Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface

[Display omitted] •Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC achieved 73% of nitrate reduction efficiency even at pH 6.•Mechanism study showed AC played an important role in electron transfer. Nitrate re...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 435; no. 435; pp. 21 - 25
Main Authors Luo, Jinghuan, Song, Guangyu, Liu, Jianyong, Qian, Guangren, Xu, Zhi Ping
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.12.2014
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC achieved 73% of nitrate reduction efficiency even at pH 6.•Mechanism study showed AC played an important role in electron transfer. Nitrate reduction by zero-valent iron (Fe0) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe0 powder combined with activated carbon (AC), i.e., Fe0/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe0/AC system and Fe0 under near-neutral conditions, showing that the Fe0/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe0 only ∼10%. The effect of Fe0 to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe0 and AC as the result of decreasing Fe0 to AC mass ratio. Ferrous ion and oxidation–reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe0/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe0 to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe0/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.
AbstractList Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.
Nitrate reduction by zero-valent iron (Fe super(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe super(0) powder combined with activated carbon (AC), i.e., Fe super(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe super(0)/AC system and Fe super(0) under near-neutral conditions, showing that the Fe super(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe super(0) only similar to 10%. The effect of Fe super(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe super(0) and AC as the result of decreasing Fe super(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe super(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe super(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe super(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.
[Display omitted] •Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC achieved 73% of nitrate reduction efficiency even at pH 6.•Mechanism study showed AC played an important role in electron transfer. Nitrate reduction by zero-valent iron (Fe0) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe0 powder combined with activated carbon (AC), i.e., Fe0/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe0/AC system and Fe0 under near-neutral conditions, showing that the Fe0/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe0 only ∼10%. The effect of Fe0 to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe0 and AC as the result of decreasing Fe0 to AC mass ratio. Ferrous ion and oxidation–reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe0/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe0 to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe0/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.
Nitrate reduction by zero-valent iron (Fe⁰) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe⁰ powder combined with activated carbon (AC), i.e., Fe⁰/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe⁰/AC system and Fe⁰ under near-neutral conditions, showing that the Fe⁰/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe⁰ only ∼10%. The effect of Fe⁰ to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe⁰ and AC as the result of decreasing Fe⁰ to AC mass ratio. Ferrous ion and oxidation–reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe⁰/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe⁰ to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe⁰/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.
Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.
Author Liu, Jianyong
Luo, Jinghuan
Song, Guangyu
Xu, Zhi Ping
Qian, Guangren
Author_xml – sequence: 1
  givenname: Jinghuan
  surname: Luo
  fullname: Luo, Jinghuan
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
– sequence: 2
  givenname: Guangyu
  surname: Song
  fullname: Song, Guangyu
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
– sequence: 3
  givenname: Jianyong
  surname: Liu
  fullname: Liu, Jianyong
  email: liujianyong@shu.edu.cn
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
– sequence: 4
  givenname: Guangren
  surname: Qian
  fullname: Qian, Guangren
  organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China
– sequence: 5
  givenname: Zhi Ping
  surname: Xu
  fullname: Xu, Zhi Ping
  email: gordonxu@uq.edu.au
  organization: ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28890856$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/25217726$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9rFDEchoNU7Lb6BTxILoKXmebPzCQBL1L8BxUveg7Z3_yGZplN1iS7pf30ZthVwUP1lBye5w3kfS_IWYgBCXnJWcsZH6427QZ8bgXjXct0yzr5hKw4M32jOJNnZMWY4I1RRp2Ti5w3jHHe9-YZORe94EqJYUUeviDcuuDzlsaJYqh3wJEGX5IrSBOOeyg-Bnrwjm49pNjgjFBSnO-zz9QVWm6R7uLdiBWmD1iJg5sxFOpTDFeu6ocaNVJwaV2DfCiYJgf4nDyd3Jzxxem8JN8_vP92_am5-frx8_W7mwY6bUozTgBd58wgFPA10-AmQDkArielh05yMzKBgxFagtTAjJJO4yQ6MP3QcScvyZtj7i7FH3vMxW59BpxnFzDusxX1M6XqFBv-ifKh5_VF0av_QLkwmvVSVvTVCd2vtzjaXfJbl-7trxYq8PoEuAxunlItwec_nNaG6X7hxJGrNeSccPqNcGaXSdiNXSZhl0lYpm2dRJX0XxL44pZOa8V-flx9e1Sx1nPwmGwGj8tAfKobsGP0j-k_ATRU0kM
CODEN JCISA5
CitedBy_id crossref_primary_10_1016_j_jwpe_2023_104591
crossref_primary_10_1016_j_cjche_2018_12_007
crossref_primary_10_1007_s12665_018_7661_6
crossref_primary_10_1007_s11356_019_05931_3
crossref_primary_10_1007_s12205_015_0464_3
crossref_primary_10_1016_j_jwpe_2023_103583
crossref_primary_10_1016_j_chemosphere_2019_124543
crossref_primary_10_1039_D4DT02052A
crossref_primary_10_5004_dwt_2018_22761
crossref_primary_10_1007_s11356_019_04501_x
crossref_primary_10_1016_j_jhazmat_2023_131756
crossref_primary_10_1039_D4RA00377B
crossref_primary_10_1016_j_jes_2017_02_016
crossref_primary_10_1016_j_seppur_2023_125635
crossref_primary_10_1016_j_jece_2022_108958
crossref_primary_10_1039_C5RA11141B
crossref_primary_10_1016_j_chemosphere_2020_126257
crossref_primary_10_1631_jzus_A2300287
crossref_primary_10_1016_j_psep_2017_08_035
crossref_primary_10_1080_19443994_2015_1062430
crossref_primary_10_1016_j_cej_2018_06_139
crossref_primary_10_1021_acs_iecr_9b05081
crossref_primary_10_1016_j_chemosphere_2020_126899
crossref_primary_10_5004_dwt_2017_21049
crossref_primary_10_1016_j_seppur_2020_117887
crossref_primary_10_1016_j_scitotenv_2019_03_317
crossref_primary_10_1007_s11814_017_0144_8
crossref_primary_10_1016_j_micromeso_2020_110522
crossref_primary_10_1016_j_watres_2021_117889
crossref_primary_10_5004_dwt_2019_23124
crossref_primary_10_54691_k1318y15
crossref_primary_10_1016_j_mtcomm_2024_108504
crossref_primary_10_1016_j_scitotenv_2019_133720
crossref_primary_10_1080_19443994_2015_1106981
crossref_primary_10_1016_j_jece_2019_103457
crossref_primary_10_1016_j_apsusc_2016_08_027
crossref_primary_10_1016_j_jwpe_2022_102899
crossref_primary_10_5004_dwt_2020_25081
crossref_primary_10_1007_s11356_021_13260_7
crossref_primary_10_1007_s10854_021_06139_3
crossref_primary_10_1016_j_chemosphere_2021_130483
crossref_primary_10_1016_j_scitotenv_2021_152800
crossref_primary_10_5004_dwt_2018_22939
crossref_primary_10_1016_j_biortech_2021_125390
crossref_primary_10_1016_j_cej_2018_11_058
crossref_primary_10_1016_j_apcatb_2015_11_045
crossref_primary_10_5004_dwt_2020_25631
crossref_primary_10_1016_j_scitotenv_2021_145137
crossref_primary_10_1016_j_scitotenv_2017_04_071
crossref_primary_10_1016_j_jconhyd_2020_103727
crossref_primary_10_1016_j_jwpe_2024_105586
crossref_primary_10_1016_j_jenvman_2022_115505
crossref_primary_10_1016_j_watres_2017_12_064
crossref_primary_10_1016_j_cherd_2022_03_024
crossref_primary_10_1080_09593330_2017_1282985
crossref_primary_10_1016_j_seppur_2016_06_058
crossref_primary_10_2166_wst_2015_467
crossref_primary_10_1016_j_clay_2022_106550
crossref_primary_10_1016_j_jcis_2021_11_018
crossref_primary_10_19113_sdufenbed_641298
crossref_primary_10_1080_09542299_2018_1552086
crossref_primary_10_3390_ma13214739
crossref_primary_10_1016_j_seppur_2020_117061
crossref_primary_10_1007_s11356_022_20814_w
crossref_primary_10_1016_j_chemosphere_2020_125986
crossref_primary_10_1016_j_jallcom_2023_169309
crossref_primary_10_1016_j_biortech_2024_131925
crossref_primary_10_1016_j_cej_2018_09_071
crossref_primary_10_1007_s11356_018_3919_5
crossref_primary_10_1016_j_jhazmat_2018_08_098
crossref_primary_10_1016_j_scitotenv_2024_174581
crossref_primary_10_1016_j_scitotenv_2024_173374
crossref_primary_10_1007_s41742_024_00671_w
crossref_primary_10_1016_j_biortech_2020_124602
crossref_primary_10_1016_j_biortech_2020_124447
crossref_primary_10_1016_j_watres_2024_121309
crossref_primary_10_1016_j_jiec_2024_08_007
crossref_primary_10_1016_j_ces_2023_119038
crossref_primary_10_1016_j_jhazmat_2018_04_035
crossref_primary_10_2166_wpt_2024_093
crossref_primary_10_1016_j_jics_2022_100598
crossref_primary_10_1080_09593330_2019_1615133
crossref_primary_10_1016_j_chemosphere_2016_04_048
crossref_primary_10_1016_j_chemosphere_2021_131993
crossref_primary_10_1016_j_envres_2022_114724
crossref_primary_10_1002_app_52743
crossref_primary_10_1007_s42773_023_00264_4
Cites_doi 10.1016/j.jhazmat.2012.06.037
10.1016/j.watres.2005.03.002
10.1016/j.cej.2011.12.074
10.1016/j.jhazmat.2004.09.005
10.1021/es0264605
10.1016/j.jhazmat.2012.06.025
10.1016/j.jhazmat.2009.03.123
10.1016/j.watres.2011.01.005
10.1016/j.desal.2011.08.029
10.1016/j.cej.2011.04.022
10.1016/j.psep.2012.07.005
10.1021/es103185t
10.1021/es9909778
10.1007/s11356-012-0911-3
10.1016/j.chemosphere.2008.10.020
10.1021/es025885o
10.1016/j.chemosphere.2012.09.040
10.1016/j.jhazmat.2009.09.035
10.1016/j.jhazmat.2010.10.078
10.1021/es802498k
10.1016/j.chemosphere.2010.08.005
10.1016/j.cej.2012.09.006
10.1016/j.cej.2012.06.057
10.1016/j.watres.2004.03.015
10.1021/es048038p
10.1016/S0043-1354(97)00464-8
10.1021/es011000h
10.1016/j.watres.2013.03.057
10.1016/j.jhazmat.2010.06.004
10.1016/j.psep.2010.06.002
ContentType Journal Article
Copyright 2014 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
L7M
7S9
L.6
DOI 10.1016/j.jcis.2014.08.043
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Technology Research Database

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 25
ExternalDocumentID 25217726
28890856
10_1016_j_jcis_2014_08_043
S0021979714006006
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7U5
8FD
EFKBS
L7M
7S9
L.6
ID FETCH-LOGICAL-c489t-dfcc44a9627c1b08cafce36cebf7864319d02e69283c38c0973a8ef24c95641a3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Fri Jul 11 16:00:38 EDT 2025
Tue Aug 05 10:25:39 EDT 2025
Fri Jul 11 05:24:31 EDT 2025
Thu Apr 03 07:04:04 EDT 2025
Wed Apr 02 07:18:35 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
Tue Jul 01 01:18:18 EDT 2025
Fri Feb 23 02:33:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 435
Keywords Electron transfer
Micro-electrolysis system
Fe0/AC composite
Nitrate reduction
Transition metal
Iron
Nitrates
Composite material
Mechanism
Powder
Chemical reduction
Electrolysis
Activated carbon
Fe°/AC composite
Interface
Fe/AC composite
Language English
License CC BY 4.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-dfcc44a9627c1b08cafce36cebf7864319d02e69283c38c0973a8ef24c95641a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25217726
PQID 1612980533
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_2101374706
proquest_miscellaneous_1651431257
proquest_miscellaneous_1612980533
pubmed_primary_25217726
pascalfrancis_primary_28890856
crossref_primary_10_1016_j_jcis_2014_08_043
crossref_citationtrail_10_1016_j_jcis_2014_08_043
elsevier_sciencedirect_doi_10_1016_j_jcis_2014_08_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2014
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Huang, Zhang (b0060) 2005; 39
Xu, Hao, Xie, Lv, Yang, Xu (b0070) 2012; 284
Dou, Li, Zhao, Liang (b0125) 2010; 182
Huang, Wang, Chiu (b0030) 1998; 32
Jiang, Lv, Zhang, Du, Pan, Yang, Zhang (b0055) 2011; 45
Ying, Peng, Xu, Li, Wang, Jia (b0090) 2012; 229
Lai, Zhou, Yang, Yang, Wang (b0110) 2013; 90
Liu, Tu, Wang, Wang, Li (b0095) 2012; 200
Cho, Chon, Jeon, Kim, Khan, Song (b0015) 2010; 81
Yang (b0120) 2009; 169
Boopathy, Karthikeyan, Mandal, Sekaran (b0135) 2013; 20
Alowitz, Scherer (b0145) 2002; 36
Zhang, Li, Li, Hu, Zheng (b0035) 2011; 171
Liou, Lin, Weng, Ou, Lo (b0080) 2009; 43
Lin, Lo, Liou (b0085) 2004; 116
Shi, Nurmi, Tratnyek (b0140) 2011; 45
Qin, Zhang, Meng, Xu, Lv (b0100) 2012; 210
Gui, Gillham, Odziemkowski (b0130) 2000; 34
Li, Li, Meng (b0005) 2010; 174
Van der Zee, Bisschops, Lettinga, Field (b0115) 2003; 37
Huang, Zhang (b0025) 2004; 38
Fateminia, Falamaki (b0045) 2013; 91
Zhou, Lv, Shen, Wang, Fan (b0105) 2013; 47
Zhang, Hao, Zhang, Yang, Xu (b0010) 2010; 88
Rodriguez-Maroto, Garcia-Herruzo, Garcia-Rubio, Gomez-Lahoz, Vereda-Alonso (b0020) 2009; 74
Wang, Farrell (b0150) 2003; 37
Suzuki, Moribe, Oyama, Niinae (b0065) 2012; 183
Liou, Lo, Lin, Hu, Kuan, Weng (b0075) 2005; 39
Jiang, Zhang, Pan, Wang, Wang, Lv, Zhang, Zhang (b0050) 2012; 233
Hwang, Kim, Shin (b0040) 2011; 185
Shi (10.1016/j.jcis.2014.08.043_b0140) 2011; 45
Zhang (10.1016/j.jcis.2014.08.043_b0035) 2011; 171
Qin (10.1016/j.jcis.2014.08.043_b0100) 2012; 210
Wang (10.1016/j.jcis.2014.08.043_b0150) 2003; 37
Rodriguez-Maroto (10.1016/j.jcis.2014.08.043_b0020) 2009; 74
Yang (10.1016/j.jcis.2014.08.043_b0120) 2009; 169
Boopathy (10.1016/j.jcis.2014.08.043_b0135) 2013; 20
Xu (10.1016/j.jcis.2014.08.043_b0070) 2012; 284
Li (10.1016/j.jcis.2014.08.043_b0005) 2010; 174
Alowitz (10.1016/j.jcis.2014.08.043_b0145) 2002; 36
Hwang (10.1016/j.jcis.2014.08.043_b0040) 2011; 185
Gui (10.1016/j.jcis.2014.08.043_b0130) 2000; 34
Van der Zee (10.1016/j.jcis.2014.08.043_b0115) 2003; 37
Zhang (10.1016/j.jcis.2014.08.043_b0010) 2010; 88
Liou (10.1016/j.jcis.2014.08.043_b0075) 2005; 39
Fateminia (10.1016/j.jcis.2014.08.043_b0045) 2013; 91
Huang (10.1016/j.jcis.2014.08.043_b0025) 2004; 38
Cho (10.1016/j.jcis.2014.08.043_b0015) 2010; 81
Liou (10.1016/j.jcis.2014.08.043_b0080) 2009; 43
Jiang (10.1016/j.jcis.2014.08.043_b0055) 2011; 45
Jiang (10.1016/j.jcis.2014.08.043_b0050) 2012; 233
Huang (10.1016/j.jcis.2014.08.043_b0060) 2005; 39
Suzuki (10.1016/j.jcis.2014.08.043_b0065) 2012; 183
Zhou (10.1016/j.jcis.2014.08.043_b0105) 2013; 47
Lai (10.1016/j.jcis.2014.08.043_b0110) 2013; 90
Huang (10.1016/j.jcis.2014.08.043_b0030) 1998; 32
Ying (10.1016/j.jcis.2014.08.043_b0090) 2012; 229
Dou (10.1016/j.jcis.2014.08.043_b0125) 2010; 182
Lin (10.1016/j.jcis.2014.08.043_b0085) 2004; 116
Liu (10.1016/j.jcis.2014.08.043_b0095) 2012; 200
References_xml – volume: 38
  start-page: 2631
  year: 2004
  end-page: 2642
  ident: b0025
  publication-title: Water Res.
– volume: 47
  start-page: 3514
  year: 2013
  end-page: 3522
  ident: b0105
  publication-title: Water Res.
– volume: 233
  start-page: 1
  year: 2012
  end-page: 6
  ident: b0050
  publication-title: J. Hazard. Mater.
– volume: 210
  start-page: 575
  year: 2012
  end-page: 584
  ident: b0100
  publication-title: Chem. Eng. J.
– volume: 34
  start-page: 3489
  year: 2000
  end-page: 3494
  ident: b0130
  publication-title: Environ. Sci. Technol.
– volume: 20
  start-page: 533
  year: 2013
  end-page: 542
  ident: b0135
  publication-title: Environ. Sci. Pollut. Res.
– volume: 45
  start-page: 2191
  year: 2011
  end-page: 2198
  ident: b0055
  publication-title: Water Res.
– volume: 229
  start-page: 426
  year: 2012
  end-page: 433
  ident: b0090
  publication-title: J. Hazard. Mater.
– volume: 37
  start-page: 402
  year: 2003
  end-page: 408
  ident: b0115
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 1586
  year: 2011
  end-page: 1592
  ident: b0140
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 3891
  year: 2003
  end-page: 3896
  ident: b0150
  publication-title: Environ. Sci. Technol.
– volume: 90
  start-page: 1470
  year: 2013
  end-page: 1477
  ident: b0110
  publication-title: Chemosphere
– volume: 116
  start-page: 219
  year: 2004
  end-page: 228
  ident: b0085
  publication-title: J. Hazard. Mater.
– volume: 182
  start-page: 108
  year: 2010
  end-page: 114
  ident: b0125
  publication-title: J. Hazard. Mater.
– volume: 284
  start-page: 9
  year: 2012
  end-page: 13
  ident: b0070
  publication-title: Desalination
– volume: 32
  start-page: 2257
  year: 1998
  end-page: 2264
  ident: b0030
  publication-title: Water Res.
– volume: 200
  start-page: 720
  year: 2012
  end-page: 728
  ident: b0095
  publication-title: Chem. Eng. J.
– volume: 88
  start-page: 439
  year: 2010
  end-page: 445
  ident: b0010
  publication-title: Process Saf. Environ. Prot.
– volume: 185
  start-page: 1513
  year: 2011
  end-page: 1521
  ident: b0040
  publication-title: J. Hazard. Mater.
– volume: 39
  start-page: 1751
  year: 2005
  end-page: 1760
  ident: b0060
  publication-title: Water Res.
– volume: 171
  start-page: 526
  year: 2011
  end-page: 531
  ident: b0035
  publication-title: Chem. Eng. J.
– volume: 91
  start-page: 304
  year: 2013
  end-page: 310
  ident: b0045
  publication-title: Process Saf. Environ. Prot.
– volume: 183
  start-page: 271
  year: 2012
  end-page: 277
  ident: b0065
  publication-title: Chem. Eng. J.
– volume: 81
  start-page: 611
  year: 2010
  end-page: 616
  ident: b0015
  publication-title: Chemosphere
– volume: 174
  start-page: 188
  year: 2010
  end-page: 193
  ident: b0005
  publication-title: J. Hazard. Mater.
– volume: 169
  start-page: 480
  year: 2009
  end-page: 485
  ident: b0120
  publication-title: J. Hazard. Mater.
– volume: 74
  start-page: 804
  year: 2009
  end-page: 809
  ident: b0020
  publication-title: Chemosphere
– volume: 39
  start-page: 9643
  year: 2005
  end-page: 9648
  ident: b0075
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 2482
  year: 2009
  end-page: 2488
  ident: b0080
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 299
  year: 2002
  end-page: 306
  ident: b0145
  publication-title: Environ. Sci. Technol.
– volume: 229
  start-page: 426
  year: 2012
  ident: 10.1016/j.jcis.2014.08.043_b0090
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.06.037
– volume: 39
  start-page: 1751
  year: 2005
  ident: 10.1016/j.jcis.2014.08.043_b0060
  publication-title: Water Res.
  doi: 10.1016/j.watres.2005.03.002
– volume: 183
  start-page: 271
  year: 2012
  ident: 10.1016/j.jcis.2014.08.043_b0065
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.12.074
– volume: 116
  start-page: 219
  year: 2004
  ident: 10.1016/j.jcis.2014.08.043_b0085
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2004.09.005
– volume: 37
  start-page: 3891
  year: 2003
  ident: 10.1016/j.jcis.2014.08.043_b0150
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0264605
– volume: 233
  start-page: 1
  year: 2012
  ident: 10.1016/j.jcis.2014.08.043_b0050
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.06.025
– volume: 169
  start-page: 480
  year: 2009
  ident: 10.1016/j.jcis.2014.08.043_b0120
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.03.123
– volume: 45
  start-page: 2191
  year: 2011
  ident: 10.1016/j.jcis.2014.08.043_b0055
  publication-title: Water Res.
  doi: 10.1016/j.watres.2011.01.005
– volume: 284
  start-page: 9
  year: 2012
  ident: 10.1016/j.jcis.2014.08.043_b0070
  publication-title: Desalination
  doi: 10.1016/j.desal.2011.08.029
– volume: 171
  start-page: 526
  year: 2011
  ident: 10.1016/j.jcis.2014.08.043_b0035
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.04.022
– volume: 91
  start-page: 304
  year: 2013
  ident: 10.1016/j.jcis.2014.08.043_b0045
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2012.07.005
– volume: 45
  start-page: 1586
  year: 2011
  ident: 10.1016/j.jcis.2014.08.043_b0140
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103185t
– volume: 34
  start-page: 3489
  year: 2000
  ident: 10.1016/j.jcis.2014.08.043_b0130
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es9909778
– volume: 20
  start-page: 533
  year: 2013
  ident: 10.1016/j.jcis.2014.08.043_b0135
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-012-0911-3
– volume: 74
  start-page: 804
  year: 2009
  ident: 10.1016/j.jcis.2014.08.043_b0020
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.10.020
– volume: 37
  start-page: 402
  year: 2003
  ident: 10.1016/j.jcis.2014.08.043_b0115
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025885o
– volume: 90
  start-page: 1470
  year: 2013
  ident: 10.1016/j.jcis.2014.08.043_b0110
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2012.09.040
– volume: 174
  start-page: 188
  year: 2010
  ident: 10.1016/j.jcis.2014.08.043_b0005
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.09.035
– volume: 185
  start-page: 1513
  year: 2011
  ident: 10.1016/j.jcis.2014.08.043_b0040
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.10.078
– volume: 43
  start-page: 2482
  year: 2009
  ident: 10.1016/j.jcis.2014.08.043_b0080
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es802498k
– volume: 81
  start-page: 611
  year: 2010
  ident: 10.1016/j.jcis.2014.08.043_b0015
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2010.08.005
– volume: 210
  start-page: 575
  year: 2012
  ident: 10.1016/j.jcis.2014.08.043_b0100
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.09.006
– volume: 200
  start-page: 720
  year: 2012
  ident: 10.1016/j.jcis.2014.08.043_b0095
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.06.057
– volume: 38
  start-page: 2631
  year: 2004
  ident: 10.1016/j.jcis.2014.08.043_b0025
  publication-title: Water Res.
  doi: 10.1016/j.watres.2004.03.015
– volume: 39
  start-page: 9643
  year: 2005
  ident: 10.1016/j.jcis.2014.08.043_b0075
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es048038p
– volume: 32
  start-page: 2257
  year: 1998
  ident: 10.1016/j.jcis.2014.08.043_b0030
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(97)00464-8
– volume: 36
  start-page: 299
  year: 2002
  ident: 10.1016/j.jcis.2014.08.043_b0145
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011000h
– volume: 47
  start-page: 3514
  year: 2013
  ident: 10.1016/j.jcis.2014.08.043_b0105
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.03.057
– volume: 182
  start-page: 108
  year: 2010
  ident: 10.1016/j.jcis.2014.08.043_b0125
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.06.004
– volume: 88
  start-page: 439
  year: 2010
  ident: 10.1016/j.jcis.2014.08.043_b0010
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2010.06.002
SSID ssj0011559
Score 2.4445295
Snippet [Display omitted] •Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC...
Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its...
Nitrate reduction by zero-valent iron (Fe super(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on...
Nitrate reduction by zero-valent iron (Fe⁰) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Activated carbon
Adsorbents
aqueous solutions
Charcoal - chemistry
Chemistry
Contact
Electrolysis
Electron transfer
electrons
Exact sciences and technology
Fe0/AC composite
General and physical chemistry
hydrogen
Hydrogen-Ion Concentration
Iron
Iron - chemistry
Mass ratios
Micro-electrolysis system
Nitrate reduction
Nitrates
Nitrates - chemistry
Oxidation-Reduction
oxides
Powders - chemistry
redox potential
Reduction
Surface physical chemistry
Surface Properties
wastewater treatment
Title Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface
URI https://dx.doi.org/10.1016/j.jcis.2014.08.043
https://www.ncbi.nlm.nih.gov/pubmed/25217726
https://www.proquest.com/docview/1612980533
https://www.proquest.com/docview/1651431257
https://www.proquest.com/docview/2101374706
Volume 435
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rAVw7C165Y9AhXorfBi2YosHYtgRbahPbVAb4JMS5iL1QmStAN62G8fadlZe0gOO9qgrQcp6SNEfmTsuBTCOMh8ko4dOijBqUSjnhNIUzDCwdi09MXnF2p6Jb9fj6932KTPhaGwym7vj3t6u1t3b0bdbI7mdU05vrjaCkOMc6mKtNtSFmTlX_6swzwEXbvFMA-RkHSXOBNjvG6gJspuIVsaT5lvOpxezt0SpyzEWhebwWh7KJ29Zq86NMlPY4ffsB3f7LPnk76I2z7be8Q3eMAezj0l-tbLWz4L3Dc_2-t_jquaCCP4gmhcSVH8vnb8lkL1kq5MTktcwt2KI17k89nvtsQnf_AogaaKBxendLkRZUnc468qDm5R4o-IjWIRHPi37Ors6-VkmnTFFxKQ2qySKgBI6ag2D4gy1eAC-FyBL0OhEcYIU6WZVwbhCeQaiPXHaR8yCehxSeHyQ7bbzBr_nnGJ7rfRWeEQyUvIKqOVKjMFZSaC8FU6YKKfdQsdMzkVyPhl-xC0G0uasqQpS1UzZT5gJ-tv5pGXY6v0uFemfWJdFg-Ord8Nn2h-3VSmtUGwqgbsqDcFi5qlyxbX-Nnd0iKSxkFTpvM2GYKrCDGLzTLokoscfb4U23oXbe1fLxB74ZyqD_85vI_sBT3F6JxPbHe1uPOfEWOtymG7iIbs2em3H9OLv4JxJqQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZQONAKVZQ-SB_UlXqrVlnveh37iKKiUEhOIHGzvLO2uqhsoiSAxK9nZh9pOSQHrrt-zvjxjTzzDWM_ciGMg8RHcebQQAlORRr1HEEcgxEOMlPTF0-manwlf19n1zts1MXCkFtle_Y3Z3p9WrdfBq00B_OypBhf3G1DQ4xzsappt3eJnSrrsd2Ts_PxdP2YQC9vjaeHiKhCGzvTuHndQEms3ULWTJ4y3XQ_7c_dEqUWmnQXm_FofS-dHrA3LaDkJ82Y37IdXx2yvVGXx-2Qvf6PcvAde5x4ivUtl7d8Friv_tQeABw3NnFG8AUxuZKu-H3p-C1560Vtppyau4S7FUfIyOezhzrLJ3_0WAJXK95dnCLmBhQocY9NFRzcIseGiJBiERz49-zq9NflaBy1-RcikNqsoiIASOkoPQ-IPNbgAvhUgc_DUCOSEaaIE68MIhRINRDxj9M-JBLQ6JLCpR9Yr5pV_ohxiRa40cnQIZiXkBRGK5UnCvJEBOGLuM9EJ3ULLTk55cj4azsvtBtLmrKkKUuJM2XaZz_XdeYNNcfW0lmnTPtsgVm8O7bWO36m-XVXidYG8arqs-_dUrCoWXpvcZWf3S0tgmmcNAU7bytDiBVR5nBzGbTKRYpmX4x9fWzW2r9RIPxCmapPL5zeN7Y3vpxc2Iuz6fln9or-NM46X1hvtbjzXxFyrfLjdks9AYIGKVU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+enhanced+nitrate+reduction+via+micro-electrolysis+at+the+powdered+zero-valent+iron%2Factivated+carbon+interface&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=JINGHUAN+LUO&rft.au=GUANGYU+SONG&rft.au=JIANYONG+LIU&rft.au=GUANGREN+QIAN&rft.date=2014-12-01&rft.pub=Elsevier&rft.issn=0021-9797&rft.issue=435&rft.spage=21&rft.epage=25&rft_id=info:doi/10.1016%2Fj.jcis.2014.08.043&rft.externalDBID=n%2Fa&rft.externalDocID=28890856
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon