Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma

Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generat...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 30; no. 9; pp. 1020 - 1033
Main Authors Dayton, Talya L., Gocheva, Vasilena, Miller, Kathryn M., Israelsen, William J., Bhutkar, Arjun, Clish, Clary B., Davidson, Shawn M., Luengo, Alba, Bronson, Roderick T., Jacks, Tyler, Vander Heiden, Matthew G.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.05.2016
Subjects
Online AccessGet full text
ISSN0890-9369
1549-5477
DOI10.1101/gad.278549.116

Cover

Loading…
Abstract Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2 -null mice ( Pkm2 −/− ). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2 −/− mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.
AbstractList Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2(-/-)). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2(-/-) mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.
Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2 -null mice ( Pkm2 −/− ). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2 −/− mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.
Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2-null mice (Pkm2 super(?/?)). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2 super(?/?) mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.
In this study, Dayton et al. generated mice lacking PKM2, an isoform of pyruvate kinase, and found that, over time, the mice develop a metabolic syndrome that leads to spontaneous hepatocellular carcinomas (HCCs). These results provide new insights into the role of PKM2 in the regulation of systemic metabolic homeostasis and inflammation. Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to embryogenesis, tissue regeneration, and cancer. To interrogate the functional requirement for PKM2 during development and tissue homeostasis, we generated germline PKM2 -null mice ( Pkm2 −/− ). Unexpectedly, despite being the primary isoform expressed in most wild-type adult tissues, we found that Pkm2 −/− mice are viable and fertile. Thus, PKM2 is not required for embryonic or postnatal development. Loss of PKM2 leads to compensatory expression of PKM1 in the tissues that normally express PKM2. Strikingly, PKM2 loss leads to spontaneous development of hepatocellular carcinoma (HCC) with high penetrance that is accompanied by progressive changes in systemic metabolism characterized by altered systemic glucose homeostasis, inflammation, and hepatic steatosis. Therefore, in addition to its role in cancer metabolism, PKM2 plays a role in controlling systemic metabolic homeostasis and inflammation, thereby preventing HCC by a non-cell-autonomous mechanism.
Author Bhutkar, Arjun
Luengo, Alba
Jacks, Tyler
Clish, Clary B.
Gocheva, Vasilena
Miller, Kathryn M.
Dayton, Talya L.
Bronson, Roderick T.
Vander Heiden, Matthew G.
Israelsen, William J.
Davidson, Shawn M.
AuthorAffiliation 4 Metabolite Profiling Platform, Broad Institute, Cambridge, Massachusetts 02142, USA
2 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
6 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
3 Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
5 Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, North Grafton, Massachusetts 01536, USA
1 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
7 Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
AuthorAffiliation_xml – name: 4 Metabolite Profiling Platform, Broad Institute, Cambridge, Massachusetts 02142, USA
– name: 7 Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
– name: 2 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– name: 5 Department of Pathology, Tufts University School of Medicine and Veterinary Medicine, North Grafton, Massachusetts 01536, USA
– name: 6 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– name: 1 David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
– name: 3 Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
Author_xml – sequence: 1
  givenname: Talya L.
  surname: Dayton
  fullname: Dayton, Talya L.
– sequence: 2
  givenname: Vasilena
  surname: Gocheva
  fullname: Gocheva, Vasilena
– sequence: 3
  givenname: Kathryn M.
  surname: Miller
  fullname: Miller, Kathryn M.
– sequence: 4
  givenname: William J.
  surname: Israelsen
  fullname: Israelsen, William J.
– sequence: 5
  givenname: Arjun
  surname: Bhutkar
  fullname: Bhutkar, Arjun
– sequence: 6
  givenname: Clary B.
  surname: Clish
  fullname: Clish, Clary B.
– sequence: 7
  givenname: Shawn M.
  surname: Davidson
  fullname: Davidson, Shawn M.
– sequence: 8
  givenname: Alba
  surname: Luengo
  fullname: Luengo, Alba
– sequence: 9
  givenname: Roderick T.
  surname: Bronson
  fullname: Bronson, Roderick T.
– sequence: 10
  givenname: Tyler
  surname: Jacks
  fullname: Jacks, Tyler
– sequence: 11
  givenname: Matthew G.
  surname: Vander Heiden
  fullname: Vander Heiden, Matthew G.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27125672$$D View this record in MEDLINE/PubMed
BookMark eNqNkctLJDEQxoMoOj6uHpc-7qVnk-50HhdhEXWX9XXQc0inK5ol3RmTjOB_b4ZRUUHwlBT1-4qv6ttFm1OYAKFDgueEYPLrTg_zhouOylKzDTQj5Vt3lPNNNMNC4lq2TO6g3ZT-Y4wZZmwb7TScNB3jzQxdnkEcvZug8iGlKtjq-t9FUy1iGEOGVI2QdR-8M9XgUo5QGD0N1T0sdA4GvF96HSujo3FTGPU-2rLaJzh4effQ7enJzfGf-vzq7O_x7_PaUCFzLRkBWvxqKblstATLAOTQN4RA0wvSMyaMASvwQFjXWgrGStwZwoG30tp2Dx2t5y6W_QiDgSlH7dUiulHHJxW0Ux87k7tXd-FRUcFa3tIy4OfLgBgelpCyGl1a7aMnCMukCJdYUk6F-AYqCoc57wr6472tNz-v9y7AfA2YWM4dwb4hBKtVoKoEqtaBlpoVAf0kMC7r7MJqLee_kj0DMmWlgA
CitedBy_id crossref_primary_10_1002_1873_3468_13648
crossref_primary_10_1177_2472630317698683
crossref_primary_10_1002_ijc_32756
crossref_primary_10_18632_oncotarget_25964
crossref_primary_10_1007_s12672_024_01201_y
crossref_primary_10_1158_0008_5472_CAN_16_3304
crossref_primary_10_1126_sciadv_abn5683
crossref_primary_10_1158_0008_5472_CAN_21_2352
crossref_primary_10_1007_s43152_020_00020_x
crossref_primary_10_1038_onc_2017_31
crossref_primary_10_1016_j_gene_2018_05_038
crossref_primary_10_1038_s41598_020_59999_w
crossref_primary_10_3389_fimmu_2017_01549
crossref_primary_10_1007_s00441_020_03245_2
crossref_primary_10_1002_cam4_6117
crossref_primary_10_1158_0008_5472_CAN_17_2726
crossref_primary_10_1186_s12935_020_1149_7
crossref_primary_10_15252_embr_201643300
crossref_primary_10_3390_cells11142243
crossref_primary_10_1002_cac2_12158
crossref_primary_10_1134_S1819712424010240
crossref_primary_10_1073_pnas_2123231119
crossref_primary_10_1186_s40170_018_0179_2
crossref_primary_10_3390_ijms24032683
crossref_primary_10_3390_ijms242316639
crossref_primary_10_1016_j_isci_2022_104773
crossref_primary_10_1186_s40170_019_0205_z
crossref_primary_10_3390_ijms19102907
crossref_primary_10_1016_j_ccell_2018_02_004
crossref_primary_10_1016_j_drudis_2024_103949
crossref_primary_10_2174_1570180820666230816090541
crossref_primary_10_3389_fimmu_2017_01300
crossref_primary_10_1038_s41388_018_0582_8
crossref_primary_10_1126_scitranslmed_aau8866
crossref_primary_10_1038_s41413_023_00251_2
crossref_primary_10_3390_ijms22031171
crossref_primary_10_1016_j_bbcan_2024_189089
crossref_primary_10_1016_j_bbrc_2020_02_157
crossref_primary_10_3390_ijms21197062
crossref_primary_10_1186_s12967_023_04060_3
crossref_primary_10_3389_fphys_2020_543564
crossref_primary_10_1111_febs_14175
crossref_primary_10_1038_s42255_021_00424_5
crossref_primary_10_1097_HEP_0000000000000005
crossref_primary_10_18632_oncotarget_20685
crossref_primary_10_1161_CIRCULATIONAHA_119_043067
crossref_primary_10_1080_15476286_2021_2024024
crossref_primary_10_1038_s41419_018_1271_9
crossref_primary_10_1158_0008_5472_CAN_17_0498
crossref_primary_10_1007_s13402_018_0383_7
crossref_primary_10_1038_s41575_019_0217_8
crossref_primary_10_1074_jbc_RA118_005963
crossref_primary_10_1111_febs_16625
crossref_primary_10_1080_23723556_2018_1472054
crossref_primary_10_1038_s41598_019_42707_8
crossref_primary_10_1242_dmm_033365
crossref_primary_10_1038_s41419_020_2481_5
crossref_primary_10_3390_biom12081082
crossref_primary_10_15252_embj_2021108065
crossref_primary_10_1038_s41416_019_0675_3
crossref_primary_10_14814_phy2_70040
crossref_primary_10_1016_j_bbamcr_2021_119206
crossref_primary_10_3389_fendo_2019_00532
crossref_primary_10_1158_0008_5472_CAN_21_0403
crossref_primary_10_2139_ssrn_3363732
crossref_primary_10_1186_s12935_020_01612_1
crossref_primary_10_1186_s40170_018_0188_1
crossref_primary_10_1016_j_celrep_2022_111897
crossref_primary_10_1042_BSR20203170
crossref_primary_10_1016_j_celrep_2023_112335
crossref_primary_10_1016_j_molcel_2024_07_025
crossref_primary_10_1096_fj_202400784R
crossref_primary_10_1016_j_bbrc_2019_04_081
crossref_primary_10_1038_s12276_025_01415_2
crossref_primary_10_3390_cancers9090127
crossref_primary_10_7554_eLife_45068
crossref_primary_10_3390_cells12151930
crossref_primary_10_1126_scisignal_aay9217
crossref_primary_10_1038_s41598_019_50866_x
crossref_primary_10_3390_ijms21051661
crossref_primary_10_1371_journal_pgen_1006780
crossref_primary_10_15252_embj_2021109683
crossref_primary_10_1186_s12943_018_0791_3
crossref_primary_10_1097_CM9_0000000000000542
crossref_primary_10_1016_j_molmet_2022_101466
crossref_primary_10_1007_s11064_019_02784_7
crossref_primary_10_1097_MD_0000000000019076
crossref_primary_10_1152_physiolgenomics_00130_2017
crossref_primary_10_1186_s40170_017_0172_1
crossref_primary_10_2174_0929867331666230714144851
crossref_primary_10_3390_cancers13020348
crossref_primary_10_3164_jcbn_19_110
crossref_primary_10_1016_j_cell_2016_12_039
crossref_primary_10_1093_gastro_goaa066
crossref_primary_10_1016_j_trecan_2017_04_009
crossref_primary_10_1038_s41467_024_45167_5
crossref_primary_10_1093_jn_nxab251
crossref_primary_10_1111_bph_15002
crossref_primary_10_1038_s41467_018_06406_8
crossref_primary_10_3892_ol_2018_9100
crossref_primary_10_3389_fcell_2020_00266
crossref_primary_10_3390_cancers12113318
crossref_primary_10_1016_j_omtn_2021_09_014
crossref_primary_10_3389_fimmu_2019_02919
crossref_primary_10_1016_j_isci_2020_100839
crossref_primary_10_4049_jimmunol_1600613
crossref_primary_10_14814_phy2_70193
crossref_primary_10_1016_j_canlet_2020_11_018
crossref_primary_10_1007_s13679_019_00344_2
crossref_primary_10_3389_fcell_2018_00079
crossref_primary_10_1016_j_canlet_2025_217493
crossref_primary_10_1016_j_molcel_2022_06_005
crossref_primary_10_2174_1389450120666181217111500
crossref_primary_10_1002_anse_202100034
crossref_primary_10_1016_j_canlet_2018_01_075
crossref_primary_10_1038_nm_4328
crossref_primary_10_1111_imm_13304
crossref_primary_10_3390_ijms23105572
Cites_doi 10.1016/j.molcel.2011.04.025
10.1053/j.gastro.2007.04.061
10.1038/nrc1934
10.1038/nchembio.1060
10.1038/ng.3252
10.1038/nature10598
10.1073/pnas.0506580102
10.1016/j.molcel.2012.09.028
10.1016/j.cell.2012.07.018
10.1038/nmeth.1528
10.1038/ncb2629
10.1038/nature08697
10.1053/j.gastro.2003.10.065
10.1016/j.cell.2014.07.048
10.1073/pnas.0402511101
10.2337/dc12-0336
10.1016/j.cell.2011.02.013
10.1016/j.it.2014.12.008
10.1371/journal.pone.0115036
10.1093/bioinformatics/btt087
10.1016/j.molcel.2014.10.027
10.1038/nrc3162
10.1038/nrc2981
10.3748/wjg.v21.i4.1189
10.1172/JCI200420513
10.1093/bioinformatics/btp120
10.1016/j.molcel.2014.02.015
10.1016/j.tibs.2014.06.005
10.1016/j.cell.2004.11.004
10.1016/S0021-9258(18)47947-1
10.1038/nature11540
10.1016/j.molcel.2012.01.001
10.1186/1471-2105-12-323
10.1038/nrc4017
10.3810/pgm.2009.11.2074
10.1111/j.1432-1033.1996.00366.x
10.1016/j.gde.2009.01.002
10.1016/j.semcancer.2005.04.009
10.1038/nature06667
10.1126/science.1140485
10.1073/pnas.0914845107
10.1016/j.jhep.2011.10.027
10.1016/j.molcel.2015.07.013
10.1016/j.gene.2013.12.062
10.1016/j.cell.2011.03.054
10.1016/j.cell.2014.05.051
10.1038/nature06734
10.1016/j.jhep.2014.12.012
10.1016/j.biocel.2010.02.005
10.1126/scisignal.2000431
10.1016/j.cmet.2011.08.005
10.1038/nature11247
10.1371/journal.pone.0031812
10.1126/science.1188015
10.1158/0008-5472.CAN-14-2371
10.1126/science.1218595
10.1073/pnas.93.12.5860
10.1016/j.cell.2013.09.025
10.1093/carcin/19.1.99
10.4251/wjgo.v5.i9.186
ContentType Journal Article
Copyright 2016 Dayton et al.; Published by Cold Spring Harbor Laboratory Press.
2016
Copyright_xml – notice: 2016 Dayton et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1101/gad.278549.116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
CrossRef
Genetics Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Dayton et al
EISSN 1549-5477
EndPage 1033
ExternalDocumentID PMC4863734
27125672
10_1101_gad_278549_116
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA117969
– fundername: NIGMS NIH HHS
  grantid: T32 GM007287
– fundername: NCI NIH HHS
  grantid: P30 CA014051
– fundername: NCI NIH HHS
  grantid: R01 CA168653
– fundername: Department of Health and Human Services
  grantid: P01CA117969; R01CA168653
– fundername: Howard Hughes Medical Institute
– fundername: Jane Coffin Childs Memorial Fund Postdoctoral Fellowship
– fundername: Smith Family
– fundername: National Defense Science and Engineering Graduate
  grantid: Fellowship Award
– fundername: Cancer Center Support
  grantid: P30CA14051
– fundername: National Cancer Institute
– fundername: Burroughs Wellcome Fund
GroupedDBID ---
-DZ
-~X
.55
18M
29H
2WC
39C
4.4
53G
5RE
5VS
85S
AAYXX
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AECCQ
AENEX
AETEA
AFFNX
AFOSN
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
W8F
WH7
WOQ
X7M
XSW
YBU
YHG
YKV
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c489t-961e4116a99792a9ef6ee9db211e2b81b668ccef80d1653f4ecf905c17e739ff3
ISSN 0890-9369
IngestDate Thu Aug 21 18:33:08 EDT 2025
Thu Sep 04 23:17:44 EDT 2025
Fri Sep 05 08:01:13 EDT 2025
Thu Apr 03 07:07:09 EDT 2025
Tue Jul 01 01:12:07 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords PKM2
HCC
metabolism
Language English
License 2016 Dayton et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c489t-961e4116a99792a9ef6ee9db211e2b81b668ccef80d1653f4ecf905c17e739ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4863734
PMID 27125672
PQID 1787480775
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4863734
proquest_miscellaneous_1790947488
proquest_miscellaneous_1787480775
pubmed_primary_27125672
crossref_primary_10_1101_gad_278549_116
crossref_citationtrail_10_1101_gad_278549_116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genes & development
PublicationTitleAlternate Genes Dev
PublicationYear 2016
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111619520344000_30.9.1020.48
2021111619520344000_30.9.1020.49
2021111619520344000_30.9.1020.40
2021111619520344000_30.9.1020.41
2021111619520344000_30.9.1020.42
2021111619520344000_30.9.1020.44
2021111619520344000_30.9.1020.45
2021111619520344000_30.9.1020.46
2021111619520344000_30.9.1020.47
2021111619520344000_30.9.1020.37
2021111619520344000_30.9.1020.38
2021111619520344000_30.9.1020.39
2021111619520344000_30.9.1020.30
2021111619520344000_30.9.1020.31
2021111619520344000_30.9.1020.32
(2021111619520344000_30.9.1020.43) 1987; 262
2021111619520344000_30.9.1020.33
2021111619520344000_30.9.1020.35
2021111619520344000_30.9.1020.36
2021111619520344000_30.9.1020.27
2021111619520344000_30.9.1020.28
2021111619520344000_30.9.1020.29
2021111619520344000_30.9.1020.3
(2021111619520344000_30.9.1020.17) 2011; 11
2021111619520344000_30.9.1020.62
2021111619520344000_30.9.1020.2
2021111619520344000_30.9.1020.1
2021111619520344000_30.9.1020.20
2021111619520344000_30.9.1020.21
2021111619520344000_30.9.1020.22
2021111619520344000_30.9.1020.23
2021111619520344000_30.9.1020.24
(2021111619520344000_30.9.1020.34) 2012; 31
2021111619520344000_30.9.1020.25
2021111619520344000_30.9.1020.9
2021111619520344000_30.9.1020.8
(2021111619520344000_30.9.1020.26) 2014; 2014
2021111619520344000_30.9.1020.7
2021111619520344000_30.9.1020.6
2021111619520344000_30.9.1020.5
2021111619520344000_30.9.1020.4
2021111619520344000_30.9.1020.15
2021111619520344000_30.9.1020.59
2021111619520344000_30.9.1020.16
2021111619520344000_30.9.1020.18
2021111619520344000_30.9.1020.19
(2021111619520344000_30.9.1020.50) 1996; 235
2021111619520344000_30.9.1020.51
2021111619520344000_30.9.1020.52
2021111619520344000_30.9.1020.53
2021111619520344000_30.9.1020.10
2021111619520344000_30.9.1020.54
2021111619520344000_30.9.1020.11
2021111619520344000_30.9.1020.55
2021111619520344000_30.9.1020.12
2021111619520344000_30.9.1020.56
2021111619520344000_30.9.1020.13
2021111619520344000_30.9.1020.57
2021111619520344000_30.9.1020.14
2021111619520344000_30.9.1020.58
2021111619520344000_30.9.1020.60
2021111619520344000_30.9.1020.61
References_xml – ident: 2021111619520344000_30.9.1020.37
  doi: 10.1016/j.molcel.2011.04.025
– ident: 2021111619520344000_30.9.1020.11
  doi: 10.1053/j.gastro.2007.04.061
– ident: 2021111619520344000_30.9.1020.15
  doi: 10.1038/nrc1934
– ident: 2021111619520344000_30.9.1020.1
  doi: 10.1038/nchembio.1060
– ident: 2021111619520344000_30.9.1020.48
  doi: 10.1038/ng.3252
– ident: 2021111619520344000_30.9.1020.58
  doi: 10.1038/nature10598
– ident: 2021111619520344000_30.9.1020.49
  doi: 10.1073/pnas.0506580102
– ident: 2021111619520344000_30.9.1020.59
  doi: 10.1016/j.molcel.2012.09.028
– ident: 2021111619520344000_30.9.1020.60
  doi: 10.1016/j.cell.2012.07.018
– ident: 2021111619520344000_30.9.1020.25
  doi: 10.1038/nmeth.1528
– ident: 2021111619520344000_30.9.1020.61
  doi: 10.1038/ncb2629
– ident: 2021111619520344000_30.9.1020.10
  doi: 10.1038/nature08697
– ident: 2021111619520344000_30.9.1020.12
  doi: 10.1053/j.gastro.2003.10.065
– ident: 2021111619520344000_30.9.1020.56
  doi: 10.1016/j.cell.2014.07.048
– ident: 2021111619520344000_30.9.1020.54
  doi: 10.1073/pnas.0402511101
– ident: 2021111619520344000_30.9.1020.14
  doi: 10.2337/dc12-0336
– ident: 2021111619520344000_30.9.1020.19
  doi: 10.1016/j.cell.2011.02.013
– ident: 2021111619520344000_30.9.1020.39
  doi: 10.1016/j.it.2014.12.008
– volume: 2014
  start-page: 943162
  year: 2014
  ident: 2021111619520344000_30.9.1020.26
  article-title: A comprehensive review on metabolic syndrome
  publication-title: Cardiol Res Pract
– ident: 2021111619520344000_30.9.1020.57
  doi: 10.1371/journal.pone.0115036
– ident: 2021111619520344000_30.9.1020.30
  doi: 10.1093/bioinformatics/btt087
– ident: 2021111619520344000_30.9.1020.35
  doi: 10.1016/j.molcel.2014.10.027
– volume: 11
  start-page: 835
  year: 2011
  ident: 2021111619520344000_30.9.1020.17
  article-title: Choline metabolism in malignant transformation
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3162
– ident: 2021111619520344000_30.9.1020.5
  doi: 10.1038/nrc2981
– ident: 2021111619520344000_30.9.1020.31
  doi: 10.3748/wjg.v21.i4.1189
– ident: 2021111619520344000_30.9.1020.21
  doi: 10.1172/JCI200420513
– ident: 2021111619520344000_30.9.1020.52
  doi: 10.1093/bioinformatics/btp120
– ident: 2021111619520344000_30.9.1020.27
  doi: 10.1016/j.molcel.2014.02.015
– ident: 2021111619520344000_30.9.1020.45
  doi: 10.1016/j.tibs.2014.06.005
– ident: 2021111619520344000_30.9.1020.44
  doi: 10.1016/j.cell.2004.11.004
– volume: 262
  start-page: 14366
  year: 1987
  ident: 2021111619520344000_30.9.1020.43
  article-title: The L- and R-type isozymes of rat pyruvate kinase are produced from a single gene by use of different promoters
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)47947-1
– ident: 2021111619520344000_30.9.1020.6
  doi: 10.1038/nature11540
– ident: 2021111619520344000_30.9.1020.16
  doi: 10.1016/j.molcel.2012.01.001
– ident: 2021111619520344000_30.9.1020.32
  doi: 10.1186/1471-2105-12-323
– ident: 2021111619520344000_30.9.1020.38
  doi: 10.1038/nrc4017
– ident: 2021111619520344000_30.9.1020.46
  doi: 10.3810/pgm.2009.11.2074
– volume: 235
  start-page: 366
  year: 1996
  ident: 2021111619520344000_30.9.1020.50
  article-title: Alternative splicing of the pyruvate kinase M gene in a minigene system
  publication-title: Eur J Biochem
  doi: 10.1111/j.1432-1033.1996.00366.x
– ident: 2021111619520344000_30.9.1020.51
  doi: 10.1016/j.gde.2009.01.002
– ident: 2021111619520344000_30.9.1020.41
  doi: 10.1016/j.semcancer.2005.04.009
– ident: 2021111619520344000_30.9.1020.8
  doi: 10.1038/nature06667
– ident: 2021111619520344000_30.9.1020.42
  doi: 10.1126/science.1140485
– ident: 2021111619520344000_30.9.1020.9
  doi: 10.1073/pnas.0914845107
– ident: 2021111619520344000_30.9.1020.2
  doi: 10.1016/j.jhep.2011.10.027
– ident: 2021111619520344000_30.9.1020.22
  doi: 10.1016/j.molcel.2015.07.013
– volume: 31
  start-page: 5
  year: 2012
  ident: 2021111619520344000_30.9.1020.34
  article-title: Nonmetabolic functions of pyruvate kinase isoform M2 in controlling cell cycle progression and tumorigenesis
  publication-title: Chin J Cancer
– ident: 2021111619520344000_30.9.1020.62
  doi: 10.1016/j.gene.2013.12.062
– ident: 2021111619520344000_30.9.1020.36
  doi: 10.1016/j.cell.2011.03.054
– ident: 2021111619520344000_30.9.1020.53
  doi: 10.1016/j.cell.2014.05.051
– ident: 2021111619520344000_30.9.1020.7
  doi: 10.1038/nature06734
– ident: 2021111619520344000_30.9.1020.4
  doi: 10.1016/j.jhep.2014.12.012
– ident: 2021111619520344000_30.9.1020.40
  doi: 10.1016/j.biocel.2010.02.005
– ident: 2021111619520344000_30.9.1020.20
  doi: 10.1126/scisignal.2000431
– ident: 2021111619520344000_30.9.1020.3
  doi: 10.1016/j.cmet.2011.08.005
– ident: 2021111619520344000_30.9.1020.13
  doi: 10.1038/nature11247
– ident: 2021111619520344000_30.9.1020.28
  doi: 10.1371/journal.pone.0031812
– ident: 2021111619520344000_30.9.1020.55
  doi: 10.1126/science.1188015
– ident: 2021111619520344000_30.9.1020.33
  doi: 10.1158/0008-5472.CAN-14-2371
– ident: 2021111619520344000_30.9.1020.24
  doi: 10.1126/science.1218595
– ident: 2021111619520344000_30.9.1020.29
  doi: 10.1073/pnas.93.12.5860
– ident: 2021111619520344000_30.9.1020.23
  doi: 10.1016/j.cell.2013.09.025
– ident: 2021111619520344000_30.9.1020.18
  doi: 10.1093/carcin/19.1.99
– ident: 2021111619520344000_30.9.1020.47
  doi: 10.4251/wjgo.v5.i9.186
SSID ssj0006066
Score 2.5292156
Snippet Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to...
Alternative splicing of the Pkm gene product generates the PKM1 and PKM2 isoforms of pyruvate kinase (PK), and PKM2 expression is closely linked to...
In this study, Dayton et al. generated mice lacking PKM2, an isoform of pyruvate kinase, and found that, over time, the mice develop a metabolic syndrome that...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1020
SubjectTerms Animals
Carcinoma, Hepatocellular - enzymology
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - physiopathology
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cell Proliferation - genetics
Diet, High-Fat
Embryo, Mammalian
Embryonic Development - genetics
Energy Metabolism - genetics
Female
Gene Expression Regulation, Neoplastic
Germ-Line Mutation
Growth and Development - genetics
Hepatocytes - cytology
Homeostasis - genetics
Liver Neoplasms - enzymology
Liver Neoplasms - genetics
Liver Neoplasms - physiopathology
Male
Membrane Proteins - genetics
Membrane Proteins - metabolism
Mice
Protein Isoforms
Research Paper
Thyroid Hormone-Binding Proteins
Thyroid Hormones - genetics
Thyroid Hormones - metabolism
Title Germline loss of PKM2 promotes metabolic distress and hepatocellular carcinoma
URI https://www.ncbi.nlm.nih.gov/pubmed/27125672
https://www.proquest.com/docview/1787480775
https://www.proquest.com/docview/1790947488
https://pubmed.ncbi.nlm.nih.gov/PMC4863734
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7jiuCLeHe8EUHwYeiYpmnSPIq3ZdddEGZl30raJu7K0MpMRxh_gr_akzS97Y6y-lJm0jQhOV_PyUm_nIPQy0TJuDARC0xBwUGhgsA7l4SBEjElURRrpRzb4pjvn7CD0_h0Mvk1YC1t6mye_9x5ruR_pAplIFd7SvYfJNs1CgXwG-QLV5AwXK8k44-gVt0ycQmmzrHZDo-opVzB_Ou1zQ4NIrZRrItzfybEbpOfgQWqK7tj7yiouc0mVFZeP39rWy7dfixvT1UNCTLv1NaT7hdquVWzT_OOxWPzb_1w69Evag0Kp-y0fn_o0BI4VttydjTvcblS1ka7Nv0O0OxgPtyRCHnP_2sVlySBTRTY2BivWJkMYuZTtnjN67_INAiTAzUKqx4yMMkhaYJlXFb3Ls3AV1XMqUigByjZEVf7gr3rWIjO_yFhCs-nzfPwn19D16kQ7pP_4ec-8rx19JxH4sfmA4DC86_H_Y8XOJe8lovk28FqZnEb3fJuCH7TYOoOmujyLrrRJCbd3kPHLbKwRRauDLbIwi2ycIcs3CILA7LwGFm4Q9Z9dPLh_eLtfuAzbwQ5S2QdSB5qBmNRUgpJldSGay2LjIahphl4Opwnea5NQoqQx5FhOjeSxHkotIikMdEDtFdWpX6EsIkNY0YoJYxmPCsUMzpRJCaZJjoycoqCdrrS3Ielt9lRlulu8UzRq67-9yYgyx9rvmhnPwWdaQevSl1t1mkIVsqGUhDx3-pIIhlUS6boYSOxrj8qwC3ggk6RGMmyq2Bjto_vlOdnLnY7S3gkIvb4yqN4gm7279hTtFevNvoZrIPr7LkD6G-EcLOL
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Germline+loss+of+PKM2+promotes+metabolic+distress+and+hepatocellular+carcinoma&rft.jtitle=Genes+%26+development&rft.au=Dayton%2C+Talya+L.&rft.au=Gocheva%2C+Vasilena&rft.au=Miller%2C+Kathryn+M.&rft.au=Israelsen%2C+William+J.&rft.date=2016-05-01&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=30&rft.issue=9&rft.spage=1020&rft.epage=1033&rft_id=info:doi/10.1101%2Fgad.278549.116&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gad_278549_116
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon