TSVR: An efficient Twin Support Vector Machine for regression
The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR...
Saved in:
Published in | Neural networks Vol. 23; no. 3; pp. 365 - 372 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2010
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of
ϵ
-insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance. |
---|---|
AbstractList | The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance. The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of [epsilon (Porson)]-insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance. The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance.The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance. The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function subject to the pair groups of linear inequality constraints for all training samples. In this paper we propose Twin Support Vector Regression (TSVR), a novel regressor that determines a pair of ϵ -insensitive up- and down-bound functions by solving two related SVM-type problems, each of which is smaller than that in a classical SVR. The TSVR formulation is in the spirit of Twin Support Vector Machine (TSVM) via two nonparallel planes. The experimental results on several artificial and benchmark datasets indicate that the proposed TSVR is not only fast, but also shows good generalization performance. |
Author | Peng, Xinjun |
Author_xml | – sequence: 1 givenname: Xinjun surname: Peng fullname: Peng, Xinjun email: xjpeng@shnu.edu.cn organization: Department of Mathematics, Shanghai Normal University, 200234, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22508909$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19616409$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAURS1URKeFf4BQNohVwrOdOHYlkKqKL6kIiQ7dWo7zDB5lnMF2QPx7PMwAEgu6em9x7l3cc0ZOwhyQkMcUGgpUPN80AZeAuWEAqoG-AWD3yIrKXtWsl-yErEAqXguQcErOUtoAgJAtf0BOqRJUtKBW5MX65vbjRXUZKnTOW48hV-vvPlQ3y243x1zdos1zrN4b-8UHrFz5I36OmJKfw0Ny35kp4aPjPSefXr9aX72trz-8eXd1eV3bVqpcD5L2VAg6OCk4Woata4eOG6mUGNFiB2MPordqGDvuWCcZZ8yCVRyYNaPh5-TZoXcX568Lpqy3PlmcJhNwXpLu266wqld3k5xTKlgLhXxyJJdhi6PeRb818Yf-vU0Bnh4Bk6yZXDTB-vSHY6wr-_7i2gNn45xSRPe3CvReld7ogyq9V6Wh10VViV38E7M-m1xWzdH46a7wy0MYy-rfPEad9u4sjj4WYXqc_f8LfgKqkK9A |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2014_08_060 crossref_primary_10_1109_ACCESS_2019_2915281 crossref_primary_10_3390_jmse12050754 crossref_primary_10_1007_s00521_021_06518_1 crossref_primary_10_1016_j_ins_2012_09_009 crossref_primary_10_1016_j_tust_2023_105337 crossref_primary_10_1016_j_ins_2010_06_039 crossref_primary_10_1109_ACCESS_2020_2995615 crossref_primary_10_1016_j_measurement_2023_113410 crossref_primary_10_4028_www_scientific_net_AMM_484_485_608 crossref_primary_10_1016_j_asoc_2024_112580 crossref_primary_10_1016_j_procs_2016_05_432 crossref_primary_10_1016_j_rser_2019_04_002 crossref_primary_10_1016_j_engappai_2018_08_003 crossref_primary_10_1016_j_neucom_2015_06_056 crossref_primary_10_1109_TNNLS_2016_2598182 crossref_primary_10_1155_2014_169575 crossref_primary_10_3233_JIFS_210007 crossref_primary_10_3390_math11061335 crossref_primary_10_1016_j_suscom_2022_100795 crossref_primary_10_1007_s10489_024_05766_7 crossref_primary_10_1177_09544089221124288 crossref_primary_10_1016_j_jfoodeng_2018_07_035 crossref_primary_10_3390_e22101102 crossref_primary_10_1002_srin_202200872 crossref_primary_10_1016_j_knosys_2013_04_013 crossref_primary_10_1016_j_neunet_2010_08_001 crossref_primary_10_1109_ACCESS_2025_3539209 crossref_primary_10_1016_j_asoc_2020_106101 crossref_primary_10_1016_j_cor_2023_106370 crossref_primary_10_1016_j_knosys_2018_02_002 crossref_primary_10_1109_TII_2020_3011675 crossref_primary_10_1016_j_asoc_2020_106446 crossref_primary_10_1016_j_eswa_2024_123840 crossref_primary_10_1016_j_procs_2015_05_287 crossref_primary_10_1016_j_neunet_2017_06_008 crossref_primary_10_1109_ACCESS_2019_2962702 crossref_primary_10_1016_j_neucom_2011_09_021 crossref_primary_10_1109_OJCS_2024_3394928 crossref_primary_10_1007_s00521_019_04625_8 crossref_primary_10_1016_j_neucom_2016_12_052 crossref_primary_10_1016_j_neucom_2018_01_083 crossref_primary_10_1155_2020_3238129 crossref_primary_10_1016_j_neucom_2012_07_012 crossref_primary_10_1007_s00521_017_2966_z crossref_primary_10_1016_j_ins_2019_04_032 crossref_primary_10_1016_j_ref_2019_03_003 crossref_primary_10_1016_j_array_2023_100320 crossref_primary_10_1007_s00521_012_0924_3 crossref_primary_10_1007_s13042_015_0414_x crossref_primary_10_1016_j_neucom_2016_11_024 crossref_primary_10_1007_s10489_019_01505_5 crossref_primary_10_1007_s10479_022_04575_w crossref_primary_10_3233_JIFS_191429 crossref_primary_10_1007_s13042_017_0687_3 crossref_primary_10_2355_isijinternational_ISIJINT_2022_372 crossref_primary_10_1016_j_engappai_2024_108964 crossref_primary_10_1007_s11042_023_17315_4 crossref_primary_10_1080_18756891_2013_869900 crossref_primary_10_3233_JIFS_212525 crossref_primary_10_1016_j_future_2022_03_034 crossref_primary_10_1049_iet_gtd_2018_6687 crossref_primary_10_1007_s13042_014_0323_4 crossref_primary_10_1109_ACCESS_2018_2879824 crossref_primary_10_3390_pr11041283 crossref_primary_10_1016_j_jik_2023_100390 crossref_primary_10_1016_j_chaos_2021_110969 crossref_primary_10_1007_s10489_016_0809_8 crossref_primary_10_1016_j_neucom_2018_01_093 crossref_primary_10_1007_s00521_013_1524_6 crossref_primary_10_3233_JIFS_169807 crossref_primary_10_1007_s10489_017_0964_6 crossref_primary_10_1142_S0218488525500072 crossref_primary_10_1016_j_asoc_2020_106305 crossref_primary_10_1016_j_knosys_2024_112943 crossref_primary_10_1007_s00521_010_0454_9 crossref_primary_10_1007_s00779_014_0797_9 crossref_primary_10_1016_j_neunet_2013_11_014 crossref_primary_10_3389_fgene_2024_1415249 crossref_primary_10_1016_j_patcog_2020_107592 crossref_primary_10_1007_s11425_013_4718_6 crossref_primary_10_1007_s13762_020_02967_8 crossref_primary_10_1142_S0129065717500538 crossref_primary_10_3390_w16081102 crossref_primary_10_3233_JIFS_232121 crossref_primary_10_1007_s00500_018_3397_1 crossref_primary_10_1016_j_inffus_2020_04_005 crossref_primary_10_1016_j_ins_2012_02_047 crossref_primary_10_1007_s10489_019_01422_7 crossref_primary_10_1016_j_resourpol_2018_10_008 crossref_primary_10_1007_s00521_018_3843_0 crossref_primary_10_1007_s42243_019_00348_1 crossref_primary_10_1002_2050_7038_13010 crossref_primary_10_1002_ett_4367 crossref_primary_10_1016_j_knosys_2020_106593 crossref_primary_10_1108_GS_07_2023_0055 crossref_primary_10_1007_s00366_020_01214_5 crossref_primary_10_1088_1009_0630_17_11_04 crossref_primary_10_1007_s42452_020_03778_9 crossref_primary_10_1109_ACCESS_2020_2992703 crossref_primary_10_1016_j_asoc_2017_08_017 crossref_primary_10_1016_j_neucom_2016_01_038 crossref_primary_10_1109_ACCESS_2022_3215155 crossref_primary_10_1016_j_sab_2015_09_021 crossref_primary_10_1007_s00500_020_04746_6 crossref_primary_10_1016_j_apm_2021_09_040 crossref_primary_10_1039_D0AY00905A crossref_primary_10_3390_en16155656 crossref_primary_10_3390_e23040433 crossref_primary_10_1016_j_oceaneng_2024_118942 crossref_primary_10_1109_TII_2023_3330299 crossref_primary_10_2139_ssrn_4186098 crossref_primary_10_1155_2019_7408725 crossref_primary_10_1007_s10489_015_0751_1 crossref_primary_10_1016_j_eswa_2025_126882 crossref_primary_10_1007_s10489_019_01498_1 crossref_primary_10_1007_s10489_015_0736_0 crossref_primary_10_1016_j_patcog_2023_109577 crossref_primary_10_1109_TKDE_2020_2979967 crossref_primary_10_1016_j_asoc_2016_12_009 crossref_primary_10_1016_j_engappai_2021_104550 crossref_primary_10_1007_s12559_022_10026_2 crossref_primary_10_1007_s00521_023_08548_3 crossref_primary_10_1111_ffe_13343 crossref_primary_10_1007_s12597_024_00829_2 crossref_primary_10_1007_s13042_012_0072_1 crossref_primary_10_1016_j_knosys_2021_107297 crossref_primary_10_1007_s10462_024_10856_6 crossref_primary_10_1016_j_jhydrol_2025_132778 crossref_primary_10_1016_j_neucom_2010_08_013 crossref_primary_10_1007_s41870_024_01913_y crossref_primary_10_1016_j_aej_2024_06_012 crossref_primary_10_1016_j_compeleceng_2024_109783 crossref_primary_10_1007_s00521_019_04627_6 crossref_primary_10_1016_j_asej_2024_102716 crossref_primary_10_1016_j_engstruct_2023_116994 crossref_primary_10_1016_j_neucom_2020_02_132 crossref_primary_10_1051_metal_2023049 crossref_primary_10_1007_s00521_014_1575_3 crossref_primary_10_1038_s41598_024_70109_y crossref_primary_10_4028_www_scientific_net_AMR_486_227 crossref_primary_10_3390_rs12081255 crossref_primary_10_1007_s00354_025_00291_8 crossref_primary_10_1109_TNNLS_2014_2362555 crossref_primary_10_1109_TCYB_2013_2279167 crossref_primary_10_1007_s11356_021_15221_6 crossref_primary_10_3233_IDA_150236 crossref_primary_10_1007_s13042_018_0892_8 crossref_primary_10_1007_s11063_016_9527_9 crossref_primary_10_1016_j_neucom_2014_02_028 crossref_primary_10_4018_IJSIR_302615 crossref_primary_10_1007_s11063_018_9903_8 crossref_primary_10_1016_j_neucom_2016_06_049 crossref_primary_10_1002_tee_24095 crossref_primary_10_1007_s10994_021_06061_z crossref_primary_10_1016_j_jhydrol_2023_129916 crossref_primary_10_1007_s10462_019_09711_w crossref_primary_10_1155_2015_497617 crossref_primary_10_1007_s11663_024_03184_1 crossref_primary_10_1109_ACCESS_2020_2990611 crossref_primary_10_1002_mmce_22636 crossref_primary_10_1007_s11063_017_9775_3 crossref_primary_10_3390_rs9111099 crossref_primary_10_1631_jzus_CIIP1301 crossref_primary_10_1016_j_patcog_2020_107395 crossref_primary_10_1007_s12665_020_08949_w crossref_primary_10_1016_j_neucom_2021_10_125 crossref_primary_10_1016_j_knosys_2012_03_013 crossref_primary_10_1007_s10489_022_03652_8 crossref_primary_10_1016_j_patcog_2022_109253 crossref_primary_10_1007_s00521_011_0791_3 crossref_primary_10_1007_s11042_020_08634_x crossref_primary_10_1016_j_ghm_2024_01_002 crossref_primary_10_1016_j_ins_2011_05_004 crossref_primary_10_1016_j_knosys_2020_105703 crossref_primary_10_1016_j_still_2017_09_006 crossref_primary_10_3390_s20236742 crossref_primary_10_1007_s00521_023_09321_2 crossref_primary_10_1016_j_jfoodeng_2019_03_026 crossref_primary_10_1016_j_knosys_2018_04_005 crossref_primary_10_3390_math9161853 crossref_primary_10_1016_j_knosys_2017_10_008 crossref_primary_10_1007_s10115_016_0928_x crossref_primary_10_1016_j_neucom_2013_03_005 crossref_primary_10_1016_j_knosys_2016_08_030 crossref_primary_10_1109_JBHI_2022_3147524 crossref_primary_10_1371_journal_pone_0211402 crossref_primary_10_1007_s11063_023_11198_0 crossref_primary_10_1109_TNNLS_2015_2513006 crossref_primary_10_1016_j_ins_2018_07_008 crossref_primary_10_1007_s10489_013_0500_2 crossref_primary_10_1016_j_ins_2019_06_034 crossref_primary_10_1007_s00521_012_0894_5 crossref_primary_10_1007_s10462_020_09853_2 crossref_primary_10_1007_s10489_017_0961_9 crossref_primary_10_1016_j_cie_2023_109278 crossref_primary_10_1016_j_ejor_2023_04_025 crossref_primary_10_1108_EC_06_2024_0507 crossref_primary_10_1007_s00521_012_1331_5 crossref_primary_10_1002_sres_2862 crossref_primary_10_1007_s13042_013_0153_9 crossref_primary_10_1016_j_neucom_2014_02_032 crossref_primary_10_1016_j_patcog_2011_03_031 crossref_primary_10_1007_s12559_014_9278_8 crossref_primary_10_1016_j_patcog_2022_108989 crossref_primary_10_1051_matecconf_202030905013 crossref_primary_10_1007_s12666_018_1479_5 crossref_primary_10_1016_j_neucom_2024_128671 crossref_primary_10_1080_00207721_2015_1110212 crossref_primary_10_1016_j_neucom_2015_07_159 crossref_primary_10_1155_2022_5802217 crossref_primary_10_1007_s00521_018_3823_4 crossref_primary_10_1016_j_procs_2019_11_273 crossref_primary_10_1007_s10489_015_0728_0 crossref_primary_10_1007_s00521_012_1306_6 crossref_primary_10_1016_j_egyr_2022_01_194 crossref_primary_10_1016_j_patrec_2012_10_026 crossref_primary_10_1007_s00521_011_0525_6 crossref_primary_10_1109_ACCESS_2023_3253900 crossref_primary_10_1007_s40745_014_0018_4 crossref_primary_10_1109_TKDE_2019_2933511 crossref_primary_10_1007_s11063_020_10380_y crossref_primary_10_1007_s13042_015_0395_9 crossref_primary_10_1007_s40305_015_0095_x crossref_primary_10_1016_j_ins_2022_03_060 crossref_primary_10_1016_j_neucom_2018_06_040 crossref_primary_10_1007_s12666_022_02603_8 crossref_primary_10_1007_s11042_024_18670_6 crossref_primary_10_1007_s13042_017_0720_6 crossref_primary_10_1109_TITS_2021_3130264 crossref_primary_10_1007_s11063_018_9890_9 crossref_primary_10_1016_j_ins_2022_02_012 crossref_primary_10_1016_j_compag_2025_110020 crossref_primary_10_1016_j_asoc_2021_107099 crossref_primary_10_1016_j_neucom_2015_07_003 crossref_primary_10_1016_j_neunet_2015_12_004 crossref_primary_10_2139_ssrn_4183367 crossref_primary_10_1155_2022_3725657 crossref_primary_10_1109_TETCI_2022_3182725 crossref_primary_10_1007_s10489_015_0731_5 crossref_primary_10_1007_s11063_017_9773_5 crossref_primary_10_1155_2015_125868 crossref_primary_10_1155_2022_1231700 crossref_primary_10_3233_JIFS_16629 crossref_primary_10_1007_s10489_016_0820_0 crossref_primary_10_1016_j_asoc_2020_106708 crossref_primary_10_1016_j_neucom_2016_01_105 crossref_primary_10_1016_j_knosys_2014_01_018 crossref_primary_10_1016_j_knosys_2015_11_011 crossref_primary_10_1016_j_neunet_2018_06_004 crossref_primary_10_1007_s10489_019_01465_w crossref_primary_10_1007_s00500_022_07755_9 crossref_primary_10_1007_s10489_018_1185_3 crossref_primary_10_1016_j_fochx_2023_100860 crossref_primary_10_1007_s42243_023_00952_2 crossref_primary_10_1109_TCYB_2016_2551735 crossref_primary_10_1007_s00521_016_2521_3 crossref_primary_10_1007_s10489_017_0913_4 crossref_primary_10_1109_ACCESS_2020_3045706 crossref_primary_10_1016_j_eswa_2024_123378 crossref_primary_10_3390_math12243935 crossref_primary_10_1007_s10489_014_0518_0 crossref_primary_10_1002_2050_7038_12818 crossref_primary_10_1007_s00500_014_1342_5 crossref_primary_10_1016_j_neucom_2012_06_012 crossref_primary_10_1007_s00521_018_3555_5 crossref_primary_10_1007_s12559_012_9179_7 crossref_primary_10_1016_j_apm_2022_07_032 crossref_primary_10_3233_IDA_205094 crossref_primary_10_1007_s10115_014_0786_3 crossref_primary_10_1007_s10489_020_02166_5 crossref_primary_10_1016_j_eij_2014_12_003 crossref_primary_10_1016_j_eswa_2023_121239 crossref_primary_10_1007_s00521_011_0565_y crossref_primary_10_1007_s11063_013_9336_3 crossref_primary_10_1007_s00521_019_04084_1 crossref_primary_10_1016_j_energy_2021_119969 crossref_primary_10_1007_s12665_021_09625_3 crossref_primary_10_1016_j_neucom_2018_09_083 crossref_primary_10_1162_neco_a_01002 crossref_primary_10_2355_isijinternational_ISIJINT_2021_517 crossref_primary_10_1007_s13042_015_0361_6 crossref_primary_10_1016_j_knosys_2024_111713 crossref_primary_10_1016_j_jhydrol_2022_128213 crossref_primary_10_1016_j_heliyon_2020_e05369 crossref_primary_10_1016_j_knosys_2015_05_008 crossref_primary_10_1007_s00521_012_0971_9 crossref_primary_10_1007_s11356_022_18655_8 crossref_primary_10_1016_j_knosys_2017_05_004 crossref_primary_10_1080_02331934_2017_1364739 crossref_primary_10_1016_j_knosys_2014_08_003 crossref_primary_10_1007_s11081_015_9298_6 crossref_primary_10_1016_j_knosys_2014_08_005 crossref_primary_10_1007_s11517_019_02100_z crossref_primary_10_1016_j_neucom_2016_04_024 crossref_primary_10_1016_j_engstruct_2021_113400 crossref_primary_10_1016_j_neunet_2015_10_007 crossref_primary_10_1016_j_asoc_2015_01_018 crossref_primary_10_1007_s10489_020_01699_z crossref_primary_10_1016_j_neucom_2019_09_068 crossref_primary_10_1016_j_egyr_2023_09_071 crossref_primary_10_1016_j_knosys_2014_08_008 crossref_primary_10_1007_s10472_023_09877_8 crossref_primary_10_1007_s11042_022_13519_2 crossref_primary_10_3390_smartcities5030055 crossref_primary_10_1007_s10472_020_09708_0 crossref_primary_10_1080_19942060_2020_1810128 crossref_primary_10_1016_j_asoc_2023_110893 crossref_primary_10_3233_JIFS_211631 crossref_primary_10_1016_j_neucom_2014_10_010 crossref_primary_10_1007_s13042_022_01672_x crossref_primary_10_1016_j_ins_2014_03_129 crossref_primary_10_1021_acs_iecr_1c03534 crossref_primary_10_1007_s10489_017_0984_2 crossref_primary_10_1016_j_neunet_2013_12_003 crossref_primary_10_1007_s13042_019_00957_y crossref_primary_10_1088_1742_6596_1682_1_012009 crossref_primary_10_2298_JMMB240928033S crossref_primary_10_1007_s00521_012_1108_x crossref_primary_10_1007_s10489_016_0860_5 crossref_primary_10_1002_cpe_7270 crossref_primary_10_1016_j_ins_2020_11_033 crossref_primary_10_3390_met12101589 crossref_primary_10_1016_j_neucom_2015_12_133 crossref_primary_10_1016_j_procs_2013_05_066 crossref_primary_10_1016_j_ins_2018_01_002 crossref_primary_10_1016_j_knosys_2018_02_016 crossref_primary_10_4028_www_scientific_net_AMM_556_562_3648 crossref_primary_10_1016_j_ins_2024_120435 crossref_primary_10_1515_jisys_2017_0378 |
Cites_doi | 10.1016/j.patrec.2008.05.016 10.1109/72.870050 10.1016/S0925-2312(03)00380-1 10.1016/j.neucom.2008.04.022 10.1109/TPAMI.2006.17 10.1016/j.neucom.2003.11.012 10.1007/BF00994018 10.1109/TPAMI.2007.1068 10.1023/A:1009715923555 10.1109/TNN.2004.841785 10.1162/089976601300014493 10.1007/BFb0026683 10.1023/A:1018628609742 10.1109/CVPR.1997.609310 10.1016/j.eswa.2008.09.066 10.1002/9781118165485 10.1073/pnas.97.1.262 10.1016/j.sigpro.2008.10.002 10.2307/1267500 10.1109/TKDE.2005.77 10.1109/TNN.2006.889500 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS Copyright 2009 Elsevier Ltd. All rights reserved. Copyright 2009 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright 2009 Elsevier Ltd. All rights reserved. – notice: Copyright 2009 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1016/j.neunet.2009.07.002 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISSN | 1879-2782 |
EndPage | 372 |
ExternalDocumentID | 19616409 22508909 10_1016_j_neunet_2009_07_002 S0893608009001567 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7X8 7TK |
ID | FETCH-LOGICAL-c489t-b8171661bf863ec2e4f4b53a8996dece50d7067c9bd53f2582322c0c9302cada3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Mon Jul 21 12:02:45 EDT 2025 Thu Jul 10 17:11:00 EDT 2025 Mon Jul 21 05:34:46 EDT 2025 Mon Jul 21 09:14:05 EDT 2025 Tue Jul 01 01:24:24 EDT 2025 Thu Apr 24 23:16:10 EDT 2025 Fri Feb 23 02:28:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nonparallel planes Regression ϵ -insensitive bound Support vector machine Machine learning Statistical analysis Minimization Regression analysis Neural network insensitive bound Inequality constraint Vector support machine Convex function Artificial intelligence Quadratic function |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright 2009 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-b8171661bf863ec2e4f4b53a8996dece50d7067c9bd53f2582322c0c9302cada3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 19616409 |
PQID | 733116240 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_745930979 proquest_miscellaneous_733116240 pubmed_primary_19616409 pascalfrancis_primary_22508909 crossref_primary_10_1016_j_neunet_2009_07_002 crossref_citationtrail_10_1016_j_neunet_2009_07_002 elsevier_sciencedirect_doi_10_1016_j_neunet_2009_07_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2010 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Staudte, Sheather (b31) 1990 Allen (b1) 1974; 16 Burges (b6) 1998; 2 Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines, available from Fung, G., & Mangasarian, O. L. (2001). Proximal support vector machines. In Irvine, CA: University of California, Department of Information and Computer Sciences Ghorai, Mukherjee, Dutta (b15) 2009; 89 Jayadeva, Khemchandani, Chandra (b17) 2007; 29 Kumar, Gopal (b22) 2008; 29 Blake, C. I., & Merz, C. J. (1998). UCI repository for machine learning databases Chu, Ong, Keerthy (b9) 2005; 16 Platt (b27) 1999 Vapnik (b32) 1995 pp. 130–136 Ince, H., & Trafalis, T. B. (2002). Support vector machine for regression and applications to financial forecasting. In Mangasarian, Wild (b25) 2006; 28 pp. 839–842 Jiao, Bo, Wang (b18) 2007; 18 Chemnitz, Germany, 1398: 137–142 Brown, Grundy, Lin (b5) 2000; 97 Suykens, J. A. K., Lukas, L., & Van Dooren, P. et al. (1999). Least squares support vector machine classifiers: A large scale algorithm. In IEEE-INNS-ENNS Bi, Bennett (b3) 2003; 55 MATLAB (b37) 1994 Vapnik (b33) 1998 Lee, Hsieh, Huang (b24) 2005; 17 Suykens, Vandewalle (b29) 1999; 9 Bates, Watts (b2) 1988 Cortes, Vapnik (b11) 1995; 20 Wen, Hao, Yang (b36) 2008; 71 Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An application to face detection. In Kumar, Gopal (b23) 2009; 36 Christianini, Shawe-Taylor (b8) 2002 Eubank (b13) 1999; Vol. 157 Keerthi, Shevade, Bhattacharyya (b21) 2001; 13 Shevade, Keerthi, Bhattacharyya (b28) 2000; 11 pp. 77–86 Joachims, T., Ndellec, C., & Rouveriol, C. (1998). Text categorization with support vector machines: Learning with many relevant features. In Collobert, Bengio (b10) 2001; 1 Joachims (b20) 1999 Weisberg (b35) 1985 Wang, Xu (b34) 2004; 61 Ebrahimi, Garcia, Vesin (b12) 2003; 1 Suykens (10.1016/j.neunet.2009.07.002_b29) 1999; 9 Staudte (10.1016/j.neunet.2009.07.002_b31) 1990 Eubank (10.1016/j.neunet.2009.07.002_b13) 1999; Vol. 157 Kumar (10.1016/j.neunet.2009.07.002_b22) 2008; 29 Mangasarian (10.1016/j.neunet.2009.07.002_b25) 2006; 28 10.1016/j.neunet.2009.07.002_b7 Jiao (10.1016/j.neunet.2009.07.002_b18) 2007; 18 Shevade (10.1016/j.neunet.2009.07.002_b28) 2000; 11 Collobert (10.1016/j.neunet.2009.07.002_b10) 2001; 1 Bates (10.1016/j.neunet.2009.07.002_b2) 1988 Vapnik (10.1016/j.neunet.2009.07.002_b32) 1995 Joachims (10.1016/j.neunet.2009.07.002_b20) 1999 10.1016/j.neunet.2009.07.002_b26 Platt (10.1016/j.neunet.2009.07.002_b27) 1999 10.1016/j.neunet.2009.07.002_b4 Weisberg (10.1016/j.neunet.2009.07.002_b35) 1985 Wang (10.1016/j.neunet.2009.07.002_b34) 2004; 61 Ghorai (10.1016/j.neunet.2009.07.002_b15) 2009; 89 Cortes (10.1016/j.neunet.2009.07.002_b11) 1995; 20 Jayadeva (10.1016/j.neunet.2009.07.002_b17) 2007; 29 Allen (10.1016/j.neunet.2009.07.002_b1) 1974; 16 Christianini (10.1016/j.neunet.2009.07.002_b8) 2002 Brown (10.1016/j.neunet.2009.07.002_b5) 2000; 97 Kumar (10.1016/j.neunet.2009.07.002_b23) 2009; 36 Wen (10.1016/j.neunet.2009.07.002_b36) 2008; 71 Ebrahimi (10.1016/j.neunet.2009.07.002_b12) 2003; 1 MATLAB (10.1016/j.neunet.2009.07.002_b37) 1994-2001 10.1016/j.neunet.2009.07.002_b19 10.1016/j.neunet.2009.07.002_b14 Bi (10.1016/j.neunet.2009.07.002_b3) 2003; 55 10.1016/j.neunet.2009.07.002_b16 Lee (10.1016/j.neunet.2009.07.002_b24) 2005; 17 Chu (10.1016/j.neunet.2009.07.002_b9) 2005; 16 Burges (10.1016/j.neunet.2009.07.002_b6) 1998; 2 Keerthi (10.1016/j.neunet.2009.07.002_b21) 2001; 13 10.1016/j.neunet.2009.07.002_b30 Vapnik (10.1016/j.neunet.2009.07.002_b33) 1998 |
References_xml | – year: 2002 ident: b8 article-title: An introduction to support vector machines – volume: 36 start-page: 7535 year: 2009 end-page: 7543 ident: b23 article-title: Least squares twin support vector machines for pattern classification publication-title: Expert Systems with Applications – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b29 article-title: Least squares support vector machine classifiers publication-title: Neural Process Letter – volume: 13 start-page: 637 year: 2001 end-page: 649 ident: b21 article-title: Improvements to Platt’s SMO algorithm for SVM classifier design publication-title: Neural Computation – volume: 16 start-page: 125 year: 1974 end-page: 127 ident: b1 article-title: The relationship between variable selection and prediction publication-title: Technometrics – reference: (pp. 77–86) – volume: 55 start-page: 79 year: 2003 end-page: 108 ident: b3 article-title: A geometric approach to support vector regression publication-title: Neurocomputing – volume: 1 start-page: 713 year: 2003 end-page: 729 ident: b12 article-title: Joint time-frequency-space classification of EEG in a brain–computer interface application publication-title: Journal of Apply Signal Process – volume: 17 start-page: 678 year: 2005 end-page: 685 ident: b24 publication-title: IEEE Transactions on Knowledge and Data Engineering – volume: 11 start-page: 1188 year: 2000 end-page: 1193 ident: b28 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Transactions on Neural Networks – reference: Chang, C. C., & Lin, C. J. (2001). LIBSVM: A library for support vector machines, available from – reference: . IEEE-INNS-ENNS – year: 1990 ident: b31 article-title: Robust estimation and testing: Wiley series in probability and mathematical statistics – reference: Joachims, T., Ndellec, C., & Rouveriol, C. (1998). Text categorization with support vector machines: Learning with many relevant features. In – reference: Fung, G., & Mangasarian, O. L. (2001). Proximal support vector machines. In – volume: 29 start-page: 905 year: 2007 end-page: 910 ident: b17 article-title: Twin support vector machines for pattern classification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – reference: , Chemnitz, Germany, 1398: 137–142 – volume: 28 start-page: 69 year: 2006 end-page: 74 ident: b25 article-title: Multisurface proximal support vector classification via generalized eigenvalues publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 61 start-page: 259 year: 2004 end-page: 275 ident: b34 article-title: A heuristic training for support vector regression publication-title: Neurocomputing – start-page: 185 year: 1999 end-page: 2008 ident: b27 article-title: Fast training of support vector machines using sequential minimal optimization publication-title: Advances in kernel methods–support vector learning – reference: (pp. 839–842) – reference: Blake, C. I., & Merz, C. J. (1998). UCI repository for machine learning databases: – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b11 article-title: Support vector networks publication-title: Machine Learning – reference: Irvine, CA: University of California, Department of Information and Computer Sciences – year: 1988 ident: b2 article-title: Nonlinear regression analysis and its applications – volume: 18 start-page: 1 year: 2007 end-page: 13 ident: b18 article-title: Fast sparse approximation for least squares support vector machine publication-title: IEEE Transactions on Neural Networks – reference: Suykens, J. A. K., Lukas, L., & Van Dooren, P. et al. (1999). Least squares support vector machine classifiers: A large scale algorithm. In – reference: Ince, H., & Trafalis, T. B. (2002). Support vector machine for regression and applications to financial forecasting. In – volume: 71 start-page: 3096 year: 2008 end-page: 3103 ident: b36 article-title: A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression publication-title: Neurocomputing – volume: 97 start-page: 262 year: 2000 end-page: 267 ident: b5 article-title: Knowledge-based analysis of microarray gene expression data by using support vector machine publication-title: Proceedings of National Academy of Science USA – volume: Vol. 157 year: 1999 ident: b13 publication-title: Nonparametric regression and spline smoothing – year: 1994 ident: b37 article-title: User’s Guide – reference: Osuna, E., Freund, R., & Girosi, F. (1997). Training support vector machines: An application to face detection. In – volume: 1 start-page: 143 year: 2001 end-page: 160 ident: b10 article-title: SVMTorch: support vector machines for large-scale regression problems publication-title: Journal of Machine Learning – reference: (pp. 130–136) – year: 1998 ident: b33 article-title: Statistical learning theory – year: 1985 ident: b35 article-title: Applied linear regression – year: 1999 ident: b20 article-title: Making large-scale SVM learning practical publication-title: Advances in kernel methods: Support vector machine – volume: 89 start-page: 510 year: 2009 end-page: 522 ident: b15 article-title: Nonparallel plane proximal classifier publication-title: Signal Processing – year: 1995 ident: b32 article-title: The natural of statistical learning theory – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: b6 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowledge Discovery – volume: 16 start-page: 498 year: 2005 end-page: 501 ident: b9 article-title: An improved conjugate gradient method scheme to the solution of least squares SVM publication-title: IEEE Transactions on Neural Networks – volume: 29 start-page: 1842 year: 2008 end-page: 1848 ident: b22 article-title: Application of smoothing technique on twin support vector machines publication-title: Pattern Recognition Letter – volume: 29 start-page: 1842 year: 2008 ident: 10.1016/j.neunet.2009.07.002_b22 article-title: Application of smoothing technique on twin support vector machines publication-title: Pattern Recognition Letter doi: 10.1016/j.patrec.2008.05.016 – volume: 11 start-page: 1188 issue: 5 year: 2000 ident: 10.1016/j.neunet.2009.07.002_b28 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.870050 – volume: 55 start-page: 79 year: 2003 ident: 10.1016/j.neunet.2009.07.002_b3 article-title: A geometric approach to support vector regression publication-title: Neurocomputing doi: 10.1016/S0925-2312(03)00380-1 – volume: 71 start-page: 3096 year: 2008 ident: 10.1016/j.neunet.2009.07.002_b36 article-title: A heuristic weight-setting strategy and iteratively updating algorithm for weighted least-squares support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.04.022 – volume: 1 start-page: 143 issue: 2 year: 2001 ident: 10.1016/j.neunet.2009.07.002_b10 article-title: SVMTorch: support vector machines for large-scale regression problems publication-title: Journal of Machine Learning – volume: 28 start-page: 69 issue: 1 year: 2006 ident: 10.1016/j.neunet.2009.07.002_b25 article-title: Multisurface proximal support vector classification via generalized eigenvalues publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2006.17 – year: 1998 ident: 10.1016/j.neunet.2009.07.002_b33 – ident: 10.1016/j.neunet.2009.07.002_b4 – volume: 61 start-page: 259 year: 2004 ident: 10.1016/j.neunet.2009.07.002_b34 article-title: A heuristic training for support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2003.11.012 – year: 2002 ident: 10.1016/j.neunet.2009.07.002_b8 – start-page: 185 year: 1999 ident: 10.1016/j.neunet.2009.07.002_b27 article-title: Fast training of support vector machines using sequential minimal optimization – year: 1985 ident: 10.1016/j.neunet.2009.07.002_b35 – ident: 10.1016/j.neunet.2009.07.002_b16 – volume: 1 start-page: 713 issue: 7 year: 2003 ident: 10.1016/j.neunet.2009.07.002_b12 article-title: Joint time-frequency-space classification of EEG in a brain–computer interface application publication-title: Journal of Apply Signal Process – volume: Vol. 157 year: 1999 ident: 10.1016/j.neunet.2009.07.002_b13 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.neunet.2009.07.002_b11 article-title: Support vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – ident: 10.1016/j.neunet.2009.07.002_b14 – year: 1999 ident: 10.1016/j.neunet.2009.07.002_b20 article-title: Making large-scale SVM learning practical – volume: 29 start-page: 905 issue: 5 year: 2007 ident: 10.1016/j.neunet.2009.07.002_b17 article-title: Twin support vector machines for pattern classification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2007.1068 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.neunet.2009.07.002_b6 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowledge Discovery doi: 10.1023/A:1009715923555 – year: 1995 ident: 10.1016/j.neunet.2009.07.002_b32 – ident: 10.1016/j.neunet.2009.07.002_b30 – volume: 16 start-page: 498 issue: 2 year: 2005 ident: 10.1016/j.neunet.2009.07.002_b9 article-title: An improved conjugate gradient method scheme to the solution of least squares SVM publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.841785 – volume: 13 start-page: 637 issue: 3 year: 2001 ident: 10.1016/j.neunet.2009.07.002_b21 article-title: Improvements to Platt’s SMO algorithm for SVM classifier design publication-title: Neural Computation doi: 10.1162/089976601300014493 – ident: 10.1016/j.neunet.2009.07.002_b7 – ident: 10.1016/j.neunet.2009.07.002_b19 doi: 10.1007/BFb0026683 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.neunet.2009.07.002_b29 article-title: Least squares support vector machine classifiers publication-title: Neural Process Letter doi: 10.1023/A:1018628609742 – ident: 10.1016/j.neunet.2009.07.002_b26 doi: 10.1109/CVPR.1997.609310 – year: 1988 ident: 10.1016/j.neunet.2009.07.002_b2 – volume: 36 start-page: 7535 year: 2009 ident: 10.1016/j.neunet.2009.07.002_b23 article-title: Least squares twin support vector machines for pattern classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.09.066 – year: 1990 ident: 10.1016/j.neunet.2009.07.002_b31 doi: 10.1002/9781118165485 – volume: 97 start-page: 262 issue: 1 year: 2000 ident: 10.1016/j.neunet.2009.07.002_b5 article-title: Knowledge-based analysis of microarray gene expression data by using support vector machine publication-title: Proceedings of National Academy of Science USA doi: 10.1073/pnas.97.1.262 – volume: 89 start-page: 510 year: 2009 ident: 10.1016/j.neunet.2009.07.002_b15 article-title: Nonparallel plane proximal classifier publication-title: Signal Processing doi: 10.1016/j.sigpro.2008.10.002 – volume: 16 start-page: 125 year: 1974 ident: 10.1016/j.neunet.2009.07.002_b1 article-title: The relationship between variable selection and prediction publication-title: Technometrics doi: 10.2307/1267500 – volume: 17 start-page: 678 issue: 5 year: 2005 ident: 10.1016/j.neunet.2009.07.002_b24 article-title: ϵ-SSVR: a smooth support vector machine for ϵ-insensitive regression publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2005.77 – volume: 18 start-page: 1 year: 2007 ident: 10.1016/j.neunet.2009.07.002_b18 article-title: Fast sparse approximation for least squares support vector machine publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.889500 – year: 1994-2001 ident: 10.1016/j.neunet.2009.07.002_b37 |
SSID | ssj0006843 |
Score | 2.4962816 |
Snippet | The learning speed of classical Support Vector Regression (SVR) is low, since it is constructed based on the minimization of a convex quadratic function... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 365 |
SubjectTerms | [formula omitted]-insensitive bound Algorithms Applied sciences Artificial Intelligence Computer science; control theory; systems Computer Simulation Data processing. List processing. Character string processing Databases, Factual Exact sciences and technology Least-Squares Analysis Machine learning Memory organisation. Data processing Nonparallel planes Regression Regression Analysis Software Support vector machine Time Factors |
Title | TSVR: An efficient Twin Support Vector Machine for regression |
URI | https://dx.doi.org/10.1016/j.neunet.2009.07.002 https://www.ncbi.nlm.nih.gov/pubmed/19616409 https://www.proquest.com/docview/733116240 https://www.proquest.com/docview/745930979 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iF0F8P9bHkoPXuN0mTRPBwyLKquhBV_FW0iSVFYmL7uLN3-4kaVcEH-C1JG06M5n5knyZQWi_BEVrnlPCpOIEIoQkQilJKAODSo0udWBVXl7x_i07v8_uZ9BxcxfG0ypr3x99evDW9ZNOLc3OaDjs3CQQarkHPDLcB_Y3yhnLvZUfvH_SPLiIzDloTHzr5vpc4Hg5O3F2XGetzKebK9-Ep4WRegWhVbHaxc9wNISl02W0WONJ3ItDXkEz1q2ipaZWA66n7ho6GtzcXR_insM2JI2AWIMHb0OHfVlPgOD4Lmzf48tArrQYsCx-sQ-RJevW0e3pyeC4T-rSCUQzIcekFD4NDu-WleDU6tSyipUZVbC64sZqmyUmhzilZWkyWqWZAGCV6kRLmqRaGUU30Kx7dnYL4a7R1CiphMg0M6VWgrOcAq6RtuKqa1qINhIrdJ1X3Je3eCoaAtljEeXsS17KIvEH3mkLkWmvUcyr8Uf7vFFG8cU-CnD9f_Rsf9Hd9HPgycAqEtlCuFFmAXPLH5goZ58nr4WvZ9nlgHl-acIykJnM4S2b0Q4-f0dyWIsmcvvfQ99B85Gs4IlCu2h2_DKxe4CBxmU7GHkbzfXOLvpXH3P_BNc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOYCEeLeEQvEBjiabtddrV-qhAqqUNj3QtOrNeG1vFYTcqElUceFP8QcZPzZVJaASUq8r2-udGc98Xn-eQehtA4o2vKaESc0JRAhJhNaSUAYGVVrTmMiqHB3y4TH7fFqdrqBf3V2YQKvMvj_59Oit85N-lmZ_Opn0jwoItTwAHhnvA9eZWbnvflzCvm22vfcRlPyuLHc_jT8MSS4tQAwTck4aEdLE8EHTCk6dKR1rWVNRDbsPbp1xVWFr8ONGNraibVkJAB6lKYykRWm01RTGvYPuMnAXoWzC-59XvBIuElUPZkfC9Lr7epFU5t3Cu3lOk1kv_-b8IR4-mOoZaKlN5TX-jn9jHNx9jB5mAIt3koyeoBXnn6JHXXEInH3FM7Q9Pjr5soV3PHYxSwUENzy-nHgc6ogC5scn8bwAjyKb02EAz_jCnSVarn-Ojm9FoGto1Z979wLhgTXUaqmFqAyzjdGCs5oCkJKu5Xpge4h2ElMmJzIP9TS-q46x9k0lOYcam1IV4YS97CGy7DVNiTxuaF93ylDXDFJBrLmh5-Y13S1fB64TrKKQPYQ7ZSpYzOGERnt3vpipUEBzwAFk_aMJq0BmsoZR1pMdXH2O5LD5LeTL_576G3RvOB4dqIO9w_0NdD8xJQJL6RVanV8s3GsAYPNmMxo8Rl9ve4X9BgYRQE0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TSVR%3A+an+efficient+Twin+Support+Vector+Machine+for+regression&rft.jtitle=Neural+networks&rft.au=Peng%2C+Xinjun&rft.date=2010-04-01&rft.eissn=1879-2782&rft.volume=23&rft.issue=3&rft.spage=365&rft_id=info:doi/10.1016%2Fj.neunet.2009.07.002&rft_id=info%3Apmid%2F19616409&rft.externalDocID=19616409 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |