Polymerization shrinkage and shrinkage stress development in ultra-rapid photo-polymerized bulk fill resin composites

To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites. Two ultra-rapid photo-polymerized bulk fill (URPBF) materials: PFill and PFlow were studied, along with their comparators ECeram and EFlow. PFill cont...

Full description

Saved in:
Bibliographic Details
Published inDental materials Vol. 37; no. 4; pp. 559 - 567
Main Authors Algamaiah, Hamad, Silikas, Nikolaos, Watts, David C.
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 01.04.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0109-5641
1879-0097
1879-0097
DOI10.1016/j.dental.2021.02.012

Cover

Abstract To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites. Two ultra-rapid photo-polymerized bulk fill (URPBF) materials: PFill and PFlow were studied, along with their comparators ECeram and EFlow. PFill contains an addition fragmentation chain transfer (AFCT) agent. The URPBR materials were irradiated using two different 3 s high irradiance protocols (3000 and 3200 mW/cm2 based on Bluephase PowerCure and VALO LCUs, respectively) and one 10 s standard protocol (1200 mW/cm2 based on a Bluephase PowerCure LCU). Bonded disk and Bioman II instruments were used to measure Polymerization shrinkage % and shrinkage stress MPa, respectively, for 60 min at 23 ± 1 °C (n = 5). Maximum shrinkage-rate and maximum shrinkage stress-rate were also calculated for 15 s via numerical differentiation. The data were analyzed via multiple One-way ANOVA and Tukey post-hoc tests (α = 0.05). PFill groups, regardless of their irradiance protocol, showed significantly lower PS than the comparator, ECeram (p < 0.05). However, PFlow irradiated via different protocols, was comparable to EFlow and ECeram (p > 0.05). PFill consistently produced stress results which were significantly lower than ECeram (p < 0.05) and were comparable for both high irradiance protocols (p > 0.05). PFlow only exhibited significantly higher shrinkage stress when polymerized with the 3 sVALO protocol (p < 0.05). The maximum shrinkage strain-rate (%/s) was significantly lower in PFill-10s and PFill-3s groups (using PowerCure LCU) compared to ECeram. However, no differences were seen between PFlow and EFlow (p > 0.05). The maximum shrinkage stress-rate of PFill and PFlow was comparable between different irradiation protocols, as well as to their comparator ECeram (p > 0.05). High irradiation protocols over ultra-short periods led to slightly lower shrinkage strain but slightly higher stress, possibly due to reduced network mobility. The AFCT agent incorporated in PFill composite seemed to reduce shrinkage stress development, even with high irradiance protocols.
AbstractList To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites.OBJECTIVETo determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites.Two ultra-rapid photo-polymerized bulk fill (URPBF) materials: PFill and PFlow were studied, along with their comparators ECeram and EFlow. PFill contains an addition fragmentation chain transfer (AFCT) agent. The URPBR materials were irradiated using two different 3 s high irradiance protocols (3000 and 3200 mW/cm2 based on Bluephase PowerCure and VALO LCUs, respectively) and one 10 s standard protocol (1200 mW/cm2 based on a Bluephase PowerCure LCU). Bonded disk and Bioman II instruments were used to measure Polymerization shrinkage % and shrinkage stress MPa, respectively, for 60 min at 23 ± 1 °C (n = 5). Maximum shrinkage-rate and maximum shrinkage stress-rate were also calculated for 15 s via numerical differentiation. The data were analyzed via multiple One-way ANOVA and Tukey post-hoc tests (α = 0.05).METHODSTwo ultra-rapid photo-polymerized bulk fill (URPBF) materials: PFill and PFlow were studied, along with their comparators ECeram and EFlow. PFill contains an addition fragmentation chain transfer (AFCT) agent. The URPBR materials were irradiated using two different 3 s high irradiance protocols (3000 and 3200 mW/cm2 based on Bluephase PowerCure and VALO LCUs, respectively) and one 10 s standard protocol (1200 mW/cm2 based on a Bluephase PowerCure LCU). Bonded disk and Bioman II instruments were used to measure Polymerization shrinkage % and shrinkage stress MPa, respectively, for 60 min at 23 ± 1 °C (n = 5). Maximum shrinkage-rate and maximum shrinkage stress-rate were also calculated for 15 s via numerical differentiation. The data were analyzed via multiple One-way ANOVA and Tukey post-hoc tests (α = 0.05).PFill groups, regardless of their irradiance protocol, showed significantly lower PS than the comparator, ECeram (p < 0.05). However, PFlow irradiated via different protocols, was comparable to EFlow and ECeram (p > 0.05). PFill consistently produced stress results which were significantly lower than ECeram (p < 0.05) and were comparable for both high irradiance protocols (p > 0.05). PFlow only exhibited significantly higher shrinkage stress when polymerized with the 3 sVALO protocol (p < 0.05). The maximum shrinkage strain-rate (%/s) was significantly lower in PFill-10s and PFill-3s groups (using PowerCure LCU) compared to ECeram. However, no differences were seen between PFlow and EFlow (p > 0.05). The maximum shrinkage stress-rate of PFill and PFlow was comparable between different irradiation protocols, as well as to their comparator ECeram (p > 0.05).RESULTSPFill groups, regardless of their irradiance protocol, showed significantly lower PS than the comparator, ECeram (p < 0.05). However, PFlow irradiated via different protocols, was comparable to EFlow and ECeram (p > 0.05). PFill consistently produced stress results which were significantly lower than ECeram (p < 0.05) and were comparable for both high irradiance protocols (p > 0.05). PFlow only exhibited significantly higher shrinkage stress when polymerized with the 3 sVALO protocol (p < 0.05). The maximum shrinkage strain-rate (%/s) was significantly lower in PFill-10s and PFill-3s groups (using PowerCure LCU) compared to ECeram. However, no differences were seen between PFlow and EFlow (p > 0.05). The maximum shrinkage stress-rate of PFill and PFlow was comparable between different irradiation protocols, as well as to their comparator ECeram (p > 0.05).High irradiation protocols over ultra-short periods led to slightly lower shrinkage strain but slightly higher stress, possibly due to reduced network mobility. The AFCT agent incorporated in PFill composite seemed to reduce shrinkage stress development, even with high irradiance protocols.SIGNIFICANCEHigh irradiation protocols over ultra-short periods led to slightly lower shrinkage strain but slightly higher stress, possibly due to reduced network mobility. The AFCT agent incorporated in PFill composite seemed to reduce shrinkage stress development, even with high irradiance protocols.
To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites. Two ultra-rapid photo-polymerized bulk fill (URPBF) materials: PFill and PFlow were studied, along with their comparators ECeram and EFlow. PFill contains an addition fragmentation chain transfer (AFCT) agent. The URPBR materials were irradiated using two different 3 s high irradiance protocols (3000 and 3200 mW/cm2 based on Bluephase PowerCure and VALO LCUs, respectively) and one 10 s standard protocol (1200 mW/cm2 based on a Bluephase PowerCure LCU). Bonded disk and Bioman II instruments were used to measure Polymerization shrinkage % and shrinkage stress MPa, respectively, for 60 min at 23 ± 1 °C (n = 5). Maximum shrinkage-rate and maximum shrinkage stress-rate were also calculated for 15 s via numerical differentiation. The data were analyzed via multiple One-way ANOVA and Tukey post-hoc tests (α = 0.05). PFill groups, regardless of their irradiance protocol, showed significantly lower PS than the comparator, ECeram (p < 0.05). However, PFlow irradiated via different protocols, was comparable to EFlow and ECeram (p > 0.05). PFill consistently produced stress results which were significantly lower than ECeram (p < 0.05) and were comparable for both high irradiance protocols (p > 0.05). PFlow only exhibited significantly higher shrinkage stress when polymerized with the 3 sVALO protocol (p < 0.05). The maximum shrinkage strain-rate (%/s) was significantly lower in PFill-10s and PFill-3s groups (using PowerCure LCU) compared to ECeram. However, no differences were seen between PFlow and EFlow (p > 0.05). The maximum shrinkage stress-rate of PFill and PFlow was comparable between different irradiation protocols, as well as to their comparator ECeram (p > 0.05). High irradiation protocols over ultra-short periods led to slightly lower shrinkage strain but slightly higher stress, possibly due to reduced network mobility. The AFCT agent incorporated in PFill composite seemed to reduce shrinkage stress development, even with high irradiance protocols.
Objective To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites. Methods Two ultra-rapid photo-polymerized bulk fill (URPBF) materials: PFill and PFlow were studied, along with their comparators ECeram and EFlow. PFill contains an addition fragmentation chain transfer (AFCT) agent. The URPBR materials were irradiated using two different 3 s high irradiance protocols (3000 and 3200 mW/cm2 based on Bluephase PowerCure and VALO LCUs, respectively) and one 10 s standard protocol (1200 mW/cm2 based on a Bluephase PowerCure LCU). Bonded disk and Bioman II instruments were used to measure Polymerization shrinkage % and shrinkage stress MPa, respectively, for 60 min at 23 ± 1 °C (n = 5). Maximum shrinkage-rate and maximum shrinkage stress-rate were also calculated for 15 s via numerical differentiation. The data were analyzed via multiple One-way ANOVA and Tukey post-hoc tests (α = 0.05). Results PFill groups, regardless of their irradiance protocol, showed significantly lower PS than the comparator, ECeram (p < 0.05). However, PFlow irradiated via different protocols, was comparable to EFlow and ECeram (p > 0.05). PFill consistently produced stress results which were significantly lower than ECeram (p < 0.05) and were comparable for both high irradiance protocols (p > 0.05). PFlow only exhibited significantly higher shrinkage stress when polymerized with the 3 sVALO protocol (p < 0.05). The maximum shrinkage strain-rate (%/s) was significantly lower in PFill-10s and PFill-3s groups (using PowerCure LCU) compared to ECeram. However, no differences were seen between PFlow and EFlow (p > 0.05). The maximum shrinkage stress-rate of PFill and PFlow was comparable between different irradiation protocols, as well as to their comparator ECeram (p > 0.05). Significance High irradiation protocols over ultra-short periods led to slightly lower shrinkage strain but slightly higher stress, possibly due to reduced network mobility. The AFCT agent incorporated in PFill composite seemed to reduce shrinkage stress development, even with high irradiance protocols.
To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites. Two ultra-rapid photo-polymerized bulk fill (URPBF) materials: PFill and PFlow were studied, along with their comparators ECeram and EFlow. PFill contains an addition fragmentation chain transfer (AFCT) agent. The URPBR materials were irradiated using two different 3 s high irradiance protocols (3000 and 3200 mW/cm based on Bluephase PowerCure and VALO LCUs, respectively) and one 10 s standard protocol (1200 mW/cm based on a Bluephase PowerCure LCU). Bonded disk and Bioman II instruments were used to measure Polymerization shrinkage % and shrinkage stress MPa, respectively, for 60 min at 23 ± 1 °C (n = 5). Maximum shrinkage-rate and maximum shrinkage stress-rate were also calculated for 15 s via numerical differentiation. The data were analyzed via multiple One-way ANOVA and Tukey post-hoc tests (α = 0.05). PFill groups, regardless of their irradiance protocol, showed significantly lower PS than the comparator, ECeram (p < 0.05). However, PFlow irradiated via different protocols, was comparable to EFlow and ECeram (p > 0.05). PFill consistently produced stress results which were significantly lower than ECeram (p < 0.05) and were comparable for both high irradiance protocols (p > 0.05). PFlow only exhibited significantly higher shrinkage stress when polymerized with the 3 sVALO protocol (p < 0.05). The maximum shrinkage strain-rate (%/s) was significantly lower in PFill-10s and PFill-3s groups (using PowerCure LCU) compared to ECeram. However, no differences were seen between PFlow and EFlow (p > 0.05). The maximum shrinkage stress-rate of PFill and PFlow was comparable between different irradiation protocols, as well as to their comparator ECeram (p > 0.05). High irradiation protocols over ultra-short periods led to slightly lower shrinkage strain but slightly higher stress, possibly due to reduced network mobility. The AFCT agent incorporated in PFill composite seemed to reduce shrinkage stress development, even with high irradiance protocols.
Author Algamaiah, Hamad
Silikas, Nikolaos
Watts, David C.
Author_xml – sequence: 1
  givenname: Hamad
  surname: Algamaiah
  fullname: Algamaiah, Hamad
  email: dr.algamaiah@gmail.com
  organization: Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK
– sequence: 2
  givenname: Nikolaos
  surname: Silikas
  fullname: Silikas, Nikolaos
  organization: Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK
– sequence: 3
  givenname: David C.
  orcidid: 0000-0002-9105-2775
  surname: Watts
  fullname: Watts, David C.
  email: David.watts@manchester.ac.uk
  organization: Biomaterials Science, Division of Dentistry, School of Medical Sciences, University of Manchester, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33685651$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFrFDEYhoNU7Lb6D0QGvHiZMV9mMjMRKUhpVSjoQc8hm3xjs5tJxmSmsP56U7cLspc9hcDzvAnve0HOfPBIyGugFVBo328qg35WrmKUQUVZRYE9IyvoO1FSKrozsqJARcnbBs7JRUobSmnDBLwg53Xd9rzlsCLL9-B2I0b7R802-CLdR-u36hcWypv_bmmOmFJh8AFdmMb8cmF9sbg5qjKqyZpiug9zKKdDHJpivbhtMVjniuxmWodxCsnOmF6S54NyCV89nZfk5-3Nj-sv5d23z1-vP92VuunFXCqhRT-ITvecrxF0XWvDWTsMvIYBBeOg206ZNe9AGBh0TQGQNsBgTYVqh_qSvNvnTjH8XjDNcrRJo3PKY1iSZI0QdZ8Lohl9e4RuwhJ9_p3M7_CON4yzTL15opb1iEZO0Y4q7uSh0Ax82AM6hpQiDlLb-V-1uSnrJFD5uJ7cyP168nE9SZnM62W5OZIP-Se0q72GucoHi1EmbdFrNDainqUJ9lTAx6MA7ay3Wrkt7k7rfwGOucv_
CitedBy_id crossref_primary_10_3390_polym16111466
crossref_primary_10_1039_D3PY00261F
crossref_primary_10_1016_j_polymer_2023_126547
crossref_primary_10_3390_polym15163413
crossref_primary_10_1055_a_1775_5687
crossref_primary_10_3389_fdmed_2023_1108316
crossref_primary_10_2341_23_025_L
crossref_primary_10_3390_ma17102297
crossref_primary_10_1016_j_jmps_2024_105830
crossref_primary_10_1016_j_porgcoat_2024_108557
crossref_primary_10_1016_j_dental_2021_06_008
crossref_primary_10_1016_j_dental_2023_03_016
crossref_primary_10_1016_j_jmbbm_2021_104884
crossref_primary_10_1080_01694243_2022_2042122
crossref_primary_10_1093_ejo_cjae026
crossref_primary_10_1007_s11082_022_04233_2
crossref_primary_10_1016_j_dental_2024_05_003
crossref_primary_10_1016_j_jmps_2023_105350
crossref_primary_10_1016_j_ortho_2024_100961
crossref_primary_10_3390_ma15217467
crossref_primary_10_1016_j_dental_2024_01_003
crossref_primary_10_1080_10426914_2023_2244054
crossref_primary_10_3390_ma17205040
crossref_primary_10_1007_s10266_022_00745_1
crossref_primary_10_1016_j_dental_2023_01_007
crossref_primary_10_1016_j_dental_2021_12_017
crossref_primary_10_1016_j_dental_2024_07_029
crossref_primary_10_3390_polym14163296
crossref_primary_10_2341_24_003_L
crossref_primary_10_1016_j_ijsolstr_2024_112978
crossref_primary_10_1016_j_dental_2021_09_012
crossref_primary_10_1016_j_dental_2024_08_008
crossref_primary_10_1007_s11340_022_00904_z
crossref_primary_10_1007_s11340_023_01019_9
crossref_primary_10_1016_j_jmbbm_2021_104810
crossref_primary_10_3390_prosthesis6050077
crossref_primary_10_1016_j_dental_2023_12_006
crossref_primary_10_1007_s12274_024_6616_3
Cites_doi 10.1016/S0109-5641(02)00123-9
10.1016/j.dental.2018.06.008
10.1016/j.dental.2009.08.012
10.1177/0810114
10.1016/j.dental.2016.05.006
10.1016/j.dental.2020.02.007
10.1016/j.dental.2005.02.004
10.1016/j.dental.2010.07.002
10.1016/j.dental.2015.11.022
10.1021/ma501550b
10.1177/154405910308201012
10.4012/dmj.2016-430
10.1016/S0109-5641(00)00020-8
10.1016/j.dental.2010.11.014
10.1016/j.dental.2020.07.009
10.2341/07-BL2
10.1177/00220345840630021001
10.1016/j.biomaterials.2005.01.022
10.1016/j.dental.2017.08.188
10.1016/j.dental.2004.03.003
10.1016/j.dental.2007.08.007
10.1016/j.dental.2012.01.007
10.1016/j.dental.2005.11.008
10.1088/0957-0233/2/8/013
10.1177/00220345990780081301
10.1590/1807-3107bor-2017.vol31.0062
10.1016/S0109-5641(01)00066-5
10.1016/j.dental.2004.10.006
10.1016/j.dental.2006.06.034
10.1016/j.jdent.2020.103448
10.1039/C7PY00702G
10.1016/j.dental.2005.04.018
10.1016/j.jmbbm.2018.03.004
10.1016/j.dental.2004.05.002
10.1111/jerd.12159
10.1016/j.dental.2011.09.003
10.1177/00220345870660110601
10.1016/S0109-5641(00)00043-9
10.1111/jerd.12275
10.1016/j.dental.2020.07.008
ContentType Journal Article
Copyright 2021 The Academy of Dental Materials
Copyright © 2021 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier BV Apr 2021
Copyright_xml – notice: 2021 The Academy of Dental Materials
– notice: Copyright © 2021 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier BV Apr 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.dental.2021.02.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 1879-0097
EndPage 567
ExternalDocumentID 33685651
10_1016_j_dental_2021_02_012
S0109564121000749
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAGKA
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AEZYN
AFJKZ
AFPUW
AFRAH
AFRHN
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDX
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LH1
M24
M29
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SEL
SES
SEW
SMS
SPC
SPCBC
SSH
SSM
SSZ
T5K
WUQ
YRY
Z5R
ZGI
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c489t-a9c98f97c855be1c33cd526ff531fe9251c67adb5719d1fc3011e04121b09a6f3
IEDL.DBID AIKHN
ISSN 0109-5641
1879-0097
IngestDate Fri Sep 05 09:34:24 EDT 2025
Sat Jul 26 02:16:16 EDT 2025
Mon Apr 28 11:38:04 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Tue Jul 01 04:09:18 EDT 2025
Fri Feb 23 02:45:31 EST 2024
Tue Aug 26 17:21:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords URPBF
Bioman II
Photopolymerization
Polymerization
AFCT
Resin composite
Bulk fill
Shrinkage
Stress
Language English
License Copyright © 2021 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-a9c98f97c855be1c33cd526ff531fe9251c67adb5719d1fc3011e04121b09a6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9105-2775
OpenAccessLink https://linkinghub.elsevier.com/retrieve/pii/S0109564121000749
PMID 33685651
PQID 2515754252
PQPubID 2045262
PageCount 9
ParticipantIDs proquest_miscellaneous_2499386410
proquest_journals_2515754252
pubmed_primary_33685651
crossref_citationtrail_10_1016_j_dental_2021_02_012
crossref_primary_10_1016_j_dental_2021_02_012
elsevier_sciencedirect_doi_10_1016_j_dental_2021_02_012
elsevier_clinicalkey_doi_10_1016_j_dental_2021_02_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2021
2021-04-00
20210401
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Amsterdam
PublicationTitle Dental materials
PublicationTitleAlternate Dent Mater
PublicationYear 2021
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Feilzer, De Gee, Davidson (bib0065) 1987; 66
Ilie, Hickel (bib0090) 2011; 27
Charton, Colon, Pla (bib0200) 2007; 23
Zimmerli, Strub, Jeger, Stadler, Lussi (bib0100) 2010; 120
Silikas, Eliades, Watts (bib0080) 2000; 16
Gorsche, Griesser, Gescheidt, Moszner, Liska (bib0125) 2014; 47
Watts, Marouf, Al-Hindi (bib0155) 2003; 19
Braga, Ferracane (bib0190) 2002; 81
Hirata, Kabbach, De Andrade, Bonfante, Giannini, Coelho (bib0005) 2015; 27
Münchow, Meereis, de Oliveira da Rosa, da Silva, Piva (bib0105) 2018; 82
Soares, Rodrigues, Vilela, Pfeifer, Tantbirojn, Versluis (bib0025) 2017; 31
Bacchi, Nelson, Pfeifer (bib0095) 2016; 32
Watts, Cash (bib0145) 1991; 2
Calheiros, Braga, Kawano, Ballester (bib0085) 2004; 20
Satterthwaite, Vogel, Watts (bib0055) 2009; 25
Lu, Stansbury, Bowman (bib0175) 2004; 20
Davidson, De Gee (bib0170) 1984; 63
Ilie, Watts (bib0135) 2020; 36
Shah, Stansbury, Bowman (bib0210) 2017; 8
Par, Marovic, Attin, Tarle, Tauböck (bib0195) 2020; 101
Feilzer, Dauvillier (bib0035) 2003; 82
Satterthwaite, Maisuria, Vogel, Watts (bib0060) 2012; 28
Calheiros, Kawano, Stansbury, Braga (bib0120) 2006; 22
Atai, Watts, Atai (bib0040) 2005; 26
Ferracane, Hilton, Stansbury, Watts, Silikas, Ilie (bib0160) 2017; 33
Atria, Sampaio, Cáceres, Fernández, Reis, Giannini (bib0115) 2018; 37
Watts, Algamaiah (bib0140) 2020
Algamaiah, Silikas, Watts (bib0130) 2020
Braga, Ballester, Ferracane (bib0050) 2005; 21
Al-Sunbul, Silikas, Watts (bib0150) 2016; 32
Ferracane (bib0020) 2008; 33
Min, Ferracane, Lee (bib0205) 2010; 26
Demarco, Corrêa, Cenci, Moraes, Opdam (bib0010) 2012; 28
Watts, Satterthwaite (bib0075) 2008; 24
Lim, Ferracane, Sakaguchi, Condon (bib0110) 2002; 18
Algamaiah, Sampaio, Rigo, Janal, Giannini, Bonfante (bib0070) 2017; 29
Lovell, Newman, Bowman (bib0180) 1999; 78
Kleverlaan, Feilzer (bib0015) 2005; 21
Watts, Marouf (bib0165) 2000; 16
Habib, Wang, Zhu (bib0185) 2018; 34
Schneider, Cavalcante, Silikas (bib0030) 2010; 2010
Stansbury, Trujillo-Lemon, Lu, Ding, Lin, Ge (bib0045) 2005; 21
Algamaiah (10.1016/j.dental.2021.02.012_bib0070) 2017; 29
Bacchi (10.1016/j.dental.2021.02.012_bib0095) 2016; 32
Schneider (10.1016/j.dental.2021.02.012_bib0030) 2010; 2010
Min (10.1016/j.dental.2021.02.012_bib0205) 2010; 26
Calheiros (10.1016/j.dental.2021.02.012_bib0120) 2006; 22
Feilzer (10.1016/j.dental.2021.02.012_bib0035) 2003; 82
Ferracane (10.1016/j.dental.2021.02.012_bib0160) 2017; 33
Davidson (10.1016/j.dental.2021.02.012_bib0170) 1984; 63
Calheiros (10.1016/j.dental.2021.02.012_bib0085) 2004; 20
Algamaiah (10.1016/j.dental.2021.02.012_bib0130) 2020
Atai (10.1016/j.dental.2021.02.012_bib0040) 2005; 26
Zimmerli (10.1016/j.dental.2021.02.012_bib0100) 2010; 120
Lim (10.1016/j.dental.2021.02.012_bib0110) 2002; 18
Watts (10.1016/j.dental.2021.02.012_bib0140) 2020
Atria (10.1016/j.dental.2021.02.012_bib0115) 2018; 37
Watts (10.1016/j.dental.2021.02.012_bib0165) 2000; 16
Ferracane (10.1016/j.dental.2021.02.012_bib0020) 2008; 33
Münchow (10.1016/j.dental.2021.02.012_bib0105) 2018; 82
Lovell (10.1016/j.dental.2021.02.012_bib0180) 1999; 78
Kleverlaan (10.1016/j.dental.2021.02.012_bib0015) 2005; 21
Feilzer (10.1016/j.dental.2021.02.012_bib0065) 1987; 66
Demarco (10.1016/j.dental.2021.02.012_bib0010) 2012; 28
Habib (10.1016/j.dental.2021.02.012_bib0185) 2018; 34
Ilie (10.1016/j.dental.2021.02.012_bib0090) 2011; 27
Watts (10.1016/j.dental.2021.02.012_bib0145) 1991; 2
Hirata (10.1016/j.dental.2021.02.012_bib0005) 2015; 27
Stansbury (10.1016/j.dental.2021.02.012_bib0045) 2005; 21
Lu (10.1016/j.dental.2021.02.012_bib0175) 2004; 20
Soares (10.1016/j.dental.2021.02.012_bib0025) 2017; 31
Braga (10.1016/j.dental.2021.02.012_bib0050) 2005; 21
Gorsche (10.1016/j.dental.2021.02.012_bib0125) 2014; 47
Ilie (10.1016/j.dental.2021.02.012_bib0135) 2020; 36
Charton (10.1016/j.dental.2021.02.012_bib0200) 2007; 23
Watts (10.1016/j.dental.2021.02.012_bib0075) 2008; 24
Par (10.1016/j.dental.2021.02.012_bib0195) 2020; 101
Shah (10.1016/j.dental.2021.02.012_bib0210) 2017; 8
Watts (10.1016/j.dental.2021.02.012_bib0155) 2003; 19
Braga (10.1016/j.dental.2021.02.012_bib0190) 2002; 81
Al-Sunbul (10.1016/j.dental.2021.02.012_bib0150) 2016; 32
Satterthwaite (10.1016/j.dental.2021.02.012_bib0060) 2012; 28
Satterthwaite (10.1016/j.dental.2021.02.012_bib0055) 2009; 25
Silikas (10.1016/j.dental.2021.02.012_bib0080) 2000; 16
References_xml – start-page: 1266
  year: 2020
  end-page: 1274
  ident: bib0130
  article-title: Conversion kinetics of rapid photo-polymerized resin composites
  publication-title: Dent Mater
– volume: 66
  start-page: 1636
  year: 1987
  end-page: 1639
  ident: bib0065
  article-title: Setting stress in composite resin in relation to configuration of the restoration
  publication-title: J Dent Res
– volume: 20
  start-page: 979
  year: 2004
  end-page: 986
  ident: bib0175
  article-title: Towards the elucidation of shrinkage stress development and relaxation in dental composites
  publication-title: Dent Mater
– volume: 8
  start-page: 4339
  year: 2017
  end-page: 4351
  ident: bib0210
  article-title: Application of an addition–fragmentation-chain transfer monomer in di (meth) acrylate network formation to reduce polymerization shrinkage stress
  publication-title: Polym Chem
– volume: 28
  start-page: 87
  year: 2012
  end-page: 101
  ident: bib0010
  article-title: Longevity of posterior composite restorations: not only a matter of materials
  publication-title: Dent Mater
– volume: 25
  start-page: 1612
  year: 2009
  end-page: 1615
  ident: bib0055
  article-title: Effect of resin-composite filler particle size and shape on shrinkage–strain
  publication-title: Dent Mater
– volume: 82
  start-page: 824
  year: 2003
  end-page: 828
  ident: bib0035
  article-title: Effect of TEGDMA/bisGMA ratio on stress development and viscoelastic properties of experimental two-paste composites
  publication-title: J Dent Res
– volume: 101
  start-page: 1034
  year: 2020
  end-page: 1048
  ident: bib0195
  article-title: Effect of rapid high-intensity light-curing on polymerization shrinkage properties of conventional and bulk-fill composites
  publication-title: J Dent
– volume: 33
  start-page: 247
  year: 2008
  end-page: 257
  ident: bib0020
  article-title: Placing dental composites—a stressful experience
  publication-title: Oper Dent
– volume: 26
  start-page: 5015
  year: 2005
  end-page: 5020
  ident: bib0040
  article-title: Shrinkage strain-rates of dental resin-monomer and composite systems
  publication-title: Biomaterials
– volume: 21
  start-page: 962
  year: 2005
  end-page: 970
  ident: bib0050
  article-title: Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review
  publication-title: Dent Mater
– volume: 37
  start-page: 33
  year: 2018
  end-page: 39
  ident: bib0115
  article-title: Micro-computed tomography evaluation of volumetric polymerization shrinkage and degree of conversion of composites cured by various light power outputs
  publication-title: Dent Mater J
– volume: 21
  start-page: 56
  year: 2005
  end-page: 67
  ident: bib0045
  article-title: Conversion-dependent shrinkage stress and strain in dental resins and composites
  publication-title: Dent Mater
– volume: 16
  start-page: 292
  year: 2000
  end-page: 296
  ident: bib0080
  article-title: Light intensity effects on resin-composite degree of conversion and shrinkage strain
  publication-title: Dent Mater
– volume: 18
  start-page: 436
  year: 2002
  end-page: 444
  ident: bib0110
  article-title: Reduction of polymerization contraction stress for dental composites by two-step light-activation
  publication-title: Dent Mater
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 14
  ident: bib0030
  article-title: Shrinkage stresses generated during resin-composite applications: a review
  publication-title: J Dental Biomech
– volume: 82
  start-page: 77
  year: 2018
  end-page: 86
  ident: bib0105
  article-title: Polymerization shrinkage stress of resin-based dental materials: a systematic review and meta-analyses of technique protocol and photo-activation strategies
  publication-title: J Mech Behav Biomed Mater
– volume: 47
  start-page: 7327
  year: 2014
  end-page: 7336
  ident: bib0125
  article-title: B-allyl sulfones as addition–fragmentation chain transfer reagents: a tool for adjusting thermal and mechanical properties of dimethacrylate networks
  publication-title: Macromolecules
– volume: 27
  start-page: 335
  year: 2015
  end-page: 343
  ident: bib0005
  article-title: Bulk fill composites: an anatomic sculpting technique
  publication-title: J Esthet Restor Dent
– volume: 2
  start-page: 788
  year: 1991
  end-page: 794
  ident: bib0145
  article-title: Kinetic measurements of photo-polymerization contraction in resins and composites
  publication-title: Measurement Sci Tech
– volume: 22
  start-page: 799
  year: 2006
  end-page: 803
  ident: bib0120
  article-title: Influence of radiant exposure on contraction stress, degree of conversion and mechanical properties of resin composites
  publication-title: Dent Mater
– volume: 31
  start-page: 49
  year: 2017
  end-page: 63
  ident: bib0025
  article-title: Polymerization shrinkage stress of composite resins and resin cements–what do we need to know?
  publication-title: Braz Oral Res
– volume: 32
  start-page: 233
  year: 2016
  end-page: 239
  ident: bib0095
  article-title: Characterization of methacrylate-based composites containing thio-urethane oligomers
  publication-title: Dent Mater
– volume: 19
  start-page: 1
  year: 2003
  end-page: 11
  ident: bib0155
  article-title: Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development
  publication-title: Dent Mater
– volume: 23
  start-page: 911
  year: 2007
  end-page: 920
  ident: bib0200
  article-title: Shrinkage stress in light-cured composite resins: influence of material and photoactivation mode
  publication-title: Dent Mater
– volume: 32
  start-page: 998
  year: 2016
  end-page: 1006
  ident: bib0150
  article-title: Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites
  publication-title: Dent Mater
– volume: 27
  start-page: 348
  year: 2011
  end-page: 355
  ident: bib0090
  article-title: Investigations on a methacrylate-based flowable composite based on the SDR™ technology
  publication-title: Dent Mater
– volume: 21
  start-page: 1150
  year: 2005
  end-page: 1157
  ident: bib0015
  article-title: Polymerization shrinkage and contraction stress of dental resin composites
  publication-title: Dent Mater
– volume: 20
  start-page: 939
  year: 2004
  end-page: 946
  ident: bib0085
  article-title: Relationship between contraction stress and degree of conversion in restorative composites
  publication-title: Dent Mater
– volume: 120
  start-page: 972
  year: 2010
  end-page: 986
  ident: bib0100
  article-title: Composite materials: composition, properties and clinical applications. A literature review
  publication-title: Schweiz Monatsschr Zahnmed
– volume: 28
  start-page: 609
  year: 2012
  end-page: 614
  ident: bib0060
  article-title: Effect of resin-composite filler particle size and shape on shrinkage-stress
  publication-title: Dent Mater
– volume: 36
  start-page: 570
  year: 2020
  end-page: 579
  ident: bib0135
  article-title: Outcomes of ultra-fast (3 s) photo-cure in a raft-modified resin-composite
  publication-title: Dent Mater
– volume: 63
  start-page: 146
  year: 1984
  end-page: 148
  ident: bib0170
  article-title: Relaxation of polymerization contraction stresses by flow in dental composites
  publication-title: J Dent Res
– volume: 16
  start-page: 447
  year: 2000
  end-page: 451
  ident: bib0165
  article-title: Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials
  publication-title: Dent Mater
– volume: 34
  start-page: 1501
  year: 2018
  end-page: 1508
  ident: bib0185
  article-title: Correlation of resin viscosity and monomer conversion to filler particle size in dental composites
  publication-title: Dent Mater
– volume: 29
  start-page: 118
  year: 2017
  end-page: 127
  ident: bib0070
  article-title: Microcomputed tomography evaluation of volumetric shrinkage of bulk-fill composites in Class II cavities
  publication-title: J Esthet Restor Dent
– volume: 24
  start-page: 1
  year: 2008
  end-page: 8
  ident: bib0075
  article-title: Axial shrinkage-stress depends upon both C-factor and composite mass
  publication-title: Dent Mater
– start-page: 1255
  year: 2020
  end-page: 1265
  ident: bib0140
  article-title: Characterizing surface viscoelastic integrity of ultra-fast photo-polymerized composites: methods development
  publication-title: Dent Mater
– volume: 26
  start-page: 1024
  year: 2010
  end-page: 1033
  ident: bib0205
  article-title: Effect of shrinkage strain, modulus, and instrument compliance on polymerization shrinkage stress of light-cured composites during the initial curing stage
  publication-title: Dent Mater
– volume: 33
  start-page: 1171
  year: 2017
  end-page: 1191
  ident: bib0160
  article-title: Academy of dental materials guidance—resin composites: part ii—technique sensitivity (handling, polymerization, dimensional changes)
  publication-title: Dent Mater
– volume: 78
  start-page: 1469
  year: 1999
  end-page: 1476
  ident: bib0180
  article-title: The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins
  publication-title: J Dent Res
– volume: 81
  start-page: 114
  year: 2002
  end-page: 118
  ident: bib0190
  article-title: Contraction stress related to degree of conversion and reaction kinetics
  publication-title: J Dent Res
– volume: 19
  start-page: 1
  year: 2003
  ident: 10.1016/j.dental.2021.02.012_bib0155
  article-title: Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(02)00123-9
– volume: 34
  start-page: 1501
  year: 2018
  ident: 10.1016/j.dental.2021.02.012_bib0185
  article-title: Correlation of resin viscosity and monomer conversion to filler particle size in dental composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2018.06.008
– volume: 25
  start-page: 1612
  year: 2009
  ident: 10.1016/j.dental.2021.02.012_bib0055
  article-title: Effect of resin-composite filler particle size and shape on shrinkage–strain
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2009.08.012
– volume: 81
  start-page: 114
  year: 2002
  ident: 10.1016/j.dental.2021.02.012_bib0190
  article-title: Contraction stress related to degree of conversion and reaction kinetics
  publication-title: J Dent Res
  doi: 10.1177/0810114
– volume: 32
  start-page: 998
  year: 2016
  ident: 10.1016/j.dental.2021.02.012_bib0150
  article-title: Polymerization shrinkage kinetics and shrinkage-stress in dental resin-composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2016.05.006
– volume: 36
  start-page: 570
  year: 2020
  ident: 10.1016/j.dental.2021.02.012_bib0135
  article-title: Outcomes of ultra-fast (3 s) photo-cure in a raft-modified resin-composite
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2020.02.007
– volume: 21
  start-page: 1150
  year: 2005
  ident: 10.1016/j.dental.2021.02.012_bib0015
  article-title: Polymerization shrinkage and contraction stress of dental resin composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2005.02.004
– volume: 26
  start-page: 1024
  year: 2010
  ident: 10.1016/j.dental.2021.02.012_bib0205
  article-title: Effect of shrinkage strain, modulus, and instrument compliance on polymerization shrinkage stress of light-cured composites during the initial curing stage
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2010.07.002
– volume: 32
  start-page: 233
  year: 2016
  ident: 10.1016/j.dental.2021.02.012_bib0095
  article-title: Characterization of methacrylate-based composites containing thio-urethane oligomers
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2015.11.022
– volume: 47
  start-page: 7327
  year: 2014
  ident: 10.1016/j.dental.2021.02.012_bib0125
  article-title: B-allyl sulfones as addition–fragmentation chain transfer reagents: a tool for adjusting thermal and mechanical properties of dimethacrylate networks
  publication-title: Macromolecules
  doi: 10.1021/ma501550b
– volume: 82
  start-page: 824
  year: 2003
  ident: 10.1016/j.dental.2021.02.012_bib0035
  article-title: Effect of TEGDMA/bisGMA ratio on stress development and viscoelastic properties of experimental two-paste composites
  publication-title: J Dent Res
  doi: 10.1177/154405910308201012
– volume: 37
  start-page: 33
  year: 2018
  ident: 10.1016/j.dental.2021.02.012_bib0115
  article-title: Micro-computed tomography evaluation of volumetric polymerization shrinkage and degree of conversion of composites cured by various light power outputs
  publication-title: Dent Mater J
  doi: 10.4012/dmj.2016-430
– volume: 16
  start-page: 292
  year: 2000
  ident: 10.1016/j.dental.2021.02.012_bib0080
  article-title: Light intensity effects on resin-composite degree of conversion and shrinkage strain
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(00)00020-8
– volume: 27
  start-page: 348
  year: 2011
  ident: 10.1016/j.dental.2021.02.012_bib0090
  article-title: Investigations on a methacrylate-based flowable composite based on the SDR™ technology
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2010.11.014
– start-page: 1255
  year: 2020
  ident: 10.1016/j.dental.2021.02.012_bib0140
  article-title: Characterizing surface viscoelastic integrity of ultra-fast photo-polymerized composites: methods development
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2020.07.009
– volume: 33
  start-page: 247
  year: 2008
  ident: 10.1016/j.dental.2021.02.012_bib0020
  article-title: Placing dental composites—a stressful experience
  publication-title: Oper Dent
  doi: 10.2341/07-BL2
– volume: 63
  start-page: 146
  year: 1984
  ident: 10.1016/j.dental.2021.02.012_bib0170
  article-title: Relaxation of polymerization contraction stresses by flow in dental composites
  publication-title: J Dent Res
  doi: 10.1177/00220345840630021001
– volume: 26
  start-page: 5015
  year: 2005
  ident: 10.1016/j.dental.2021.02.012_bib0040
  article-title: Shrinkage strain-rates of dental resin-monomer and composite systems
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.01.022
– volume: 33
  start-page: 1171
  year: 2017
  ident: 10.1016/j.dental.2021.02.012_bib0160
  article-title: Academy of dental materials guidance—resin composites: part ii—technique sensitivity (handling, polymerization, dimensional changes)
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2017.08.188
– volume: 20
  start-page: 939
  year: 2004
  ident: 10.1016/j.dental.2021.02.012_bib0085
  article-title: Relationship between contraction stress and degree of conversion in restorative composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2004.03.003
– volume: 24
  start-page: 1
  year: 2008
  ident: 10.1016/j.dental.2021.02.012_bib0075
  article-title: Axial shrinkage-stress depends upon both C-factor and composite mass
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2007.08.007
– volume: 28
  start-page: 609
  year: 2012
  ident: 10.1016/j.dental.2021.02.012_bib0060
  article-title: Effect of resin-composite filler particle size and shape on shrinkage-stress
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2012.01.007
– volume: 22
  start-page: 799
  year: 2006
  ident: 10.1016/j.dental.2021.02.012_bib0120
  article-title: Influence of radiant exposure on contraction stress, degree of conversion and mechanical properties of resin composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2005.11.008
– volume: 2
  start-page: 788
  year: 1991
  ident: 10.1016/j.dental.2021.02.012_bib0145
  article-title: Kinetic measurements of photo-polymerization contraction in resins and composites
  publication-title: Measurement Sci Tech
  doi: 10.1088/0957-0233/2/8/013
– volume: 78
  start-page: 1469
  year: 1999
  ident: 10.1016/j.dental.2021.02.012_bib0180
  article-title: The effects of light intensity, temperature, and comonomer composition on the polymerization behavior of dimethacrylate dental resins
  publication-title: J Dent Res
  doi: 10.1177/00220345990780081301
– volume: 31
  start-page: 49
  year: 2017
  ident: 10.1016/j.dental.2021.02.012_bib0025
  article-title: Polymerization shrinkage stress of composite resins and resin cements–what do we need to know?
  publication-title: Braz Oral Res
  doi: 10.1590/1807-3107bor-2017.vol31.0062
– volume: 18
  start-page: 436
  year: 2002
  ident: 10.1016/j.dental.2021.02.012_bib0110
  article-title: Reduction of polymerization contraction stress for dental composites by two-step light-activation
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(01)00066-5
– volume: 120
  start-page: 972
  year: 2010
  ident: 10.1016/j.dental.2021.02.012_bib0100
  article-title: Composite materials: composition, properties and clinical applications. A literature review
  publication-title: Schweiz Monatsschr Zahnmed
– volume: 21
  start-page: 56
  year: 2005
  ident: 10.1016/j.dental.2021.02.012_bib0045
  article-title: Conversion-dependent shrinkage stress and strain in dental resins and composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2004.10.006
– volume: 23
  start-page: 911
  year: 2007
  ident: 10.1016/j.dental.2021.02.012_bib0200
  article-title: Shrinkage stress in light-cured composite resins: influence of material and photoactivation mode
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2006.06.034
– volume: 101
  start-page: 1034
  year: 2020
  ident: 10.1016/j.dental.2021.02.012_bib0195
  article-title: Effect of rapid high-intensity light-curing on polymerization shrinkage properties of conventional and bulk-fill composites
  publication-title: J Dent
  doi: 10.1016/j.jdent.2020.103448
– volume: 8
  start-page: 4339
  year: 2017
  ident: 10.1016/j.dental.2021.02.012_bib0210
  article-title: Application of an addition–fragmentation-chain transfer monomer in di (meth) acrylate network formation to reduce polymerization shrinkage stress
  publication-title: Polym Chem
  doi: 10.1039/C7PY00702G
– volume: 21
  start-page: 962
  year: 2005
  ident: 10.1016/j.dental.2021.02.012_bib0050
  article-title: Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2005.04.018
– volume: 82
  start-page: 77
  year: 2018
  ident: 10.1016/j.dental.2021.02.012_bib0105
  article-title: Polymerization shrinkage stress of resin-based dental materials: a systematic review and meta-analyses of technique protocol and photo-activation strategies
  publication-title: J Mech Behav Biomed Mater
  doi: 10.1016/j.jmbbm.2018.03.004
– volume: 20
  start-page: 979
  year: 2004
  ident: 10.1016/j.dental.2021.02.012_bib0175
  article-title: Towards the elucidation of shrinkage stress development and relaxation in dental composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2004.05.002
– volume: 27
  start-page: 335
  issue: 6
  year: 2015
  ident: 10.1016/j.dental.2021.02.012_bib0005
  article-title: Bulk fill composites: an anatomic sculpting technique
  publication-title: J Esthet Restor Dent
  doi: 10.1111/jerd.12159
– volume: 28
  start-page: 87
  year: 2012
  ident: 10.1016/j.dental.2021.02.012_bib0010
  article-title: Longevity of posterior composite restorations: not only a matter of materials
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2011.09.003
– volume: 66
  start-page: 1636
  year: 1987
  ident: 10.1016/j.dental.2021.02.012_bib0065
  article-title: Setting stress in composite resin in relation to configuration of the restoration
  publication-title: J Dent Res
  doi: 10.1177/00220345870660110601
– volume: 16
  start-page: 447
  year: 2000
  ident: 10.1016/j.dental.2021.02.012_bib0165
  article-title: Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials
  publication-title: Dent Mater
  doi: 10.1016/S0109-5641(00)00043-9
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.dental.2021.02.012_bib0030
  article-title: Shrinkage stresses generated during resin-composite applications: a review
  publication-title: J Dental Biomech
– volume: 29
  start-page: 118
  year: 2017
  ident: 10.1016/j.dental.2021.02.012_bib0070
  article-title: Microcomputed tomography evaluation of volumetric shrinkage of bulk-fill composites in Class II cavities
  publication-title: J Esthet Restor Dent
  doi: 10.1111/jerd.12275
– start-page: 1266
  year: 2020
  ident: 10.1016/j.dental.2021.02.012_bib0130
  article-title: Conversion kinetics of rapid photo-polymerized resin composites
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2020.07.008
SSID ssj0004291
Score 2.507281
Snippet To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites. Two...
Objective To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin composites....
To determine the polymerization shrinkage (%) and shrinkage stress (MPa) characteristics of ultra-rapid photo-polymerized bulk fill resin...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 559
SubjectTerms AFCT
Bioman II
Bulk fill
Bulk polymerization
Chain transfer
Comparators
Composite materials
Composite Resins
Dental Materials
Irradiance
Irradiation
Materials Testing
Numerical differentiation
Photopolymerization
Polymerization
Protocol
Reagents
Resin composite
Resins
Shrinkage
Strain rate
Stress
URPBF
Variance analysis
Title Polymerization shrinkage and shrinkage stress development in ultra-rapid photo-polymerized bulk fill resin composites
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0109564121000749
https://dx.doi.org/10.1016/j.dental.2021.02.012
https://www.ncbi.nlm.nih.gov/pubmed/33685651
https://www.proquest.com/docview/2515754252
https://www.proquest.com/docview/2499386410
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QEuiDdbSmUkrmY3duzEx6pQLSAqJKjUm-WnmhIl0W5y4NLfznidbOFQFXFMPBM5npctfzOD0DvnJBU-k6SgnpKcy0BKqyVxLjNCOAhgOuY7fz0Xq4v88yW_3EOnUy5MhFWOvj_59K23Ht8sxtVcdFW1-B4vdbjIYwWsGAjlPjqgTAo-Qwcnn76szm_TI2lqnAf0JDJMGXRbmJfbZh3CQZGm4p0ZvStC3bUD3Uais8fo0biFxCdplk_Qnm-eogcfIuwndm57hoZvbf0r3sSkFEu8uVrDiRMcB9aN--Mp5Ylgd4sbwlWDh7pfa7LWXeVwd9X2Lemmz3mHzVD_xKGqawy8QB0h6RH35TfP0cXZxx-nKzK2VyA2L2VPtLSyDLKwJefGZ5Yx6zgVIYBZBi9h42NFoZ3hRSZdFmx0BT6W58rMUmoR2As0a9rGv0KYOWcoD-CwdJn7PEhhbCGE0dKUVjI-R2xaUmXH2uOxBUatJpDZtUqCUFEQakkVCGKOyI6rS7U37qHnk7TUlFcKnlBBcLiHr9jx_aV7_8B5NCmFGm1_o2DheOwrzGH47W4YrDZexejGtwPQwEGTlaCLyzl6mZRp94ss9gQQPDv872m9Rg_jUwIYHaFZvx78G9g79eYY7b-_yY5HC_kN5U0bAg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQL4s1CASNxNbt52ImPqFAt0FZItFJvlp9qSpREu5tDL_3tzMTJFg5VEcfEM5HjednyNzOEfHBOpsInkhWpT1nOZWCl1ZI5lxghHAQwjfnOxydieZZ_O-fnO-RgyoVBWOXo-6NPH7z1-GY-rua8q6r5T7zU4SLHClgYCOU9cj_nWYG4vo_XNzgPcLixKeFCMiSf8ucGkJcbcg7hmJjG0p1Jelt8um3_OcShw0fk4biBpJ_iHB-THd88IXufEfSDfduekv5HW1_hPUxMsKTrixWcN8FtUN24P55ilgh1N6ghWjW0rzcrzVa6qxztLtpNy7rpc95R09e_aKjqmgIvUCMgHVFffv2MnB1-OT1YsrG5ArN5KTdMSyvLIAtbcm58YrPMOp6KEMAog5ew7bGi0M7wIpEuCRYdgcfiXIlZSC1C9pzsNm3jXxKaOWdSHsBd6TL3eZDC2EIIo6Uprcz4jGTTkio7Vh7HBhi1miBmlyoKQqEg1CJVIIgZYVuuLlbeuIOeT9JSU1Yp-EEFoeEOvmLL95fm_QPn_qQUarT8tYKF49hVmMPw--0w2CxexOjGtz3QwDEzK0EXFzPyIirT9hcz7AggePLqv6f1juwtT4-P1NHXk--vyQMciVCjfbK7WfX-DeyiNubtYCW_AVL1G80
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymerization+shrinkage+and+shrinkage+stress+development+in+ultra-rapid+photo-polymerized+bulk+fill+resin+composites&rft.jtitle=Dental+materials&rft.au=Algamaiah%2C+Hamad&rft.au=Silikas%2C+Nikolaos&rft.au=Watts%2C+David+C.&rft.date=2021-04-01&rft.pub=Elsevier+Inc&rft.issn=0109-5641&rft.eissn=1879-0097&rft.volume=37&rft.issue=4&rft.spage=559&rft.epage=567&rft_id=info:doi/10.1016%2Fj.dental.2021.02.012&rft.externalDocID=S0109564121000749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0109-5641&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0109-5641&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0109-5641&client=summon