Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface
[Display omitted] •Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC achieved 73% of nitrate reduction efficiency even at pH 6.•Mechanism study showed AC played an important role in electron transfer. Nitrate re...
Saved in:
Published in | Journal of colloid and interface science Vol. 435; no. 435; pp. 21 - 25 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.12.2014
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC achieved 73% of nitrate reduction efficiency even at pH 6.•Mechanism study showed AC played an important role in electron transfer.
Nitrate reduction by zero-valent iron (Fe0) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe0 powder combined with activated carbon (AC), i.e., Fe0/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe0/AC system and Fe0 under near-neutral conditions, showing that the Fe0/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe0 only ∼10%. The effect of Fe0 to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe0 and AC as the result of decreasing Fe0 to AC mass ratio. Ferrous ion and oxidation–reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe0/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe0 to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe0/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. |
---|---|
AbstractList | Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. Nitrate reduction by zero-valent iron (Fe super(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe super(0) powder combined with activated carbon (AC), i.e., Fe super(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe super(0)/AC system and Fe super(0) under near-neutral conditions, showing that the Fe super(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe super(0) only similar to 10%. The effect of Fe super(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe super(0) and AC as the result of decreasing Fe super(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe super(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe super(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe super(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. [Display omitted] •Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC achieved 73% of nitrate reduction efficiency even at pH 6.•Mechanism study showed AC played an important role in electron transfer. Nitrate reduction by zero-valent iron (Fe0) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe0 powder combined with activated carbon (AC), i.e., Fe0/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe0/AC system and Fe0 under near-neutral conditions, showing that the Fe0/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe0 only ∼10%. The effect of Fe0 to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe0 and AC as the result of decreasing Fe0 to AC mass ratio. Ferrous ion and oxidation–reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe0/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe0 to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe0/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. Nitrate reduction by zero-valent iron (Fe⁰) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe⁰ powder combined with activated carbon (AC), i.e., Fe⁰/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe⁰/AC system and Fe⁰ under near-neutral conditions, showing that the Fe⁰/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe⁰ only ∼10%. The effect of Fe⁰ to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe⁰ and AC as the result of decreasing Fe⁰ to AC mass ratio. Ferrous ion and oxidation–reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe⁰/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe⁰ to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe⁰/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment.Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its surface. Fe(0) powder combined with activated carbon (AC), i.e., Fe(0)/AC micro-electrolysis system, was first introduced to enhance nitrate reduction in aqueous solution. Comparative study was carried out to investigate nitrate reduction by Fe(0)/AC system and Fe(0) under near-neutral conditions, showing that the Fe(0)/AC system successfully reduced nitrate even at initial pH 6 with the reduction efficiency of up to 73%, whereas for Fe(0) only ∼10%. The effect of Fe(0) to AC mass ratio on nitrate reduction efficiency was examined. Easier nitrate reduction was achieved with more contact between Fe(0) and AC as the result of decreasing Fe(0) to AC mass ratio. Ferrous ion and oxidation-reduction potential were measured to understand the mechanism of enhanced nitrate reduction by Fe(0)/AC micro-electrolysis. The results suggest that a relative potential difference drives much more electrons from Fe(0) to AC, thus generating adsorbed atomic hydrogen which makes it possible for nitrate to be reduced at near-neural pH. Fe(0)/AC micro-electrolysis thus presents a great potential for practical application in nitrate wastewater treatment without excessive pH adjustment. |
Author | Liu, Jianyong Luo, Jinghuan Song, Guangyu Xu, Zhi Ping Qian, Guangren |
Author_xml | – sequence: 1 givenname: Jinghuan surname: Luo fullname: Luo, Jinghuan organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China – sequence: 2 givenname: Guangyu surname: Song fullname: Song, Guangyu organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China – sequence: 3 givenname: Jianyong surname: Liu fullname: Liu, Jianyong email: liujianyong@shu.edu.cn organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China – sequence: 4 givenname: Guangren surname: Qian fullname: Qian, Guangren organization: School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, PR China – sequence: 5 givenname: Zhi Ping surname: Xu fullname: Xu, Zhi Ping email: gordonxu@uq.edu.au organization: ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28890856$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/25217726$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9rFDEchoNU7Lb6BTxILoKXmebPzCQBL1L8BxUveg7Z3_yGZplN1iS7pf30ZthVwUP1lBye5w3kfS_IWYgBCXnJWcsZH6427QZ8bgXjXct0yzr5hKw4M32jOJNnZMWY4I1RRp2Ti5w3jHHe9-YZORe94EqJYUUeviDcuuDzlsaJYqh3wJEGX5IrSBOOeyg-Bnrwjm49pNjgjFBSnO-zz9QVWm6R7uLdiBWmD1iJg5sxFOpTDFeu6ocaNVJwaV2DfCiYJgf4nDyd3Jzxxem8JN8_vP92_am5-frx8_W7mwY6bUozTgBd58wgFPA10-AmQDkArielh05yMzKBgxFagtTAjJJO4yQ6MP3QcScvyZtj7i7FH3vMxW59BpxnFzDusxX1M6XqFBv-ifKh5_VF0av_QLkwmvVSVvTVCd2vtzjaXfJbl-7trxYq8PoEuAxunlItwec_nNaG6X7hxJGrNeSccPqNcGaXSdiNXSZhl0lYpm2dRJX0XxL44pZOa8V-flx9e1Sx1nPwmGwGj8tAfKobsGP0j-k_ATRU0kM |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2023_104591 crossref_primary_10_1016_j_cjche_2018_12_007 crossref_primary_10_1007_s12665_018_7661_6 crossref_primary_10_1007_s11356_019_05931_3 crossref_primary_10_1007_s12205_015_0464_3 crossref_primary_10_1016_j_jwpe_2023_103583 crossref_primary_10_1016_j_chemosphere_2019_124543 crossref_primary_10_1039_D4DT02052A crossref_primary_10_5004_dwt_2018_22761 crossref_primary_10_1007_s11356_019_04501_x crossref_primary_10_1016_j_jhazmat_2023_131756 crossref_primary_10_1039_D4RA00377B crossref_primary_10_1016_j_jes_2017_02_016 crossref_primary_10_1016_j_seppur_2023_125635 crossref_primary_10_1016_j_jece_2022_108958 crossref_primary_10_1039_C5RA11141B crossref_primary_10_1016_j_chemosphere_2020_126257 crossref_primary_10_1631_jzus_A2300287 crossref_primary_10_1016_j_psep_2017_08_035 crossref_primary_10_1080_19443994_2015_1062430 crossref_primary_10_1016_j_cej_2018_06_139 crossref_primary_10_1021_acs_iecr_9b05081 crossref_primary_10_1016_j_chemosphere_2020_126899 crossref_primary_10_5004_dwt_2017_21049 crossref_primary_10_1016_j_seppur_2020_117887 crossref_primary_10_1016_j_scitotenv_2019_03_317 crossref_primary_10_1007_s11814_017_0144_8 crossref_primary_10_1016_j_micromeso_2020_110522 crossref_primary_10_1016_j_watres_2021_117889 crossref_primary_10_5004_dwt_2019_23124 crossref_primary_10_54691_k1318y15 crossref_primary_10_1016_j_mtcomm_2024_108504 crossref_primary_10_1016_j_scitotenv_2019_133720 crossref_primary_10_1080_19443994_2015_1106981 crossref_primary_10_1016_j_jece_2019_103457 crossref_primary_10_1016_j_apsusc_2016_08_027 crossref_primary_10_1016_j_jwpe_2022_102899 crossref_primary_10_5004_dwt_2020_25081 crossref_primary_10_1007_s11356_021_13260_7 crossref_primary_10_1007_s10854_021_06139_3 crossref_primary_10_1016_j_chemosphere_2021_130483 crossref_primary_10_1016_j_scitotenv_2021_152800 crossref_primary_10_5004_dwt_2018_22939 crossref_primary_10_1016_j_biortech_2021_125390 crossref_primary_10_1016_j_cej_2018_11_058 crossref_primary_10_1016_j_apcatb_2015_11_045 crossref_primary_10_5004_dwt_2020_25631 crossref_primary_10_1016_j_scitotenv_2021_145137 crossref_primary_10_1016_j_scitotenv_2017_04_071 crossref_primary_10_1016_j_jconhyd_2020_103727 crossref_primary_10_1016_j_jwpe_2024_105586 crossref_primary_10_1016_j_jenvman_2022_115505 crossref_primary_10_1016_j_watres_2017_12_064 crossref_primary_10_1016_j_cherd_2022_03_024 crossref_primary_10_1080_09593330_2017_1282985 crossref_primary_10_1016_j_seppur_2016_06_058 crossref_primary_10_2166_wst_2015_467 crossref_primary_10_1016_j_clay_2022_106550 crossref_primary_10_1016_j_jcis_2021_11_018 crossref_primary_10_19113_sdufenbed_641298 crossref_primary_10_1080_09542299_2018_1552086 crossref_primary_10_3390_ma13214739 crossref_primary_10_1016_j_seppur_2020_117061 crossref_primary_10_1007_s11356_022_20814_w crossref_primary_10_1016_j_chemosphere_2020_125986 crossref_primary_10_1016_j_jallcom_2023_169309 crossref_primary_10_1016_j_biortech_2024_131925 crossref_primary_10_1016_j_cej_2018_09_071 crossref_primary_10_1007_s11356_018_3919_5 crossref_primary_10_1016_j_jhazmat_2018_08_098 crossref_primary_10_1016_j_scitotenv_2024_174581 crossref_primary_10_1016_j_scitotenv_2024_173374 crossref_primary_10_1007_s41742_024_00671_w crossref_primary_10_1016_j_biortech_2020_124602 crossref_primary_10_1016_j_biortech_2020_124447 crossref_primary_10_1016_j_watres_2024_121309 crossref_primary_10_1016_j_jiec_2024_08_007 crossref_primary_10_1016_j_ces_2023_119038 crossref_primary_10_1016_j_jhazmat_2018_04_035 crossref_primary_10_2166_wpt_2024_093 crossref_primary_10_1016_j_jics_2022_100598 crossref_primary_10_1080_09593330_2019_1615133 crossref_primary_10_1016_j_chemosphere_2016_04_048 crossref_primary_10_1016_j_chemosphere_2021_131993 crossref_primary_10_1016_j_envres_2022_114724 crossref_primary_10_1002_app_52743 crossref_primary_10_1007_s42773_023_00264_4 |
Cites_doi | 10.1016/j.jhazmat.2012.06.037 10.1016/j.watres.2005.03.002 10.1016/j.cej.2011.12.074 10.1016/j.jhazmat.2004.09.005 10.1021/es0264605 10.1016/j.jhazmat.2012.06.025 10.1016/j.jhazmat.2009.03.123 10.1016/j.watres.2011.01.005 10.1016/j.desal.2011.08.029 10.1016/j.cej.2011.04.022 10.1016/j.psep.2012.07.005 10.1021/es103185t 10.1021/es9909778 10.1007/s11356-012-0911-3 10.1016/j.chemosphere.2008.10.020 10.1021/es025885o 10.1016/j.chemosphere.2012.09.040 10.1016/j.jhazmat.2009.09.035 10.1016/j.jhazmat.2010.10.078 10.1021/es802498k 10.1016/j.chemosphere.2010.08.005 10.1016/j.cej.2012.09.006 10.1016/j.cej.2012.06.057 10.1016/j.watres.2004.03.015 10.1021/es048038p 10.1016/S0043-1354(97)00464-8 10.1021/es011000h 10.1016/j.watres.2013.03.057 10.1016/j.jhazmat.2010.06.004 10.1016/j.psep.2010.06.002 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Inc. 2015 INIST-CNRS Copyright © 2014 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD L7M 7S9 L.6 |
DOI | 10.1016/j.jcis.2014.08.043 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Technology Research Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 25 |
ExternalDocumentID | 25217726 28890856 10_1016_j_jcis_2014_08_043 S0021979714006006 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACNNM ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CAG CITATION COF D-I FEDTE FGOYB G-2 HLY HVGLF HZ~ H~9 NDZJH NEJ R2- SCB SCE SEW SSH VH1 WUQ ZGI ZXP IQODW CGR CUY CVF ECM EIF NPM 7X8 7U5 8FD EFKBS L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c489t-dfcc44a9627c1b08cafce36cebf7864319d02e69283c38c0973a8ef24c95641a3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Fri Jul 11 16:00:38 EDT 2025 Tue Aug 05 10:25:39 EDT 2025 Fri Jul 11 05:24:31 EDT 2025 Thu Apr 03 07:04:04 EDT 2025 Wed Apr 02 07:18:35 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Tue Jul 01 01:18:18 EDT 2025 Fri Feb 23 02:33:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 435 |
Keywords | Electron transfer Micro-electrolysis system Fe0/AC composite Nitrate reduction Transition metal Iron Nitrates Composite material Mechanism Powder Chemical reduction Electrolysis Activated carbon Fe°/AC composite Interface Fe/AC composite |
Language | English |
License | CC BY 4.0 Copyright © 2014 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-dfcc44a9627c1b08cafce36cebf7864319d02e69283c38c0973a8ef24c95641a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25217726 |
PQID | 1612980533 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2101374706 proquest_miscellaneous_1651431257 proquest_miscellaneous_1612980533 pubmed_primary_25217726 pascalfrancis_primary_28890856 crossref_primary_10_1016_j_jcis_2014_08_043 crossref_citationtrail_10_1016_j_jcis_2014_08_043 elsevier_sciencedirect_doi_10_1016_j_jcis_2014_08_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-12-01 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: 2014-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2014 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Huang, Zhang (b0060) 2005; 39 Xu, Hao, Xie, Lv, Yang, Xu (b0070) 2012; 284 Dou, Li, Zhao, Liang (b0125) 2010; 182 Huang, Wang, Chiu (b0030) 1998; 32 Jiang, Lv, Zhang, Du, Pan, Yang, Zhang (b0055) 2011; 45 Ying, Peng, Xu, Li, Wang, Jia (b0090) 2012; 229 Lai, Zhou, Yang, Yang, Wang (b0110) 2013; 90 Liu, Tu, Wang, Wang, Li (b0095) 2012; 200 Cho, Chon, Jeon, Kim, Khan, Song (b0015) 2010; 81 Yang (b0120) 2009; 169 Boopathy, Karthikeyan, Mandal, Sekaran (b0135) 2013; 20 Alowitz, Scherer (b0145) 2002; 36 Zhang, Li, Li, Hu, Zheng (b0035) 2011; 171 Liou, Lin, Weng, Ou, Lo (b0080) 2009; 43 Lin, Lo, Liou (b0085) 2004; 116 Shi, Nurmi, Tratnyek (b0140) 2011; 45 Qin, Zhang, Meng, Xu, Lv (b0100) 2012; 210 Gui, Gillham, Odziemkowski (b0130) 2000; 34 Li, Li, Meng (b0005) 2010; 174 Van der Zee, Bisschops, Lettinga, Field (b0115) 2003; 37 Huang, Zhang (b0025) 2004; 38 Fateminia, Falamaki (b0045) 2013; 91 Zhou, Lv, Shen, Wang, Fan (b0105) 2013; 47 Zhang, Hao, Zhang, Yang, Xu (b0010) 2010; 88 Rodriguez-Maroto, Garcia-Herruzo, Garcia-Rubio, Gomez-Lahoz, Vereda-Alonso (b0020) 2009; 74 Wang, Farrell (b0150) 2003; 37 Suzuki, Moribe, Oyama, Niinae (b0065) 2012; 183 Liou, Lo, Lin, Hu, Kuan, Weng (b0075) 2005; 39 Jiang, Zhang, Pan, Wang, Wang, Lv, Zhang, Zhang (b0050) 2012; 233 Hwang, Kim, Shin (b0040) 2011; 185 Shi (10.1016/j.jcis.2014.08.043_b0140) 2011; 45 Zhang (10.1016/j.jcis.2014.08.043_b0035) 2011; 171 Qin (10.1016/j.jcis.2014.08.043_b0100) 2012; 210 Wang (10.1016/j.jcis.2014.08.043_b0150) 2003; 37 Rodriguez-Maroto (10.1016/j.jcis.2014.08.043_b0020) 2009; 74 Yang (10.1016/j.jcis.2014.08.043_b0120) 2009; 169 Boopathy (10.1016/j.jcis.2014.08.043_b0135) 2013; 20 Xu (10.1016/j.jcis.2014.08.043_b0070) 2012; 284 Li (10.1016/j.jcis.2014.08.043_b0005) 2010; 174 Alowitz (10.1016/j.jcis.2014.08.043_b0145) 2002; 36 Hwang (10.1016/j.jcis.2014.08.043_b0040) 2011; 185 Gui (10.1016/j.jcis.2014.08.043_b0130) 2000; 34 Van der Zee (10.1016/j.jcis.2014.08.043_b0115) 2003; 37 Zhang (10.1016/j.jcis.2014.08.043_b0010) 2010; 88 Liou (10.1016/j.jcis.2014.08.043_b0075) 2005; 39 Fateminia (10.1016/j.jcis.2014.08.043_b0045) 2013; 91 Huang (10.1016/j.jcis.2014.08.043_b0025) 2004; 38 Cho (10.1016/j.jcis.2014.08.043_b0015) 2010; 81 Liou (10.1016/j.jcis.2014.08.043_b0080) 2009; 43 Jiang (10.1016/j.jcis.2014.08.043_b0055) 2011; 45 Jiang (10.1016/j.jcis.2014.08.043_b0050) 2012; 233 Huang (10.1016/j.jcis.2014.08.043_b0060) 2005; 39 Suzuki (10.1016/j.jcis.2014.08.043_b0065) 2012; 183 Zhou (10.1016/j.jcis.2014.08.043_b0105) 2013; 47 Lai (10.1016/j.jcis.2014.08.043_b0110) 2013; 90 Huang (10.1016/j.jcis.2014.08.043_b0030) 1998; 32 Ying (10.1016/j.jcis.2014.08.043_b0090) 2012; 229 Dou (10.1016/j.jcis.2014.08.043_b0125) 2010; 182 Lin (10.1016/j.jcis.2014.08.043_b0085) 2004; 116 Liu (10.1016/j.jcis.2014.08.043_b0095) 2012; 200 |
References_xml | – volume: 38 start-page: 2631 year: 2004 end-page: 2642 ident: b0025 publication-title: Water Res. – volume: 47 start-page: 3514 year: 2013 end-page: 3522 ident: b0105 publication-title: Water Res. – volume: 233 start-page: 1 year: 2012 end-page: 6 ident: b0050 publication-title: J. Hazard. Mater. – volume: 210 start-page: 575 year: 2012 end-page: 584 ident: b0100 publication-title: Chem. Eng. J. – volume: 34 start-page: 3489 year: 2000 end-page: 3494 ident: b0130 publication-title: Environ. Sci. Technol. – volume: 20 start-page: 533 year: 2013 end-page: 542 ident: b0135 publication-title: Environ. Sci. Pollut. Res. – volume: 45 start-page: 2191 year: 2011 end-page: 2198 ident: b0055 publication-title: Water Res. – volume: 229 start-page: 426 year: 2012 end-page: 433 ident: b0090 publication-title: J. Hazard. Mater. – volume: 37 start-page: 402 year: 2003 end-page: 408 ident: b0115 publication-title: Environ. Sci. Technol. – volume: 45 start-page: 1586 year: 2011 end-page: 1592 ident: b0140 publication-title: Environ. Sci. Technol. – volume: 37 start-page: 3891 year: 2003 end-page: 3896 ident: b0150 publication-title: Environ. Sci. Technol. – volume: 90 start-page: 1470 year: 2013 end-page: 1477 ident: b0110 publication-title: Chemosphere – volume: 116 start-page: 219 year: 2004 end-page: 228 ident: b0085 publication-title: J. Hazard. Mater. – volume: 182 start-page: 108 year: 2010 end-page: 114 ident: b0125 publication-title: J. Hazard. Mater. – volume: 284 start-page: 9 year: 2012 end-page: 13 ident: b0070 publication-title: Desalination – volume: 32 start-page: 2257 year: 1998 end-page: 2264 ident: b0030 publication-title: Water Res. – volume: 200 start-page: 720 year: 2012 end-page: 728 ident: b0095 publication-title: Chem. Eng. J. – volume: 88 start-page: 439 year: 2010 end-page: 445 ident: b0010 publication-title: Process Saf. Environ. Prot. – volume: 185 start-page: 1513 year: 2011 end-page: 1521 ident: b0040 publication-title: J. Hazard. Mater. – volume: 39 start-page: 1751 year: 2005 end-page: 1760 ident: b0060 publication-title: Water Res. – volume: 171 start-page: 526 year: 2011 end-page: 531 ident: b0035 publication-title: Chem. Eng. J. – volume: 91 start-page: 304 year: 2013 end-page: 310 ident: b0045 publication-title: Process Saf. Environ. Prot. – volume: 183 start-page: 271 year: 2012 end-page: 277 ident: b0065 publication-title: Chem. Eng. J. – volume: 81 start-page: 611 year: 2010 end-page: 616 ident: b0015 publication-title: Chemosphere – volume: 174 start-page: 188 year: 2010 end-page: 193 ident: b0005 publication-title: J. Hazard. Mater. – volume: 169 start-page: 480 year: 2009 end-page: 485 ident: b0120 publication-title: J. Hazard. Mater. – volume: 74 start-page: 804 year: 2009 end-page: 809 ident: b0020 publication-title: Chemosphere – volume: 39 start-page: 9643 year: 2005 end-page: 9648 ident: b0075 publication-title: Environ. Sci. Technol. – volume: 43 start-page: 2482 year: 2009 end-page: 2488 ident: b0080 publication-title: Environ. Sci. Technol. – volume: 36 start-page: 299 year: 2002 end-page: 306 ident: b0145 publication-title: Environ. Sci. Technol. – volume: 229 start-page: 426 year: 2012 ident: 10.1016/j.jcis.2014.08.043_b0090 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.06.037 – volume: 39 start-page: 1751 year: 2005 ident: 10.1016/j.jcis.2014.08.043_b0060 publication-title: Water Res. doi: 10.1016/j.watres.2005.03.002 – volume: 183 start-page: 271 year: 2012 ident: 10.1016/j.jcis.2014.08.043_b0065 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.12.074 – volume: 116 start-page: 219 year: 2004 ident: 10.1016/j.jcis.2014.08.043_b0085 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2004.09.005 – volume: 37 start-page: 3891 year: 2003 ident: 10.1016/j.jcis.2014.08.043_b0150 publication-title: Environ. Sci. Technol. doi: 10.1021/es0264605 – volume: 233 start-page: 1 year: 2012 ident: 10.1016/j.jcis.2014.08.043_b0050 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.06.025 – volume: 169 start-page: 480 year: 2009 ident: 10.1016/j.jcis.2014.08.043_b0120 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.03.123 – volume: 45 start-page: 2191 year: 2011 ident: 10.1016/j.jcis.2014.08.043_b0055 publication-title: Water Res. doi: 10.1016/j.watres.2011.01.005 – volume: 284 start-page: 9 year: 2012 ident: 10.1016/j.jcis.2014.08.043_b0070 publication-title: Desalination doi: 10.1016/j.desal.2011.08.029 – volume: 171 start-page: 526 year: 2011 ident: 10.1016/j.jcis.2014.08.043_b0035 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.04.022 – volume: 91 start-page: 304 year: 2013 ident: 10.1016/j.jcis.2014.08.043_b0045 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2012.07.005 – volume: 45 start-page: 1586 year: 2011 ident: 10.1016/j.jcis.2014.08.043_b0140 publication-title: Environ. Sci. Technol. doi: 10.1021/es103185t – volume: 34 start-page: 3489 year: 2000 ident: 10.1016/j.jcis.2014.08.043_b0130 publication-title: Environ. Sci. Technol. doi: 10.1021/es9909778 – volume: 20 start-page: 533 year: 2013 ident: 10.1016/j.jcis.2014.08.043_b0135 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-012-0911-3 – volume: 74 start-page: 804 year: 2009 ident: 10.1016/j.jcis.2014.08.043_b0020 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2008.10.020 – volume: 37 start-page: 402 year: 2003 ident: 10.1016/j.jcis.2014.08.043_b0115 publication-title: Environ. Sci. Technol. doi: 10.1021/es025885o – volume: 90 start-page: 1470 year: 2013 ident: 10.1016/j.jcis.2014.08.043_b0110 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.09.040 – volume: 174 start-page: 188 year: 2010 ident: 10.1016/j.jcis.2014.08.043_b0005 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.09.035 – volume: 185 start-page: 1513 year: 2011 ident: 10.1016/j.jcis.2014.08.043_b0040 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.10.078 – volume: 43 start-page: 2482 year: 2009 ident: 10.1016/j.jcis.2014.08.043_b0080 publication-title: Environ. Sci. Technol. doi: 10.1021/es802498k – volume: 81 start-page: 611 year: 2010 ident: 10.1016/j.jcis.2014.08.043_b0015 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2010.08.005 – volume: 210 start-page: 575 year: 2012 ident: 10.1016/j.jcis.2014.08.043_b0100 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.09.006 – volume: 200 start-page: 720 year: 2012 ident: 10.1016/j.jcis.2014.08.043_b0095 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.057 – volume: 38 start-page: 2631 year: 2004 ident: 10.1016/j.jcis.2014.08.043_b0025 publication-title: Water Res. doi: 10.1016/j.watres.2004.03.015 – volume: 39 start-page: 9643 year: 2005 ident: 10.1016/j.jcis.2014.08.043_b0075 publication-title: Environ. Sci. Technol. doi: 10.1021/es048038p – volume: 32 start-page: 2257 year: 1998 ident: 10.1016/j.jcis.2014.08.043_b0030 publication-title: Water Res. doi: 10.1016/S0043-1354(97)00464-8 – volume: 36 start-page: 299 year: 2002 ident: 10.1016/j.jcis.2014.08.043_b0145 publication-title: Environ. Sci. Technol. doi: 10.1021/es011000h – volume: 47 start-page: 3514 year: 2013 ident: 10.1016/j.jcis.2014.08.043_b0105 publication-title: Water Res. doi: 10.1016/j.watres.2013.03.057 – volume: 182 start-page: 108 year: 2010 ident: 10.1016/j.jcis.2014.08.043_b0125 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.06.004 – volume: 88 start-page: 439 year: 2010 ident: 10.1016/j.jcis.2014.08.043_b0010 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2010.06.002 |
SSID | ssj0011559 |
Score | 2.4445295 |
Snippet | [Display omitted]
•Fe0/AC micro-electrolysis was first introduced for nitrate reduction.•Fe0/AC performed much better nitrate reduction than Fe0 only.•Fe0/AC... Nitrate reduction by zero-valent iron (Fe(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its... Nitrate reduction by zero-valent iron (Fe super(0)) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on... Nitrate reduction by zero-valent iron (Fe⁰) powder always works well only at controlled pH lower than 4 due to the formation of iron (hydr)oxides on its... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21 |
SubjectTerms | Activated carbon Adsorbents aqueous solutions Charcoal - chemistry Chemistry Contact Electrolysis Electron transfer electrons Exact sciences and technology Fe0/AC composite General and physical chemistry hydrogen Hydrogen-Ion Concentration Iron Iron - chemistry Mass ratios Micro-electrolysis system Nitrate reduction Nitrates Nitrates - chemistry Oxidation-Reduction oxides Powders - chemistry redox potential Reduction Surface physical chemistry Surface Properties wastewater treatment |
Title | Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface |
URI | https://dx.doi.org/10.1016/j.jcis.2014.08.043 https://www.ncbi.nlm.nih.gov/pubmed/25217726 https://www.proquest.com/docview/1612980533 https://www.proquest.com/docview/1651431257 https://www.proquest.com/docview/2101374706 |
Volume | 435 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK7rAVw7C165Y9AhXorfBi2YosHYtgRbahPbVAb4JMS5iL1QmStAN62G8fadlZe0gOO9qgrQcp6SNEfmTsuBTCOMh8ko4dOijBqUSjnhNIUzDCwdi09MXnF2p6Jb9fj6932KTPhaGwym7vj3t6u1t3b0bdbI7mdU05vrjaCkOMc6mKtNtSFmTlX_6swzwEXbvFMA-RkHSXOBNjvG6gJspuIVsaT5lvOpxezt0SpyzEWhebwWh7KJ29Zq86NMlPY4ffsB3f7LPnk76I2z7be8Q3eMAezj0l-tbLWz4L3Dc_2-t_jquaCCP4gmhcSVH8vnb8lkL1kq5MTktcwt2KI17k89nvtsQnf_AogaaKBxendLkRZUnc468qDm5R4o-IjWIRHPi37Ors6-VkmnTFFxKQ2qySKgBI6ag2D4gy1eAC-FyBL0OhEcYIU6WZVwbhCeQaiPXHaR8yCehxSeHyQ7bbzBr_nnGJ7rfRWeEQyUvIKqOVKjMFZSaC8FU6YKKfdQsdMzkVyPhl-xC0G0uasqQpS1UzZT5gJ-tv5pGXY6v0uFemfWJdFg-Ord8Nn2h-3VSmtUGwqgbsqDcFi5qlyxbX-Nnd0iKSxkFTpvM2GYKrCDGLzTLokoscfb4U23oXbe1fLxB74ZyqD_85vI_sBT3F6JxPbHe1uPOfEWOtymG7iIbs2em3H9OLv4JxJqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZQONAKVZQ-SB_UlXqrVlnveh37iKKiUEhOIHGzvLO2uqhsoiSAxK9nZh9pOSQHrrt-zvjxjTzzDWM_ciGMg8RHcebQQAlORRr1HEEcgxEOMlPTF0-manwlf19n1zts1MXCkFtle_Y3Z3p9WrdfBq00B_OypBhf3G1DQ4xzsappt3eJnSrrsd2Ts_PxdP2YQC9vjaeHiKhCGzvTuHndQEms3ULWTJ4y3XQ_7c_dEqUWmnQXm_FofS-dHrA3LaDkJ82Y37IdXx2yvVGXx-2Qvf6PcvAde5x4ivUtl7d8Friv_tQeABw3NnFG8AUxuZKu-H3p-C1560Vtppyau4S7FUfIyOezhzrLJ3_0WAJXK95dnCLmBhQocY9NFRzcIseGiJBiERz49-zq9NflaBy1-RcikNqsoiIASOkoPQ-IPNbgAvhUgc_DUCOSEaaIE68MIhRINRDxj9M-JBLQ6JLCpR9Yr5pV_ohxiRa40cnQIZiXkBRGK5UnCvJEBOGLuM9EJ3ULLTk55cj4azsvtBtLmrKkKUuJM2XaZz_XdeYNNcfW0lmnTPtsgVm8O7bWO36m-XVXidYG8arqs-_dUrCoWXpvcZWf3S0tgmmcNAU7bytDiBVR5nBzGbTKRYpmX4x9fWzW2r9RIPxCmapPL5zeN7Y3vpxc2Iuz6fln9or-NM46X1hvtbjzXxFyrfLjdks9AYIGKVU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+enhanced+nitrate+reduction+via+micro-electrolysis+at+the+powdered+zero-valent+iron%2Factivated+carbon+interface&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=JINGHUAN+LUO&rft.au=GUANGYU+SONG&rft.au=JIANYONG+LIU&rft.au=GUANGREN+QIAN&rft.date=2014-12-01&rft.pub=Elsevier&rft.issn=0021-9797&rft.issue=435&rft.spage=21&rft.epage=25&rft_id=info:doi/10.1016%2Fj.jcis.2014.08.043&rft.externalDBID=n%2Fa&rft.externalDocID=28890856 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |