Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions

Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The ha...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in microbiology Vol. 3; p. 354
Main Authors Ludwig, Marcus, Bryant, Donald A.
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 01.01.2012
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.
AbstractList Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth.The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.
Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.
Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.
Author Ludwig, Marcus
Bryant, Donald A.
AuthorAffiliation 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
AuthorAffiliation_xml – name: 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
Author_xml – sequence: 1
  givenname: Marcus
  surname: Ludwig
  fullname: Ludwig, Marcus
– sequence: 2
  givenname: Donald A.
  surname: Bryant
  fullname: Bryant, Donald A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23087677$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1628071$$D View this record in Osti.gov
BookMark eNp1kk1vEzEQhleoiJbSOydkceKQBH_F3uWAVEVQKhUVKUHiZs167cbVrr3YTmn_Ar8aJylVi4QP9sh-5_HY876sDnzwpqpeEzxjrG7e28HpdkYxoTOM2Zw_q46IEHzKMP1x8Cg-rE5SusZlcEzL_KI6pAzXUkh5VP1e3nmj10EHrTcJpXGGljmC8-jbYoEkxhStIvikoxtzGMwHdKp17wbILniUA1qZYTQR8iaaCVpC77zLdxN0eeu6orkxW5xJaYLAd-iruw05hnHtNDqL4Vdeo0XwndvC0qvquYU-mZP79bj6_vnTavFlenF5dr44vZhqXjd5CiCFFqQmrSamobJrS6w1WKBWzIGAkbgjLUhqJWkYhkYwSed1B7ittbXsuDrfc7sA12qM5THxTgVwarcR4pWCmJ3ujQJsTcM7ablgnFHe6LZpO9paSaEFDIX1cc8aN-1gOm18-bz-CfTpiXdrdRVuFOOirjkugLd7QEjZqaRdLt3QwZemZEUErbEkRfTu_pYYfm5MympwSZu-B2_CJilCCBeNwA0v0jePC3qo5G_HiwDvBTqGlKKxDxKC1dZXaucrtfWV2vmqpIh_UkqZOwNsndL_P_EPOCzVPg
CitedBy_id crossref_primary_10_1016_j_isci_2020_101818
crossref_primary_10_1038_s41598_020_72080_w
crossref_primary_10_1016_j_jinorgbio_2017_09_018
crossref_primary_10_1080_0028825X_2016_1231123
crossref_primary_10_1111_1462_2920_15173
crossref_primary_10_3390_jmse8120996
crossref_primary_10_1016_j_chemgeo_2017_04_007
crossref_primary_10_3389_fmicb_2019_01976
crossref_primary_10_1016_j_algal_2014_07_006
crossref_primary_10_1038_s41396_018_0056_6
crossref_primary_10_1104_pp_113_233973
crossref_primary_10_1111_1462_2920_70071
crossref_primary_10_3390_microorganisms11020455
crossref_primary_10_1093_jxb_erac053
crossref_primary_10_3389_fmicb_2023_1126030
crossref_primary_10_5897_AJMR2017_8585
crossref_primary_10_3389_fmicb_2022_994365
crossref_primary_10_1128_msystems_00317_22
crossref_primary_10_3389_fbioe_2023_1145177
crossref_primary_10_3389_fbioe_2020_577204
crossref_primary_10_1186_s13568_017_0490_2
crossref_primary_10_2139_ssrn_4144493
crossref_primary_10_1016_j_ygeno_2023_110579
crossref_primary_10_1016_j_ijbiomac_2023_127466
crossref_primary_10_1007_s11120_013_9933_z
crossref_primary_10_1016_j_resmic_2015_07_001
crossref_primary_10_3389_fmicb_2024_1381097
crossref_primary_10_1016_j_gca_2023_09_010
crossref_primary_10_3390_md16090322
crossref_primary_10_1038_srep14894
crossref_primary_10_1080_19443994_2014_940647
crossref_primary_10_1021_acs_jproteome_3c00843
crossref_primary_10_1074_mcp_M114_046003
crossref_primary_10_1021_acssynbio_7b00157
crossref_primary_10_3390_ma16020852
crossref_primary_10_1002_bit_25280
crossref_primary_10_1016_j_ymben_2023_04_002
crossref_primary_10_1128_mbio_01039_22
crossref_primary_10_3389_feart_2015_00060
crossref_primary_10_1016_j_ymben_2013_11_004
crossref_primary_10_1016_j_ymben_2019_04_013
crossref_primary_10_1016_j_ymben_2019_04_010
crossref_primary_10_1111_1462_2920_15153
crossref_primary_10_3389_fmicb_2022_811227
crossref_primary_10_1016_j_biotechadv_2020_107578
crossref_primary_10_3390_ijms25073922
crossref_primary_10_1016_j_micres_2015_04_006
crossref_primary_10_1128_spectrum_01870_23
crossref_primary_10_1186_s12866_025_03839_2
crossref_primary_10_1016_j_bbabio_2016_08_003
crossref_primary_10_1128_mBio_00949_16
crossref_primary_10_1093_nar_gkw737
crossref_primary_10_1128_msystems_01106_22
crossref_primary_10_3389_fmicb_2020_01707
crossref_primary_10_1016_j_algal_2023_103279
crossref_primary_10_1186_s40168_020_00889_8
crossref_primary_10_1016_j_biortech_2022_127921
crossref_primary_10_1016_j_heliyon_2023_e14708
crossref_primary_10_1073_pnas_2412625122
crossref_primary_10_1016_j_ymben_2012_12_002
crossref_primary_10_1021_acssynbio_1c00269
crossref_primary_10_1016_j_envres_2023_115635
crossref_primary_10_1016_j_xpro_2021_100837
crossref_primary_10_1007_s10811_017_1089_3
crossref_primary_10_1186_s13068_024_02469_6
crossref_primary_10_1093_jxb_erx115
crossref_primary_10_1080_21655979_2020_1837458
crossref_primary_10_1021_acs_jafc_8b03381
crossref_primary_10_1007_s12010_016_2241_2
crossref_primary_10_1021_acssynbio_4c00379
crossref_primary_10_1080_17597269_2020_1802809
crossref_primary_10_1016_j_marenvres_2022_105671
crossref_primary_10_3389_fmicb_2015_01217
crossref_primary_10_3390_plants10112358
crossref_primary_10_1007_s10265_024_01613_5
crossref_primary_10_1016_j_biotechadv_2018_04_007
crossref_primary_10_3389_fmicb_2021_607411
crossref_primary_10_3389_fgene_2014_00191
crossref_primary_10_1128_AEM_01850_20
crossref_primary_10_3389_fpls_2019_01700
crossref_primary_10_1007_s00253_025_13416_2
crossref_primary_10_1128_mSystems_00842_20
crossref_primary_10_1111_jam_14821
crossref_primary_10_1016_j_marenvres_2023_106074
crossref_primary_10_1128_AEM_01615_14
crossref_primary_10_1038_ismej_2015_16
crossref_primary_10_1177_20417314251317542
crossref_primary_10_3390_life5021127
crossref_primary_10_1016_j_biortech_2016_02_128
crossref_primary_10_1074_jbc_M114_555631
crossref_primary_10_3389_fmicb_2022_1038136
crossref_primary_10_3390_life5010025
crossref_primary_10_3389_fclim_2024_1412232
crossref_primary_10_1021_acschembio_6b00890
crossref_primary_10_1016_j_ymben_2020_09_010
crossref_primary_10_1007_s00253_016_7850_8
crossref_primary_10_1111_1574_6968_12574
crossref_primary_10_1002_bit_26350
crossref_primary_10_1007_s10811_013_9993_7
crossref_primary_10_3389_fmars_2020_00222
crossref_primary_10_1093_database_bau127
crossref_primary_10_1371_journal_pone_0232745
crossref_primary_10_3389_fbioe_2014_00017
crossref_primary_10_3389_fbioe_2019_00033
crossref_primary_10_3389_fmicb_2023_1134114
crossref_primary_10_1111_1462_2920_13985
crossref_primary_10_1074_jbc_M114_561233
crossref_primary_10_3389_fmicb_2020_601864
ContentType Journal Article
Copyright Copyright © 2012 Ludwig and Bryant. 2012
Copyright_xml – notice: Copyright © 2012 Ludwig and Bryant. 2012
CorporateAuthor Pennsylvania State Univ., University Park, PA (United States)
CorporateAuthor_xml – name: Pennsylvania State Univ., University Park, PA (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.3389/fmicb.2012.00354
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-302X
ExternalDocumentID oai_doaj_org_article_a0fe94d7f46343249cb9bd2bf72aba0a
PMC3468840
1628071
23087677
10_3389_fmicb_2012_00354
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
ECGQY
GROUPED_DOAJ
GX1
HYE
IPNFZ
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RIG
RNS
RPM
NPM
7X8
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c489t-aa76c6181bc1e927db181ccafa2f65a1ae70d1ba72f71930a9637258da0b8cff3
IEDL.DBID M48
ISSN 1664-302X
IngestDate Wed Aug 27 01:31:15 EDT 2025
Thu Aug 21 18:18:02 EDT 2025
Mon Jun 16 03:02:43 EDT 2025
Fri Jul 11 00:10:37 EDT 2025
Thu Apr 03 07:11:12 EDT 2025
Thu Apr 24 23:11:02 EDT 2025
Tue Jul 01 03:54:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords salinity
transcription profiling
photosynthesis
cyanobacteria
mixotrophy
temperature
heat shock
RNAseq
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-aa76c6181bc1e927db181ccafa2f65a1ae70d1ba72f71930a9637258da0b8cff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
None
US Air Force Office of Scientific Research (AFOSR)
USDOE Office of Science (SC), Biological and Environmental Research (BER)
This article was submitted to Frontiers in Microbial Physiology and Metabolism, a specialty of Frontiers in Microbiology.
Edited by: Martin G. Klotz, University of North Carolina at Charlotte, USA
Reviewed by: Brian Palenik, Scripps Institution of Oceanography, USA; Jason Warren Cooley, University of Missouri, USA
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmicb.2012.00354
PMID 23087677
PQID 1114696094
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_a0fe94d7f46343249cb9bd2bf72aba0a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3468840
osti_scitechconnect_1628071
proquest_miscellaneous_1114696094
pubmed_primary_23087677
crossref_primary_10_3389_fmicb_2012_00354
crossref_citationtrail_10_3389_fmicb_2012_00354
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-01-01
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: United States
PublicationTitle Frontiers in microbiology
PublicationTitleAlternate Front Microbiol
PublicationYear 2012
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References 16678174 - FEBS Lett. 2006 May 29;580(13):3029-34
18644144 - BMC Genomics. 2008;9:344
15919672 - Plant Cell Physiol. 2005 Aug;46(8):1237-45
12803655 - BMC Genomics. 2003 Jun 12;4(1):23
14612435 - J Biol Chem. 2004 Feb 13;279(7):5739-51
15047877 - Plant Cell Physiol. 2004 Mar;45(3):290-9
21054739 - Environ Microbiol. 2011 Mar;13(3):551-62
11298290 - Mol Microbiol. 2001 Apr;40(1):235-44
18818204 - J Biol Chem. 2008 Nov 21;283(47):32394-403
11463170 - IUBMB Life. 2001 Feb;51(2):93-7
12554704 - J Exp Bot. 2003 Feb;54(383):609-22
22174252 - Science. 2011 Dec 16;334(6062):1551-3
21562599 - ISME J. 2011 Oct;5(10):1580-94
12057963 - J Bacteriol. 2002 Jul;184(13):3671-81
21670225 - Plant Physiol. 2011 Aug;156(4):1934-54
3080411 - J Bacteriol. 1986 Feb;165(2):654-6
15150218 - J Bacteriol. 2004 Jun;186(11):3331-45
18786533 - FEBS Lett. 2008 Oct 15;582(23-24):3389-95
15306028 - BMC Struct Biol. 2004 Aug 11;4:9
20376102 - ISME J. 2010 Jul;4(7):908-21
11779175 - Biochem Biophys Res Commun. 2002 Jan 11;290(1):339-48
21279737 - Photosynth Res. 2011 Sep;109(1-3):21-32
20031922 - Mol Plant. 2008 Jan;1(1):155-66
15187290 - Methods Mol Biol. 2004;274:325-40
16473855 - Nucleic Acids Res. 2006;34(3):1050-65
18836846 - Photosynth Res. 2008 Oct-Dec;98(1-3):479-88
9350872 - Mol Microbiol. 1997 Sep;25(6):1167-75
15289570 - Microbiology. 2004 Aug;150(Pt 8):2739-49
16514145 - Microbiology. 2006 Mar;152(Pt 3):647-55
20138126 - Biochim Biophys Acta. 2010 Aug;1800(8):798-805
15965020 - Plant Physiol. 2005 Jul;138(3):1409-21
10572142 - J Bacteriol. 1999 Dec;181(23):7363-72
12231924 - Plant Physiol. 1993 Sep;103(1):171-180
4994861 - Arch Mikrobiol. 1971;76(2):151-65
18769676 - PLoS Genet. 2008 Aug;4(8):e1000173
22514553 - Front Microbiol. 2012;3:145
11024039 - J Biol Chem. 2001 Jan 5;276(1):306-14
99438 - J Bacteriol. 1978 Sep;135(3):888-94
15247377 - Plant Physiol. 2004 Jul;135(3):1666-73
18679172 - Nat Rev Microbiol. 2008 Sep;6(9):681-91
20669934 - Biochemistry. 2010 Aug 24;49(33):7000-11
21779275 - Front Microbiol. 2011;2:41
10050775 - FEBS Lett. 1999 Feb 12;444(2-3):281-4
17087771 - Mol Microbiol. 2006 Dec;62(6):1507-14
17279442 - Photosynth Res. 2007 Jul-Sep;93(1-3):69-77
8496184 - J Biol Chem. 1993 May 25;268(15):11296-303
16437183 - Photosynth Res. 2006 Feb;87(2):215-28
20472544 - Bioinformatics. 2010 Jun 15;26(12):1473-6
17028233 - Appl Environ Microbiol. 2006 Dec;72(12):7431-7
16574748 - J Exp Bot. 2006;57(7):1573-8
9396830 - Arch Microbiol. 1998 Jan;169(1):10-9
20960136 - Methods Mol Biol. 2011;684:273-93
16572470 - Proteomics. 2006 May;6(9):2733-45
15361582 - Plant Physiol. 2004 Oct;136(2):3290-300
11283337 - Plant Cell. 2001 Apr;13(4):793-806
21035426 - Biochim Biophys Acta. 2011 Aug;1807(8):935-44
12573219 - Curr Biol. 2003 Feb 4;13(3):230-5
1902208 - J Bacteriol. 1991 May;173(9):2761-7
18424627 - Plant Physiol. 2008 Jun;147(2):747-63
18772288 - Microbiol Mol Biol Rev. 2008 Sep;72(3):545-54
11042275 - FEBS Lett. 2000 Oct 20;483(2-3):169-74
12913140 - Plant Physiol. 2003 Aug;132(4):1825-39
16775753 - Arch Microbiol. 2006 Jun;185(6):471-9
16592896 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):6052-6
21866228 - Front Microbiol. 2011;2:165
15107425 - J Biol Chem. 2004 Jul 2;279(27):27971-9
12421299 - Mol Microbiol. 2002 Nov;46(4):905-15
19578872 - Planta. 2009 Sep;230(4):625-37
22421878 - Nat Rev Microbiol. 2012 Apr;10(4):255-65
1624459 - J Bacteriol. 1992 Jul;174(14):4718-26
19379808 - Res Microbiol. 2009 May;160(4):288-96
9106218 - Mol Microbiol. 1997 Mar;23(6):1281-92
19818881 - Biochim Biophys Acta. 2010 Feb;1804(2):382-92
References_xml – reference: 12057963 - J Bacteriol. 2002 Jul;184(13):3671-81
– reference: 4994861 - Arch Mikrobiol. 1971;76(2):151-65
– reference: 14612435 - J Biol Chem. 2004 Feb 13;279(7):5739-51
– reference: 18769676 - PLoS Genet. 2008 Aug;4(8):e1000173
– reference: 18679172 - Nat Rev Microbiol. 2008 Sep;6(9):681-91
– reference: 16514145 - Microbiology. 2006 Mar;152(Pt 3):647-55
– reference: 15187290 - Methods Mol Biol. 2004;274:325-40
– reference: 12554704 - J Exp Bot. 2003 Feb;54(383):609-22
– reference: 20138126 - Biochim Biophys Acta. 2010 Aug;1800(8):798-805
– reference: 15247377 - Plant Physiol. 2004 Jul;135(3):1666-73
– reference: 22421878 - Nat Rev Microbiol. 2012 Apr;10(4):255-65
– reference: 12913140 - Plant Physiol. 2003 Aug;132(4):1825-39
– reference: 21779275 - Front Microbiol. 2011;2:41
– reference: 12803655 - BMC Genomics. 2003 Jun 12;4(1):23
– reference: 8496184 - J Biol Chem. 1993 May 25;268(15):11296-303
– reference: 21035426 - Biochim Biophys Acta. 2011 Aug;1807(8):935-44
– reference: 10572142 - J Bacteriol. 1999 Dec;181(23):7363-72
– reference: 18818204 - J Biol Chem. 2008 Nov 21;283(47):32394-403
– reference: 11283337 - Plant Cell. 2001 Apr;13(4):793-806
– reference: 22514553 - Front Microbiol. 2012;3:145
– reference: 16473855 - Nucleic Acids Res. 2006;34(3):1050-65
– reference: 21279737 - Photosynth Res. 2011 Sep;109(1-3):21-32
– reference: 17028233 - Appl Environ Microbiol. 2006 Dec;72(12):7431-7
– reference: 18836846 - Photosynth Res. 2008 Oct-Dec;98(1-3):479-88
– reference: 16437183 - Photosynth Res. 2006 Feb;87(2):215-28
– reference: 12421299 - Mol Microbiol. 2002 Nov;46(4):905-15
– reference: 1624459 - J Bacteriol. 1992 Jul;174(14):4718-26
– reference: 15919672 - Plant Cell Physiol. 2005 Aug;46(8):1237-45
– reference: 21562599 - ISME J. 2011 Oct;5(10):1580-94
– reference: 16678174 - FEBS Lett. 2006 May 29;580(13):3029-34
– reference: 15306028 - BMC Struct Biol. 2004 Aug 11;4:9
– reference: 15965020 - Plant Physiol. 2005 Jul;138(3):1409-21
– reference: 9350872 - Mol Microbiol. 1997 Sep;25(6):1167-75
– reference: 12573219 - Curr Biol. 2003 Feb 4;13(3):230-5
– reference: 16775753 - Arch Microbiol. 2006 Jun;185(6):471-9
– reference: 16574748 - J Exp Bot. 2006;57(7):1573-8
– reference: 11463170 - IUBMB Life. 2001 Feb;51(2):93-7
– reference: 19818881 - Biochim Biophys Acta. 2010 Feb;1804(2):382-92
– reference: 20376102 - ISME J. 2010 Jul;4(7):908-21
– reference: 17279442 - Photosynth Res. 2007 Jul-Sep;93(1-3):69-77
– reference: 21054739 - Environ Microbiol. 2011 Mar;13(3):551-62
– reference: 18772288 - Microbiol Mol Biol Rev. 2008 Sep;72(3):545-54
– reference: 20960136 - Methods Mol Biol. 2011;684:273-93
– reference: 10050775 - FEBS Lett. 1999 Feb 12;444(2-3):281-4
– reference: 3080411 - J Bacteriol. 1986 Feb;165(2):654-6
– reference: 15361582 - Plant Physiol. 2004 Oct;136(2):3290-300
– reference: 19379808 - Res Microbiol. 2009 May;160(4):288-96
– reference: 15289570 - Microbiology. 2004 Aug;150(Pt 8):2739-49
– reference: 21670225 - Plant Physiol. 2011 Aug;156(4):1934-54
– reference: 20669934 - Biochemistry. 2010 Aug 24;49(33):7000-11
– reference: 9396830 - Arch Microbiol. 1998 Jan;169(1):10-9
– reference: 15150218 - J Bacteriol. 2004 Jun;186(11):3331-45
– reference: 11024039 - J Biol Chem. 2001 Jan 5;276(1):306-14
– reference: 18424627 - Plant Physiol. 2008 Jun;147(2):747-63
– reference: 15047877 - Plant Cell Physiol. 2004 Mar;45(3):290-9
– reference: 20031922 - Mol Plant. 2008 Jan;1(1):155-66
– reference: 16592896 - Proc Natl Acad Sci U S A. 1980 Oct;77(10):6052-6
– reference: 15107425 - J Biol Chem. 2004 Jul 2;279(27):27971-9
– reference: 21866228 - Front Microbiol. 2011;2:165
– reference: 11779175 - Biochem Biophys Res Commun. 2002 Jan 11;290(1):339-48
– reference: 17087771 - Mol Microbiol. 2006 Dec;62(6):1507-14
– reference: 9106218 - Mol Microbiol. 1997 Mar;23(6):1281-92
– reference: 99438 - J Bacteriol. 1978 Sep;135(3):888-94
– reference: 19578872 - Planta. 2009 Sep;230(4):625-37
– reference: 12231924 - Plant Physiol. 1993 Sep;103(1):171-180
– reference: 20472544 - Bioinformatics. 2010 Jun 15;26(12):1473-6
– reference: 18786533 - FEBS Lett. 2008 Oct 15;582(23-24):3389-95
– reference: 18644144 - BMC Genomics. 2008;9:344
– reference: 16572470 - Proteomics. 2006 May;6(9):2733-45
– reference: 1902208 - J Bacteriol. 1991 May;173(9):2761-7
– reference: 22174252 - Science. 2011 Dec 16;334(6062):1551-3
– reference: 11042275 - FEBS Lett. 2000 Oct 20;483(2-3):169-74
– reference: 11298290 - Mol Microbiol. 2001 Apr;40(1):235-44
SSID ssj0000402000
Score 2.3568368
Snippet Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great...
Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 354
SubjectTerms Cyanobacteria
heat shock
Microbiology
mixotrophy
Photosynthesis
RNAseq
Salinity
temperature
transcription profiling
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPgifltPJYIvwtVL2zRpfNPF4xAUQQ_uLeSrbuGuXa5duP0T_K-dSXrLroi--NTSJiXNTGbm1878Qshr75pWyqByI73NOVdVbjDJ0VWCqdL40MYK789fxOkZ_3Ren-9s9YU5YYkeOE3csWFtUNxL6IM1kFw5q6wvbStLYw2LoRH4vB0wFW0wwiLG0n9JQGEKxNQ5i6lcSNBZ1XzPD0W6fjgMsKz-FGr-njG544JO7pG7c-xI36cx3ye3Qv-A3E67SW4ekp_fNn0AawYmzq1HOq7e0jHuAEG_LhZUglGiE3qmaCeGy_COGucuulS7SKeBIk3VzLF8REeDNZPT5ogO152P9OA0FZZQ03t62V0P09WwWnaO_gAoPy0pIGufEsAekbOTj98Xp_m800LueKOm3BgpnABnb10RVAlig3OQbWvKVtSmMEEyX1gjy1ZCxMcMLFtZ1o03zDaubavH5KAf-vCUUMaCsvAww6uK10xYrpgBmFbwAEhc8Iwc38y7djMNOc7FhQY4gpLSUVIaJaWjpDLyZttjlSg4_tL2A4py2w7Js-MFUCk9q5T-l0pl5BAVQUMMgkS6DjOO3KQLgcxBRUZe3eiHhqWI_1dMH4b1iGAKXxEAc0aeJH3ZDqRE5kUhZUbknibtjXT_Tt8tI913xUUDMPzZ_3i1Q3IHJyt9Q3pODqardXgBUdVkX8YF9AuPKiRN
  priority: 102
  providerName: Directory of Open Access Journals
Title Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions
URI https://www.ncbi.nlm.nih.gov/pubmed/23087677
https://www.proquest.com/docview/1114696094
https://www.osti.gov/servlets/purl/1628071
https://pubmed.ncbi.nlm.nih.gov/PMC3468840
https://doaj.org/article/a0fe94d7f46343249cb9bd2bf72aba0a
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ti9MwGA96IvhFfLeeHhH8IqxnX9KkEUTO4d0hTIXdYN9CkqauMNu5dbD9C_7VPk_am07GfWnL1oY0z-uvyfMLIW8Km5dCOBlqUZiQMZmGGhc52pRHMtGFK32F9-grv5ywL9Ns-rc8uh_A1UFoh_tJTZbz082v7Ucw-A-IOCHeggQqa3CVFnJvphm7Te5AXBJopqM-2fd-GaGSr0mJOcfpgGTazVsebGQvTnk6fzg1YHaHUtH_V1T-E6LOH5D7fW5JzzpleEhuufoRudvtNrl9TH6Pt7WDFwYXaNcrulqc0rHfIYJ-Hw6pAKdFfeTyfqT56d7TM2vnVVfbSNuGXjnIsTsO5gEda6ypbLcD-m1TFZ4-HJsDxzmgui7oqNo07bJZzCpLLwDrtzM6bHB-HPX8CZmcf74aXob9VgyhZblsQ60FtxyyAWNjJxOQK1yD8EudlDzTsXYiKmKjRVIKSAkjDXYtkiwvdGRyW5bpU3JUN7V7TmgUOWmgMc3SlGURN0xGGnBczBxAdc4C8u564JXtecpxMOYK8AqKSnlRKRSV8qIKyNvdE4uOo-OGez-hLHf3Ibu2_6FZ_lC9sSodlU6yQoCeYt0tk9ZIUySmFIk2OtIBOUZNUJCkINOuxSVJtlUxR2qhOCCvrxVEga3iBIyuXbNeIdrCVwREHZBnncLsOpIgNSMXIiBiT5X2err_T13NPB94yngOOP3Fjb06JvdwFLqvRy_JUbtcu1eQT7XmxH-HgOPFND7xJvMH2p0g8w
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synechococcus+sp.+Strain+PCC+7002+Transcriptome%3A+Acclimation+to+Temperature%2C+Salinity%2C+Oxidative+Stress%2C+and+Mixotrophic+Growth+Conditions&rft.jtitle=Frontiers+in+microbiology&rft.au=Ludwig%2C+Marcus&rft.au=Bryant%2C+Donald+A.&rft.date=2012-01-01&rft.pub=Frontiers+Research+Foundation&rft.issn=1664-302X&rft.eissn=1664-302X&rft.volume=3&rft_id=info:doi/10.3389%2Ffmicb.2012.00354&rft.externalDocID=1628071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-302X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-302X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-302X&client=summon