Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma
Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generat...
Saved in:
Published in | Genes & development Vol. 30; no. 9; pp. 1020 - 1033 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-9369 1549-5477 |
DOI | 10.1101/gad.278549.116 |
Cover
Loading…
Abstract | Alternative splicing of the
Pkm
gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline
PKM2
-null mice (
Pkm2
−/−
). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that
Pkm2
−/−
mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of
PKM2
leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly,
PKM2
loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism. |
---|---|
AbstractList | Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2(-/-)). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2(-/-) mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism. Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2 -null mice ( Pkm2 −/− ). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2 −/− mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism. Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2 super(?/?)). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2 super(?/?) mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism. In this study, Dayton et al. generated mice lacking PKM2, an isoform of pyruvate kinase, and found that, over time, the mice develop a metabolic syndrome that leads to spontaneous hepatocellular carcinomas (HCCs). These results provide new insights into the role of PKM2 in the regulation of systemic metabolic homeostasis and inflammation. Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2 -null mice ( Pkm2 −/− ). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2 −/− mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism. |
Author | Bhutkar, Arjun Luengo, Alba Jacks, Tyler Clish, Clary B. Gocheva, Vasilena Miller, Kathryn M. Dayton, Talya L. Bronson, Roderick T. Vander Heiden, Matthew G. Israelsen, William J. Davidson, Shawn M. |
AuthorAffiliation | 4 Metabolite Profiling Platform, Broad Institute, Cambridge, Massachusetts 02142, USA 2 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 6 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 3 Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA 5 Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, North Grafton, Massachusetts 01536, USA 1 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 7 Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA |
AuthorAffiliation_xml | – name: 4 Metabolite Profiling Platform, Broad Institute, Cambridge, Massachusetts 02142, USA – name: 7 Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA – name: 2 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – name: 5 Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, North Grafton, Massachusetts 01536, USA – name: 6 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – name: 1 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA – name: 3 Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA |
Author_xml | – sequence: 1 givenname: Talya L. surname: Dayton fullname: Dayton, Talya L. – sequence: 2 givenname: Vasilena surname: Gocheva fullname: Gocheva, Vasilena – sequence: 3 givenname: Kathryn M. surname: Miller fullname: Miller, Kathryn M. – sequence: 4 givenname: William J. surname: Israelsen fullname: Israelsen, William J. – sequence: 5 givenname: Arjun surname: Bhutkar fullname: Bhutkar, Arjun – sequence: 6 givenname: Clary B. surname: Clish fullname: Clish, Clary B. – sequence: 7 givenname: Shawn M. surname: Davidson fullname: Davidson, Shawn M. – sequence: 8 givenname: Alba surname: Luengo fullname: Luengo, Alba – sequence: 9 givenname: Roderick T. surname: Bronson fullname: Bronson, Roderick T. – sequence: 10 givenname: Tyler surname: Jacks fullname: Jacks, Tyler – sequence: 11 givenname: Matthew G. surname: Vander Heiden fullname: Vander Heiden, Matthew G. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27125672$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctLJDEQxoMoOj6uHpc-7qVnk-50HhdhEXWX9XXQc0inK5ol3RmTjOB_b4ZRUUHwlBT1-4qv6ttFm1OYAKFDgueEYPLrTg_zhouOylKzDTQj5Vt3lPNNNMNC4lq2TO6g3ZT-Y4wZZmwb7TScNB3jzQxdnkEcvZug8iGlKtjq-t9FUy1iGEOGVI2QdR-8M9XgUo5QGD0N1T0sdA4GvF96HSujo3FTGPU-2rLaJzh4effQ7enJzfGf-vzq7O_x7_PaUCFzLRkBWvxqKblstATLAOTQN4RA0wvSMyaMASvwQFjXWgrGStwZwoG30tp2Dx2t5y6W_QiDgSlH7dUiulHHJxW0Ux87k7tXd-FRUcFa3tIy4OfLgBgelpCyGl1a7aMnCMukCJdYUk6F-AYqCoc57wr6472tNz-v9y7AfA2YWM4dwb4hBKtVoKoEqtaBlpoVAf0kMC7r7MJqLee_kj0DMmWlgA |
CitedBy_id | crossref_primary_10_1002_1873_3468_13648 crossref_primary_10_1177_2472630317698683 crossref_primary_10_1002_ijc_32756 crossref_primary_10_18632_oncotarget_25964 crossref_primary_10_1007_s12672_024_01201_y crossref_primary_10_1158_0008_5472_CAN_16_3304 crossref_primary_10_1126_sciadv_abn5683 crossref_primary_10_1158_0008_5472_CAN_21_2352 crossref_primary_10_1007_s43152_020_00020_x crossref_primary_10_1038_onc_2017_31 crossref_primary_10_1016_j_gene_2018_05_038 crossref_primary_10_1038_s41598_020_59999_w crossref_primary_10_3389_fimmu_2017_01549 crossref_primary_10_1007_s00441_020_03245_2 crossref_primary_10_1002_cam4_6117 crossref_primary_10_1158_0008_5472_CAN_17_2726 crossref_primary_10_1186_s12935_020_1149_7 crossref_primary_10_15252_embr_201643300 crossref_primary_10_3390_cells11142243 crossref_primary_10_1002_cac2_12158 crossref_primary_10_1134_S1819712424010240 crossref_primary_10_1073_pnas_2123231119 crossref_primary_10_1186_s40170_018_0179_2 crossref_primary_10_3390_ijms24032683 crossref_primary_10_3390_ijms242316639 crossref_primary_10_1016_j_isci_2022_104773 crossref_primary_10_1186_s40170_019_0205_z crossref_primary_10_3390_ijms19102907 crossref_primary_10_1016_j_ccell_2018_02_004 crossref_primary_10_1016_j_drudis_2024_103949 crossref_primary_10_2174_1570180820666230816090541 crossref_primary_10_3389_fimmu_2017_01300 crossref_primary_10_1038_s41388_018_0582_8 crossref_primary_10_1126_scitranslmed_aau8866 crossref_primary_10_1038_s41413_023_00251_2 crossref_primary_10_3390_ijms22031171 crossref_primary_10_1016_j_bbcan_2024_189089 crossref_primary_10_1016_j_bbrc_2020_02_157 crossref_primary_10_3390_ijms21197062 crossref_primary_10_1186_s12967_023_04060_3 crossref_primary_10_3389_fphys_2020_543564 crossref_primary_10_1111_febs_14175 crossref_primary_10_1038_s42255_021_00424_5 crossref_primary_10_1097_HEP_0000000000000005 crossref_primary_10_18632_oncotarget_20685 crossref_primary_10_1161_CIRCULATIONAHA_119_043067 crossref_primary_10_1080_15476286_2021_2024024 crossref_primary_10_1038_s41419_018_1271_9 crossref_primary_10_1158_0008_5472_CAN_17_0498 crossref_primary_10_1007_s13402_018_0383_7 crossref_primary_10_1038_s41575_019_0217_8 crossref_primary_10_1074_jbc_RA118_005963 crossref_primary_10_1111_febs_16625 crossref_primary_10_1080_23723556_2018_1472054 crossref_primary_10_1038_s41598_019_42707_8 crossref_primary_10_1242_dmm_033365 crossref_primary_10_1038_s41419_020_2481_5 crossref_primary_10_3390_biom12081082 crossref_primary_10_15252_embj_2021108065 crossref_primary_10_1038_s41416_019_0675_3 crossref_primary_10_14814_phy2_70040 crossref_primary_10_1016_j_bbamcr_2021_119206 crossref_primary_10_3389_fendo_2019_00532 crossref_primary_10_1158_0008_5472_CAN_21_0403 crossref_primary_10_2139_ssrn_3363732 crossref_primary_10_1186_s12935_020_01612_1 crossref_primary_10_1186_s40170_018_0188_1 crossref_primary_10_1016_j_celrep_2022_111897 crossref_primary_10_1042_BSR20203170 crossref_primary_10_1016_j_celrep_2023_112335 crossref_primary_10_1016_j_molcel_2024_07_025 crossref_primary_10_1096_fj_202400784R crossref_primary_10_1016_j_bbrc_2019_04_081 crossref_primary_10_1038_s12276_025_01415_2 crossref_primary_10_3390_cancers9090127 crossref_primary_10_7554_eLife_45068 crossref_primary_10_3390_cells12151930 crossref_primary_10_1126_scisignal_aay9217 crossref_primary_10_1038_s41598_019_50866_x crossref_primary_10_3390_ijms21051661 crossref_primary_10_1371_journal_pgen_1006780 crossref_primary_10_15252_embj_2021109683 crossref_primary_10_1186_s12943_018_0791_3 crossref_primary_10_1097_CM9_0000000000000542 crossref_primary_10_1016_j_molmet_2022_101466 crossref_primary_10_1007_s11064_019_02784_7 crossref_primary_10_1097_MD_0000000000019076 crossref_primary_10_1152_physiolgenomics_00130_2017 crossref_primary_10_1186_s40170_017_0172_1 crossref_primary_10_2174_0929867331666230714144851 crossref_primary_10_3390_cancers13020348 crossref_primary_10_3164_jcbn_19_110 crossref_primary_10_1016_j_cell_2016_12_039 crossref_primary_10_1093_gastro_goaa066 crossref_primary_10_1016_j_trecan_2017_04_009 crossref_primary_10_1038_s41467_024_45167_5 crossref_primary_10_1093_jn_nxab251 crossref_primary_10_1111_bph_15002 crossref_primary_10_1038_s41467_018_06406_8 crossref_primary_10_3892_ol_2018_9100 crossref_primary_10_3389_fcell_2020_00266 crossref_primary_10_3390_cancers12113318 crossref_primary_10_1016_j_omtn_2021_09_014 crossref_primary_10_3389_fimmu_2019_02919 crossref_primary_10_1016_j_isci_2020_100839 crossref_primary_10_4049_jimmunol_1600613 crossref_primary_10_14814_phy2_70193 crossref_primary_10_1016_j_canlet_2020_11_018 crossref_primary_10_1007_s13679_019_00344_2 crossref_primary_10_3389_fcell_2018_00079 crossref_primary_10_1016_j_canlet_2025_217493 crossref_primary_10_1016_j_molcel_2022_06_005 crossref_primary_10_2174_1389450120666181217111500 crossref_primary_10_1002_anse_202100034 crossref_primary_10_1016_j_canlet_2018_01_075 crossref_primary_10_1038_nm_4328 crossref_primary_10_1111_imm_13304 crossref_primary_10_3390_ijms23105572 |
Cites_doi | 10.1016/j.molcel.2011.04.025 10.1053/j.gastro.2007.04.061 10.1038/nrc1934 10.1038/nchembio.1060 10.1038/ng.3252 10.1038/nature10598 10.1073/pnas.0506580102 10.1016/j.molcel.2012.09.028 10.1016/j.cell.2012.07.018 10.1038/nmeth.1528 10.1038/ncb2629 10.1038/nature08697 10.1053/j.gastro.2003.10.065 10.1016/j.cell.2014.07.048 10.1073/pnas.0402511101 10.2337/dc12-0336 10.1016/j.cell.2011.02.013 10.1016/j.it.2014.12.008 10.1371/journal.pone.0115036 10.1093/bioinformatics/btt087 10.1016/j.molcel.2014.10.027 10.1038/nrc3162 10.1038/nrc2981 10.3748/wjg.v21.i4.1189 10.1172/JCI200420513 10.1093/bioinformatics/btp120 10.1016/j.molcel.2014.02.015 10.1016/j.tibs.2014.06.005 10.1016/j.cell.2004.11.004 10.1016/S0021-9258(18)47947-1 10.1038/nature11540 10.1016/j.molcel.2012.01.001 10.1186/1471-2105-12-323 10.1038/nrc4017 10.3810/pgm.2009.11.2074 10.1111/j.1432-1033.1996.00366.x 10.1016/j.gde.2009.01.002 10.1016/j.semcancer.2005.04.009 10.1038/nature06667 10.1126/science.1140485 10.1073/pnas.0914845107 10.1016/j.jhep.2011.10.027 10.1016/j.molcel.2015.07.013 10.1016/j.gene.2013.12.062 10.1016/j.cell.2011.03.054 10.1016/j.cell.2014.05.051 10.1038/nature06734 10.1016/j.jhep.2014.12.012 10.1016/j.biocel.2010.02.005 10.1126/scisignal.2000431 10.1016/j.cmet.2011.08.005 10.1038/nature11247 10.1371/journal.pone.0031812 10.1126/science.1188015 10.1158/0008-5472.CAN-14-2371 10.1126/science.1218595 10.1073/pnas.93.12.5860 10.1016/j.cell.2013.09.025 10.1093/carcin/19.1.99 10.4251/wjgo.v5.i9.186 |
ContentType | Journal Article |
Copyright | 2016 Dayton et al.; Published by Cold Spring Harbor Laboratory Press. 2016 |
Copyright_xml | – notice: 2016 Dayton et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1101/gad.278549.116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Dayton et al |
EISSN | 1549-5477 |
EndPage | 1033 |
ExternalDocumentID | PMC4863734 27125672 10_1101_gad_278549_116 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA117969 – fundername: NIGMS NIH HHS grantid: T32 GM007287 – fundername: NCI NIH HHS grantid: P30 CA014051 – fundername: NCI NIH HHS grantid: R01 CA168653 – fundername: Department of Health and Human Services grantid: P01CA117969; R01CA168653 – fundername: Howard Hughes Medical Institute – fundername: Jane Coffin Childs Memorial Fund Postdoctoral Fellowship – fundername: Smith Family – fundername: National Defense Science and Engineering Graduate grantid: Fellowship Award – fundername: Cancer Center Support grantid: P30CA14051 – fundername: National Cancer Institute – fundername: Burroughs Wellcome Fund |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XSW YBU YHG YKV YSK CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c489t-961e4116a99792a9ef6ee9db211e2b81b668ccef80d1653f4ecf905c17e739ff3 |
ISSN | 0890-9369 |
IngestDate | Thu Aug 21 18:33:08 EDT 2025 Thu Sep 04 23:17:44 EDT 2025 Fri Sep 05 08:01:13 EDT 2025 Thu Apr 03 07:07:09 EDT 2025 Tue Jul 01 01:12:07 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | PKM2 HCC metabolism |
Language | English |
License | 2016 Dayton et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c489t-961e4116a99792a9ef6ee9db211e2b81b668ccef80d1653f4ecf905c17e739ff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4863734 |
PMID | 27125672 |
PQID | 1787480775 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4863734 proquest_miscellaneous_1790947488 proquest_miscellaneous_1787480775 pubmed_primary_27125672 crossref_primary_10_1101_gad_278549_116 crossref_citationtrail_10_1101_gad_278549_116 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2016 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111619520344000_30.9.1020.48 2021111619520344000_30.9.1020.49 2021111619520344000_30.9.1020.40 2021111619520344000_30.9.1020.41 2021111619520344000_30.9.1020.42 2021111619520344000_30.9.1020.44 2021111619520344000_30.9.1020.45 2021111619520344000_30.9.1020.46 2021111619520344000_30.9.1020.47 2021111619520344000_30.9.1020.37 2021111619520344000_30.9.1020.38 2021111619520344000_30.9.1020.39 2021111619520344000_30.9.1020.30 2021111619520344000_30.9.1020.31 2021111619520344000_30.9.1020.32 (2021111619520344000_30.9.1020.43) 1987; 262 2021111619520344000_30.9.1020.33 2021111619520344000_30.9.1020.35 2021111619520344000_30.9.1020.36 2021111619520344000_30.9.1020.27 2021111619520344000_30.9.1020.28 2021111619520344000_30.9.1020.29 2021111619520344000_30.9.1020.3 (2021111619520344000_30.9.1020.17) 2011; 11 2021111619520344000_30.9.1020.62 2021111619520344000_30.9.1020.2 2021111619520344000_30.9.1020.1 2021111619520344000_30.9.1020.20 2021111619520344000_30.9.1020.21 2021111619520344000_30.9.1020.22 2021111619520344000_30.9.1020.23 2021111619520344000_30.9.1020.24 (2021111619520344000_30.9.1020.34) 2012; 31 2021111619520344000_30.9.1020.25 2021111619520344000_30.9.1020.9 2021111619520344000_30.9.1020.8 (2021111619520344000_30.9.1020.26) 2014; 2014 2021111619520344000_30.9.1020.7 2021111619520344000_30.9.1020.6 2021111619520344000_30.9.1020.5 2021111619520344000_30.9.1020.4 2021111619520344000_30.9.1020.15 2021111619520344000_30.9.1020.59 2021111619520344000_30.9.1020.16 2021111619520344000_30.9.1020.18 2021111619520344000_30.9.1020.19 (2021111619520344000_30.9.1020.50) 1996; 235 2021111619520344000_30.9.1020.51 2021111619520344000_30.9.1020.52 2021111619520344000_30.9.1020.53 2021111619520344000_30.9.1020.10 2021111619520344000_30.9.1020.54 2021111619520344000_30.9.1020.11 2021111619520344000_30.9.1020.55 2021111619520344000_30.9.1020.12 2021111619520344000_30.9.1020.56 2021111619520344000_30.9.1020.13 2021111619520344000_30.9.1020.57 2021111619520344000_30.9.1020.14 2021111619520344000_30.9.1020.58 2021111619520344000_30.9.1020.60 2021111619520344000_30.9.1020.61 |
References_xml | – ident: 2021111619520344000_30.9.1020.37 doi: 10.1016/j.molcel.2011.04.025 – ident: 2021111619520344000_30.9.1020.11 doi: 10.1053/j.gastro.2007.04.061 – ident: 2021111619520344000_30.9.1020.15 doi: 10.1038/nrc1934 – ident: 2021111619520344000_30.9.1020.1 doi: 10.1038/nchembio.1060 – ident: 2021111619520344000_30.9.1020.48 doi: 10.1038/ng.3252 – ident: 2021111619520344000_30.9.1020.58 doi: 10.1038/nature10598 – ident: 2021111619520344000_30.9.1020.49 doi: 10.1073/pnas.0506580102 – ident: 2021111619520344000_30.9.1020.59 doi: 10.1016/j.molcel.2012.09.028 – ident: 2021111619520344000_30.9.1020.60 doi: 10.1016/j.cell.2012.07.018 – ident: 2021111619520344000_30.9.1020.25 doi: 10.1038/nmeth.1528 – ident: 2021111619520344000_30.9.1020.61 doi: 10.1038/ncb2629 – ident: 2021111619520344000_30.9.1020.10 doi: 10.1038/nature08697 – ident: 2021111619520344000_30.9.1020.12 doi: 10.1053/j.gastro.2003.10.065 – ident: 2021111619520344000_30.9.1020.56 doi: 10.1016/j.cell.2014.07.048 – ident: 2021111619520344000_30.9.1020.54 doi: 10.1073/pnas.0402511101 – ident: 2021111619520344000_30.9.1020.14 doi: 10.2337/dc12-0336 – ident: 2021111619520344000_30.9.1020.19 doi: 10.1016/j.cell.2011.02.013 – ident: 2021111619520344000_30.9.1020.39 doi: 10.1016/j.it.2014.12.008 – volume: 2014 start-page: 943162 year: 2014 ident: 2021111619520344000_30.9.1020.26 article-title: A comprehensive review on metabolic syndrome publication-title: Cardiol Res Pract – ident: 2021111619520344000_30.9.1020.57 doi: 10.1371/journal.pone.0115036 – ident: 2021111619520344000_30.9.1020.30 doi: 10.1093/bioinformatics/btt087 – ident: 2021111619520344000_30.9.1020.35 doi: 10.1016/j.molcel.2014.10.027 – volume: 11 start-page: 835 year: 2011 ident: 2021111619520344000_30.9.1020.17 article-title: Choline metabolism in malignant transformation publication-title: Nat Rev Cancer doi: 10.1038/nrc3162 – ident: 2021111619520344000_30.9.1020.5 doi: 10.1038/nrc2981 – ident: 2021111619520344000_30.9.1020.31 doi: 10.3748/wjg.v21.i4.1189 – ident: 2021111619520344000_30.9.1020.21 doi: 10.1172/JCI200420513 – ident: 2021111619520344000_30.9.1020.52 doi: 10.1093/bioinformatics/btp120 – ident: 2021111619520344000_30.9.1020.27 doi: 10.1016/j.molcel.2014.02.015 – ident: 2021111619520344000_30.9.1020.45 doi: 10.1016/j.tibs.2014.06.005 – ident: 2021111619520344000_30.9.1020.44 doi: 10.1016/j.cell.2004.11.004 – volume: 262 start-page: 14366 year: 1987 ident: 2021111619520344000_30.9.1020.43 article-title: The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)47947-1 – ident: 2021111619520344000_30.9.1020.6 doi: 10.1038/nature11540 – ident: 2021111619520344000_30.9.1020.16 doi: 10.1016/j.molcel.2012.01.001 – ident: 2021111619520344000_30.9.1020.32 doi: 10.1186/1471-2105-12-323 – ident: 2021111619520344000_30.9.1020.38 doi: 10.1038/nrc4017 – ident: 2021111619520344000_30.9.1020.46 doi: 10.3810/pgm.2009.11.2074 – volume: 235 start-page: 366 year: 1996 ident: 2021111619520344000_30.9.1020.50 article-title: Alternative splicing of the pyruvate kinase M gene in a minigene system publication-title: Eur J Biochem doi: 10.1111/j.1432-1033.1996.00366.x – ident: 2021111619520344000_30.9.1020.51 doi: 10.1016/j.gde.2009.01.002 – ident: 2021111619520344000_30.9.1020.41 doi: 10.1016/j.semcancer.2005.04.009 – ident: 2021111619520344000_30.9.1020.8 doi: 10.1038/nature06667 – ident: 2021111619520344000_30.9.1020.42 doi: 10.1126/science.1140485 – ident: 2021111619520344000_30.9.1020.9 doi: 10.1073/pnas.0914845107 – ident: 2021111619520344000_30.9.1020.2 doi: 10.1016/j.jhep.2011.10.027 – ident: 2021111619520344000_30.9.1020.22 doi: 10.1016/j.molcel.2015.07.013 – volume: 31 start-page: 5 year: 2012 ident: 2021111619520344000_30.9.1020.34 article-title: Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis publication-title: Chin J Cancer – ident: 2021111619520344000_30.9.1020.62 doi: 10.1016/j.gene.2013.12.062 – ident: 2021111619520344000_30.9.1020.36 doi: 10.1016/j.cell.2011.03.054 – ident: 2021111619520344000_30.9.1020.53 doi: 10.1016/j.cell.2014.05.051 – ident: 2021111619520344000_30.9.1020.7 doi: 10.1038/nature06734 – ident: 2021111619520344000_30.9.1020.4 doi: 10.1016/j.jhep.2014.12.012 – ident: 2021111619520344000_30.9.1020.40 doi: 10.1016/j.biocel.2010.02.005 – ident: 2021111619520344000_30.9.1020.20 doi: 10.1126/scisignal.2000431 – ident: 2021111619520344000_30.9.1020.3 doi: 10.1016/j.cmet.2011.08.005 – ident: 2021111619520344000_30.9.1020.13 doi: 10.1038/nature11247 – ident: 2021111619520344000_30.9.1020.28 doi: 10.1371/journal.pone.0031812 – ident: 2021111619520344000_30.9.1020.55 doi: 10.1126/science.1188015 – ident: 2021111619520344000_30.9.1020.33 doi: 10.1158/0008-5472.CAN-14-2371 – ident: 2021111619520344000_30.9.1020.24 doi: 10.1126/science.1218595 – ident: 2021111619520344000_30.9.1020.29 doi: 10.1073/pnas.93.12.5860 – ident: 2021111619520344000_30.9.1020.23 doi: 10.1016/j.cell.2013.09.025 – ident: 2021111619520344000_30.9.1020.18 doi: 10.1093/carcin/19.1.99 – ident: 2021111619520344000_30.9.1020.47 doi: 10.4251/wjgo.v5.i9.186 |
SSID | ssj0006066 |
Score | 2.5292156 |
Snippet | Alternative splicing of the
Pkm
gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to... Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to... In this study, Dayton et al. generated mice lacking PKM2, an isoform of pyruvate kinase, and found that, over time, the mice develop a metabolic syndrome that... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1020 |
SubjectTerms | Animals Carcinoma, Hepatocellular - enzymology Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - physiopathology Carrier Proteins - genetics Carrier Proteins - metabolism Cell Proliferation - genetics Diet, High-Fat Embryo, Mammalian Embryonic Development - genetics Energy Metabolism - genetics Female Gene Expression Regulation, Neoplastic Germ-Line Mutation Growth and Development - genetics Hepatocytes - cytology Homeostasis - genetics Liver Neoplasms - enzymology Liver Neoplasms - genetics Liver Neoplasms - physiopathology Male Membrane Proteins - genetics Membrane Proteins - metabolism Mice Protein Isoforms Research Paper Thyroid Hormone-Binding Proteins Thyroid Hormones - genetics Thyroid Hormones - metabolism |
Title | Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27125672 https://www.proquest.com/docview/1787480775 https://www.proquest.com/docview/1790947488 https://pubmed.ncbi.nlm.nih.gov/PMC4863734 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHe8EUHwYeiYpmnSPIq3ZdddEGZl30raJu7K0MpMRxh_gr_akzS97Y6y-lJm0jQhOV_PyUm_nIPQy0TJuDARC0xBwUGhgsA7l4SBEjElURRrpRzb4pjvn7CD0_h0Mvk1YC1t6mye_9x5ruR_pAplIFd7SvYfJNs1CgXwG-QLV5AwXK8k44-gVt0ycQmmzrHZDo-opVzB_Ou1zQ4NIrZRrItzfybEbpOfgQWqK7tj7yiouc0mVFZeP39rWy7dfixvT1UNCTLv1NaT7hdquVWzT_OOxWPzb_1w69Evag0Kp-y0fn_o0BI4VttydjTvcblS1ka7Nv0O0OxgPtyRCHnP_2sVlySBTRTY2BivWJkMYuZTtnjN67_INAiTAzUKqx4yMMkhaYJlXFb3Ls3AV1XMqUigByjZEVf7gr3rWIjO_yFhCs-nzfPwn19D16kQ7pP_4ec-8rx19JxH4sfmA4DC86_H_Y8XOJe8lovk28FqZnEb3fJuCH7TYOoOmujyLrrRJCbd3kPHLbKwRRauDLbIwi2ycIcs3CILA7LwGFm4Q9Z9dPLh_eLtfuAzbwQ5S2QdSB5qBmNRUgpJldSGay2LjIahphl4Opwnea5NQoqQx5FhOjeSxHkotIikMdEDtFdWpX6EsIkNY0YoJYxmPCsUMzpRJCaZJjoycoqCdrrS3Ielt9lRlulu8UzRq67-9yYgyx9rvmhnPwWdaQevSl1t1mkIVsqGUhDx3-pIIhlUS6boYSOxrj8qwC3ggk6RGMmyq2Bjto_vlOdnLnY7S3gkIvb4yqN4gm7279hTtFevNvoZrIPr7LkD6G-EcLOL |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Germline+loss+of+PKM2+promotes+metabolic+distress+and+hepatocellular+carcinoma&rft.jtitle=Genes+%26+development&rft.au=Dayton%2C+Talya+L.&rft.au=Gocheva%2C+Vasilena&rft.au=Miller%2C+Kathryn+M.&rft.au=Israelsen%2C+William+J.&rft.date=2016-05-01&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=30&rft.issue=9&rft.spage=1020&rft.epage=1033&rft_id=info:doi/10.1101%2Fgad.278549.116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gad_278549_116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |