A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase

The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor c...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 10; pp. E1958 - E1967
Main Authors Huang, Qi, Alcock, Felicity, Kneuper, Holger, Deme, Justin C., Rollauer, Sarah E., Lea, Susan M., Berks, Ben C., Palmer, Tracy
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 07.03.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA–YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
AbstractList Significance The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant chloroplasts. Proteins are targeted to the Tat system by signal peptides containing a highly conserved twin arginine motif. We isolated suppressors in the TatB component that allowed a Tat substrate with a defective twin arginine motif to be transported. The strongest of these suppressors, TatB F13Y, resulted in the constitutive assembly of the Tat translocase in the absence of signal peptide binding. These results show that Tat signal peptides have two separable roles: they target their passenger proteins to the Tat machinery but they also trigger the assembly of the active Tat transporter. The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA–YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant chloroplasts. Proteins are targeted to the Tat system by signal peptides containing a highly conserved twin arginine motif. We isolated suppressors in the TatB component that allowed a Tat substrate with a defective twin arginine motif to be transported. The strongest of these suppressors, TatB F13Y, resulted in the constitutive assembly of the Tat translocase in the absence of signal peptide binding. These results show that Tat signal peptides have two separable roles: they target their passenger proteins to the Tat machinery but they also trigger the assembly of the active Tat transporter. The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA–YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.
Author Kneuper, Holger
Huang, Qi
Alcock, Felicity
Berks, Ben C.
Palmer, Tracy
Deme, Justin C.
Lea, Susan M.
Rollauer, Sarah E.
Author_xml – sequence: 1
  givenname: Qi
  surname: Huang
  fullname: Huang, Qi
  organization: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
– sequence: 2
  givenname: Felicity
  surname: Alcock
  fullname: Alcock, Felicity
  organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
– sequence: 3
  givenname: Holger
  surname: Kneuper
  fullname: Kneuper, Holger
  organization: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
– sequence: 4
  givenname: Justin C.
  surname: Deme
  fullname: Deme, Justin C.
  organization: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
– sequence: 5
  givenname: Sarah E.
  surname: Rollauer
  fullname: Rollauer, Sarah E.
  organization: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
– sequence: 6
  givenname: Susan M.
  surname: Lea
  fullname: Lea, Susan M.
  organization: Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
– sequence: 7
  givenname: Ben C.
  surname: Berks
  fullname: Berks, Ben C.
  organization: Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
– sequence: 8
  givenname: Tracy
  surname: Palmer
  fullname: Palmer, Tracy
  organization: Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28223511$$D View this record in MEDLINE/PubMed
BookMark eNpdkc1v1DAQxS1URLeFMydQJC5c0o4dx7EvSFXFl1SJS--W451svUrs4Emo4K_Hqy0tcLLG7-en8Xtn7CSmiIy95nDBoWsu5-jogiveQqs4l8_YhoPhtZIGTtgGQHS1lkKesjOiPQCYVsMLdiq0EE3L-YbtrioKu-jGivD7itFjRes8ZyRKuZrWxcWlWu7cUtHi-jCGX0iVi5UjwqkfcXu4X7BKQ6GwWu5D0fIuxBDLlF2kMXlH-JI9H9xI-OrhPGe3nz7eXn-pb759_np9dVN7qc1S-16qLQwt1xo8GqGkHgxKEGXqGgXe4bYxqu-ME-BajR00rlOAvu-E5s05-3C0ndd-wq3HWHYY7ZzD5PJPm1yw_yox3Nld-mHbRhabthi8fzDIqeRBi50CeRxHFzGtZLnuwGgleVPQd_-h-7TmEuWB0twoA1oW6vJI-ZyIMg6Py3Cwhw7toUP71GF58fbvPzzyf0orwJsjsKcl5Se9hAVc6OY3juOlUw
CitedBy_id crossref_primary_10_1021_acs_biochem_8b00026
crossref_primary_10_1074_jbc_M117_788950
crossref_primary_10_1128_mBio_00909_17
crossref_primary_10_1002_btm2_10449
crossref_primary_10_1074_jbc_RA118_002205
crossref_primary_10_1080_21505594_2020_1817709
crossref_primary_10_1099_mic_0_001298
crossref_primary_10_1099_mic_0_001431
crossref_primary_10_1074_jbc_RA118_002576
crossref_primary_10_1111_mmi_14461
crossref_primary_10_1038_s41598_018_19640_3
crossref_primary_10_1098_rsob_170091
crossref_primary_10_1074_jbc_M117_812560
crossref_primary_10_1074_jbc_RA119_009298
crossref_primary_10_1111_mmi_14984
crossref_primary_10_4014_jmb_2107_07052
crossref_primary_10_3389_fmicb_2019_01482
crossref_primary_10_1038_s41598_018_30393_x
crossref_primary_10_1007_s11120_018_0567_z
crossref_primary_10_1038_s41598_024_64547_x
crossref_primary_10_7554_eLife_30127
Cites_doi 10.1016/j.jmb.2007.09.050
10.1074/jbc.M512733200
10.1074/jbc.R114.626820
10.1371/journal.pone.0039867
10.3109/09687688.2014.907455
10.1016/0378-1119(95)00193-A
10.7554/eLife.20718
10.1074/jbc.M100682200
10.1016/0092-8674(81)90184-7
10.1016/j.jmb.2008.12.043
10.1016/j.febslet.2011.01.016
10.1038/nature02218
10.1038/nature10014
10.1074/jbc.M512453200
10.1016/j.febslet.2007.07.044
10.1074/jbc.274.51.36073
10.1016/S1097-2765(03)00398-8
10.1083/jcb.201311057
10.1038/embor.2009.87
10.1074/jbc.M000800200
10.1128/jb.171.9.4617-4622.1989
10.1074/jbc.M607295200
10.1091/mbc.e11-01-0070
10.1073/pnas.0901566106
10.1038/sj.emboj.7600409
10.1083/jcb.200202048
10.1111/mmi.13106
10.1073/pnas.76.9.4350
10.1038/msb4100050
10.1038/emboj.2010.44
10.1105/tpc.112.107409
10.1007/978-1-60327-412-8_12
10.1146/annurev-biochem-060614-034251
10.1083/jcb.201204149
10.1371/journal.pone.0069488
10.1002/j.1460-2075.1995.tb07272.x
10.1046/j.1365-2958.2003.03504.x
10.1073/pnas.75.12.5802
10.1073/pnas.0503558102
10.1021/bi062205b
10.1016/j.bbamem.2014.03.015
10.1074/jbc.M112.343798
10.1046/j.1365-2958.1996.00114.x
10.1038/nature11683
10.1093/emboj/17.13.3640
10.1046/j.1432-1327.2001.02263.x
10.1016/0378-1119(91)90541-I
10.1016/S0092-8674(00)81149-6
10.1098/rstb.2015.0025
10.1074/jbc.M610126200
10.2144/02335st03
10.1016/j.bbrc.2005.02.038
10.1016/0092-8674(81)90272-5
10.1128/jb.177.14.4121-4130.1995
10.1038/nprot.2006.62
10.1091/mbc.e08-12-1189
10.1074/jbc.M509570200
10.1111/j.1365-2958.2012.08151.x
10.1038/nprot.2007.132
10.1128/JB.187.18.6454-6465.2005
10.1038/ncomms8234
10.1074/jbc.M610337200
10.1046/j.1365-2958.2002.02853.x
10.1016/j.jmb.2004.11.047
10.1073/pnas.1306738110
10.1038/nature08559
10.1074/jbc.273.29.18003
10.1371/journal.pone.0119761
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Mar 7, 2017
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Mar 7, 2017
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1615056114
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Virology and AIDS Abstracts
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Tat signal sequence suppressors fall in TatB
EISSN 1091-6490
EndPage E1967
ExternalDocumentID 4321283369
10_1073_pnas_1615056114
28223511
26480128
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/L002531/1
– fundername: Medical Research Council
  grantid: MR/L000776/1
– fundername: Wellcome Trust
  grantid: 107929/Z/15/Z
– fundername: Medical Research Council
  grantid: K000721
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/N014545/1
– fundername: Medical Research Council
  grantid: G1001640
– fundername: Medical Research Council (MRC)
  grantid: G1001640
– fundername: Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/L002531/1
– fundername: Biotechnology and Biological Sciences Research Council (BBSRC)
  grantid: BB/N014545/1
– fundername: Medical Research Council (MRC)
  grantid: K000721
– fundername: Medical Research Council (MRC)
  grantid: MR/L000776/1
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
CGR
CUY
CVF
ECM
EIF
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c489t-cb46d0f51880ce92648f9e4020ce7360caed396b79a20a58e703a760ecb72813
IEDL.DBID RPM
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 17 21:01:27 EDT 2024
Sat Oct 26 04:40:17 EDT 2024
Thu Oct 10 17:39:08 EDT 2024
Fri Aug 23 01:52:32 EDT 2024
Sat Nov 02 12:10:14 EDT 2024
Fri Feb 02 08:05:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords protein transport
twin arginine signal peptide
Tat pathway
genetic suppressor
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-cb46d0f51880ce92648f9e4020ce7360caed396b79a20a58e703a760ecb72813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: Q.H., F.A., H.K., J.C.D., S.E.R., S.M.L., B.C.B., and T.P. designed research; Q.H., F.A., and H.K. performed research; J.C.D., S.E.R., and S.M.L. contributed new reagents/analytic tools; Q.H., F.A., H.K., B.C.B., and T.P. analyzed data; and F.A., B.C.B., and T.P. wrote the paper.
Edited by Thomas J. Silhavy, Princeton University, Princeton, NJ, and approved January 27, 2017 (received for review September 8, 2016)
1Present address: Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.
ORCID 0000-0001-9287-8053
0000-0001-9043-2592
OpenAccessLink https://www.pnas.org/content/pnas/114/10/E1958.full.pdf
PMID 28223511
PQID 1881969084
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5347605
proquest_miscellaneous_1870986413
proquest_journals_1881969084
crossref_primary_10_1073_pnas_1615056114
pubmed_primary_28223511
jstor_primary_26480128
PublicationCentury 2000
PublicationDate 2017-03-07
PublicationDateYYYYMMDD 2017-03-07
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_23_2
  doi: 10.1016/j.jmb.2007.09.050
– ident: e_1_3_3_28_2
  doi: 10.1074/jbc.M512733200
– ident: e_1_3_3_10_2
  doi: 10.1074/jbc.R114.626820
– ident: e_1_3_3_22_2
  doi: 10.1371/journal.pone.0039867
– ident: e_1_3_3_2_2
  doi: 10.3109/09687688.2014.907455
– ident: e_1_3_3_54_2
  doi: 10.1016/0378-1119(95)00193-A
– ident: e_1_3_3_50_2
  doi: 10.7554/eLife.20718
– ident: e_1_3_3_18_2
  doi: 10.1074/jbc.M100682200
– ident: e_1_3_3_4_2
  doi: 10.1016/0092-8674(81)90184-7
– ident: e_1_3_3_62_2
  doi: 10.1016/j.jmb.2008.12.043
– ident: e_1_3_3_38_2
  doi: 10.1016/j.febslet.2011.01.016
– ident: e_1_3_3_5_2
  doi: 10.1038/nature02218
– ident: e_1_3_3_48_2
  doi: 10.1038/nature10014
– ident: e_1_3_3_32_2
  doi: 10.1074/jbc.M512453200
– ident: e_1_3_3_56_2
  doi: 10.1016/j.febslet.2007.07.044
– ident: e_1_3_3_17_2
  doi: 10.1074/jbc.274.51.36073
– ident: e_1_3_3_27_2
  doi: 10.1016/S1097-2765(03)00398-8
– ident: e_1_3_3_46_2
  doi: 10.1083/jcb.201311057
– ident: e_1_3_3_49_2
  doi: 10.1038/embor.2009.87
– ident: e_1_3_3_42_2
  doi: 10.1074/jbc.M000800200
– ident: e_1_3_3_55_2
  doi: 10.1128/jb.171.9.4617-4622.1989
– ident: e_1_3_3_52_2
  doi: 10.1074/jbc.M607295200
– ident: e_1_3_3_7_2
  doi: 10.1091/mbc.e11-01-0070
– ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0901566106
– ident: e_1_3_3_57_2
  doi: 10.1038/sj.emboj.7600409
– ident: e_1_3_3_31_2
  doi: 10.1083/jcb.200202048
– ident: e_1_3_3_47_2
  doi: 10.1111/mmi.13106
– ident: e_1_3_3_66_2
  doi: 10.1073/pnas.76.9.4350
– ident: e_1_3_3_53_2
  doi: 10.1038/msb4100050
– ident: e_1_3_3_20_2
  doi: 10.1038/emboj.2010.44
– ident: e_1_3_3_26_2
  doi: 10.1105/tpc.112.107409
– ident: e_1_3_3_65_2
  doi: 10.1007/978-1-60327-412-8_12
– ident: e_1_3_3_11_2
  doi: 10.1146/annurev-biochem-060614-034251
– ident: e_1_3_3_37_2
  doi: 10.1083/jcb.201204149
– ident: e_1_3_3_35_2
  doi: 10.1371/journal.pone.0069488
– ident: e_1_3_3_12_2
  doi: 10.1002/j.1460-2075.1995.tb07272.x
– ident: e_1_3_3_36_2
  doi: 10.1046/j.1365-2958.2003.03504.x
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.75.12.5802
– ident: e_1_3_3_45_2
  doi: 10.1073/pnas.0503558102
– ident: e_1_3_3_40_2
  doi: 10.1021/bi062205b
– ident: e_1_3_3_68_2
  doi: 10.1016/j.bbamem.2014.03.015
– ident: e_1_3_3_24_2
  doi: 10.1074/jbc.M112.343798
– ident: e_1_3_3_13_2
  doi: 10.1046/j.1365-2958.1996.00114.x
– ident: e_1_3_3_25_2
  doi: 10.1038/nature11683
– ident: e_1_3_3_16_2
  doi: 10.1093/emboj/17.13.3640
– ident: e_1_3_3_67_2
  doi: 10.1046/j.1432-1327.2001.02263.x
– ident: e_1_3_3_61_2
  doi: 10.1016/0378-1119(91)90541-I
– ident: e_1_3_3_14_2
  doi: 10.1016/S0092-8674(00)81149-6
– ident: e_1_3_3_1_2
  doi: 10.1098/rstb.2015.0025
– ident: e_1_3_3_21_2
  doi: 10.1074/jbc.M610126200
– ident: e_1_3_3_63_2
  doi: 10.2144/02335st03
– ident: e_1_3_3_59_2
  doi: 10.1016/j.bbrc.2005.02.038
– ident: e_1_3_3_3_2
  doi: 10.1016/0092-8674(81)90272-5
– ident: e_1_3_3_58_2
  doi: 10.1128/jb.177.14.4121-4130.1995
– ident: e_1_3_3_64_2
  doi: 10.1038/nprot.2006.62
– ident: e_1_3_3_33_2
  doi: 10.1091/mbc.e08-12-1189
– ident: e_1_3_3_43_2
  doi: 10.1074/jbc.M509570200
– ident: e_1_3_3_39_2
  doi: 10.1111/j.1365-2958.2012.08151.x
– ident: e_1_3_3_60_2
  doi: 10.1038/nprot.2007.132
– ident: e_1_3_3_6_2
  doi: 10.1128/JB.187.18.6454-6465.2005
– ident: e_1_3_3_29_2
  doi: 10.1038/ncomms8234
– ident: e_1_3_3_30_2
  doi: 10.1074/jbc.M610337200
– ident: e_1_3_3_41_2
  doi: 10.1046/j.1365-2958.2002.02853.x
– ident: e_1_3_3_44_2
  doi: 10.1016/j.jmb.2004.11.047
– ident: e_1_3_3_34_2
  doi: 10.1073/pnas.1306738110
– ident: e_1_3_3_9_2
  doi: 10.1038/nature08559
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.273.29.18003
– ident: e_1_3_3_51_2
  doi: 10.1371/journal.pone.0119761
SSID ssj0009580
Score 2.3939452
Snippet The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid...
Significance The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant...
The twin-arginine translocation (Tat) system transports folded proteins across the prokaryotic inner membrane and the thylakoid membrane of plant chloroplasts....
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage E1958
SubjectTerms Amino Acid Sequence
Amino Acid Substitution
Arginine - chemistry
Arginine - metabolism
Binding Sites
Biological Sciences
Chloroplasts
Cytoplasm
E coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene Expression Regulation, Bacterial
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Models, Molecular
Mutation
Peptides
PNAS Plus
Protein Binding
Protein Conformation, alpha-Helical
Protein Folding
Protein Interaction Domains and Motifs
Protein Sorting Signals
Protein Transport
Proteins
Substrate Specificity
Title A signal sequence suppressor mutant that stabilizes an assembled state of the twin arginine translocase
URI https://www.jstor.org/stable/26480128
https://www.ncbi.nlm.nih.gov/pubmed/28223511
https://www.proquest.com/docview/1881969084
https://www.proquest.com/docview/1870986413
https://pubmed.ncbi.nlm.nih.gov/PMC5347605
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwELXanrggChQCbWUkDuWQ3SR2YvtYVVQFVMShSL1FtjNuV-pmV7tZIfH1nXGSLYs4cYw8E1kej-dZfn5m7GPuoBRO5akJWqbSCUhtwHwsvBe-0E4JoNvI19-rq5_y6215u8fK8S5MJO17N5u0D_NJO7uP3Mrl3E9Hntj0x_VFKaRCGD7dZ_s4Qcct-lZpV_f3TgpcfmUhRz0fJabL1q4nBHEINuf0JA-RKOkobacq9cTEf0HOv5mTf5Siyxfs-YAh-Xnf10O2B-1Ldjhk6ZqfDVLSn16xu3NOBA00HinTfL1ZRu7rYsXnG3pCmHf3tuMIEokm-xv9bcsRUcPcPUDD44UjvghoBbz7NcO21R09KoFfVOaoFq7hNbu5_HxzcZUOTyukXmrTpd7JqslCVGPzYIjmFgzQXtKDElXmLTTCVE4ZW2S21IALg8UxB-9UoXNxxA7aRQtvGQ_GitIVKthgpAehK9M0tsGq3xQBmpCws3Fk62UvoFHHg28laopH_RSPhB3Fkd_aUbeogCbseAxFPaQY-mlN0j6ZRr8P22ZMDjrxsC0sNmSjMtKfz0XC3vSRe_r5EPqEqZ2Ybg1IeHu3BedjFOAe5t-7__Z8z54VBA-Iy6aO2UG32sAJgpvOnSKs__LtNE7pRz6o-90
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcoALUKCQUsBIHMoh2SR2YvtYVVQLdCsOC-otsh27XdHNrnYTVeqvx5OPLVtxgWM0M1Gs8Xhe5OdngI-JthnVPAmlEyxkmtpQOV-PqTHUpEJzavE08uQ8H_9gXy-yix3IhrMwLWnf6FlUXc-janbVciuXczMaeGKj75OTjDLuYfjoATz09Rqz4Sd9o7UrupMnqV-AWcoGRR9OR8tKrSMEOQicE7yUB2mUuJm21Zc6auLfQOd97uQfzej0KfwchtFxUH5FTa0jc3tP4fGfx_kMnvTwlBx35j3YsdVz2OsXgDU56lWqP72Ay2OC3A_vPLCxybpZtrTaxYrMG7ydmNRXqiYefyID99bHq4p4sG7n-tqWpD3LRBbOe1lS38y8bXWJ91X4J-yg2GbX9iVMTz9PT8Zhf2tDaJiQdWg0y8vYtUJvxkpk0Dlp8TfVWE7z2ChbUplrLlUaq0xYv-YoP0xrNE9FQvdht1pU9jUQJxXNdMqdcpIZS0Uuy1KVHlCUqbOlC-BoSFmx7LQ5inZPndMCE13cJTqA_TalGz_8LOzNARwOOS766vVxQqBqUCx83IeN2dcdbqaoyi4a9OExStsnNIBX3ZS4e3k_pwLgW5Nl44Ca3tsWPwVabe8-5Qf_HfkeHo2nk7Pi7Mv5tzfwOEUUgpQ5fgi79aqxbz2GqvW7tmJ-A-l5HOc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXoEBLoICROJRDNg8nsXOsCqvyaNVDkSouke3Y7YpuNtpNhNRfz0we227FqcfIM1Gs8Xi-yJ-_AfgUaZtyLSI_dzLxE82trxzmY2wMN7HUglu6jXx8kh39Sr6fp-e3Wn11pH2jZ5Pqaj6pZpcdt7Kem2DkiQWnx4cpTwTC8KAuXfAQHmHOhtn4o77W25X97ZMYN-EkTkZVH8GDulKrCQEdAs8RNeYhKiUdqG3Upp6e-D_geZc_easgTZ_B73EqPQ_lz6Rt9MRc31F5vNdcn8PTAaayg95kGx7Y6gVsDxvBiu0PatWfX8LFASMOCBqPrGy2auuOXrtYsnlLXYpZc6kahjiUmLjX6K8qhqDdzvWVLVl3p4ktHFpZ1vyd4djygvpW4BNVUiq3K_sKzqZfzw6P_KF7g28SmTe-0UlWhq4TfDM2Jyadyy39rhoreBYaZUueZ1rkKg5VKi3uPQqnao0WsYz4DmxVi8q-BuZyxVMdC6dcnhjLZZaXpSoRWJSxs6XzYH8MW1H3Gh1Fd7YueEHBLm6C7cFOF9a1HX0W1WgP9sY4F0MWo5-UpB4USvT7uB7G_KNDFVXZRUs2IiSJ-4h7sNsvi5uXD-vKA7GxYNYGpO29OYLLoNP4HsL-5t6eH-Dx6Zdp8fPbyY-38CQmMELMObEHW82yte8QSjX6fZc0_wDHjB9n
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+signal+sequence+suppressor+mutant+that+stabilizes+an+assembled+state+of+the+twin+arginine+translocase&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Huang%2C+Qi&rft.au=Alcock%2C+Felicity&rft.au=Kneuper%2C+Holger&rft.au=Deme%2C+Justin+C&rft.date=2017-03-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=10&rft.spage=E1958&rft_id=info:doi/10.1073%2Fpnas.1615056114&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321283369
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon