TSVR: An efficient Twin Support Vector Machine for regression

The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 23; no. 3; pp. 365 - 372
Main Author Peng, Xinjun
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of ϵ -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance.
AbstractList The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance.
The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of [epsilon (Porson)]-insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance.
The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance.The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance.
The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of ϵ -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance.
Author Peng, Xinjun
Author_xml – sequence: 1
  givenname: Xinjun
  surname: Peng
  fullname: Peng, Xinjun
  email: xjpeng@shnu.edu.cn
  organization: Department of Mathematics, Shanghai Normal University, 200234, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22508909$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19616409$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAURS1URKeFf4BQNohVwrOdOHYlkKqKL6kIiQ7dWo7zDB5lnMF2QPx7PMwAEgu6em9x7l3cc0ZOwhyQkMcUGgpUPN80AZeAuWEAqoG-AWD3yIrKXtWsl-yErEAqXguQcErOUtoAgJAtf0BOqRJUtKBW5MX65vbjRXUZKnTOW48hV-vvPlQ3y243x1zdos1zrN4b-8UHrFz5I36OmJKfw0Ny35kp4aPjPSefXr9aX72trz-8eXd1eV3bVqpcD5L2VAg6OCk4Woata4eOG6mUGNFiB2MPordqGDvuWCcZZ8yCVRyYNaPh5-TZoXcX568Lpqy3PlmcJhNwXpLu266wqld3k5xTKlgLhXxyJJdhi6PeRb818Yf-vU0Bnh4Bk6yZXDTB-vSHY6wr-_7i2gNn45xSRPe3CvReld7ogyq9V6Wh10VViV38E7M-m1xWzdH46a7wy0MYy-rfPEad9u4sjj4WYXqc_f8LfgKqkK9A
CitedBy_id crossref_primary_10_1016_j_scitotenv_2014_08_060
crossref_primary_10_1109_ACCESS_2019_2915281
crossref_primary_10_3390_jmse12050754
crossref_primary_10_1007_s00521_021_06518_1
crossref_primary_10_1016_j_ins_2012_09_009
crossref_primary_10_1016_j_tust_2023_105337
crossref_primary_10_1016_j_ins_2010_06_039
crossref_primary_10_1109_ACCESS_2020_2995615
crossref_primary_10_1016_j_measurement_2023_113410
crossref_primary_10_4028_www_scientific_net_AMM_484_485_608
crossref_primary_10_1016_j_asoc_2024_112580
crossref_primary_10_1016_j_procs_2016_05_432
crossref_primary_10_1016_j_rser_2019_04_002
crossref_primary_10_1016_j_engappai_2018_08_003
crossref_primary_10_1016_j_neucom_2015_06_056
crossref_primary_10_1109_TNNLS_2016_2598182
crossref_primary_10_1155_2014_169575
crossref_primary_10_3233_JIFS_210007
crossref_primary_10_3390_math11061335
crossref_primary_10_1016_j_suscom_2022_100795
crossref_primary_10_1007_s10489_024_05766_7
crossref_primary_10_1177_09544089221124288
crossref_primary_10_1016_j_jfoodeng_2018_07_035
crossref_primary_10_3390_e22101102
crossref_primary_10_1002_srin_202200872
crossref_primary_10_1016_j_knosys_2013_04_013
crossref_primary_10_1016_j_neunet_2010_08_001
crossref_primary_10_1109_ACCESS_2025_3539209
crossref_primary_10_1016_j_asoc_2020_106101
crossref_primary_10_1016_j_cor_2023_106370
crossref_primary_10_1016_j_knosys_2018_02_002
crossref_primary_10_1109_TII_2020_3011675
crossref_primary_10_1016_j_asoc_2020_106446
crossref_primary_10_1016_j_eswa_2024_123840
crossref_primary_10_1016_j_procs_2015_05_287
crossref_primary_10_1016_j_neunet_2017_06_008
crossref_primary_10_1109_ACCESS_2019_2962702
crossref_primary_10_1016_j_neucom_2011_09_021
crossref_primary_10_1109_OJCS_2024_3394928
crossref_primary_10_1007_s00521_019_04625_8
crossref_primary_10_1016_j_neucom_2016_12_052
crossref_primary_10_1016_j_neucom_2018_01_083
crossref_primary_10_1155_2020_3238129
crossref_primary_10_1016_j_neucom_2012_07_012
crossref_primary_10_1007_s00521_017_2966_z
crossref_primary_10_1016_j_ins_2019_04_032
crossref_primary_10_1016_j_ref_2019_03_003
crossref_primary_10_1016_j_array_2023_100320
crossref_primary_10_1007_s00521_012_0924_3
crossref_primary_10_1007_s13042_015_0414_x
crossref_primary_10_1016_j_neucom_2016_11_024
crossref_primary_10_1007_s10489_019_01505_5
crossref_primary_10_1007_s10479_022_04575_w
crossref_primary_10_3233_JIFS_191429
crossref_primary_10_1007_s13042_017_0687_3
crossref_primary_10_2355_isijinternational_ISIJINT_2022_372
crossref_primary_10_1016_j_engappai_2024_108964
crossref_primary_10_1007_s11042_023_17315_4
crossref_primary_10_1080_18756891_2013_869900
crossref_primary_10_3233_JIFS_212525
crossref_primary_10_1016_j_future_2022_03_034
crossref_primary_10_1049_iet_gtd_2018_6687
crossref_primary_10_1007_s13042_014_0323_4
crossref_primary_10_1109_ACCESS_2018_2879824
crossref_primary_10_3390_pr11041283
crossref_primary_10_1016_j_jik_2023_100390
crossref_primary_10_1016_j_chaos_2021_110969
crossref_primary_10_1007_s10489_016_0809_8
crossref_primary_10_1016_j_neucom_2018_01_093
crossref_primary_10_1007_s00521_013_1524_6
crossref_primary_10_3233_JIFS_169807
crossref_primary_10_1007_s10489_017_0964_6
crossref_primary_10_1142_S0218488525500072
crossref_primary_10_1016_j_asoc_2020_106305
crossref_primary_10_1016_j_knosys_2024_112943
crossref_primary_10_1007_s00521_010_0454_9
crossref_primary_10_1007_s00779_014_0797_9
crossref_primary_10_1016_j_neunet_2013_11_014
crossref_primary_10_3389_fgene_2024_1415249
crossref_primary_10_1016_j_patcog_2020_107592
crossref_primary_10_1007_s11425_013_4718_6
crossref_primary_10_1007_s13762_020_02967_8
crossref_primary_10_1142_S0129065717500538
crossref_primary_10_3390_w16081102
crossref_primary_10_3233_JIFS_232121
crossref_primary_10_1007_s00500_018_3397_1
crossref_primary_10_1016_j_inffus_2020_04_005
crossref_primary_10_1016_j_ins_2012_02_047
crossref_primary_10_1007_s10489_019_01422_7
crossref_primary_10_1016_j_resourpol_2018_10_008
crossref_primary_10_1007_s00521_018_3843_0
crossref_primary_10_1007_s42243_019_00348_1
crossref_primary_10_1002_2050_7038_13010
crossref_primary_10_1002_ett_4367
crossref_primary_10_1016_j_knosys_2020_106593
crossref_primary_10_1108_GS_07_2023_0055
crossref_primary_10_1007_s00366_020_01214_5
crossref_primary_10_1088_1009_0630_17_11_04
crossref_primary_10_1007_s42452_020_03778_9
crossref_primary_10_1109_ACCESS_2020_2992703
crossref_primary_10_1016_j_asoc_2017_08_017
crossref_primary_10_1016_j_neucom_2016_01_038
crossref_primary_10_1109_ACCESS_2022_3215155
crossref_primary_10_1016_j_sab_2015_09_021
crossref_primary_10_1007_s00500_020_04746_6
crossref_primary_10_1016_j_apm_2021_09_040
crossref_primary_10_1039_D0AY00905A
crossref_primary_10_3390_en16155656
crossref_primary_10_3390_e23040433
crossref_primary_10_1016_j_oceaneng_2024_118942
crossref_primary_10_1109_TII_2023_3330299
crossref_primary_10_2139_ssrn_4186098
crossref_primary_10_1155_2019_7408725
crossref_primary_10_1007_s10489_015_0751_1
crossref_primary_10_1016_j_eswa_2025_126882
crossref_primary_10_1007_s10489_019_01498_1
crossref_primary_10_1007_s10489_015_0736_0
crossref_primary_10_1016_j_patcog_2023_109577
crossref_primary_10_1109_TKDE_2020_2979967
crossref_primary_10_1016_j_asoc_2016_12_009
crossref_primary_10_1016_j_engappai_2021_104550
crossref_primary_10_1007_s12559_022_10026_2
crossref_primary_10_1007_s00521_023_08548_3
crossref_primary_10_1111_ffe_13343
crossref_primary_10_1007_s12597_024_00829_2
crossref_primary_10_1007_s13042_012_0072_1
crossref_primary_10_1016_j_knosys_2021_107297
crossref_primary_10_1007_s10462_024_10856_6
crossref_primary_10_1016_j_jhydrol_2025_132778
crossref_primary_10_1016_j_neucom_2010_08_013
crossref_primary_10_1007_s41870_024_01913_y
crossref_primary_10_1016_j_aej_2024_06_012
crossref_primary_10_1016_j_compeleceng_2024_109783
crossref_primary_10_1007_s00521_019_04627_6
crossref_primary_10_1016_j_asej_2024_102716
crossref_primary_10_1016_j_engstruct_2023_116994
crossref_primary_10_1016_j_neucom_2020_02_132
crossref_primary_10_1051_metal_2023049
crossref_primary_10_1007_s00521_014_1575_3
crossref_primary_10_1038_s41598_024_70109_y
crossref_primary_10_4028_www_scientific_net_AMR_486_227
crossref_primary_10_3390_rs12081255
crossref_primary_10_1007_s00354_025_00291_8
crossref_primary_10_1109_TNNLS_2014_2362555
crossref_primary_10_1109_TCYB_2013_2279167
crossref_primary_10_1007_s11356_021_15221_6
crossref_primary_10_3233_IDA_150236
crossref_primary_10_1007_s13042_018_0892_8
crossref_primary_10_1007_s11063_016_9527_9
crossref_primary_10_1016_j_neucom_2014_02_028
crossref_primary_10_4018_IJSIR_302615
crossref_primary_10_1007_s11063_018_9903_8
crossref_primary_10_1016_j_neucom_2016_06_049
crossref_primary_10_1002_tee_24095
crossref_primary_10_1007_s10994_021_06061_z
crossref_primary_10_1016_j_jhydrol_2023_129916
crossref_primary_10_1007_s10462_019_09711_w
crossref_primary_10_1155_2015_497617
crossref_primary_10_1007_s11663_024_03184_1
crossref_primary_10_1109_ACCESS_2020_2990611
crossref_primary_10_1002_mmce_22636
crossref_primary_10_1007_s11063_017_9775_3
crossref_primary_10_3390_rs9111099
crossref_primary_10_1631_jzus_CIIP1301
crossref_primary_10_1016_j_patcog_2020_107395
crossref_primary_10_1007_s12665_020_08949_w
crossref_primary_10_1016_j_neucom_2021_10_125
crossref_primary_10_1016_j_knosys_2012_03_013
crossref_primary_10_1007_s10489_022_03652_8
crossref_primary_10_1016_j_patcog_2022_109253
crossref_primary_10_1007_s00521_011_0791_3
crossref_primary_10_1007_s11042_020_08634_x
crossref_primary_10_1016_j_ghm_2024_01_002
crossref_primary_10_1016_j_ins_2011_05_004
crossref_primary_10_1016_j_knosys_2020_105703
crossref_primary_10_1016_j_still_2017_09_006
crossref_primary_10_3390_s20236742
crossref_primary_10_1007_s00521_023_09321_2
crossref_primary_10_1016_j_jfoodeng_2019_03_026
crossref_primary_10_1016_j_knosys_2018_04_005
crossref_primary_10_3390_math9161853
crossref_primary_10_1016_j_knosys_2017_10_008
crossref_primary_10_1007_s10115_016_0928_x
crossref_primary_10_1016_j_neucom_2013_03_005
crossref_primary_10_1016_j_knosys_2016_08_030
crossref_primary_10_1109_JBHI_2022_3147524
crossref_primary_10_1371_journal_pone_0211402
crossref_primary_10_1007_s11063_023_11198_0
crossref_primary_10_1109_TNNLS_2015_2513006
crossref_primary_10_1016_j_ins_2018_07_008
crossref_primary_10_1007_s10489_013_0500_2
crossref_primary_10_1016_j_ins_2019_06_034
crossref_primary_10_1007_s00521_012_0894_5
crossref_primary_10_1007_s10462_020_09853_2
crossref_primary_10_1007_s10489_017_0961_9
crossref_primary_10_1016_j_cie_2023_109278
crossref_primary_10_1016_j_ejor_2023_04_025
crossref_primary_10_1108_EC_06_2024_0507
crossref_primary_10_1007_s00521_012_1331_5
crossref_primary_10_1002_sres_2862
crossref_primary_10_1007_s13042_013_0153_9
crossref_primary_10_1016_j_neucom_2014_02_032
crossref_primary_10_1016_j_patcog_2011_03_031
crossref_primary_10_1007_s12559_014_9278_8
crossref_primary_10_1016_j_patcog_2022_108989
crossref_primary_10_1051_matecconf_202030905013
crossref_primary_10_1007_s12666_018_1479_5
crossref_primary_10_1016_j_neucom_2024_128671
crossref_primary_10_1080_00207721_2015_1110212
crossref_primary_10_1016_j_neucom_2015_07_159
crossref_primary_10_1155_2022_5802217
crossref_primary_10_1007_s00521_018_3823_4
crossref_primary_10_1016_j_procs_2019_11_273
crossref_primary_10_1007_s10489_015_0728_0
crossref_primary_10_1007_s00521_012_1306_6
crossref_primary_10_1016_j_egyr_2022_01_194
crossref_primary_10_1016_j_patrec_2012_10_026
crossref_primary_10_1007_s00521_011_0525_6
crossref_primary_10_1109_ACCESS_2023_3253900
crossref_primary_10_1007_s40745_014_0018_4
crossref_primary_10_1109_TKDE_2019_2933511
crossref_primary_10_1007_s11063_020_10380_y
crossref_primary_10_1007_s13042_015_0395_9
crossref_primary_10_1007_s40305_015_0095_x
crossref_primary_10_1016_j_ins_2022_03_060
crossref_primary_10_1016_j_neucom_2018_06_040
crossref_primary_10_1007_s12666_022_02603_8
crossref_primary_10_1007_s11042_024_18670_6
crossref_primary_10_1007_s13042_017_0720_6
crossref_primary_10_1109_TITS_2021_3130264
crossref_primary_10_1007_s11063_018_9890_9
crossref_primary_10_1016_j_ins_2022_02_012
crossref_primary_10_1016_j_compag_2025_110020
crossref_primary_10_1016_j_asoc_2021_107099
crossref_primary_10_1016_j_neucom_2015_07_003
crossref_primary_10_1016_j_neunet_2015_12_004
crossref_primary_10_2139_ssrn_4183367
crossref_primary_10_1155_2022_3725657
crossref_primary_10_1109_TETCI_2022_3182725
crossref_primary_10_1007_s10489_015_0731_5
crossref_primary_10_1007_s11063_017_9773_5
crossref_primary_10_1155_2015_125868
crossref_primary_10_1155_2022_1231700
crossref_primary_10_3233_JIFS_16629
crossref_primary_10_1007_s10489_016_0820_0
crossref_primary_10_1016_j_asoc_2020_106708
crossref_primary_10_1016_j_neucom_2016_01_105
crossref_primary_10_1016_j_knosys_2014_01_018
crossref_primary_10_1016_j_knosys_2015_11_011
crossref_primary_10_1016_j_neunet_2018_06_004
crossref_primary_10_1007_s10489_019_01465_w
crossref_primary_10_1007_s00500_022_07755_9
crossref_primary_10_1007_s10489_018_1185_3
crossref_primary_10_1016_j_fochx_2023_100860
crossref_primary_10_1007_s42243_023_00952_2
crossref_primary_10_1109_TCYB_2016_2551735
crossref_primary_10_1007_s00521_016_2521_3
crossref_primary_10_1007_s10489_017_0913_4
crossref_primary_10_1109_ACCESS_2020_3045706
crossref_primary_10_1016_j_eswa_2024_123378
crossref_primary_10_3390_math12243935
crossref_primary_10_1007_s10489_014_0518_0
crossref_primary_10_1002_2050_7038_12818
crossref_primary_10_1007_s00500_014_1342_5
crossref_primary_10_1016_j_neucom_2012_06_012
crossref_primary_10_1007_s00521_018_3555_5
crossref_primary_10_1007_s12559_012_9179_7
crossref_primary_10_1016_j_apm_2022_07_032
crossref_primary_10_3233_IDA_205094
crossref_primary_10_1007_s10115_014_0786_3
crossref_primary_10_1007_s10489_020_02166_5
crossref_primary_10_1016_j_eij_2014_12_003
crossref_primary_10_1016_j_eswa_2023_121239
crossref_primary_10_1007_s00521_011_0565_y
crossref_primary_10_1007_s11063_013_9336_3
crossref_primary_10_1007_s00521_019_04084_1
crossref_primary_10_1016_j_energy_2021_119969
crossref_primary_10_1007_s12665_021_09625_3
crossref_primary_10_1016_j_neucom_2018_09_083
crossref_primary_10_1162_neco_a_01002
crossref_primary_10_2355_isijinternational_ISIJINT_2021_517
crossref_primary_10_1007_s13042_015_0361_6
crossref_primary_10_1016_j_knosys_2024_111713
crossref_primary_10_1016_j_jhydrol_2022_128213
crossref_primary_10_1016_j_heliyon_2020_e05369
crossref_primary_10_1016_j_knosys_2015_05_008
crossref_primary_10_1007_s00521_012_0971_9
crossref_primary_10_1007_s11356_022_18655_8
crossref_primary_10_1016_j_knosys_2017_05_004
crossref_primary_10_1080_02331934_2017_1364739
crossref_primary_10_1016_j_knosys_2014_08_003
crossref_primary_10_1007_s11081_015_9298_6
crossref_primary_10_1016_j_knosys_2014_08_005
crossref_primary_10_1007_s11517_019_02100_z
crossref_primary_10_1016_j_neucom_2016_04_024
crossref_primary_10_1016_j_engstruct_2021_113400
crossref_primary_10_1016_j_neunet_2015_10_007
crossref_primary_10_1016_j_asoc_2015_01_018
crossref_primary_10_1007_s10489_020_01699_z
crossref_primary_10_1016_j_neucom_2019_09_068
crossref_primary_10_1016_j_egyr_2023_09_071
crossref_primary_10_1016_j_knosys_2014_08_008
crossref_primary_10_1007_s10472_023_09877_8
crossref_primary_10_1007_s11042_022_13519_2
crossref_primary_10_3390_smartcities5030055
crossref_primary_10_1007_s10472_020_09708_0
crossref_primary_10_1080_19942060_2020_1810128
crossref_primary_10_1016_j_asoc_2023_110893
crossref_primary_10_3233_JIFS_211631
crossref_primary_10_1016_j_neucom_2014_10_010
crossref_primary_10_1007_s13042_022_01672_x
crossref_primary_10_1016_j_ins_2014_03_129
crossref_primary_10_1021_acs_iecr_1c03534
crossref_primary_10_1007_s10489_017_0984_2
crossref_primary_10_1016_j_neunet_2013_12_003
crossref_primary_10_1007_s13042_019_00957_y
crossref_primary_10_1088_1742_6596_1682_1_012009
crossref_primary_10_2298_JMMB240928033S
crossref_primary_10_1007_s00521_012_1108_x
crossref_primary_10_1007_s10489_016_0860_5
crossref_primary_10_1002_cpe_7270
crossref_primary_10_1016_j_ins_2020_11_033
crossref_primary_10_3390_met12101589
crossref_primary_10_1016_j_neucom_2015_12_133
crossref_primary_10_1016_j_procs_2013_05_066
crossref_primary_10_1016_j_ins_2018_01_002
crossref_primary_10_1016_j_knosys_2018_02_016
crossref_primary_10_4028_www_scientific_net_AMM_556_562_3648
crossref_primary_10_1016_j_ins_2024_120435
crossref_primary_10_1515_jisys_2017_0378
Cites_doi 10.1016/j.patrec.2008.05.016
10.1109/72.870050
10.1016/S0925-2312(03)00380-1
10.1016/j.neucom.2008.04.022
10.1109/TPAMI.2006.17
10.1016/j.neucom.2003.11.012
10.1007/BF00994018
10.1109/TPAMI.2007.1068
10.1023/A:1009715923555
10.1109/TNN.2004.841785
10.1162/089976601300014493
10.1007/BFb0026683
10.1023/A:1018628609742
10.1109/CVPR.1997.609310
10.1016/j.eswa.2008.09.066
10.1002/9781118165485
10.1073/pnas.97.1.262
10.1016/j.sigpro.2008.10.002
10.2307/1267500
10.1109/TKDE.2005.77
10.1109/TNN.2006.889500
ContentType Journal Article
Copyright 2009 Elsevier Ltd
2015 INIST-CNRS
Copyright 2009 Elsevier Ltd. All rights reserved.
Copyright 2009 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2009 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright 2009 Elsevier Ltd. All rights reserved.
– notice: Copyright 2009 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1016/j.neunet.2009.07.002
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList MEDLINE
Neurosciences Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 372
ExternalDocumentID 19616409
22508909
10_1016_j_neunet_2009_07_002
S0893608009001567
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
ID FETCH-LOGICAL-c489t-b8171661bf863ec2e4f4b53a8996dece50d7067c9bd53f2582322c0c9302cada3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Mon Jul 21 12:02:45 EDT 2025
Thu Jul 10 17:11:00 EDT 2025
Mon Jul 21 05:34:46 EDT 2025
Mon Jul 21 09:14:05 EDT 2025
Tue Jul 01 01:24:24 EDT 2025
Thu Apr 24 23:16:10 EDT 2025
Fri Feb 23 02:28:36 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nonparallel planes
Regression
ϵ -insensitive bound
Support vector machine
Machine learning
Statistical analysis
Minimization
Regression analysis
Neural network
insensitive bound
Inequality constraint
Vector support machine
Convex function
Artificial intelligence
Quadratic function
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright 2009 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-b8171661bf863ec2e4f4b53a8996dece50d7067c9bd53f2582322c0c9302cada3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 19616409
PQID 733116240
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_745930979
proquest_miscellaneous_733116240
pubmed_primary_19616409
pascalfrancis_primary_22508909
crossref_primary_10_1016_j_neunet_2009_07_002
crossref_citationtrail_10_1016_j_neunet_2009_07_002
elsevier_sciencedirect_doi_10_1016_j_neunet_2009_07_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2010
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Staudte, Sheather (b31) 1990
Allen (b1) 1974; 16
Burges (b6) 1998; 2
Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines, available from
Fung, G., & Mangasarian, O. L. (2001). Proximal support vector machines. In
Irvine, CA: University of California, Department of Information and Computer Sciences
Ghorai, Mukherjee, Dutta (b15) 2009; 89
Jayadeva, Khemchandani, Chandra (b17) 2007; 29
Kumar, Gopal (b22) 2008; 29
Blake, C. I., & Merz, C. J. (1998). UCI repository for machine learning databases
Chu, Ong, Keerthy (b9) 2005; 16
Platt (b27) 1999
Vapnik (b32) 1995
pp. 130–136
Ince, H., & Trafalis, T. B. (2002). Support vector machine for regression and applications to financial forecasting. In
Mangasarian, Wild (b25) 2006; 28
pp. 839–842
Jiao, Bo, Wang (b18) 2007; 18
Chemnitz, Germany, 1398: 137–142
Brown, Grundy, Lin (b5) 2000; 97
Suykens, J. A. K., Lukas, L., & Van Dooren, P. et al. (1999). Least squares support vector machine classifiers: A large scale algorithm. In
IEEE-INNS-ENNS
Bi, Bennett (b3) 2003; 55
MATLAB (b37) 1994
Vapnik (b33) 1998
Lee, Hsieh, Huang (b24) 2005; 17
Suykens, Vandewalle (b29) 1999; 9
Bates, Watts (b2) 1988
Cortes, Vapnik (b11) 1995; 20
Wen, Hao, Yang (b36) 2008; 71
Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An application to face detection. In
Kumar, Gopal (b23) 2009; 36
Christianini, Shawe-Taylor (b8) 2002
Eubank (b13) 1999; Vol. 157
Keerthi, Shevade, Bhattacharyya (b21) 2001; 13
Shevade, Keerthi, Bhattacharyya (b28) 2000; 11
pp. 77–86
Joachims, T., Ndellec, C., & Rouveriol, C. (1998). Text categorization with support vector machines: Learning with many relevant features. In
Collobert, Bengio (b10) 2001; 1
Joachims (b20) 1999
Weisberg (b35) 1985
Wang, Xu (b34) 2004; 61
Ebrahimi, Garcia, Vesin (b12) 2003; 1
Suykens (10.1016/j.neunet.2009.07.002_b29) 1999; 9
Staudte (10.1016/j.neunet.2009.07.002_b31) 1990
Eubank (10.1016/j.neunet.2009.07.002_b13) 1999; Vol. 157
Kumar (10.1016/j.neunet.2009.07.002_b22) 2008; 29
Mangasarian (10.1016/j.neunet.2009.07.002_b25) 2006; 28
10.1016/j.neunet.2009.07.002_b7
Jiao (10.1016/j.neunet.2009.07.002_b18) 2007; 18
Shevade (10.1016/j.neunet.2009.07.002_b28) 2000; 11
Collobert (10.1016/j.neunet.2009.07.002_b10) 2001; 1
Bates (10.1016/j.neunet.2009.07.002_b2) 1988
Vapnik (10.1016/j.neunet.2009.07.002_b32) 1995
Joachims (10.1016/j.neunet.2009.07.002_b20) 1999
10.1016/j.neunet.2009.07.002_b26
Platt (10.1016/j.neunet.2009.07.002_b27) 1999
10.1016/j.neunet.2009.07.002_b4
Weisberg (10.1016/j.neunet.2009.07.002_b35) 1985
Wang (10.1016/j.neunet.2009.07.002_b34) 2004; 61
Ghorai (10.1016/j.neunet.2009.07.002_b15) 2009; 89
Cortes (10.1016/j.neunet.2009.07.002_b11) 1995; 20
Jayadeva (10.1016/j.neunet.2009.07.002_b17) 2007; 29
Allen (10.1016/j.neunet.2009.07.002_b1) 1974; 16
Christianini (10.1016/j.neunet.2009.07.002_b8) 2002
Brown (10.1016/j.neunet.2009.07.002_b5) 2000; 97
Kumar (10.1016/j.neunet.2009.07.002_b23) 2009; 36
Wen (10.1016/j.neunet.2009.07.002_b36) 2008; 71
Ebrahimi (10.1016/j.neunet.2009.07.002_b12) 2003; 1
MATLAB (10.1016/j.neunet.2009.07.002_b37) 1994-2001
10.1016/j.neunet.2009.07.002_b19
10.1016/j.neunet.2009.07.002_b14
Bi (10.1016/j.neunet.2009.07.002_b3) 2003; 55
10.1016/j.neunet.2009.07.002_b16
Lee (10.1016/j.neunet.2009.07.002_b24) 2005; 17
Chu (10.1016/j.neunet.2009.07.002_b9) 2005; 16
Burges (10.1016/j.neunet.2009.07.002_b6) 1998; 2
Keerthi (10.1016/j.neunet.2009.07.002_b21) 2001; 13
10.1016/j.neunet.2009.07.002_b30
Vapnik (10.1016/j.neunet.2009.07.002_b33) 1998
References_xml – year: 2002
  ident: b8
  article-title: An introduction to support vector machines
– volume: 36
  start-page: 7535
  year: 2009
  end-page: 7543
  ident: b23
  article-title: Least squares twin support vector machines for pattern classification
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b29
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Letter
– volume: 13
  start-page: 637
  year: 2001
  end-page: 649
  ident: b21
  article-title: Improvements to Platt’s SMO algorithm for SVM classifier design
  publication-title: Neural Computation
– volume: 16
  start-page: 125
  year: 1974
  end-page: 127
  ident: b1
  article-title: The relationship between variable selection and prediction
  publication-title: Technometrics
– reference: (pp. 77–86)
– volume: 55
  start-page: 79
  year: 2003
  end-page: 108
  ident: b3
  article-title: A geometric approach to support vector regression
  publication-title: Neurocomputing
– volume: 1
  start-page: 713
  year: 2003
  end-page: 729
  ident: b12
  article-title: Joint time-frequency-space classification of EEG in a brain–computer interface application
  publication-title: Journal of Apply Signal Process
– volume: 17
  start-page: 678
  year: 2005
  end-page: 685
  ident: b24
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 11
  start-page: 1188
  year: 2000
  end-page: 1193
  ident: b28
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Transactions on Neural Networks
– reference: Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines, available from
– reference: . IEEE-INNS-ENNS
– year: 1990
  ident: b31
  article-title: Robust estimation and testing: Wiley series in probability and mathematical statistics
– reference: Joachims, T., Ndellec, C., & Rouveriol, C. (1998). Text categorization with support vector machines: Learning with many relevant features. In
– reference: Fung, G., & Mangasarian, O. L. (2001). Proximal support vector machines. In
– volume: 29
  start-page: 905
  year: 2007
  end-page: 910
  ident: b17
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: , Chemnitz, Germany, 1398: 137–142
– volume: 28
  start-page: 69
  year: 2006
  end-page: 74
  ident: b25
  article-title: Multisurface proximal support vector classification via generalized eigenvalues
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 61
  start-page: 259
  year: 2004
  end-page: 275
  ident: b34
  article-title: A heuristic training for support vector regression
  publication-title: Neurocomputing
– start-page: 185
  year: 1999
  end-page: 2008
  ident: b27
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in kernel methods–support vector learning
– reference: (pp. 839–842)
– reference: Blake, C. I., & Merz, C. J. (1998). UCI repository for machine learning databases:
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b11
  article-title: Support vector networks
  publication-title: Machine Learning
– reference:  Irvine, CA: University of California, Department of Information and Computer Sciences
– year: 1988
  ident: b2
  article-title: Nonlinear regression analysis and its applications
– volume: 18
  start-page: 1
  year: 2007
  end-page: 13
  ident: b18
  article-title: Fast sparse approximation for least squares support vector machine
  publication-title: IEEE Transactions on Neural Networks
– reference: Suykens, J. A. K., Lukas, L., & Van Dooren, P. et al. (1999). Least squares support vector machine classifiers: A large scale algorithm. In
– reference: Ince, H., & Trafalis, T. B. (2002). Support vector machine for regression and applications to financial forecasting. In
– volume: 71
  start-page: 3096
  year: 2008
  end-page: 3103
  ident: b36
  article-title: A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression
  publication-title: Neurocomputing
– volume: 97
  start-page: 262
  year: 2000
  end-page: 267
  ident: b5
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machine
  publication-title: Proceedings of National Academy of Science USA
– volume: Vol. 157
  year: 1999
  ident: b13
  publication-title: Nonparametric regression and spline smoothing
– year: 1994
  ident: b37
  article-title: User’s Guide
– reference: Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An application to face detection. In
– volume: 1
  start-page: 143
  year: 2001
  end-page: 160
  ident: b10
  article-title: SVMTorch: support vector machines for large-scale regression problems
  publication-title: Journal of Machine Learning
– reference: (pp. 130–136)
– year: 1998
  ident: b33
  article-title: Statistical learning theory
– year: 1985
  ident: b35
  article-title: Applied linear regression
– year: 1999
  ident: b20
  article-title: Making large-scale SVM learning practical
  publication-title: Advances in kernel methods: Support vector machine
– volume: 89
  start-page: 510
  year: 2009
  end-page: 522
  ident: b15
  article-title: Nonparallel plane proximal classifier
  publication-title: Signal Processing
– year: 1995
  ident: b32
  article-title: The natural of statistical learning theory
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: b6
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowledge Discovery
– volume: 16
  start-page: 498
  year: 2005
  end-page: 501
  ident: b9
  article-title: An improved conjugate gradient method scheme to the solution of least squares SVM
  publication-title: IEEE Transactions on Neural Networks
– volume: 29
  start-page: 1842
  year: 2008
  end-page: 1848
  ident: b22
  article-title: Application of smoothing technique on twin support vector machines
  publication-title: Pattern Recognition Letter
– volume: 29
  start-page: 1842
  year: 2008
  ident: 10.1016/j.neunet.2009.07.002_b22
  article-title: Application of smoothing technique on twin support vector machines
  publication-title: Pattern Recognition Letter
  doi: 10.1016/j.patrec.2008.05.016
– volume: 11
  start-page: 1188
  issue: 5
  year: 2000
  ident: 10.1016/j.neunet.2009.07.002_b28
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.870050
– volume: 55
  start-page: 79
  year: 2003
  ident: 10.1016/j.neunet.2009.07.002_b3
  article-title: A geometric approach to support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(03)00380-1
– volume: 71
  start-page: 3096
  year: 2008
  ident: 10.1016/j.neunet.2009.07.002_b36
  article-title: A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.022
– volume: 1
  start-page: 143
  issue: 2
  year: 2001
  ident: 10.1016/j.neunet.2009.07.002_b10
  article-title: SVMTorch: support vector machines for large-scale regression problems
  publication-title: Journal of Machine Learning
– volume: 28
  start-page: 69
  issue: 1
  year: 2006
  ident: 10.1016/j.neunet.2009.07.002_b25
  article-title: Multisurface proximal support vector classification via generalized eigenvalues
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2006.17
– year: 1998
  ident: 10.1016/j.neunet.2009.07.002_b33
– ident: 10.1016/j.neunet.2009.07.002_b4
– volume: 61
  start-page: 259
  year: 2004
  ident: 10.1016/j.neunet.2009.07.002_b34
  article-title: A heuristic training for support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2003.11.012
– year: 2002
  ident: 10.1016/j.neunet.2009.07.002_b8
– start-page: 185
  year: 1999
  ident: 10.1016/j.neunet.2009.07.002_b27
  article-title: Fast training of support vector machines using sequential minimal optimization
– year: 1985
  ident: 10.1016/j.neunet.2009.07.002_b35
– ident: 10.1016/j.neunet.2009.07.002_b16
– volume: 1
  start-page: 713
  issue: 7
  year: 2003
  ident: 10.1016/j.neunet.2009.07.002_b12
  article-title: Joint time-frequency-space classification of EEG in a brain–computer interface application
  publication-title: Journal of Apply Signal Process
– volume: Vol. 157
  year: 1999
  ident: 10.1016/j.neunet.2009.07.002_b13
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.neunet.2009.07.002_b11
  article-title: Support vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– ident: 10.1016/j.neunet.2009.07.002_b14
– year: 1999
  ident: 10.1016/j.neunet.2009.07.002_b20
  article-title: Making large-scale SVM learning practical
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  ident: 10.1016/j.neunet.2009.07.002_b17
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1068
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.neunet.2009.07.002_b6
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowledge Discovery
  doi: 10.1023/A:1009715923555
– year: 1995
  ident: 10.1016/j.neunet.2009.07.002_b32
– ident: 10.1016/j.neunet.2009.07.002_b30
– volume: 16
  start-page: 498
  issue: 2
  year: 2005
  ident: 10.1016/j.neunet.2009.07.002_b9
  article-title: An improved conjugate gradient method scheme to the solution of least squares SVM
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2004.841785
– volume: 13
  start-page: 637
  issue: 3
  year: 2001
  ident: 10.1016/j.neunet.2009.07.002_b21
  article-title: Improvements to Platt’s SMO algorithm for SVM classifier design
  publication-title: Neural Computation
  doi: 10.1162/089976601300014493
– ident: 10.1016/j.neunet.2009.07.002_b7
– ident: 10.1016/j.neunet.2009.07.002_b19
  doi: 10.1007/BFb0026683
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.neunet.2009.07.002_b29
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Letter
  doi: 10.1023/A:1018628609742
– ident: 10.1016/j.neunet.2009.07.002_b26
  doi: 10.1109/CVPR.1997.609310
– year: 1988
  ident: 10.1016/j.neunet.2009.07.002_b2
– volume: 36
  start-page: 7535
  year: 2009
  ident: 10.1016/j.neunet.2009.07.002_b23
  article-title: Least squares twin support vector machines for pattern classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.09.066
– year: 1990
  ident: 10.1016/j.neunet.2009.07.002_b31
  doi: 10.1002/9781118165485
– volume: 97
  start-page: 262
  issue: 1
  year: 2000
  ident: 10.1016/j.neunet.2009.07.002_b5
  article-title: Knowledge-based analysis of microarray gene expression data by using support vector machine
  publication-title: Proceedings of National Academy of Science USA
  doi: 10.1073/pnas.97.1.262
– volume: 89
  start-page: 510
  year: 2009
  ident: 10.1016/j.neunet.2009.07.002_b15
  article-title: Nonparallel plane proximal classifier
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2008.10.002
– volume: 16
  start-page: 125
  year: 1974
  ident: 10.1016/j.neunet.2009.07.002_b1
  article-title: The relationship between variable selection and prediction
  publication-title: Technometrics
  doi: 10.2307/1267500
– volume: 17
  start-page: 678
  issue: 5
  year: 2005
  ident: 10.1016/j.neunet.2009.07.002_b24
  article-title: ϵ-SSVR: a smooth support vector machine for ϵ-insensitive regression
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2005.77
– volume: 18
  start-page: 1
  year: 2007
  ident: 10.1016/j.neunet.2009.07.002_b18
  article-title: Fast sparse approximation for least squares support vector machine
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2006.889500
– year: 1994-2001
  ident: 10.1016/j.neunet.2009.07.002_b37
SSID ssj0006843
Score 2.4962816
Snippet The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 365
SubjectTerms [formula omitted]-insensitive bound
Algorithms
Applied sciences
Artificial Intelligence
Computer science; control theory; systems
Computer Simulation
Data processing. List processing. Character string processing
Databases, Factual
Exact sciences and technology
Least-Squares Analysis
Machine learning
Memory organisation. Data processing
Nonparallel planes
Regression
Regression Analysis
Software
Support vector machine
Time Factors
Title TSVR: An efficient Twin Support Vector Machine for regression
URI https://dx.doi.org/10.1016/j.neunet.2009.07.002
https://www.ncbi.nlm.nih.gov/pubmed/19616409
https://www.proquest.com/docview/733116240
https://www.proquest.com/docview/745930979
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iF0F8P9bHkoPXuN0mTRPBwyLKquhBV_FW0iSVFYmL7uLN3-4kaVcEH-C1JG06M5n5knyZQWi_BEVrnlPCpOIEIoQkQilJKAODSo0udWBVXl7x_i07v8_uZ9BxcxfG0ypr3x99evDW9ZNOLc3OaDjs3CQQarkHPDLcB_Y3yhnLvZUfvH_SPLiIzDloTHzr5vpc4Hg5O3F2XGetzKebK9-Ep4WRegWhVbHaxc9wNISl02W0WONJ3ItDXkEz1q2ipaZWA66n7ho6GtzcXR_insM2JI2AWIMHb0OHfVlPgOD4Lmzf48tArrQYsCx-sQ-RJevW0e3pyeC4T-rSCUQzIcekFD4NDu-WleDU6tSyipUZVbC64sZqmyUmhzilZWkyWqWZAGCV6kRLmqRaGUU30Kx7dnYL4a7R1CiphMg0M6VWgrOcAq6RtuKqa1qINhIrdJ1X3Je3eCoaAtljEeXsS17KIvEH3mkLkWmvUcyr8Uf7vFFG8cU-CnD9f_Rsf9Hd9HPgycAqEtlCuFFmAXPLH5goZ58nr4WvZ9nlgHl-acIykJnM4S2b0Q4-f0dyWIsmcvvfQ99B85Gs4IlCu2h2_DKxe4CBxmU7GHkbzfXOLvpXH3P_BNc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOYCEeLeEQvEBjiabtddrV-qhAqqUNj3QtOrNeG1vFYTcqElUceFP8QcZPzZVJaASUq8r2-udGc98Xn-eQehtA4o2vKaESc0JRAhJhNaSUAYGVVrTmMiqHB3y4TH7fFqdrqBf3V2YQKvMvj_59Oit85N-lmZ_Opn0jwoItTwAHhnvA9eZWbnvflzCvm22vfcRlPyuLHc_jT8MSS4tQAwTck4aEdLE8EHTCk6dKR1rWVNRDbsPbp1xVWFr8ONGNraibVkJAB6lKYykRWm01RTGvYPuMnAXoWzC-59XvBIuElUPZkfC9Lr7epFU5t3Cu3lOk1kv_-b8IR4-mOoZaKlN5TX-jn9jHNx9jB5mAIt3koyeoBXnn6JHXXEInH3FM7Q9Pjr5soV3PHYxSwUENzy-nHgc6ogC5scn8bwAjyKb02EAz_jCnSVarn-Ojm9FoGto1Z979wLhgTXUaqmFqAyzjdGCs5oCkJKu5Xpge4h2ElMmJzIP9TS-q46x9k0lOYcam1IV4YS97CGy7DVNiTxuaF93ylDXDFJBrLmh5-Y13S1fB64TrKKQPYQ7ZSpYzOGERnt3vpipUEBzwAFk_aMJq0BmsoZR1pMdXH2O5LD5LeTL_576G3RvOB4dqIO9w_0NdD8xJQJL6RVanV8s3GsAYPNmMxo8Rl9ve4X9BgYRQE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSVR%3A+an+efficient+Twin+Support+Vector+Machine+for+regression&rft.jtitle=Neural+networks&rft.au=Peng%2C+Xinjun&rft.date=2010-04-01&rft.eissn=1879-2782&rft.volume=23&rft.issue=3&rft.spage=365&rft_id=info:doi/10.1016%2Fj.neunet.2009.07.002&rft_id=info%3Apmid%2F19616409&rft.externalDocID=19616409
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon