10_1007_s12220_021_00842_7
crossref_primary_10_1016_j_jfa_2023_109882
crossref_primary_10_1016_j_na_2021_112694
crossref_primary_10_1007_s10231_018_0820_2
Cites_doi 10.1088/1751-8113/43/21/213001
10.1002/cpa.3160360405
10.1016/0022-1236(73)90051-7
10.1007/s00205-009-0288-8
10.1016/j.jde.2006.07.002
10.1007/BF00381159
10.1016/j.aim.2004.08.006
10.1007/s00205-006-0013-9
10.1090/S0894-0347-08-00593-6
10.1016/0022-1236(86)90094-7
10.1007/s00526-012-0568-2
10.1016/S0370-1573(97)00073-2
10.1112/jlms/jdl020
10.3934/cpaa.2013.12.1259
10.1007/s00205-012-0513-8
10.1103/PhysRevLett.78.3594
10.1088/0951-7715/21/2/006
10.1007/s00526-009-0265-y
10.1007/BF02418013
10.1007/s00220-008-0546-x
10.1007/s00205-008-0121-9
10.1016/j.anihpc.2010.01.009
10.1103/PhysRevLett.82.2661
10.1007/978-1-4612-4146-1
10.1515/ans-2004-0411
10.4310/jdg/1214433725
10.1002/cpa.20309
10.1007/978-3-642-61798-0
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2014
Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2014
– notice: Springer-Verlag Berlin Heidelberg 2015
DBID AAYXX
CITATION
JQ2
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1007/s00526-014-0717-x
DatabaseName CrossRef
ProQuest Computer Science Collection
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Computer Science Collection
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0835
EndPage 467
ExternalDocumentID 3555452611
10_1007_s00526_014_0717_x
Genre Feature
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PQQKQ
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7Z
Z88
Z8T
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
JQ2
7TB
7U5
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c489t-e428387beb14a080899743ec4d010eaf04b3fc3f5a9215ed55ea73d92907f4513
IEDL.DBID U2A
ISSN 0944-2669
IngestDate Fri Jul 11 10:26:56 EDT 2025
Fri Jul 25 19:41:14 EDT 2025
Tue Jul 01 04:34:17 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Fri Feb 21 02:35:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 35J50
35B40
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-e428387beb14a080899743ec4d010eaf04b3fc3f5a9215ed55ea73d92907f4513
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1644596073
PQPubID 32028
PageCount 45
ParticipantIDs proquest_miscellaneous_1660064487
proquest_journals_1644596073
crossref_citationtrail_10_1007_s00526_014_0717_x
crossref_primary_10_1007_s00526_014_0717_x
springer_journals_10_1007_s00526_014_0717_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Calculus of variations and partial differential equations
PublicationTitleAbbrev Calc. Var
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Akhmediev, Ankiewicz (CR2) 1999; 82
Esry, Greene, Burke, Bohn (CR20) 1997; 78
Wei, Weth (CR36) 2008; 21
CR38
Wei, Yao (CR37) 2012; 11
CR12
Brezis, Kato (CR8) 1979; 58
CR32
CR31
Conti, Terracini, Verzini (CR17) 2005; 195
Liu, Wang (CR27) 2004; 4
Maia, Montefusco, Pellacci (CR28) 2006; 229
Kim (CR23) 2013; 12
Kivshar, Luther-Davies (CR24) 1998; 298
Caffarelli, Roquejoffre (CR11) 2007; 183
Chen, Zou (CR15) 2012; 25
Wei, Weth (CR35) 2008; 190
Aubin (CR1) 1976; 11
Caffarelli, Lin (CR10) 2008; 21
Schechter, Zou (CR33) 2010; 197
Chen, Zou (CR14) 2013; 48
Brezis, Nirenberg (CR9) 1983; 36
Ambrosetti, Rabinowitz (CR5) 1973; 14
Abdellaoui, Felli, Peral (CR3) 2009; 34
CR25
Noris, Tavares, Terracini, Verzini (CR29) 2010; 63
CR22
Talenti (CR34) 1976; 110
Sirakov (CR30) 2007; 271
Dancer, Wei, Weth (CR19) 2010; 27
Adimurthi (CR6) 1994; 127
Ambrosetti, Colorado (CR4) 2007; 75
Devillanova, Solimini (CR18) 2002; 7
Liu, Wang (CR26) 2008; 282
Bartsch, Dancer, Wang (CR7) 2010; 37
Frantzeskakis (CR21) 2010; 43
Chen, Zou (CR16) 2012; 205
Cerami, Solimini, Struwe (CR13) 1986; 69
S Kim (717_CR23) 2013; 12
A Ambrosetti (717_CR5) 1973; 14
717_CR3
717_CR30
Z Chen (717_CR16) 2012; 205
717_CR31
H Brezis (717_CR8) 1979; 58
H Brezis (717_CR9) 1983; 36
G Devillanova (717_CR18) 2002; 7
N Akhmediev (717_CR2) 1999; 82
M Conti (717_CR17) 2005; 195
B Esry (717_CR20) 1997; 78
717_CR38
717_CR37
717_CR12
A Ambrosetti (717_CR4) 2007; 75
717_CR32
G Cerami (717_CR13) 1986; 69
G Talenti (717_CR34) 1976; 110
Z Chen (717_CR14) 2013; 48
DJ Frantzeskakis (717_CR21) 2010; 43
B Noris (717_CR29) 2010; 63
LA Caffarelli (717_CR10) 2008; 21
T Aubin (717_CR1) 1976; 11
N Dancer (717_CR19) 2010; 27
L Maia (717_CR28) 2006; 229
J Wei (717_CR35) 2008; 190
YuS Kivshar (717_CR24) 1998; 298
SL Adimurthi (717_CR6) 1994; 127
Z Chen (717_CR15) 2012; 25
LA Caffarelli (717_CR11) 2007; 183
Z Liu (717_CR27) 2004; 4
717_CR25
J Wei (717_CR36) 2008; 21
M Schechter (717_CR33) 2010; 197
717_CR22
Z Liu (717_CR26) 2008; 282
T Bartsch (717_CR7) 2010; 37
References_xml – ident: CR22
– volume: 63
  start-page: 267
  year: 2010
  end-page: 302
  ident: CR29
  article-title: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition
  publication-title: Commun. Pure Appl. Math.
– volume: 7
  start-page: 1257
  year: 2002
  end-page: 1280
  ident: CR18
  article-title: Concentration estimates and multiple solutions to elliptic problems at critical growth
  publication-title: Adv. Differ. Equ.
– volume: 11
  start-page: 1003
  year: 2012
  end-page: 1011
  ident: CR37
  article-title: Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations
  publication-title: Commun. Pure. Appl. Anal.
– volume: 43
  start-page: 213001
  year: 2010
  ident: CR21
  article-title: Dark solitons in atomic Bose-Einstein condesates: from theory to experiments
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/43/21/213001
– volume: 36
  start-page: 437
  year: 1983
  end-page: 477
  ident: CR9
  article-title: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160360405
– ident: CR12
– volume: 14
  start-page: 349
  year: 1973
  end-page: 381
  ident: CR5
  article-title: Dual variational methods in critical point theory and applications
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
– volume: 4
  start-page: 563
  year: 2004
  end-page: 574
  ident: CR27
  article-title: On the Ambrosetti–Rabinowitz superlinear condition
  publication-title: Adv. Nonlinear Studies
– volume: 197
  start-page: 337
  year: 2010
  end-page: 356
  ident: CR33
  article-title: On the Brezis–Nirenberg problem
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-009-0288-8
– volume: 229
  start-page: 743
  year: 2006
  end-page: 767
  ident: CR28
  article-title: Positive solutions for a weakly coupled nonlinear Schrödinger systems
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2006.07.002
– volume: 127
  start-page: 219
  year: 1994
  end-page: 229
  ident: CR6
  article-title: Yadava, An elementary proof of the uniqueness of positive radial solutions of a quasilinear dirichlet problem
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00381159
– volume: 195
  start-page: 524
  year: 2005
  end-page: 560
  ident: CR17
  article-title: Asymptotic estimates for the spatial segregation of competitive systems
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2004.08.006
– volume: 183
  start-page: 457
  year: 2007
  end-page: 487
  ident: CR11
  article-title: Uniform Höder estimates in a class of elliptic systems and applications to singular limits in models for diffusion flames
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-006-0013-9
– volume: 21
  start-page: 847
  year: 2008
  end-page: 862
  ident: CR10
  article-title: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-08-00593-6
– volume: 69
  start-page: 289
  year: 1986
  end-page: 306
  ident: CR13
  article-title: Some existence results for superlinear elliptic boundary value problems involving critical exponents
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(86)90094-7
– volume: 271
  start-page: 199
  year: 2007
  end-page: 221
  ident: CR30
  article-title: Least energy solitary waves for a system of nonlinear Schrödinger equations in $$^n$$ n
  publication-title: Commun. Math. Phys.
– volume: 48
  start-page: 695
  year: 2013
  end-page: 711
  ident: CR14
  article-title: An optimal constant for the existence of least energy solutions of a coupled Schrödinger system
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-012-0568-2
– volume: 298
  start-page: 81
  year: 1998
  end-page: 197
  ident: CR24
  article-title: Dark optical solitons: physics and applications
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(97)00073-2
– ident: CR25
– volume: 75
  start-page: 67
  year: 2007
  end-page: 82
  ident: CR4
  article-title: Standing waves of some coupled nonlinear Schrödinger equations
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/jdl020
– volume: 12
  start-page: 1259
  year: 2013
  end-page: 1277
  ident: CR23
  article-title: On vector solutions for coupled nonlinear Schrödinger equations with critical exponents
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2013.12.1259
– volume: 205
  start-page: 515
  year: 2012
  end-page: 551
  ident: CR16
  article-title: Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-012-0513-8
– volume: 78
  start-page: 3594
  year: 1997
  end-page: 3597
  ident: CR20
  article-title: Hartree–Fock theory for double condesates
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.3594
– volume: 21
  start-page: 305
  year: 2008
  end-page: 317
  ident: CR36
  article-title: Asymptotic behaviour of solutions of planar elliptic systems with strong competition
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/2/006
– volume: 58
  start-page: 137
  year: 1979
  end-page: 151
  ident: CR8
  article-title: Remarks on the Schrodinger operator with singular complex potentials
  publication-title: J. Math. Pures Appl.
– volume: 11
  start-page: 573
  year: 1976
  end-page: 598
  ident: CR1
  article-title: Problemes isoperimetriques et espaces de Sobolev
  publication-title: J. Differ. Geom.
– volume: 37
  start-page: 345
  year: 2010
  end-page: 361
  ident: CR7
  article-title: A Liouville theorem, a priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-009-0265-y
– ident: CR38
– volume: 34
  start-page: 97
  year: 2009
  end-page: 137
  ident: CR3
  article-title: Some remarks on systems of elliptic equations doubly critical in the whole $$\cal R^N$$ R N
  publication-title: Calc. Var. PDE
– ident: CR31
– volume: 110
  start-page: 352
  year: 1976
  end-page: 372
  ident: CR34
  article-title: Best constant in Sobolev inequality
  publication-title: Ann. Mat. Pure Appl.
  doi: 10.1007/BF02418013
– ident: CR32
– volume: 282
  start-page: 721
  year: 2008
  end-page: 731
  ident: CR26
  article-title: Multiple bound states of nonlinear Schrödinger systems
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0546-x
– volume: 190
  start-page: 83
  year: 2008
  end-page: 106
  ident: CR35
  article-title: Radial solutions and phase separation in a system of two coupled Schrödinger equations
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0121-9
– volume: 25
  start-page: 527
  year: 2012
  end-page: 542
  ident: CR15
  article-title: On the Brezis–Nirenberg problem in a ball
  publication-title: Differ. Integr. Equ.
– volume: 27
  start-page: 953
  year: 2010
  end-page: 969
  ident: CR19
  article-title: A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger systems
  publication-title: Ann. Inst. H. Poincaré AN.
  doi: 10.1016/j.anihpc.2010.01.009
– volume: 82
  start-page: 2661
  year: 1999
  end-page: 2664
  ident: CR2
  article-title: Partially coherent solitons on a finite background
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.2661
– volume: 69
  start-page: 289
  year: 1986
  ident: 717_CR13
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(86)90094-7
– volume: 21
  start-page: 305
  year: 2008
  ident: 717_CR36
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/21/2/006
– ident: 717_CR38
  doi: 10.1007/978-1-4612-4146-1
– volume: 298
  start-page: 81
  year: 1998
  ident: 717_CR24
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(97)00073-2
– volume: 78
  start-page: 3594
  year: 1997
  ident: 717_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.3594
– volume: 197
  start-page: 337
  year: 2010
  ident: 717_CR33
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-009-0288-8
– volume: 21
  start-page: 847
  year: 2008
  ident: 717_CR10
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-08-00593-6
– ident: 717_CR12
– ident: 717_CR31
– ident: 717_CR37
– volume: 82
  start-page: 2661
  year: 1999
  ident: 717_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.82.2661
– volume: 7
  start-page: 1257
  year: 2002
  ident: 717_CR18
  publication-title: Adv. Differ. Equ.
– volume: 127
  start-page: 219
  year: 1994
  ident: 717_CR6
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00381159
– volume: 12
  start-page: 1259
  year: 2013
  ident: 717_CR23
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2013.12.1259
– volume: 183
  start-page: 457
  year: 2007
  ident: 717_CR11
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-006-0013-9
– volume: 4
  start-page: 563
  year: 2004
  ident: 717_CR27
  publication-title: Adv. Nonlinear Studies
  doi: 10.1515/ans-2004-0411
– volume: 58
  start-page: 137
  year: 1979
  ident: 717_CR8
  publication-title: J. Math. Pures Appl.
– volume: 11
  start-page: 573
  year: 1976
  ident: 717_CR1
  publication-title: J. Differ. Geom.
  doi: 10.4310/jdg/1214433725
– volume: 63
  start-page: 267
  year: 2010
  ident: 717_CR29
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20309
– ident: 717_CR25
– volume: 110
  start-page: 352
  year: 1976
  ident: 717_CR34
  publication-title: Ann. Mat. Pure Appl.
  doi: 10.1007/BF02418013
– ident: 717_CR22
  doi: 10.1007/978-3-642-61798-0
– volume: 43
  start-page: 213001
  year: 2010
  ident: 717_CR21
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/43/21/213001
– volume: 37
  start-page: 345
  year: 2010
  ident: 717_CR7
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-009-0265-y
– volume: 205
  start-page: 515
  year: 2012
  ident: 717_CR16
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-012-0513-8
– volume: 36
  start-page: 437
  year: 1983
  ident: 717_CR9
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.3160360405
– volume: 48
  start-page: 695
  year: 2013
  ident: 717_CR14
  publication-title: Calc. Var. PDE
  doi: 10.1007/s00526-012-0568-2
– volume: 190
  start-page: 83
  year: 2008
  ident: 717_CR35
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-008-0121-9
– ident: 717_CR30
– volume: 195
  start-page: 524
  year: 2005
  ident: 717_CR17
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2004.08.006
– ident: 717_CR32
– volume: 75
  start-page: 67
  year: 2007
  ident: 717_CR4
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/jlms/jdl020
– volume: 25
  start-page: 527
  year: 2012
  ident: 717_CR15
  publication-title: Differ. Integr. Equ.
– volume: 14
  start-page: 349
  year: 1973
  ident: 717_CR5
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
– ident: 717_CR3
– volume: 282
  start-page: 721
  year: 2008
  ident: 717_CR26
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-008-0546-x
– volume: 27
  start-page: 953
  year: 2010
  ident: 717_CR19
  publication-title: Ann. Inst. H. Poincaré AN.
  doi: 10.1016/j.anihpc.2010.01.009
– volume: 229
  start-page: 743
  year: 2006
  ident: 717_CR28
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2006.07.002
SSID ssj0015824
Score 2.4108386
Snippet We study the following nonlinear Schrödinger system which is related to Bose–Einstein condensate: - Δ u + λ 1 u = μ 1 u 2 ∗ - 1 + β u 2 ∗ 2 - 1 v 2 ∗ 2 , x ∈ Ω...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image) We study the following nonlinear Schrödinger system which is related to...
(ProQuest: ... denotes formulae and/or non-USASCII text omitted; see image).We study the following nonlinear Schrodinger system which is related to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 423
SubjectTerms Analysis
Applied mathematics
Bose-Einstein condensates
Calculus of variations
Calculus of Variations and Optimal Control; Optimization
Classification
Control
Dirichlet problem
Eigenvalues
Exponents
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Partial differential equations
Phase separation
Schrodinger equation
Schroedinger equation
Systems Theory
Texts
Theoretical
Title Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: higher dimensional case
URI https://link.springer.com/article/10.1007/s00526-014-0717-x
https://www.proquest.com/docview/1644596073
https://www.proquest.com/docview/1660064487
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bSsQwEA2yvuiDeMX1xgg-KYVqk03r2yJeUBRBF9an0iYT9mHp1u2u-Af-kT_gjzlJL15QweemSekkmXMymTOM7clUmkMMaX2nHeNxcsleJLXvKUng2USRCN055PVN56LHL_uiX-VxF_Vt9zok6XbqJtnNSZMQ9eU26UZ6BBxnBVF3O617R90mdCBCV8mWaAv3yPtEdSjzpy6-OqMPhPktKOp8zdkiW6hAInRLqy6xGcyW2fx1o7BarLCXW3fb6glhaKvvALocPmhmEiSZhnxAPgoKLPW9RxkQQgU1muZD1HCnBuO3V-0-APCxlPwuwB7MgqoKIAA-56OM_NIxDNyFENC2GkCp5AGKel9lvbPT-5MLryqq4CkeRhMPrcJaKFPao3lCcJH4FoEIVFwTM8PE-DwNjAqMSCJCA6iFwEQGmlCULw3ZMlhjrYxGXmdA8MAkIo1C5QdcmyDyuQm5CDDsGOSJbjO__ruxqhTHbeGLYdxoJTuDxGSQ2Bokfm6z_eaVvJTb-KvxVm2yuFp5RUz0jwuiZTJos93mMa0ZGwhJMhxNbZuOhWLE1drsoDb1py5-G3DjX6032RyhK1Ge12yx1mQ8xW1CMJN0h812zx-uTnfczH0HRHHsgg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5Vy6HlAPQHsfy0g9RTq6Cg2OuEG0LAFlhUqYtET1Fij7USq-xCdhHiBXgjXqAv1rHz0xa1lTjHsRN7xvONx_MNwEeVK7tLMet33rOBYJMcJMqEgVYMnm2SyNifQw7Oe_0LcXIpL-s87rK57d6EJP1O3Sa7eWoSdn2FS7pRAQPHBcEuuOzAwv7x99PDNnggY1_Llh0XEbD9SZpg5t86-dMc_cKYT8Ki3tocLcOw-c7qksnVznyW7-j7JxSOz_yRFViq0SfuV-LyGl5Q8QYWBy11a_kWHr76a1y3hGNX1gfJJwdiK6KYFQanIzZ-WFJFHD4pkKEv6sl8OiaD3_To5sej8Z-EdF1xiZfoTnxR15UVkO6mk4IN3h6O_E0TNK7MQEURgpp7fwcXR4fDg35QV2sItIiTWUCOui1WOW_-ImMcyo4coxPSwrDLR5kNRR5ZHVmZJQwzyEhJmYoMw7NQWRaSaBU6BY-8Bsi4w2YyT2IdRsLYKAmFjYWMKO5ZEpnpQtgsWqprKnNXUWOctiTMfo5TnuPUzXF614VP7SvTisfjf403G0lIa5UuU_YrhWR_T0Vd2G4fszK6CEtW0GTu2vQcxmMnsAufm8X_rYt_Dbj-rNYf4GV_ODhLz76cn27AK4ZwsjoU2oTO7GZOWwyTZvn7Wi1-AgjSCvA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fa9swEBelhbI9lO4f85ptN-jTiolTS5Hdt7ItZO0aAm0gb8aWTuQhOF7slHyDfqN9gX2xnuQ_3UY32LNlSegk3e90d79j7Fhm0gwwovOdDY3PSSX7sdSBrySBZxPHInLvkFeT4XjGL-Zi3tQ5Ldto99YlWec0WJamvOoX2vS7xDdHU0JmMLcJONInELlHt_HAxnTNTs87N4KIXFVbMmG4T5oobt2aj3Xxu2J6QJt_OEid3hkdsoMGMMJ5LeFnbAfz5-zpVce2Wr5gd1MXeXWLsLSVeABdPh90uwrSXEOxIH0FJdZc36scCK2CWm2KJWq4Vov1zx_aTQDwe03_XYJ9pAXVFEMA3BarnNboDBYuOAS0rQxQs3qAot5fstnoy82nsd8UWPAVj-LKR8u2FsmM7mueEnQk24sABSquyUrD1AQ8C40KjUhjQgaohcBUhpoQVSANyTV8xXZzGvk1A4IKJhVZHKkg5NqEccBNxEWI0dAgT7XHgnZ1E9Wwj9siGMuk4012AklIIIkVSLL12Mful6Km3vhX414rsqQ5hWVCpiAXZKLJ0GMfus90fqxTJM1xtbFthhaWkd3msZNW1L908bcB3_xX6_dsf_p5lHz7Ork8Yk8IdIn6GafHdqv1Bt8SsKmyd27z3gOen_Id
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+least+energy+solutions+and+phase+separation+for+coupled+Schr%C3%B6dinger+equations+with+critical+exponent%3A+higher+dimensional+case&rft.jtitle=Calculus+of+variations+and+partial+differential+equations&rft.au=Chen%2C+Zhijie&rft.au=Zou%2C+Wenming&rft.date=2015-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0944-2669&rft.eissn=1432-0835&rft.volume=52&rft.issue=1-2&rft.spage=423&rft_id=info:doi/10.1007%2Fs00526-014-0717-x&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3555452611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0944-2669&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0944-2669&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0944-2669&client=summon