The Importance of “Shrinkage” in Subgroup Analyses
Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the anal...
Saved in:
Published in | Annals of emergency medicine Vol. 55; no. 6; pp. 544 - 552.e3 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Mosby, Inc
01.06.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups.
We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects.
The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate.
When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error. |
---|---|
AbstractList | Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups.STUDY OBJECTIVESubgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups.We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects.METHODSWe present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects.The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate.RESULTSThe revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate.When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error.CONCLUSIONWhen multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error. Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups. We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects. The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate. When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error. Study objective Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups. Methods We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects. Results The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate. Conclusion When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error. |
Author | Vienna, Muna Lipsky, Ari M. Lewis, Roger J. Gausche-Hill, Marianne |
AuthorAffiliation | 2 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel 3 Los Angeles Biomedical Research Institute, Torrance, CA 1 Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA |
AuthorAffiliation_xml | – name: 2 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA – name: 4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel – name: 3 Los Angeles Biomedical Research Institute, Torrance, CA – name: 1 Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA |
Author_xml | – sequence: 1 givenname: Ari M. surname: Lipsky fullname: Lipsky, Ari M. email: aril@alum.mit.edu organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA – sequence: 2 givenname: Marianne surname: Gausche-Hill fullname: Gausche-Hill, Marianne organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA – sequence: 3 givenname: Muna surname: Vienna fullname: Vienna, Muna organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA – sequence: 4 givenname: Roger J. surname: Lewis fullname: Lewis, Roger J. organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22907550$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20138396$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1q2zAUx8XoWNNurzC8i9ErZ0eWJcc3HSHso1DYRbprIcvHiVJbyiS7kLs-yPZyfZLJJOu6wiC6EUj_8zsf_3NGTqyzSMg7ClMKVHzYTJW12KFfdVhPM4jvQKcA2QsyoVAWqSgEnJAJ0FKkIPL8lJyFsAGAMs_oK3IaQ9iMlWJCxM0ak6tu63yvrMbENcnD_c_l2ht7q1b4cP8rMTZZDtXKu2GbzK1qdwHDa_KyUW3AN4f7nHz__Olm8TW9_vblajG_TnU-K_u0ZlhBI4BzAYWoi6oWpRA6B1U1gmoGmDNKRaYUZ0UsnCqqVM50XZWq4qxh5-Ryz90OVexVo-29auXWm075nXTKyH9_rFnLlbuT2azgjBcRcHEAePdjwNDLzgSNbassuiHIgjGYzXgpovLt01SPOf7MKgreHwQqaNU2Pg7MhL-6rISCc4i6cq_T3oXgsXmUUJCjf3Ijn_g3JgAJVEb_YuzHZ7Ha9Ko3buzOtEcRFnsCRlvuDHoZtMFobW086l7WzhxFuXxG0a2xJrZ9izsMGzf4uAlBUhkyCXI5btq4aBTGw1kEzP8POLKI3y7J6xE |
CODEN | AEMED3 |
CitedBy_id | crossref_primary_10_1016_j_annemergmed_2011_01_009 crossref_primary_10_1002_sim_10064 crossref_primary_10_3390_genes14122167 crossref_primary_10_1080_19466315_2022_2144943 crossref_primary_10_1161_CIRCOUTCOMES_111_960724 crossref_primary_10_1016_j_jacc_2020_11_061 crossref_primary_10_1016_j_jclinepi_2016_12_021 crossref_primary_10_1016_j_annemergmed_2010_04_010 crossref_primary_10_1080_10543406_2021_1998101 crossref_primary_10_1001_jama_2018_17977 crossref_primary_10_1186_s12874_016_0122_6 crossref_primary_10_1002_emp2_12479 crossref_primary_10_1016_j_jval_2024_03_010 crossref_primary_10_1161_STROKEAHA_123_044144 crossref_primary_10_1080_10543406_2016_1226327 crossref_primary_10_1016_j_clinbiochem_2017_08_007 crossref_primary_10_1002_pst_2424 crossref_primary_10_1111_jav_01529 |
Cites_doi | 10.1001/jama.283.6.783 10.2307/2682801 10.1093/ije/29.1.158 10.1111/j.0006-341X.1999.00597.x 10.1016/j.athoracsur.2005.06.078 10.1023/A:1008929526011 10.1136/bmj.319.7208.508 10.1038/scientificamerican0577-119 10.1080/01621459.1975.10479864 |
ContentType | Journal Article |
Copyright | 2010 American College of Emergency Physicians American College of Emergency Physicians 2015 INIST-CNRS Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved. Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved. 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved. 2010 |
Copyright_xml | – notice: 2010 American College of Emergency Physicians – notice: American College of Emergency Physicians – notice: 2015 INIST-CNRS – notice: Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved. – notice: Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved. – notice: 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved. 2010 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.annemergmed.2010.01.002 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-6760 |
EndPage | 552.e3 |
ExternalDocumentID | PMC2875357 20138396 22907550 10_1016_j_annemergmed_2010_01_002 S0196064410000053 1_s2_0_S0196064410000053 |
Genre | Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Center for Research Resources (NCRR) grantid: 1F32RR022167 – fundername: Emergency Medicine Foundation – fundername: State of California Emergency Medical Services Authority grantid: EMS-3036 – fundername: Agency for Healthcare Research and Quality grantid: HS-09065-01 – fundername: Bureau for Maternal and Child Health of the Public Health Service grantid: MCH064004-01-0 – fundername: NCRR NIH HHS grantid: 1F32RR022167 – fundername: AHRQ HHS grantid: HS-09065-01 – fundername: NCRR NIH HHS grantid: F32 RR022167 – fundername: PHS HHS grantid: MCH064004-01-0 |
GroupedDBID | --- --K --M .1- .FO .GJ .XZ .~1 0R~ 1B1 1CY 1P~ 1RT 1~. 1~5 23M 354 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8F7 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKAS AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBLC ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADZCM AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG COF CS3 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDV HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM LX1 M27 M41 MO0 N4W N9A O-L O9- OAUVE OBH OB~ ODZKP OGIMB OHH OM0 OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SDF SDG SDP SEL SES SEW SJN SPCBC SSH SSZ T5K TEORI UGJ UHS UKR UQY UV1 WOW YFH YOC Z5R ZGI ZXP ZY1 ~G- AACTN AAYOK AFCTW AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU EFLBG LCYCR ZA5 AAYXX AGRNS CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c489t-d3eb0f60556076d7bd6966c40abf61c30e431162aa5370971a1aa43cdb9ab53f3 |
IEDL.DBID | .~1 |
ISSN | 0196-0644 1097-6760 |
IngestDate | Thu Aug 21 18:14:15 EDT 2025 Tue Aug 05 10:07:20 EDT 2025 Mon Jul 21 05:54:42 EDT 2025 Mon Jul 21 09:13:25 EDT 2025 Tue Jul 01 01:38:50 EDT 2025 Thu Apr 24 23:13:19 EDT 2025 Fri Feb 23 02:23:35 EST 2024 Sun Feb 23 10:19:32 EST 2025 Tue Aug 26 20:27:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Intensive care Resuscitation |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-d3eb0f60556076d7bd6966c40abf61c30e431162aa5370971a1aa43cdb9ab53f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20138396 |
PQID | 733088596 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2875357 proquest_miscellaneous_733088596 pubmed_primary_20138396 pascalfrancis_primary_22907550 crossref_primary_10_1016_j_annemergmed_2010_01_002 crossref_citationtrail_10_1016_j_annemergmed_2010_01_002 elsevier_sciencedirect_doi_10_1016_j_annemergmed_2010_01_002 elsevier_clinicalkeyesjournals_1_s2_0_S0196064410000053 elsevier_clinicalkey_doi_10_1016_j_annemergmed_2010_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100601 |
PublicationDateYYYYMMDD | 2010-06-01 |
PublicationDate_xml | – month: 6 year: 2010 text: 20100601 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Annals of emergency medicine |
PublicationTitleAlternate | Ann Emerg Med |
PublicationYear | 2010 |
Publisher | Mosby, Inc Elsevier |
Publisher_xml | – name: Mosby, Inc – name: Elsevier |
References | Greenland (bib8) 2000; 29 Efron, Morris (bib3) 1977; 236 Efron, Morris (bib4) 1975; 70 De Finetti (bib5) 1974; Vols. 1 and 2 Shahian, Torchiana, Shemin (bib10) 2005; 80 Spiegelhalter, Myles, Jones (bib6) 1999; 319 James, Stein (bib2) 1961; Vol 1 Lunn, Thomas, Best (bib11) 2000; 10 Gausche, Lewis, Stratton (bib1) 2000; 283 Casella (bib7) 1985; 39 Agresti (bib9) 1999; 55 Efron (10.1016/j.annemergmed.2010.01.002_bib3) 1977; 236 Spiegelhalter (10.1016/j.annemergmed.2010.01.002_bib6) 1999; 319 De Finetti (10.1016/j.annemergmed.2010.01.002_bib5) 1974; Vols. 1 and 2 Casella (10.1016/j.annemergmed.2010.01.002_bib7) 1985; 39 Lunn (10.1016/j.annemergmed.2010.01.002_bib11) 2000; 10 Greenland (10.1016/j.annemergmed.2010.01.002_bib8) 2000; 29 Gausche (10.1016/j.annemergmed.2010.01.002_bib1) 2000; 283 James (10.1016/j.annemergmed.2010.01.002_bib2) 1961; Vol 1 Agresti (10.1016/j.annemergmed.2010.01.002_bib9) 1999; 55 Efron (10.1016/j.annemergmed.2010.01.002_bib4) 1975; 70 Shahian (10.1016/j.annemergmed.2010.01.002_bib10) 2005; 80 20494223 - Ann Emerg Med. 2010 Jun;55(6):553-5. doi: 10.1016/j.annemergmed.2010.04.010. |
References_xml | – volume: 236 start-page: 119 year: 1977 end-page: 127 ident: bib3 article-title: Stein's paradox in statistics publication-title: Sci Am – volume: Vols. 1 and 2 year: 1974 ident: bib5 publication-title: The Theory of Probability – volume: 70 start-page: 311 year: 1975 end-page: 319 ident: bib4 article-title: Data analysis using Stein's estimator and its generalizations publication-title: J Am Stat Assoc – volume: 319 start-page: 508 year: 1999 end-page: 512 ident: bib6 article-title: An introduction to bayesian methods in health technology assessment publication-title: BMJ – volume: 55 start-page: 597 year: 1999 end-page: 602 ident: bib9 article-title: On logit confidence intervals for the odds ratio with small samples publication-title: Biometrics – volume: 80 start-page: 2106 year: 2005 end-page: 2113 ident: bib10 article-title: Massachusetts cardiac surgery report card: implications of statistical methodology publication-title: Ann Thorac Surg – volume: 283 start-page: 783 year: 2000 end-page: 790 ident: bib1 article-title: Effect of out-of-hospital pediatric endotracheal intubation-effect on survival and neurologic outcome: a controlled clinical trial publication-title: JAMA – volume: 39 start-page: 83 year: 1985 end-page: 87 ident: bib7 article-title: An introduction to empirical Bayes data analysis publication-title: Am Stat – volume: 10 start-page: 325 year: 2000 end-page: 337 ident: bib11 article-title: WinBUGS—a bayesian modelling framework: concepts, structure, and extensibility publication-title: Stat Comput – volume: 29 start-page: 158 year: 2000 end-page: 167 ident: bib8 article-title: Principles of multilevel modelling publication-title: Int J Epidemiol – volume: Vol 1 start-page: 311 year: 1961 end-page: 319 ident: bib2 article-title: Estimation with quadratic loss publication-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability – volume: 283 start-page: 783 year: 2000 ident: 10.1016/j.annemergmed.2010.01.002_bib1 article-title: Effect of out-of-hospital pediatric endotracheal intubation-effect on survival and neurologic outcome: a controlled clinical trial publication-title: JAMA doi: 10.1001/jama.283.6.783 – volume: Vol 1 start-page: 311 year: 1961 ident: 10.1016/j.annemergmed.2010.01.002_bib2 article-title: Estimation with quadratic loss – volume: 39 start-page: 83 year: 1985 ident: 10.1016/j.annemergmed.2010.01.002_bib7 article-title: An introduction to empirical Bayes data analysis publication-title: Am Stat doi: 10.2307/2682801 – volume: 29 start-page: 158 year: 2000 ident: 10.1016/j.annemergmed.2010.01.002_bib8 article-title: Principles of multilevel modelling publication-title: Int J Epidemiol doi: 10.1093/ije/29.1.158 – volume: 55 start-page: 597 year: 1999 ident: 10.1016/j.annemergmed.2010.01.002_bib9 article-title: On logit confidence intervals for the odds ratio with small samples publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00597.x – volume: 80 start-page: 2106 year: 2005 ident: 10.1016/j.annemergmed.2010.01.002_bib10 article-title: Massachusetts cardiac surgery report card: implications of statistical methodology publication-title: Ann Thorac Surg doi: 10.1016/j.athoracsur.2005.06.078 – volume: 10 start-page: 325 year: 2000 ident: 10.1016/j.annemergmed.2010.01.002_bib11 article-title: WinBUGS—a bayesian modelling framework: concepts, structure, and extensibility publication-title: Stat Comput doi: 10.1023/A:1008929526011 – volume: 319 start-page: 508 year: 1999 ident: 10.1016/j.annemergmed.2010.01.002_bib6 article-title: An introduction to bayesian methods in health technology assessment publication-title: BMJ doi: 10.1136/bmj.319.7208.508 – volume: 236 start-page: 119 year: 1977 ident: 10.1016/j.annemergmed.2010.01.002_bib3 article-title: Stein's paradox in statistics publication-title: Sci Am doi: 10.1038/scientificamerican0577-119 – volume: 70 start-page: 311 year: 1975 ident: 10.1016/j.annemergmed.2010.01.002_bib4 article-title: Data analysis using Stein's estimator and its generalizations publication-title: J Am Stat Assoc doi: 10.1080/01621459.1975.10479864 – volume: Vols. 1 and 2 year: 1974 ident: 10.1016/j.annemergmed.2010.01.002_bib5 – reference: 20494223 - Ann Emerg Med. 2010 Jun;55(6):553-5. doi: 10.1016/j.annemergmed.2010.04.010. |
SSID | ssj0009421 |
Score | 2.0274112 |
Snippet | Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data... Study objective Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 544 |
SubjectTerms | Adult Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Bayes Theorem Biological and medical sciences Child Clinical Trials as Topic - statistics & numerical data Confidence Intervals Data Interpretation, Statistical Emergency Humans Intensive care medicine Intubation, Intratracheal - statistics & numerical data Laryngeal Masks - statistics & numerical data Medical sciences Models, Statistical Odds Ratio Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Sample Size Treatment Outcome Victimology |
Title | The Importance of “Shrinkage” in Subgroup Analyses |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0196064410000053 https://www.clinicalkey.es/playcontent/1-s2.0-S0196064410000053 https://dx.doi.org/10.1016/j.annemergmed.2010.01.002 https://www.ncbi.nlm.nih.gov/pubmed/20138396 https://www.proquest.com/docview/733088596 https://pubmed.ncbi.nlm.nih.gov/PMC2875357 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5CCqFQSv_rtF1c6NVd2bKkuPQSQsOmJbmkgdyEZEtkQ-td4s015EHal8uTdMaWvdl2Dwu9Wh4bjUbzI818A_DBOebKymUJd1SSgx5xUkhrk9R6Ka0ouC-o3vn4RE7O8q_n4nwLDvpaGEqrDLq_0-mttg5PxoGb4_l0Oj4lZBdG5rx1dAUhfua5Iin_eLNM8yjyLPQkxMgZ396B98scL4O6jKoc0fCELK90OGFZY6MezU2DnPNdy4t1PunfqZX3bNXhE3gcnMx4v5vHU9hy9TPYOQ7X6M9BonDERz9b1xsnHM98fHf76_TiCgNT1C93t7_jaR2jTmlrPuIOuMQ1L-Ds8Mv3g0kSGigkZb5XLJKKO8u8JLwcpmSlbCUxuilzZnAl0pIzh-5DKjNjBFcEJmVSY3JeVrYwVnDPX8J2Pavda4gxcmGVsKzwXObOe6McfkJa1KVpZYWNYK9nmS4Dujg1ufih-zSyS32P25q4rVmqkdsRZAPpvIPY2IToU78uuq8hRa2n0RBsQqzWEbsm7N9Gp7rJNNP_yFgEnwfKFTHd9MejFREa5kuo-wqDxQjiXqY07nO6vDG1m103WnGOBkEUMoJXnYgtiem2mdOIWhG-4QWCEF8dqacXLZR4RuGqULv_N6038LBLqqDDqbewvbi6du_QV1vYUbsZR_Bg_-jb5OQPCalCLw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VIpVKCPFbUqAYiWtYJ47tpuKCKqotdHtpK_Vm2YmtLmqzq2Z7RX0QeLk-CePEyXZhDytxjTOJPB7Pjz3zDcBHa6ktSpvGzPqSHPSI41wYEyfGCWF4zlzu651Hx2J4ln075-drsN_Vwvi0yqD7W53eaOvwZBC4OZiOx4MTj-xCvTlvHF3OHsDDDLevb2Pw6ec8zyPP0tCUEENnfH0DPsyTvDQqM1_miJYnpHkl_RHLEiP1eKprZJ1re14sc0r_zq28Z6wOnsKT4GWSL-1EnsGarZ7Dxijco78AgdJBDq8a3xtnTCaO3N3-Orm4xsgUFczd7W8yrggqlabog7TIJbZ-CWcHX0_3h3HooBAX2W4-i0tmDXXCA-ZQKUppSoHhTZFRjUuRFIxa9B8SkWrNmfRoUjrROmNFaXJtOHPsFaxXk8q-BoKhCy25obljIrPOaWnxE8KgMk1Kw00Eux3LVBHgxX2Xi0vV5ZH9UPe4rTy3FU0UcjuCtCedthgbqxDtdeuiuiJSVHsKLcEqxHIZsa3DBq5VoupUUfWPkEXwuadckNNVf7yzIEL9fD3svsRoMQLSyZTCje5vb3RlJze1koyhReC5iGCrFbE5sb9uZn5ELghf_4LHEF8cqcYXDZZ46uNVLrf_b1rv4dHwdHSkjg6Pv7-BzTbDwp9UvYX12fWNfYeO28zsNBvzDwHEQ70 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Importance+of+%E2%80%9CShrinkage%E2%80%9D+in+Subgroup+Analyses&rft.jtitle=Annals+of+emergency+medicine&rft.au=Lipsky%2C+Ari+M.&rft.au=Gausche-Hill%2C+Marianne&rft.au=Vienna%2C+Muna&rft.au=Lewis%2C+Roger+J.&rft.date=2010-06-01&rft.issn=0196-0644&rft.volume=55&rft.issue=6&rft.spage=544&rft.epage=552.e3&rft_id=info:doi/10.1016%2Fj.annemergmed.2010.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_annemergmed_2010_01_002 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01960644%2FS0196064410X00051%2Fcov150h.gif |