The Importance of “Shrinkage” in Subgroup Analyses

Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the anal...

Full description

Saved in:
Bibliographic Details
Published inAnnals of emergency medicine Vol. 55; no. 6; pp. 544 - 552.e3
Main Authors Lipsky, Ari M., Gausche-Hill, Marianne, Vienna, Muna, Lewis, Roger J.
Format Journal Article
LanguageEnglish
Published New York, NY Mosby, Inc 01.06.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups. We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects. The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate. When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error.
AbstractList Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups.STUDY OBJECTIVESubgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups.We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects.METHODSWe present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects.The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate.RESULTSThe revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate.When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error.CONCLUSIONWhen multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error.
Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups. We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects. The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate. When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error.
Study objective Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data in each of the subgroups independently. More accurate answers, however, may be expected when the rest of the data are considered in the analysis of each subgroup, provided there are 3 or more subgroups. Methods We present a conceptual introduction to subgroup analysis that makes use of all the available data and then illustrate the technique by applying it to a previously published study of pediatric airway management. Using WinBUGS, freely available computer software, we perform an empirical Bayesian analysis of the treatment effect in each of the subgroups. This approach corrects the original subgroup treatment estimates toward a weighted average treatment effect across all subjects. Results The revised estimates of the subgroup treatment effects demonstrate markedly less variability than the original estimates. Further, using these estimates will reduce our total expected error in parameter estimation compared with using the original, independent subgroup estimates. Although any particular estimate may be adjusted inappropriately, adopting this strategy will, on average, lead to results that are more accurate. Conclusion When multiple subgroups are considered, it is often inadvisable to ignore the rest of the study data. Authors or readers who wish to examine associations within subgroups are encouraged to use techniques that reduce the total expected error.
Author Vienna, Muna
Lipsky, Ari M.
Lewis, Roger J.
Gausche-Hill, Marianne
AuthorAffiliation 2 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
3 Los Angeles Biomedical Research Institute, Torrance, CA
1 Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA
AuthorAffiliation_xml – name: 2 Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
– name: 4 Gertner Institute for Epidemiology and Health Policy Research, Tel Hashomer, Israel
– name: 3 Los Angeles Biomedical Research Institute, Torrance, CA
– name: 1 Department of Emergency Medicine, Harbor-UCLA Medical Center, Torrance, CA
Author_xml – sequence: 1
  givenname: Ari M.
  surname: Lipsky
  fullname: Lipsky, Ari M.
  email: aril@alum.mit.edu
  organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA
– sequence: 2
  givenname: Marianne
  surname: Gausche-Hill
  fullname: Gausche-Hill, Marianne
  organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA
– sequence: 3
  givenname: Muna
  surname: Vienna
  fullname: Vienna, Muna
  organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA
– sequence: 4
  givenname: Roger J.
  surname: Lewis
  fullname: Lewis, Roger J.
  organization: Department of Emergency Medicine, Harbor–UCLA Medical Center, Torrance, CA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22907550$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20138396$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1q2zAUx8XoWNNurzC8i9ErZ0eWJcc3HSHso1DYRbprIcvHiVJbyiS7kLs-yPZyfZLJJOu6wiC6EUj_8zsf_3NGTqyzSMg7ClMKVHzYTJW12KFfdVhPM4jvQKcA2QsyoVAWqSgEnJAJ0FKkIPL8lJyFsAGAMs_oK3IaQ9iMlWJCxM0ak6tu63yvrMbENcnD_c_l2ht7q1b4cP8rMTZZDtXKu2GbzK1qdwHDa_KyUW3AN4f7nHz__Olm8TW9_vblajG_TnU-K_u0ZlhBI4BzAYWoi6oWpRA6B1U1gmoGmDNKRaYUZ0UsnCqqVM50XZWq4qxh5-Ryz90OVexVo-29auXWm075nXTKyH9_rFnLlbuT2azgjBcRcHEAePdjwNDLzgSNbassuiHIgjGYzXgpovLt01SPOf7MKgreHwQqaNU2Pg7MhL-6rISCc4i6cq_T3oXgsXmUUJCjf3Ijn_g3JgAJVEb_YuzHZ7Ha9Ko3buzOtEcRFnsCRlvuDHoZtMFobW086l7WzhxFuXxG0a2xJrZ9izsMGzf4uAlBUhkyCXI5btq4aBTGw1kEzP8POLKI3y7J6xE
CODEN AEMED3
CitedBy_id crossref_primary_10_1016_j_annemergmed_2011_01_009
crossref_primary_10_1002_sim_10064
crossref_primary_10_3390_genes14122167
crossref_primary_10_1080_19466315_2022_2144943
crossref_primary_10_1161_CIRCOUTCOMES_111_960724
crossref_primary_10_1016_j_jacc_2020_11_061
crossref_primary_10_1016_j_jclinepi_2016_12_021
crossref_primary_10_1016_j_annemergmed_2010_04_010
crossref_primary_10_1080_10543406_2021_1998101
crossref_primary_10_1001_jama_2018_17977
crossref_primary_10_1186_s12874_016_0122_6
crossref_primary_10_1002_emp2_12479
crossref_primary_10_1016_j_jval_2024_03_010
crossref_primary_10_1161_STROKEAHA_123_044144
crossref_primary_10_1080_10543406_2016_1226327
crossref_primary_10_1016_j_clinbiochem_2017_08_007
crossref_primary_10_1002_pst_2424
crossref_primary_10_1111_jav_01529
Cites_doi 10.1001/jama.283.6.783
10.2307/2682801
10.1093/ije/29.1.158
10.1111/j.0006-341X.1999.00597.x
10.1016/j.athoracsur.2005.06.078
10.1023/A:1008929526011
10.1136/bmj.319.7208.508
10.1038/scientificamerican0577-119
10.1080/01621459.1975.10479864
ContentType Journal Article
Copyright 2010 American College of Emergency Physicians
American College of Emergency Physicians
2015 INIST-CNRS
Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved.
Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved.
2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved. 2010
Copyright_xml – notice: 2010 American College of Emergency Physicians
– notice: American College of Emergency Physicians
– notice: 2015 INIST-CNRS
– notice: Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved.
– notice: Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved.
– notice: 2010 American College of Emergency Physicians. Published by Mosby, Inc. All rights reserved. 2010
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.annemergmed.2010.01.002
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6760
EndPage 552.e3
ExternalDocumentID PMC2875357
20138396
22907550
10_1016_j_annemergmed_2010_01_002
S0196064410000053
1_s2_0_S0196064410000053
Genre Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Center for Research Resources (NCRR)
  grantid: 1F32RR022167
– fundername: Emergency Medicine Foundation
– fundername: State of California Emergency Medical Services Authority
  grantid: EMS-3036
– fundername: Agency for Healthcare Research and Quality
  grantid: HS-09065-01
– fundername: Bureau for Maternal and Child Health of the Public Health Service
  grantid: MCH064004-01-0
– fundername: NCRR NIH HHS
  grantid: 1F32RR022167
– fundername: AHRQ HHS
  grantid: HS-09065-01
– fundername: NCRR NIH HHS
  grantid: F32 RR022167
– fundername: PHS HHS
  grantid: MCH064004-01-0
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.XZ
.~1
0R~
1B1
1CY
1P~
1RT
1~.
1~5
23M
354
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8F7
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKAS
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBLC
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADZCM
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDV
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
LX1
M27
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OBH
OB~
ODZKP
OGIMB
OHH
OM0
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPCBC
SSH
SSZ
T5K
TEORI
UGJ
UHS
UKR
UQY
UV1
WOW
YFH
YOC
Z5R
ZGI
ZXP
ZY1
~G-
AACTN
AAYOK
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
ZA5
AAYXX
AGRNS
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c489t-d3eb0f60556076d7bd6966c40abf61c30e431162aa5370971a1aa43cdb9ab53f3
IEDL.DBID .~1
ISSN 0196-0644
1097-6760
IngestDate Thu Aug 21 18:14:15 EDT 2025
Tue Aug 05 10:07:20 EDT 2025
Mon Jul 21 05:54:42 EDT 2025
Mon Jul 21 09:13:25 EDT 2025
Tue Jul 01 01:38:50 EDT 2025
Thu Apr 24 23:13:19 EDT 2025
Fri Feb 23 02:23:35 EST 2024
Sun Feb 23 10:19:32 EST 2025
Tue Aug 26 20:27:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Intensive care
Resuscitation
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright (c) 2010 American College of Emergency Physicians.Published by Mosby, Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-d3eb0f60556076d7bd6966c40abf61c30e431162aa5370971a1aa43cdb9ab53f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20138396
PQID 733088596
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2875357
proquest_miscellaneous_733088596
pubmed_primary_20138396
pascalfrancis_primary_22907550
crossref_primary_10_1016_j_annemergmed_2010_01_002
crossref_citationtrail_10_1016_j_annemergmed_2010_01_002
elsevier_sciencedirect_doi_10_1016_j_annemergmed_2010_01_002
elsevier_clinicalkeyesjournals_1_s2_0_S0196064410000053
elsevier_clinicalkey_doi_10_1016_j_annemergmed_2010_01_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100601
PublicationDateYYYYMMDD 2010-06-01
PublicationDate_xml – month: 6
  year: 2010
  text: 20100601
  day: 1
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle Annals of emergency medicine
PublicationTitleAlternate Ann Emerg Med
PublicationYear 2010
Publisher Mosby, Inc
Elsevier
Publisher_xml – name: Mosby, Inc
– name: Elsevier
References Greenland (bib8) 2000; 29
Efron, Morris (bib3) 1977; 236
Efron, Morris (bib4) 1975; 70
De Finetti (bib5) 1974; Vols. 1 and 2
Shahian, Torchiana, Shemin (bib10) 2005; 80
Spiegelhalter, Myles, Jones (bib6) 1999; 319
James, Stein (bib2) 1961; Vol 1
Lunn, Thomas, Best (bib11) 2000; 10
Gausche, Lewis, Stratton (bib1) 2000; 283
Casella (bib7) 1985; 39
Agresti (bib9) 1999; 55
Efron (10.1016/j.annemergmed.2010.01.002_bib3) 1977; 236
Spiegelhalter (10.1016/j.annemergmed.2010.01.002_bib6) 1999; 319
De Finetti (10.1016/j.annemergmed.2010.01.002_bib5) 1974; Vols. 1 and 2
Casella (10.1016/j.annemergmed.2010.01.002_bib7) 1985; 39
Lunn (10.1016/j.annemergmed.2010.01.002_bib11) 2000; 10
Greenland (10.1016/j.annemergmed.2010.01.002_bib8) 2000; 29
Gausche (10.1016/j.annemergmed.2010.01.002_bib1) 2000; 283
James (10.1016/j.annemergmed.2010.01.002_bib2) 1961; Vol 1
Agresti (10.1016/j.annemergmed.2010.01.002_bib9) 1999; 55
Efron (10.1016/j.annemergmed.2010.01.002_bib4) 1975; 70
Shahian (10.1016/j.annemergmed.2010.01.002_bib10) 2005; 80
20494223 - Ann Emerg Med. 2010 Jun;55(6):553-5. doi: 10.1016/j.annemergmed.2010.04.010.
References_xml – volume: 236
  start-page: 119
  year: 1977
  end-page: 127
  ident: bib3
  article-title: Stein's paradox in statistics
  publication-title: Sci Am
– volume: Vols. 1 and 2
  year: 1974
  ident: bib5
  publication-title: The Theory of Probability
– volume: 70
  start-page: 311
  year: 1975
  end-page: 319
  ident: bib4
  article-title: Data analysis using Stein's estimator and its generalizations
  publication-title: J Am Stat Assoc
– volume: 319
  start-page: 508
  year: 1999
  end-page: 512
  ident: bib6
  article-title: An introduction to bayesian methods in health technology assessment
  publication-title: BMJ
– volume: 55
  start-page: 597
  year: 1999
  end-page: 602
  ident: bib9
  article-title: On logit confidence intervals for the odds ratio with small samples
  publication-title: Biometrics
– volume: 80
  start-page: 2106
  year: 2005
  end-page: 2113
  ident: bib10
  article-title: Massachusetts cardiac surgery report card: implications of statistical methodology
  publication-title: Ann Thorac Surg
– volume: 283
  start-page: 783
  year: 2000
  end-page: 790
  ident: bib1
  article-title: Effect of out-of-hospital pediatric endotracheal intubation-effect on survival and neurologic outcome: a controlled clinical trial
  publication-title: JAMA
– volume: 39
  start-page: 83
  year: 1985
  end-page: 87
  ident: bib7
  article-title: An introduction to empirical Bayes data analysis
  publication-title: Am Stat
– volume: 10
  start-page: 325
  year: 2000
  end-page: 337
  ident: bib11
  article-title: WinBUGS—a bayesian modelling framework: concepts, structure, and extensibility
  publication-title: Stat Comput
– volume: 29
  start-page: 158
  year: 2000
  end-page: 167
  ident: bib8
  article-title: Principles of multilevel modelling
  publication-title: Int J Epidemiol
– volume: Vol 1
  start-page: 311
  year: 1961
  end-page: 319
  ident: bib2
  article-title: Estimation with quadratic loss
  publication-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 283
  start-page: 783
  year: 2000
  ident: 10.1016/j.annemergmed.2010.01.002_bib1
  article-title: Effect of out-of-hospital pediatric endotracheal intubation-effect on survival and neurologic outcome: a controlled clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.283.6.783
– volume: Vol 1
  start-page: 311
  year: 1961
  ident: 10.1016/j.annemergmed.2010.01.002_bib2
  article-title: Estimation with quadratic loss
– volume: 39
  start-page: 83
  year: 1985
  ident: 10.1016/j.annemergmed.2010.01.002_bib7
  article-title: An introduction to empirical Bayes data analysis
  publication-title: Am Stat
  doi: 10.2307/2682801
– volume: 29
  start-page: 158
  year: 2000
  ident: 10.1016/j.annemergmed.2010.01.002_bib8
  article-title: Principles of multilevel modelling
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/29.1.158
– volume: 55
  start-page: 597
  year: 1999
  ident: 10.1016/j.annemergmed.2010.01.002_bib9
  article-title: On logit confidence intervals for the odds ratio with small samples
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00597.x
– volume: 80
  start-page: 2106
  year: 2005
  ident: 10.1016/j.annemergmed.2010.01.002_bib10
  article-title: Massachusetts cardiac surgery report card: implications of statistical methodology
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2005.06.078
– volume: 10
  start-page: 325
  year: 2000
  ident: 10.1016/j.annemergmed.2010.01.002_bib11
  article-title: WinBUGS—a bayesian modelling framework: concepts, structure, and extensibility
  publication-title: Stat Comput
  doi: 10.1023/A:1008929526011
– volume: 319
  start-page: 508
  year: 1999
  ident: 10.1016/j.annemergmed.2010.01.002_bib6
  article-title: An introduction to bayesian methods in health technology assessment
  publication-title: BMJ
  doi: 10.1136/bmj.319.7208.508
– volume: 236
  start-page: 119
  year: 1977
  ident: 10.1016/j.annemergmed.2010.01.002_bib3
  article-title: Stein's paradox in statistics
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0577-119
– volume: 70
  start-page: 311
  year: 1975
  ident: 10.1016/j.annemergmed.2010.01.002_bib4
  article-title: Data analysis using Stein's estimator and its generalizations
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1975.10479864
– volume: Vols. 1 and 2
  year: 1974
  ident: 10.1016/j.annemergmed.2010.01.002_bib5
– reference: 20494223 - Ann Emerg Med. 2010 Jun;55(6):553-5. doi: 10.1016/j.annemergmed.2010.04.010.
SSID ssj0009421
Score 2.0274112
Snippet Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach evaluates the data...
Study objective Subgroup analyses examine associations (eg, between treatment and outcome) within subsets of a larger study sample. The traditional approach...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 544
SubjectTerms Adult
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Bayes Theorem
Biological and medical sciences
Child
Clinical Trials as Topic - statistics & numerical data
Confidence Intervals
Data Interpretation, Statistical
Emergency
Humans
Intensive care medicine
Intubation, Intratracheal - statistics & numerical data
Laryngeal Masks - statistics & numerical data
Medical sciences
Models, Statistical
Odds Ratio
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Sample Size
Treatment Outcome
Victimology
Title The Importance of “Shrinkage” in Subgroup Analyses
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0196064410000053
https://www.clinicalkey.es/playcontent/1-s2.0-S0196064410000053
https://dx.doi.org/10.1016/j.annemergmed.2010.01.002
https://www.ncbi.nlm.nih.gov/pubmed/20138396
https://www.proquest.com/docview/733088596
https://pubmed.ncbi.nlm.nih.gov/PMC2875357
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEB5CCqFQSv_rtF1c6NVd2bKkuPQSQsOmJbmkgdyEZEtkQ-td4s015EHal8uTdMaWvdl2Dwu9Wh4bjUbzI818A_DBOebKymUJd1SSgx5xUkhrk9R6Ka0ouC-o3vn4RE7O8q_n4nwLDvpaGEqrDLq_0-mttg5PxoGb4_l0Oj4lZBdG5rx1dAUhfua5Iin_eLNM8yjyLPQkxMgZ396B98scL4O6jKoc0fCELK90OGFZY6MezU2DnPNdy4t1PunfqZX3bNXhE3gcnMx4v5vHU9hy9TPYOQ7X6M9BonDERz9b1xsnHM98fHf76_TiCgNT1C93t7_jaR2jTmlrPuIOuMQ1L-Ds8Mv3g0kSGigkZb5XLJKKO8u8JLwcpmSlbCUxuilzZnAl0pIzh-5DKjNjBFcEJmVSY3JeVrYwVnDPX8J2Pavda4gxcmGVsKzwXObOe6McfkJa1KVpZYWNYK9nmS4Dujg1ufih-zSyS32P25q4rVmqkdsRZAPpvIPY2IToU78uuq8hRa2n0RBsQqzWEbsm7N9Gp7rJNNP_yFgEnwfKFTHd9MejFREa5kuo-wqDxQjiXqY07nO6vDG1m103WnGOBkEUMoJXnYgtiem2mdOIWhG-4QWCEF8dqacXLZR4RuGqULv_N6038LBLqqDDqbewvbi6du_QV1vYUbsZR_Bg_-jb5OQPCalCLw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VIpVKCPFbUqAYiWtYJ47tpuKCKqotdHtpK_Vm2YmtLmqzq2Z7RX0QeLk-CePEyXZhDytxjTOJPB7Pjz3zDcBHa6ktSpvGzPqSHPSI41wYEyfGCWF4zlzu651Hx2J4ln075-drsN_Vwvi0yqD7W53eaOvwZBC4OZiOx4MTj-xCvTlvHF3OHsDDDLevb2Pw6ec8zyPP0tCUEENnfH0DPsyTvDQqM1_miJYnpHkl_RHLEiP1eKprZJ1re14sc0r_zq28Z6wOnsKT4GWSL-1EnsGarZ7Dxijco78AgdJBDq8a3xtnTCaO3N3-Orm4xsgUFczd7W8yrggqlabog7TIJbZ-CWcHX0_3h3HooBAX2W4-i0tmDXXCA-ZQKUppSoHhTZFRjUuRFIxa9B8SkWrNmfRoUjrROmNFaXJtOHPsFaxXk8q-BoKhCy25obljIrPOaWnxE8KgMk1Kw00Eux3LVBHgxX2Xi0vV5ZH9UPe4rTy3FU0UcjuCtCedthgbqxDtdeuiuiJSVHsKLcEqxHIZsa3DBq5VoupUUfWPkEXwuadckNNVf7yzIEL9fD3svsRoMQLSyZTCje5vb3RlJze1koyhReC5iGCrFbE5sb9uZn5ELghf_4LHEF8cqcYXDZZ46uNVLrf_b1rv4dHwdHSkjg6Pv7-BzTbDwp9UvYX12fWNfYeO28zsNBvzDwHEQ70
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Importance+of+%E2%80%9CShrinkage%E2%80%9D+in+Subgroup+Analyses&rft.jtitle=Annals+of+emergency+medicine&rft.au=Lipsky%2C+Ari+M.&rft.au=Gausche-Hill%2C+Marianne&rft.au=Vienna%2C+Muna&rft.au=Lewis%2C+Roger+J.&rft.date=2010-06-01&rft.issn=0196-0644&rft.volume=55&rft.issue=6&rft.spage=544&rft.epage=552.e3&rft_id=info:doi/10.1016%2Fj.annemergmed.2010.01.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_annemergmed_2010_01_002
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01960644%2FS0196064410X00051%2Fcov150h.gif