A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor c...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 10; pp. E1958 - E1967 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
07.03.2017
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA–YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase. |
---|---|
AbstractList | Significance
The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant chloroplasts. Proteins are targeted to the Tat system by signal peptides containing a highly conserved twin arginine motif. We isolated suppressors in the TatB component that allowed a Tat substrate with a defective twin arginine motif to be transported. The strongest of these suppressors, TatB F13Y, resulted in the constitutive assembly of the Tat translocase in the absence of signal peptide binding. These results show that Tat signal peptides have two separable roles: they target their passenger proteins to the Tat machinery but they also trigger the assembly of the active Tat transporter.
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of
Escherichia coli
is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA–YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase. The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase. The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase. The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant chloroplasts. Proteins are targeted to the Tat system by signal peptides containing a highly conserved twin arginine motif. We isolated suppressors in the TatB component that allowed a Tat substrate with a defective twin arginine motif to be transported. The strongest of these suppressors, TatB F13Y, resulted in the constitutive assembly of the Tat translocase in the absence of signal peptide binding. These results show that Tat signal peptides have two separable roles: they target their passenger proteins to the Tat machinery but they also trigger the assembly of the active Tat transporter. The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA–YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase. The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase. |
Author | Kneuper, Holger Huang, Qi Alcock, Felicity Berks, Ben C. Palmer, Tracy Deme, Justin C. Lea, Susan M. Rollauer, Sarah E. |
Author_xml | – sequence: 1 givenname: Qi surname: Huang fullname: Huang, Qi organization: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom – sequence: 2 givenname: Felicity surname: Alcock fullname: Alcock, Felicity organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom – sequence: 3 givenname: Holger surname: Kneuper fullname: Kneuper, Holger organization: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom – sequence: 4 givenname: Justin C. surname: Deme fullname: Deme, Justin C. organization: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom – sequence: 5 givenname: Sarah E. surname: Rollauer fullname: Rollauer, Sarah E. organization: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom – sequence: 6 givenname: Susan M. surname: Lea fullname: Lea, Susan M. organization: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom – sequence: 7 givenname: Ben C. surname: Berks fullname: Berks, Ben C. organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom – sequence: 8 givenname: Tracy surname: Palmer fullname: Palmer, Tracy organization: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28223511$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkc1v1DAQxS1URLeFMydQJC5c0o4dx7EvSFXFl1SJS--W451svUrs4Emo4K_Hqy0tcLLG7-en8Xtn7CSmiIy95nDBoWsu5-jogiveQqs4l8_YhoPhtZIGTtgGQHS1lkKesjOiPQCYVsMLdiq0EE3L-YbtrioKu-jGivD7itFjRes8ZyRKuZrWxcWlWu7cUtHi-jCGX0iVi5UjwqkfcXu4X7BKQ6GwWu5D0fIuxBDLlF2kMXlH-JI9H9xI-OrhPGe3nz7eXn-pb759_np9dVN7qc1S-16qLQwt1xo8GqGkHgxKEGXqGgXe4bYxqu-ME-BajR00rlOAvu-E5s05-3C0ndd-wq3HWHYY7ZzD5PJPm1yw_yox3Nld-mHbRhabthi8fzDIqeRBi50CeRxHFzGtZLnuwGgleVPQd_-h-7TmEuWB0twoA1oW6vJI-ZyIMg6Py3Cwhw7toUP71GF58fbvPzzyf0orwJsjsKcl5Se9hAVc6OY3juOlUw |
CitedBy_id | crossref_primary_10_1021_acs_biochem_8b00026 crossref_primary_10_1074_jbc_M117_788950 crossref_primary_10_1128_mBio_00909_17 crossref_primary_10_1002_btm2_10449 crossref_primary_10_1074_jbc_RA118_002205 crossref_primary_10_1080_21505594_2020_1817709 crossref_primary_10_1099_mic_0_001298 crossref_primary_10_1099_mic_0_001431 crossref_primary_10_1074_jbc_RA118_002576 crossref_primary_10_1111_mmi_14461 crossref_primary_10_1038_s41598_018_19640_3 crossref_primary_10_1098_rsob_170091 crossref_primary_10_1074_jbc_M117_812560 crossref_primary_10_1074_jbc_RA119_009298 crossref_primary_10_1111_mmi_14984 crossref_primary_10_4014_jmb_2107_07052 crossref_primary_10_3389_fmicb_2019_01482 crossref_primary_10_1038_s41598_018_30393_x crossref_primary_10_1007_s11120_018_0567_z crossref_primary_10_1038_s41598_024_64547_x crossref_primary_10_7554_eLife_30127 |
Cites_doi | 10.1016/j.jmb.2007.09.050 10.1074/jbc.M512733200 10.1074/jbc.R114.626820 10.1371/journal.pone.0039867 10.3109/09687688.2014.907455 10.1016/0378-1119(95)00193-A 10.7554/eLife.20718 10.1074/jbc.M100682200 10.1016/0092-8674(81)90184-7 10.1016/j.jmb.2008.12.043 10.1016/j.febslet.2011.01.016 10.1038/nature02218 10.1038/nature10014 10.1074/jbc.M512453200 10.1016/j.febslet.2007.07.044 10.1074/jbc.274.51.36073 10.1016/S1097-2765(03)00398-8 10.1083/jcb.201311057 10.1038/embor.2009.87 10.1074/jbc.M000800200 10.1128/jb.171.9.4617-4622.1989 10.1074/jbc.M607295200 10.1091/mbc.e11-01-0070 10.1073/pnas.0901566106 10.1038/sj.emboj.7600409 10.1083/jcb.200202048 10.1111/mmi.13106 10.1073/pnas.76.9.4350 10.1038/msb4100050 10.1038/emboj.2010.44 10.1105/tpc.112.107409 10.1007/978-1-60327-412-8_12 10.1146/annurev-biochem-060614-034251 10.1083/jcb.201204149 10.1371/journal.pone.0069488 10.1002/j.1460-2075.1995.tb07272.x 10.1046/j.1365-2958.2003.03504.x 10.1073/pnas.75.12.5802 10.1073/pnas.0503558102 10.1021/bi062205b 10.1016/j.bbamem.2014.03.015 10.1074/jbc.M112.343798 10.1046/j.1365-2958.1996.00114.x 10.1038/nature11683 10.1093/emboj/17.13.3640 10.1046/j.1432-1327.2001.02263.x 10.1016/0378-1119(91)90541-I 10.1016/S0092-8674(00)81149-6 10.1098/rstb.2015.0025 10.1074/jbc.M610126200 10.2144/02335st03 10.1016/j.bbrc.2005.02.038 10.1016/0092-8674(81)90272-5 10.1128/jb.177.14.4121-4130.1995 10.1038/nprot.2006.62 10.1091/mbc.e08-12-1189 10.1074/jbc.M509570200 10.1111/j.1365-2958.2012.08151.x 10.1038/nprot.2007.132 10.1128/JB.187.18.6454-6465.2005 10.1038/ncomms8234 10.1074/jbc.M610337200 10.1046/j.1365-2958.2002.02853.x 10.1016/j.jmb.2004.11.047 10.1073/pnas.1306738110 10.1038/nature08559 10.1074/jbc.273.29.18003 10.1371/journal.pone.0119761 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Mar 7, 2017 |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Mar 7, 2017 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1615056114 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Tat signal sequence suppressors fall in TatB |
EISSN | 1091-6490 |
EndPage | E1967 |
ExternalDocumentID | 4321283369 10_1073_pnas_1615056114 28223511 26480128 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/L002531/1 – fundername: Medical Research Council grantid: MR/L000776/1 – fundername: Wellcome Trust grantid: 107929/Z/15/Z – fundername: Medical Research Council grantid: K000721 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/N014545/1 – fundername: Medical Research Council grantid: G1001640 – fundername: Medical Research Council (MRC) grantid: G1001640 – fundername: Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/L002531/1 – fundername: Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/N014545/1 – fundername: Medical Research Council (MRC) grantid: K000721 – fundername: Medical Research Council (MRC) grantid: MR/L000776/1 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV CGR CUY CVF ECM EIF H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c489t-cb46d0f51880ce92648f9e4020ce7360caed396b79a20a58e703a760ecb72813 |
IEDL.DBID | RPM |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Sep 17 21:01:27 EDT 2024 Sat Oct 26 04:40:17 EDT 2024 Thu Oct 10 17:39:08 EDT 2024 Fri Aug 23 01:52:32 EDT 2024 Sat Nov 02 12:10:14 EDT 2024 Fri Feb 02 08:05:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | protein transport twin arginine signal peptide Tat pathway genetic suppressor |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-cb46d0f51880ce92648f9e4020ce7360caed396b79a20a58e703a760ecb72813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: Q.H., F.A., H.K., J.C.D., S.E.R., S.M.L., B.C.B., and T.P. designed research; Q.H., F.A., and H.K. performed research; J.C.D., S.E.R., and S.M.L. contributed new reagents/analytic tools; Q.H., F.A., H.K., B.C.B., and T.P. analyzed data; and F.A., B.C.B., and T.P. wrote the paper. Edited by Thomas J. Silhavy, Princeton University, Princeton, NJ, and approved January 27, 2017 (received for review September 8, 2016) 1Present address: Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892. |
ORCID | 0000-0001-9287-8053 0000-0001-9043-2592 |
OpenAccessLink | https://www.pnas.org/content/pnas/114/10/E1958.full.pdf |
PMID | 28223511 |
PQID | 1881969084 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5347605 proquest_miscellaneous_1870986413 proquest_journals_1881969084 crossref_primary_10_1073_pnas_1615056114 pubmed_primary_28223511 jstor_primary_26480128 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-07 |
PublicationDateYYYYMMDD | 2017-03-07 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_23_2 doi: 10.1016/j.jmb.2007.09.050 – ident: e_1_3_3_28_2 doi: 10.1074/jbc.M512733200 – ident: e_1_3_3_10_2 doi: 10.1074/jbc.R114.626820 – ident: e_1_3_3_22_2 doi: 10.1371/journal.pone.0039867 – ident: e_1_3_3_2_2 doi: 10.3109/09687688.2014.907455 – ident: e_1_3_3_54_2 doi: 10.1016/0378-1119(95)00193-A – ident: e_1_3_3_50_2 doi: 10.7554/eLife.20718 – ident: e_1_3_3_18_2 doi: 10.1074/jbc.M100682200 – ident: e_1_3_3_4_2 doi: 10.1016/0092-8674(81)90184-7 – ident: e_1_3_3_62_2 doi: 10.1016/j.jmb.2008.12.043 – ident: e_1_3_3_38_2 doi: 10.1016/j.febslet.2011.01.016 – ident: e_1_3_3_5_2 doi: 10.1038/nature02218 – ident: e_1_3_3_48_2 doi: 10.1038/nature10014 – ident: e_1_3_3_32_2 doi: 10.1074/jbc.M512453200 – ident: e_1_3_3_56_2 doi: 10.1016/j.febslet.2007.07.044 – ident: e_1_3_3_17_2 doi: 10.1074/jbc.274.51.36073 – ident: e_1_3_3_27_2 doi: 10.1016/S1097-2765(03)00398-8 – ident: e_1_3_3_46_2 doi: 10.1083/jcb.201311057 – ident: e_1_3_3_49_2 doi: 10.1038/embor.2009.87 – ident: e_1_3_3_42_2 doi: 10.1074/jbc.M000800200 – ident: e_1_3_3_55_2 doi: 10.1128/jb.171.9.4617-4622.1989 – ident: e_1_3_3_52_2 doi: 10.1074/jbc.M607295200 – ident: e_1_3_3_7_2 doi: 10.1091/mbc.e11-01-0070 – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0901566106 – ident: e_1_3_3_57_2 doi: 10.1038/sj.emboj.7600409 – ident: e_1_3_3_31_2 doi: 10.1083/jcb.200202048 – ident: e_1_3_3_47_2 doi: 10.1111/mmi.13106 – ident: e_1_3_3_66_2 doi: 10.1073/pnas.76.9.4350 – ident: e_1_3_3_53_2 doi: 10.1038/msb4100050 – ident: e_1_3_3_20_2 doi: 10.1038/emboj.2010.44 – ident: e_1_3_3_26_2 doi: 10.1105/tpc.112.107409 – ident: e_1_3_3_65_2 doi: 10.1007/978-1-60327-412-8_12 – ident: e_1_3_3_11_2 doi: 10.1146/annurev-biochem-060614-034251 – ident: e_1_3_3_37_2 doi: 10.1083/jcb.201204149 – ident: e_1_3_3_35_2 doi: 10.1371/journal.pone.0069488 – ident: e_1_3_3_12_2 doi: 10.1002/j.1460-2075.1995.tb07272.x – ident: e_1_3_3_36_2 doi: 10.1046/j.1365-2958.2003.03504.x – ident: e_1_3_3_8_2 doi: 10.1073/pnas.75.12.5802 – ident: e_1_3_3_45_2 doi: 10.1073/pnas.0503558102 – ident: e_1_3_3_40_2 doi: 10.1021/bi062205b – ident: e_1_3_3_68_2 doi: 10.1016/j.bbamem.2014.03.015 – ident: e_1_3_3_24_2 doi: 10.1074/jbc.M112.343798 – ident: e_1_3_3_13_2 doi: 10.1046/j.1365-2958.1996.00114.x – ident: e_1_3_3_25_2 doi: 10.1038/nature11683 – ident: e_1_3_3_16_2 doi: 10.1093/emboj/17.13.3640 – ident: e_1_3_3_67_2 doi: 10.1046/j.1432-1327.2001.02263.x – ident: e_1_3_3_61_2 doi: 10.1016/0378-1119(91)90541-I – ident: e_1_3_3_14_2 doi: 10.1016/S0092-8674(00)81149-6 – ident: e_1_3_3_1_2 doi: 10.1098/rstb.2015.0025 – ident: e_1_3_3_21_2 doi: 10.1074/jbc.M610126200 – ident: e_1_3_3_63_2 doi: 10.2144/02335st03 – ident: e_1_3_3_59_2 doi: 10.1016/j.bbrc.2005.02.038 – ident: e_1_3_3_3_2 doi: 10.1016/0092-8674(81)90272-5 – ident: e_1_3_3_58_2 doi: 10.1128/jb.177.14.4121-4130.1995 – ident: e_1_3_3_64_2 doi: 10.1038/nprot.2006.62 – ident: e_1_3_3_33_2 doi: 10.1091/mbc.e08-12-1189 – ident: e_1_3_3_43_2 doi: 10.1074/jbc.M509570200 – ident: e_1_3_3_39_2 doi: 10.1111/j.1365-2958.2012.08151.x – ident: e_1_3_3_60_2 doi: 10.1038/nprot.2007.132 – ident: e_1_3_3_6_2 doi: 10.1128/JB.187.18.6454-6465.2005 – ident: e_1_3_3_29_2 doi: 10.1038/ncomms8234 – ident: e_1_3_3_30_2 doi: 10.1074/jbc.M610337200 – ident: e_1_3_3_41_2 doi: 10.1046/j.1365-2958.2002.02853.x – ident: e_1_3_3_44_2 doi: 10.1016/j.jmb.2004.11.047 – ident: e_1_3_3_34_2 doi: 10.1073/pnas.1306738110 – ident: e_1_3_3_9_2 doi: 10.1038/nature08559 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.273.29.18003 – ident: e_1_3_3_51_2 doi: 10.1371/journal.pone.0119761 |
SSID | ssj0009580 |
Score | 2.3939452 |
Snippet | The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid... Significance The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant... The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant chloroplasts.... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | E1958 |
SubjectTerms | Amino Acid Sequence Amino Acid Substitution Arginine - chemistry Arginine - metabolism Binding Sites Biological Sciences Chloroplasts Cytoplasm E coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene Expression Regulation, Bacterial Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Models, Molecular Mutation Peptides PNAS Plus Protein Binding Protein Conformation, alpha-Helical Protein Folding Protein Interaction Domains and Motifs Protein Sorting Signals Protein Transport Proteins Substrate Specificity |
Title | A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase |
URI | https://www.jstor.org/stable/26480128 https://www.ncbi.nlm.nih.gov/pubmed/28223511 https://www.proquest.com/docview/1881969084 https://www.proquest.com/docview/1870986413 https://pubmed.ncbi.nlm.nih.gov/PMC5347605 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELXanrggChQCbWUkDuWQ3SR2YvtYVVQFVMShSL1FtjNuV-pmV7tZIfH1nXGSLYs4cYw8E1kej-dZfn5m7GPuoBRO5akJWqbSCUhtwHwsvBe-0E4JoNvI19-rq5_y6215u8fK8S5MJO17N5u0D_NJO7uP3Mrl3E9Hntj0x_VFKaRCGD7dZ_s4Qcct-lZpV_f3TgpcfmUhRz0fJabL1q4nBHEINuf0JA-RKOkobacq9cTEf0HOv5mTf5Siyxfs-YAh-Xnf10O2B-1Ldjhk6ZqfDVLSn16xu3NOBA00HinTfL1ZRu7rYsXnG3pCmHf3tuMIEokm-xv9bcsRUcPcPUDD44UjvghoBbz7NcO21R09KoFfVOaoFq7hNbu5_HxzcZUOTyukXmrTpd7JqslCVGPzYIjmFgzQXtKDElXmLTTCVE4ZW2S21IALg8UxB-9UoXNxxA7aRQtvGQ_GitIVKthgpAehK9M0tsGq3xQBmpCws3Fk62UvoFHHg28laopH_RSPhB3Fkd_aUbeogCbseAxFPaQY-mlN0j6ZRr8P22ZMDjrxsC0sNmSjMtKfz0XC3vSRe_r5EPqEqZ2Ybg1IeHu3BedjFOAe5t-7__Z8z54VBA-Iy6aO2UG32sAJgpvOnSKs__LtNE7pRz6o-90 |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALUKCQUsBIHMoh2SR2YvtYVVQLdCsOC-otsh27XdHNrnYTVeqvx5OPLVtxgWM0M1Gs8Xhe5OdngI-JthnVPAmlEyxkmtpQOV-PqTHUpEJzavE08uQ8H_9gXy-yix3IhrMwLWnf6FlUXc-janbVciuXczMaeGKj75OTjDLuYfjoATz09Rqz4Sd9o7UrupMnqV-AWcoGRR9OR8tKrSMEOQicE7yUB2mUuJm21Zc6auLfQOd97uQfzej0KfwchtFxUH5FTa0jc3tP4fGfx_kMnvTwlBx35j3YsdVz2OsXgDU56lWqP72Ay2OC3A_vPLCxybpZtrTaxYrMG7ydmNRXqiYefyID99bHq4p4sG7n-tqWpD3LRBbOe1lS38y8bXWJ91X4J-yg2GbX9iVMTz9PT8Zhf2tDaJiQdWg0y8vYtUJvxkpk0Dlp8TfVWE7z2ChbUplrLlUaq0xYv-YoP0xrNE9FQvdht1pU9jUQJxXNdMqdcpIZS0Uuy1KVHlCUqbOlC-BoSFmx7LQ5inZPndMCE13cJTqA_TalGz_8LOzNARwOOS766vVxQqBqUCx83IeN2dcdbqaoyi4a9OExStsnNIBX3ZS4e3k_pwLgW5Nl44Ca3tsWPwVabe8-5Qf_HfkeHo2nk7Pi7Mv5tzfwOEUUgpQ5fgi79aqxbz2GqvW7tmJ-A-l5HOc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXoEBLoICROJRDNg8nsXOsCqvyaNVDkSouke3Y7YpuNtpNhNRfz0we227FqcfIM1Gs8Xi-yJ-_AfgUaZtyLSI_dzLxE82trxzmY2wMN7HUglu6jXx8kh39Sr6fp-e3Wn11pH2jZ5Pqaj6pZpcdt7Kem2DkiQWnx4cpTwTC8KAuXfAQHmHOhtn4o77W25X97ZMYN-EkTkZVH8GDulKrCQEdAs8RNeYhKiUdqG3Upp6e-D_geZc_easgTZ_B73EqPQ_lz6Rt9MRc31F5vNdcn8PTAaayg95kGx7Y6gVsDxvBiu0PatWfX8LFASMOCBqPrGy2auuOXrtYsnlLXYpZc6kahjiUmLjX6K8qhqDdzvWVLVl3p4ktHFpZ1vyd4djygvpW4BNVUiq3K_sKzqZfzw6P_KF7g28SmTe-0UlWhq4TfDM2Jyadyy39rhoreBYaZUueZ1rkKg5VKi3uPQqnao0WsYz4DmxVi8q-BuZyxVMdC6dcnhjLZZaXpSoRWJSxs6XzYH8MW1H3Gh1Fd7YueEHBLm6C7cFOF9a1HX0W1WgP9sY4F0MWo5-UpB4USvT7uB7G_KNDFVXZRUs2IiSJ-4h7sNsvi5uXD-vKA7GxYNYGpO29OYLLoNP4HsL-5t6eH-Dx6Zdp8fPbyY-38CQmMELMObEHW82yte8QSjX6fZc0_wDHjB9n |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+signal+sequence+suppressor+mutant+that+stabilizes+an+assembled+state+of+the+twin+arginine+translocase&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Huang%2C+Qi&rft.au=Alcock%2C+Felicity&rft.au=Kneuper%2C+Holger&rft.au=Deme%2C+Justin+C&rft.date=2017-03-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=10&rft.spage=E1958&rft_id=info:doi/10.1073%2Fpnas.1615056114&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321283369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |