Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions
Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The ha...
Saved in:
Published in | Frontiers in microbiology Vol. 3; p. 354 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
01.01.2012
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present. |
---|---|
AbstractList | Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth.The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present. Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present. Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present. |
Author | Ludwig, Marcus Bryant, Donald A. |
AuthorAffiliation | 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA |
AuthorAffiliation_xml | – name: 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA |
Author_xml | – sequence: 1 givenname: Marcus surname: Ludwig fullname: Ludwig, Marcus – sequence: 2 givenname: Donald A. surname: Bryant fullname: Bryant, Donald A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23087677$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1628071$$D View this record in Osti.gov |
BookMark | eNp1kk1vEzEQhleoiJbSOydkceKQBH_F3uWAVEVQKhUVKUHiZs167cbVrr3YTmn_Ar8aJylVi4QP9sh-5_HY876sDnzwpqpeEzxjrG7e28HpdkYxoTOM2Zw_q46IEHzKMP1x8Cg-rE5SusZlcEzL_KI6pAzXUkh5VP1e3nmj10EHrTcJpXGGljmC8-jbYoEkxhStIvikoxtzGMwHdKp17wbILniUA1qZYTQR8iaaCVpC77zLdxN0eeu6orkxW5xJaYLAd-iruw05hnHtNDqL4Vdeo0XwndvC0qvquYU-mZP79bj6_vnTavFlenF5dr44vZhqXjd5CiCFFqQmrSamobJrS6w1WKBWzIGAkbgjLUhqJWkYhkYwSed1B7ittbXsuDrfc7sA12qM5THxTgVwarcR4pWCmJ3ujQJsTcM7ablgnFHe6LZpO9paSaEFDIX1cc8aN-1gOm18-bz-CfTpiXdrdRVuFOOirjkugLd7QEjZqaRdLt3QwZemZEUErbEkRfTu_pYYfm5MympwSZu-B2_CJilCCBeNwA0v0jePC3qo5G_HiwDvBTqGlKKxDxKC1dZXaucrtfWV2vmqpIh_UkqZOwNsndL_P_EPOCzVPg |
CitedBy_id | crossref_primary_10_1016_j_isci_2020_101818 crossref_primary_10_1038_s41598_020_72080_w crossref_primary_10_1016_j_jinorgbio_2017_09_018 crossref_primary_10_1080_0028825X_2016_1231123 crossref_primary_10_1111_1462_2920_15173 crossref_primary_10_3390_jmse8120996 crossref_primary_10_1016_j_chemgeo_2017_04_007 crossref_primary_10_3389_fmicb_2019_01976 crossref_primary_10_1016_j_algal_2014_07_006 crossref_primary_10_1038_s41396_018_0056_6 crossref_primary_10_1104_pp_113_233973 crossref_primary_10_1111_1462_2920_70071 crossref_primary_10_3390_microorganisms11020455 crossref_primary_10_1093_jxb_erac053 crossref_primary_10_3389_fmicb_2023_1126030 crossref_primary_10_5897_AJMR2017_8585 crossref_primary_10_3389_fmicb_2022_994365 crossref_primary_10_1128_msystems_00317_22 crossref_primary_10_3389_fbioe_2023_1145177 crossref_primary_10_3389_fbioe_2020_577204 crossref_primary_10_1186_s13568_017_0490_2 crossref_primary_10_2139_ssrn_4144493 crossref_primary_10_1016_j_ygeno_2023_110579 crossref_primary_10_1016_j_ijbiomac_2023_127466 crossref_primary_10_1007_s11120_013_9933_z crossref_primary_10_1016_j_resmic_2015_07_001 crossref_primary_10_3389_fmicb_2024_1381097 crossref_primary_10_1016_j_gca_2023_09_010 crossref_primary_10_3390_md16090322 crossref_primary_10_1038_srep14894 crossref_primary_10_1080_19443994_2014_940647 crossref_primary_10_1021_acs_jproteome_3c00843 crossref_primary_10_1074_mcp_M114_046003 crossref_primary_10_1021_acssynbio_7b00157 crossref_primary_10_3390_ma16020852 crossref_primary_10_1002_bit_25280 crossref_primary_10_1016_j_ymben_2023_04_002 crossref_primary_10_1128_mbio_01039_22 crossref_primary_10_3389_feart_2015_00060 crossref_primary_10_1016_j_ymben_2013_11_004 crossref_primary_10_1016_j_ymben_2019_04_013 crossref_primary_10_1016_j_ymben_2019_04_010 crossref_primary_10_1111_1462_2920_15153 crossref_primary_10_3389_fmicb_2022_811227 crossref_primary_10_1016_j_biotechadv_2020_107578 crossref_primary_10_3390_ijms25073922 crossref_primary_10_1016_j_micres_2015_04_006 crossref_primary_10_1128_spectrum_01870_23 crossref_primary_10_1186_s12866_025_03839_2 crossref_primary_10_1016_j_bbabio_2016_08_003 crossref_primary_10_1128_mBio_00949_16 crossref_primary_10_1093_nar_gkw737 crossref_primary_10_1128_msystems_01106_22 crossref_primary_10_3389_fmicb_2020_01707 crossref_primary_10_1016_j_algal_2023_103279 crossref_primary_10_1186_s40168_020_00889_8 crossref_primary_10_1016_j_biortech_2022_127921 crossref_primary_10_1016_j_heliyon_2023_e14708 crossref_primary_10_1073_pnas_2412625122 crossref_primary_10_1016_j_ymben_2012_12_002 crossref_primary_10_1021_acssynbio_1c00269 crossref_primary_10_1016_j_envres_2023_115635 crossref_primary_10_1016_j_xpro_2021_100837 crossref_primary_10_1007_s10811_017_1089_3 crossref_primary_10_1186_s13068_024_02469_6 crossref_primary_10_1093_jxb_erx115 crossref_primary_10_1080_21655979_2020_1837458 crossref_primary_10_1021_acs_jafc_8b03381 crossref_primary_10_1007_s12010_016_2241_2 crossref_primary_10_1021_acssynbio_4c00379 crossref_primary_10_1080_17597269_2020_1802809 crossref_primary_10_1016_j_marenvres_2022_105671 crossref_primary_10_3389_fmicb_2015_01217 crossref_primary_10_3390_plants10112358 crossref_primary_10_1007_s10265_024_01613_5 crossref_primary_10_1016_j_biotechadv_2018_04_007 crossref_primary_10_3389_fmicb_2021_607411 crossref_primary_10_3389_fgene_2014_00191 crossref_primary_10_1128_AEM_01850_20 crossref_primary_10_3389_fpls_2019_01700 crossref_primary_10_1007_s00253_025_13416_2 crossref_primary_10_1128_mSystems_00842_20 crossref_primary_10_1111_jam_14821 crossref_primary_10_1016_j_marenvres_2023_106074 crossref_primary_10_1128_AEM_01615_14 crossref_primary_10_1038_ismej_2015_16 crossref_primary_10_1177_20417314251317542 crossref_primary_10_3390_life5021127 crossref_primary_10_1016_j_biortech_2016_02_128 crossref_primary_10_1074_jbc_M114_555631 crossref_primary_10_3389_fmicb_2022_1038136 crossref_primary_10_3390_life5010025 crossref_primary_10_3389_fclim_2024_1412232 crossref_primary_10_1021_acschembio_6b00890 crossref_primary_10_1016_j_ymben_2020_09_010 crossref_primary_10_1007_s00253_016_7850_8 crossref_primary_10_1111_1574_6968_12574 crossref_primary_10_1002_bit_26350 crossref_primary_10_1007_s10811_013_9993_7 crossref_primary_10_3389_fmars_2020_00222 crossref_primary_10_1093_database_bau127 crossref_primary_10_1371_journal_pone_0232745 crossref_primary_10_3389_fbioe_2014_00017 crossref_primary_10_3389_fbioe_2019_00033 crossref_primary_10_3389_fmicb_2023_1134114 crossref_primary_10_1111_1462_2920_13985 crossref_primary_10_1074_jbc_M114_561233 crossref_primary_10_3389_fmicb_2020_601864 |
ContentType | Journal Article |
Copyright | Copyright © 2012 Ludwig and Bryant. 2012 |
Copyright_xml | – notice: Copyright © 2012 Ludwig and Bryant. 2012 |
CorporateAuthor | Pennsylvania State Univ., University Park, PA (United States) |
CorporateAuthor_xml | – name: Pennsylvania State Univ., University Park, PA (United States) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.3389/fmicb.2012.00354 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1664-302X |
ExternalDocumentID | oai_doaj_org_article_a0fe94d7f46343249cb9bd2bf72aba0a PMC3468840 1628071 23087677 10_3389_fmicb_2012_00354 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK ECGQY GROUPED_DOAJ GX1 HYE IPNFZ KQ8 M48 M~E O5R O5S OK1 PGMZT RIG RNS RPM NPM 7X8 OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c489t-aa76c6181bc1e927db181ccafa2f65a1ae70d1ba72f71930a9637258da0b8cff3 |
IEDL.DBID | M48 |
ISSN | 1664-302X |
IngestDate | Wed Aug 27 01:31:15 EDT 2025 Thu Aug 21 18:18:02 EDT 2025 Mon Jun 16 03:02:43 EDT 2025 Fri Jul 11 00:10:37 EDT 2025 Thu Apr 03 07:11:12 EDT 2025 Thu Apr 24 23:11:02 EDT 2025 Tue Jul 01 03:54:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | salinity transcription profiling photosynthesis cyanobacteria mixotrophy temperature heat shock RNAseq |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-aa76c6181bc1e927db181ccafa2f65a1ae70d1ba72f71930a9637258da0b8cff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 None US Air Force Office of Scientific Research (AFOSR) USDOE Office of Science (SC), Biological and Environmental Research (BER) This article was submitted to Frontiers in Microbial Physiology and Metabolism, a specialty of Frontiers in Microbiology. Edited by: Martin G. Klotz, University of North Carolina at Charlotte, USA Reviewed by: Brian Palenik, Scripps Institution of Oceanography, USA; Jason Warren Cooley, University of Missouri, USA |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2012.00354 |
PMID | 23087677 |
PQID | 1114696094 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a0fe94d7f46343249cb9bd2bf72aba0a pubmedcentral_primary_oai_pubmedcentral_nih_gov_3468840 osti_scitechconnect_1628071 proquest_miscellaneous_1114696094 pubmed_primary_23087677 crossref_primary_10_3389_fmicb_2012_00354 crossref_citationtrail_10_3389_fmicb_2012_00354 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-01-01 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: 2012-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: United States |
PublicationTitle | Frontiers in microbiology |
PublicationTitleAlternate | Front Microbiol |
PublicationYear | 2012 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | 16678174 - FEBS Lett. 2006 May 29;580(13):3029-34 18644144 - BMC Genomics. 2008;9:344 15919672 - Plant Cell Physiol. 2005 Aug;46(8):1237-45 12803655 - BMC Genomics. 2003 Jun 12;4(1):23 14612435 - J Biol Chem. 2004 Feb 13;279(7):5739-51 15047877 - Plant Cell Physiol. 2004 Mar;45(3):290-9 21054739 - Environ Microbiol. 2011 Mar;13(3):551-62 11298290 - Mol Microbiol. 2001 Apr;40(1):235-44 18818204 - J Biol Chem. 2008 Nov 21;283(47):32394-403 11463170 - IUBMB Life. 2001 Feb;51(2):93-7 12554704 - J Exp Bot. 2003 Feb;54(383):609-22 22174252 - Science. 2011 Dec 16;334(6062):1551-3 21562599 - ISME J. 2011 Oct;5(10):1580-94 12057963 - J Bacteriol. 2002 Jul;184(13):3671-81 21670225 - Plant Physiol. 2011 Aug;156(4):1934-54 3080411 - J Bacteriol. 1986 Feb;165(2):654-6 15150218 - J Bacteriol. 2004 Jun;186(11):3331-45 18786533 - FEBS Lett. 2008 Oct 15;582(23-24):3389-95 15306028 - BMC Struct Biol. 2004 Aug 11;4:9 20376102 - ISME J. 2010 Jul;4(7):908-21 11779175 - Biochem Biophys Res Commun. 2002 Jan 11;290(1):339-48 21279737 - Photosynth Res. 2011 Sep;109(1-3):21-32 20031922 - Mol Plant. 2008 Jan;1(1):155-66 15187290 - Methods Mol Biol. 2004;274:325-40 16473855 - Nucleic Acids Res. 2006;34(3):1050-65 18836846 - Photosynth Res. 2008 Oct-Dec;98(1-3):479-88 9350872 - Mol Microbiol. 1997 Sep;25(6):1167-75 15289570 - Microbiology. 2004 Aug;150(Pt 8):2739-49 16514145 - Microbiology. 2006 Mar;152(Pt 3):647-55 20138126 - Biochim Biophys Acta. 2010 Aug;1800(8):798-805 15965020 - Plant Physiol. 2005 Jul;138(3):1409-21 10572142 - J Bacteriol. 1999 Dec;181(23):7363-72 12231924 - Plant Physiol. 1993 Sep;103(1):171-180 4994861 - Arch Mikrobiol. 1971;76(2):151-65 18769676 - PLoS Genet. 2008 Aug;4(8):e1000173 22514553 - Front Microbiol. 2012;3:145 11024039 - J Biol Chem. 2001 Jan 5;276(1):306-14 99438 - J Bacteriol. 1978 Sep;135(3):888-94 15247377 - Plant Physiol. 2004 Jul;135(3):1666-73 18679172 - Nat Rev Microbiol. 2008 Sep;6(9):681-91 20669934 - Biochemistry. 2010 Aug 24;49(33):7000-11 21779275 - Front Microbiol. 2011;2:41 10050775 - FEBS Lett. 1999 Feb 12;444(2-3):281-4 17087771 - Mol Microbiol. 2006 Dec;62(6):1507-14 17279442 - Photosynth Res. 2007 Jul-Sep;93(1-3):69-77 8496184 - J Biol Chem. 1993 May 25;268(15):11296-303 16437183 - Photosynth Res. 2006 Feb;87(2):215-28 20472544 - Bioinformatics. 2010 Jun 15;26(12):1473-6 17028233 - Appl Environ Microbiol. 2006 Dec;72(12):7431-7 16574748 - J Exp Bot. 2006;57(7):1573-8 9396830 - Arch Microbiol. 1998 Jan;169(1):10-9 20960136 - Methods Mol Biol. 2011;684:273-93 16572470 - Proteomics. 2006 May;6(9):2733-45 15361582 - Plant Physiol. 2004 Oct;136(2):3290-300 11283337 - Plant Cell. 2001 Apr;13(4):793-806 21035426 - Biochim Biophys Acta. 2011 Aug;1807(8):935-44 12573219 - Curr Biol. 2003 Feb 4;13(3):230-5 1902208 - J Bacteriol. 1991 May;173(9):2761-7 18424627 - Plant Physiol. 2008 Jun;147(2):747-63 18772288 - Microbiol Mol Biol Rev. 2008 Sep;72(3):545-54 11042275 - FEBS Lett. 2000 Oct 20;483(2-3):169-74 12913140 - Plant Physiol. 2003 Aug;132(4):1825-39 16775753 - Arch Microbiol. 2006 Jun;185(6):471-9 16592896 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):6052-6 21866228 - Front Microbiol. 2011;2:165 15107425 - J Biol Chem. 2004 Jul 2;279(27):27971-9 12421299 - Mol Microbiol. 2002 Nov;46(4):905-15 19578872 - Planta. 2009 Sep;230(4):625-37 22421878 - Nat Rev Microbiol. 2012 Apr;10(4):255-65 1624459 - J Bacteriol. 1992 Jul;174(14):4718-26 19379808 - Res Microbiol. 2009 May;160(4):288-96 9106218 - Mol Microbiol. 1997 Mar;23(6):1281-92 19818881 - Biochim Biophys Acta. 2010 Feb;1804(2):382-92 |
References_xml | – reference: 12057963 - J Bacteriol. 2002 Jul;184(13):3671-81 – reference: 4994861 - Arch Mikrobiol. 1971;76(2):151-65 – reference: 14612435 - J Biol Chem. 2004 Feb 13;279(7):5739-51 – reference: 18769676 - PLoS Genet. 2008 Aug;4(8):e1000173 – reference: 18679172 - Nat Rev Microbiol. 2008 Sep;6(9):681-91 – reference: 16514145 - Microbiology. 2006 Mar;152(Pt 3):647-55 – reference: 15187290 - Methods Mol Biol. 2004;274:325-40 – reference: 12554704 - J Exp Bot. 2003 Feb;54(383):609-22 – reference: 20138126 - Biochim Biophys Acta. 2010 Aug;1800(8):798-805 – reference: 15247377 - Plant Physiol. 2004 Jul;135(3):1666-73 – reference: 22421878 - Nat Rev Microbiol. 2012 Apr;10(4):255-65 – reference: 12913140 - Plant Physiol. 2003 Aug;132(4):1825-39 – reference: 21779275 - Front Microbiol. 2011;2:41 – reference: 12803655 - BMC Genomics. 2003 Jun 12;4(1):23 – reference: 8496184 - J Biol Chem. 1993 May 25;268(15):11296-303 – reference: 21035426 - Biochim Biophys Acta. 2011 Aug;1807(8):935-44 – reference: 10572142 - J Bacteriol. 1999 Dec;181(23):7363-72 – reference: 18818204 - J Biol Chem. 2008 Nov 21;283(47):32394-403 – reference: 11283337 - Plant Cell. 2001 Apr;13(4):793-806 – reference: 22514553 - Front Microbiol. 2012;3:145 – reference: 16473855 - Nucleic Acids Res. 2006;34(3):1050-65 – reference: 21279737 - Photosynth Res. 2011 Sep;109(1-3):21-32 – reference: 17028233 - Appl Environ Microbiol. 2006 Dec;72(12):7431-7 – reference: 18836846 - Photosynth Res. 2008 Oct-Dec;98(1-3):479-88 – reference: 16437183 - Photosynth Res. 2006 Feb;87(2):215-28 – reference: 12421299 - Mol Microbiol. 2002 Nov;46(4):905-15 – reference: 1624459 - J Bacteriol. 1992 Jul;174(14):4718-26 – reference: 15919672 - Plant Cell Physiol. 2005 Aug;46(8):1237-45 – reference: 21562599 - ISME J. 2011 Oct;5(10):1580-94 – reference: 16678174 - FEBS Lett. 2006 May 29;580(13):3029-34 – reference: 15306028 - BMC Struct Biol. 2004 Aug 11;4:9 – reference: 15965020 - Plant Physiol. 2005 Jul;138(3):1409-21 – reference: 9350872 - Mol Microbiol. 1997 Sep;25(6):1167-75 – reference: 12573219 - Curr Biol. 2003 Feb 4;13(3):230-5 – reference: 16775753 - Arch Microbiol. 2006 Jun;185(6):471-9 – reference: 16574748 - J Exp Bot. 2006;57(7):1573-8 – reference: 11463170 - IUBMB Life. 2001 Feb;51(2):93-7 – reference: 19818881 - Biochim Biophys Acta. 2010 Feb;1804(2):382-92 – reference: 20376102 - ISME J. 2010 Jul;4(7):908-21 – reference: 17279442 - Photosynth Res. 2007 Jul-Sep;93(1-3):69-77 – reference: 21054739 - Environ Microbiol. 2011 Mar;13(3):551-62 – reference: 18772288 - Microbiol Mol Biol Rev. 2008 Sep;72(3):545-54 – reference: 20960136 - Methods Mol Biol. 2011;684:273-93 – reference: 10050775 - FEBS Lett. 1999 Feb 12;444(2-3):281-4 – reference: 3080411 - J Bacteriol. 1986 Feb;165(2):654-6 – reference: 15361582 - Plant Physiol. 2004 Oct;136(2):3290-300 – reference: 19379808 - Res Microbiol. 2009 May;160(4):288-96 – reference: 15289570 - Microbiology. 2004 Aug;150(Pt 8):2739-49 – reference: 21670225 - Plant Physiol. 2011 Aug;156(4):1934-54 – reference: 20669934 - Biochemistry. 2010 Aug 24;49(33):7000-11 – reference: 9396830 - Arch Microbiol. 1998 Jan;169(1):10-9 – reference: 15150218 - J Bacteriol. 2004 Jun;186(11):3331-45 – reference: 11024039 - J Biol Chem. 2001 Jan 5;276(1):306-14 – reference: 18424627 - Plant Physiol. 2008 Jun;147(2):747-63 – reference: 15047877 - Plant Cell Physiol. 2004 Mar;45(3):290-9 – reference: 20031922 - Mol Plant. 2008 Jan;1(1):155-66 – reference: 16592896 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):6052-6 – reference: 15107425 - J Biol Chem. 2004 Jul 2;279(27):27971-9 – reference: 21866228 - Front Microbiol. 2011;2:165 – reference: 11779175 - Biochem Biophys Res Commun. 2002 Jan 11;290(1):339-48 – reference: 17087771 - Mol Microbiol. 2006 Dec;62(6):1507-14 – reference: 9106218 - Mol Microbiol. 1997 Mar;23(6):1281-92 – reference: 99438 - J Bacteriol. 1978 Sep;135(3):888-94 – reference: 19578872 - Planta. 2009 Sep;230(4):625-37 – reference: 12231924 - Plant Physiol. 1993 Sep;103(1):171-180 – reference: 20472544 - Bioinformatics. 2010 Jun 15;26(12):1473-6 – reference: 18786533 - FEBS Lett. 2008 Oct 15;582(23-24):3389-95 – reference: 18644144 - BMC Genomics. 2008;9:344 – reference: 16572470 - Proteomics. 2006 May;6(9):2733-45 – reference: 1902208 - J Bacteriol. 1991 May;173(9):2761-7 – reference: 22174252 - Science. 2011 Dec 16;334(6062):1551-3 – reference: 11042275 - FEBS Lett. 2000 Oct 20;483(2-3):169-74 – reference: 11298290 - Mol Microbiol. 2001 Apr;40(1):235-44 |
SSID | ssj0000402000 |
Score | 2.3568368 |
Snippet | Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great... Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great... |
SourceID | doaj pubmedcentral osti proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 354 |
SubjectTerms | Cyanobacteria heat shock Microbiology mixotrophy Photosynthesis RNAseq Salinity temperature transcription profiling |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifltPJYIvwtVL2zRpfNPF4xAUQQ_uLeSrbuGuXa5duP0T_K-dSXrLroi--NTSJiXNTGbm1878Qshr75pWyqByI73NOVdVbjDJ0VWCqdL40MYK789fxOkZ_3Ren-9s9YU5YYkeOE3csWFtUNxL6IM1kFw5q6wvbStLYw2LoRH4vB0wFW0wwiLG0n9JQGEKxNQ5i6lcSNBZ1XzPD0W6fjgMsKz-FGr-njG544JO7pG7c-xI36cx3ye3Qv-A3E67SW4ekp_fNn0AawYmzq1HOq7e0jHuAEG_LhZUglGiE3qmaCeGy_COGucuulS7SKeBIk3VzLF8REeDNZPT5ogO152P9OA0FZZQ03t62V0P09WwWnaO_gAoPy0pIGufEsAekbOTj98Xp_m800LueKOm3BgpnABnb10RVAlig3OQbWvKVtSmMEEyX1gjy1ZCxMcMLFtZ1o03zDaubavH5KAf-vCUUMaCsvAww6uK10xYrpgBmFbwAEhc8Iwc38y7djMNOc7FhQY4gpLSUVIaJaWjpDLyZttjlSg4_tL2A4py2w7Js-MFUCk9q5T-l0pl5BAVQUMMgkS6DjOO3KQLgcxBRUZe3eiHhqWI_1dMH4b1iGAKXxEAc0aeJH3ZDqRE5kUhZUbknibtjXT_Tt8tI913xUUDMPzZ_3i1Q3IHJyt9Q3pODqardXgBUdVkX8YF9AuPKiRN priority: 102 providerName: Directory of Open Access Journals |
Title | Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23087677 https://www.proquest.com/docview/1114696094 https://www.osti.gov/servlets/purl/1628071 https://pubmed.ncbi.nlm.nih.gov/PMC3468840 https://doaj.org/article/a0fe94d7f46343249cb9bd2bf72aba0a |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ti9MwGA96IvhFfLeeHhH8IqxnX9KkEUTO4d0hTIXdYN9CkqauMNu5dbD9C_7VPk_am07GfWnL1oY0z-uvyfMLIW8Km5dCOBlqUZiQMZmGGhc52pRHMtGFK32F9-grv5ywL9Ns-rc8uh_A1UFoh_tJTZbz082v7Ucw-A-IOCHeggQqa3CVFnJvphm7Te5AXBJopqM-2fd-GaGSr0mJOcfpgGTazVsebGQvTnk6fzg1YHaHUtH_V1T-E6LOH5D7fW5JzzpleEhuufoRudvtNrl9TH6Pt7WDFwYXaNcrulqc0rHfIYJ-Hw6pAKdFfeTyfqT56d7TM2vnVVfbSNuGXjnIsTsO5gEda6ypbLcD-m1TFZ4-HJsDxzmgui7oqNo07bJZzCpLLwDrtzM6bHB-HPX8CZmcf74aXob9VgyhZblsQ60FtxyyAWNjJxOQK1yD8EudlDzTsXYiKmKjRVIKSAkjDXYtkiwvdGRyW5bpU3JUN7V7TmgUOWmgMc3SlGURN0xGGnBczBxAdc4C8u564JXtecpxMOYK8AqKSnlRKRSV8qIKyNvdE4uOo-OGez-hLHf3Ibu2_6FZ_lC9sSodlU6yQoCeYt0tk9ZIUySmFIk2OtIBOUZNUJCkINOuxSVJtlUxR2qhOCCvrxVEga3iBIyuXbNeIdrCVwREHZBnncLsOpIgNSMXIiBiT5X2err_T13NPB94yngOOP3Fjb06JvdwFLqvRy_JUbtcu1eQT7XmxH-HgOPFND7xJvMH2p0g8w |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synechococcus+sp.+Strain+PCC+7002+Transcriptome%3A+Acclimation+to+Temperature%2C+Salinity%2C+Oxidative+Stress%2C+and+Mixotrophic+Growth+Conditions&rft.jtitle=Frontiers+in+microbiology&rft.au=Ludwig%2C+Marcus&rft.au=Bryant%2C+Donald+A.&rft.date=2012-01-01&rft.pub=Frontiers+Research+Foundation&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=3&rft_id=info:doi/10.3389%2Ffmicb.2012.00354&rft.externalDocID=1628071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon |