Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms

[Display omitted] •We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each encoding were used to predict activity using machine learning classifiers.•NMF, which eliminates negative BOLD signal, performed poorly compared...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience methods Vol. 282; pp. 81 - 94
Main Authors Xie, Jianwen, Douglas, Pamela K., Wu, Ying Nian, Brody, Arthur L., Anderson, Ariana E.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each encoding were used to predict activity using machine learning classifiers.•NMF, which eliminates negative BOLD signal, performed poorly compared to ICA and sparse coding algorithms (K-SVD, L1 Regularized Learning).•L1 Regularized Learning and K-SVD frequently outperformed four variations of ICA to predict fMRI task activity.•Spatial sparsity of encoding maps were associated with increased classification accuracy, holding constant effects of algorithms. Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations.
AbstractList Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations.
Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks.BACKGROUNDBrain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks.The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.NEW METHODThe assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001).RESULTS AND COMPARISON WITH EXISTING METHODThe sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001).The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations.CONCLUSIONThe success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations.
Visual network manually identified across each algorithm, within a single scan. Sparsifying algorithms (K-SVD and LASSO/L1-Regularization) outperformed ICA and NMF algorithms for predicting whether a subject was viewing a video, listening to an audio stimulus, or resting, during an fMRI scan. Maps were rescaled to be on common scale for illustration purposes.
[Display omitted] •We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each encoding were used to predict activity using machine learning classifiers.•NMF, which eliminates negative BOLD signal, performed poorly compared to ICA and sparse coding algorithms (K-SVD, L1 Regularized Learning).•L1 Regularized Learning and K-SVD frequently outperformed four variations of ICA to predict fMRI task activity.•Spatial sparsity of encoding maps were associated with increased classification accuracy, holding constant effects of algorithms. Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations.
Author Xie, Jianwen
Brody, Arthur L.
Anderson, Ariana E.
Douglas, Pamela K.
Wu, Ying Nian
AuthorAffiliation 2 Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
1 Department of Statistics, University of California, Los Angeles
AuthorAffiliation_xml – name: 2 Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
– name: 1 Department of Statistics, University of California, Los Angeles
Author_xml – sequence: 1
  givenname: Jianwen
  surname: Xie
  fullname: Xie, Jianwen
  organization: Department of Statistics, University of California, Los Angeles, United States
– sequence: 2
  givenname: Pamela K.
  surname: Douglas
  fullname: Douglas, Pamela K.
  organization: Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
– sequence: 3
  givenname: Ying Nian
  surname: Wu
  fullname: Wu, Ying Nian
  organization: Department of Statistics, University of California, Los Angeles, United States
– sequence: 4
  givenname: Arthur L.
  surname: Brody
  fullname: Brody, Arthur L.
  organization: Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States
– sequence: 5
  givenname: Ariana E.
  surname: Anderson
  fullname: Anderson, Ariana E.
  email: arianaanderson@mednet.ucla.edu
  organization: Department of Statistics, University of California, Los Angeles, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28322859$$D View this record in MEDLINE/PubMed
BookMark eNqFUttuEzEQtVARvcAvVH4MEhu86714EaqoCoVKLUgIJN4sr3ecOOzawXYC5fv4MCZNgoCXvthj-VzGnnNMDpx3QMhpzqY5y-vni-nCwWqENJ8WLG-mjE8ZEw_IUS6aIqsb8eWAHCGwyljRsENyHOOCMVa2rH5EDgvBi0JU7RH59Rq0762b0TQHCm538IaaldPJeqcG2gVlHXWQvvvwNb6g546am49XVA8qRmusVhsg1X5cqmAjlsjHhjMHM7xaAx1VCvYHNUonH-zPLX7y_uby6TNqXQ9LwMWlOwl8KFYKjW-jjXRydXGOKOV6GlE-At31qIYZaqX5GB-Th0YNEZ7s9hPy-fLNp4t32fWHt8i-znQp2pS1ZamUKWvB2sJwUWndlIJrwTvNNec1CK0K1bUlNKwpu87UmvcNZ0KbHphp-Ak52-ouV90IvcY-gxrkMthRhVvplZX_3jg7lzO_llXFmrYsUGCyEwj-2wpikqONGoZBOfCrKHF4bV1XrK4Qevq31x-T_egQ8HIL0MHHGMBIbdPdx6K1HWTO5CYpciH3SZGbpEjGJSYF6fV_9L3DvcRXWyLgT68tBBm1xeBAbwPoJHtv75P4DaLc4po
CitedBy_id crossref_primary_10_1109_TNSE_2022_3210233
crossref_primary_10_3389_fnins_2021_804554
crossref_primary_10_3390_biomedicines9040386
crossref_primary_10_1109_ACCESS_2019_2892559
crossref_primary_10_1109_TMI_2019_2936046
crossref_primary_10_1109_TBME_2022_3162606
crossref_primary_10_3389_fnagi_2022_912895
crossref_primary_10_1016_j_neucom_2018_10_021
crossref_primary_10_1109_TNSRE_2022_3198679
crossref_primary_10_1016_j_neuroimage_2017_11_003
crossref_primary_10_1371_journal_pone_0190097
crossref_primary_10_1016_j_jneumeth_2019_108319
crossref_primary_10_1016_j_dsp_2018_07_003
crossref_primary_10_1016_j_jneumeth_2019_02_014
crossref_primary_10_1016_j_neuroimage_2021_118750
crossref_primary_10_1016_j_clinimag_2020_06_034
crossref_primary_10_1109_ACCESS_2024_3434655
crossref_primary_10_1002_ima_23195
crossref_primary_10_1007_s12559_018_9585_6
crossref_primary_10_3389_fpsyt_2024_1407267
crossref_primary_10_3390_bioengineering10091030
crossref_primary_10_1016_j_jneumeth_2020_109047
crossref_primary_10_1007_s11590_020_01619_7
crossref_primary_10_1371_journal_pone_0182968
crossref_primary_10_1162_neco_a_01628
crossref_primary_10_1016_j_neuroimage_2021_118719
crossref_primary_10_1162_neco_a_01709
crossref_primary_10_1109_ACCESS_2019_2932420
crossref_primary_10_3390_e21050445
crossref_primary_10_3389_fnins_2019_00806
crossref_primary_10_1016_j_neuroimage_2021_118200
crossref_primary_10_1016_j_jneumeth_2018_10_008
crossref_primary_10_1016_j_aci_2018_08_006
crossref_primary_10_3389_fpsyg_2021_717519
crossref_primary_10_1007_s11042_022_12943_8
crossref_primary_10_1109_ACCESS_2020_2994276
Cites_doi 10.1162/089976699300016863
10.1371/journal.pone.0073309
10.1002/hbm.10062
10.1093/cercor/4.5.509
10.1002/hbm.20017
10.1002/hbm.22490
10.1016/j.neuroimage.2010.11.002
10.1016/1352-2310(94)00367-T
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2014.03.034
10.1146/annurev.ne.19.030196.003045
10.1016/j.neuroimage.2009.08.036
10.1162/neco.2007.19.10.2756
10.1152/jn.01199.2011
10.1097/00004647-200208000-00002
10.1016/j.neuroimage.2013.11.046
10.1371/journal.pone.0131520
10.1162/neco.1997.9.7.1483
10.1109/TNN.2006.875991
10.1002/hbm.22599
10.1109/TSP.2010.2055859
10.1073/pnas.0905267106
10.1016/S1053-8119(09)70563-4
10.1023/A:1010933404324
10.1007/s00422-013-0579-x
10.1038/jcbfm.2010.164
10.1109/TMI.2010.2097275
10.1016/j.patcog.2011.09.011
10.1016/0010-0285(77)90016-0
10.1109/TSP.2006.881199
10.1109/TBME.2014.2359211
10.1001/archgenpsychiatry.2010.193
10.1073/pnas.0903525106
10.1016/j.csda.2006.11.006
10.1006/nimg.2002.1132
10.1002/env.3170050203
10.1109/JPROC.2010.2040551
10.1038/381607a0
10.1109/72.761722
10.1016/j.conb.2003.09.012
10.1023/B:VLSI.0000027491.81326.7a
10.1016/j.neuroimage.2013.10.067
10.1016/j.neuroimage.2010.07.073
10.1371/journal.pcbi.1000840
10.1162/neco.1995.7.6.1129
10.1038/44565
10.1016/S0893-6080(00)00026-5
10.1023/A:1009715923555
10.1016/S1364-6613(98)01227-3
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.jneumeth.2017.03.008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-678X
EndPage 94
ExternalDocumentID PMC5507942
28322859
10_1016_j_jneumeth_2017_03_008
S0165027017300651
Genre Evaluation Study
Journal Article
Comparative Study
GrantInformation_xml – fundername: NIA NIH HHS
  grantid: K25 AG051782
– fundername: CSRD VA
  grantid: I01 CX000412
– fundername: NIDA NIH HHS
  grantid: R01 DA020872
– fundername: NIMH NIH HHS
  grantid: R03 MH106922
– fundername: NCATS NIH HHS
  grantid: UL1 TR000124
– fundername: NCATS NIH HHS
  grantid: UL1 TR001881
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
~G-
.55
.GJ
29L
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
RIG
SEW
SNS
SSH
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
EFKBS
ID FETCH-LOGICAL-c489t-944aaf468092f385cc7483c83bc3c336e8ca2ab94e7074bbf6c3d7308cfde0f73
IEDL.DBID .~1
ISSN 0165-0270
1872-678X
IngestDate Thu Aug 21 18:12:39 EDT 2025
Thu Jul 10 22:49:11 EDT 2025
Thu Apr 03 06:55:55 EDT 2025
Thu Apr 24 23:10:19 EDT 2025
Tue Jul 01 02:57:07 EDT 2025
Fri Feb 23 02:33:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-negative matrix factorization
Image processing
ICA
NMF
Independent component analysis
K-SVD
Pattern recognition
Random forests
Support vector machines
Artifacts
Negative BOLD signal
Sparsity
Classification
Machine learning
FMRI
L1 Regularized Learning
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-944aaf468092f385cc7483c83bc3c336e8ca2ab94e7074bbf6c3d7308cfde0f73
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
PMID 28322859
PQID 1879665065
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5507942
proquest_miscellaneous_1879665065
pubmed_primary_28322859
crossref_citationtrail_10_1016_j_jneumeth_2017_03_008
crossref_primary_10_1016_j_jneumeth_2017_03_008
elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_03_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-15
PublicationDateYYYYMMDD 2017-04-15
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Journal of neuroscience methods
PublicationTitleAlternate J Neurosci Methods
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Burges (bib0065) 1998; 2
Lee, Tak, Ye (bib0215) 2011; 30
Paatero, Tapper (bib0300) 1994; 5
Spratling (bib0360) 2014; 108
Bianciardi, Fukunaga, van Gelderen, de Zwart, Duyn (bib0055) 2011; 31
Calhoun, Pearlson, Adali (bib0070) 2004; 37
Liaw, Wiener (bib0235) 2002; 2
the ICA and BSS group, U.o.H. (bib0365) 2014
Eavani, Filipovych, Davatzikos, Satterthwaite, Gur, Gur (bib0135) 2012
Cardoso, Souloumiac (bib0085) 1993
Douglas, Lau, Anderson, Head, Kerr, Wollner, Moyer, Li, Durnhofer, Bramen (bib0130) 2013
Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (bib0170) 2014; 87
Rubinstein, Bruckstein, Elad (bib0325) 2010; 98
Delorme, Makeig (bib0110) 2004; 134
Aapo Hyvärinen (bib0005) 2000; 13
Ferdowsi, Abolghasemi, Sanei (bib0145) 2010
Guyon, Elisseeff (bib0160) 2003; 3
Meyer, Dimitriadou, Hornik, Weingessel, Leisch (bib0275) 2012
Lee, Ye (bib0220) 2010
Anttila, Paatero, Tapper, Järvinen (bib0040) 1995; 29
Logothetis, Sheinberg (bib0250) 1996; 19
Li, Adali (bib0230) 2010; 58
Moraschi, DiNuzzo, Giove (bib0280) 2012; 108
Anderson, Han, Douglas, Bramen, Cohen (bib0035) 2012
Rasmussen, Hansen, Madsen, Churchill, Strother (bib0315) 2012; 45
Lee, Seung (bib0200) 1999; 401
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0335) 2014; 90
Jenkinson, Bannister, Brady, Smith (bib0185) 2002; 17
Mandelkow, de Zwart, Duyn (bib0260) 2016
Naselaris, Kay, Nishimoto, Gallant (bib0290) 2011; 56
Smith, Williams, Singh (bib0345) 2004; 21
Anderson, Douglas, Kerr, Haynes, Yuille, Xie, Wu, Brown, Cohen (bib0030) 2013
Aapo Hyvärinen, Juha Karhunen (bib0010) 2001
Lin (bib0240) 2007; 19
Wang, Tian, Li, Dai, Ai (bib0380) 2004
McKeown, Hansen, Sejnowsk (bib0265) 2003; 13
Lee, Battle, Raina, Ng (bib0210) 2007
Daubechies, Roussos, Takerkart, Benharrosh, Golden, D’ardenne, Richter, Cohen, Haxby (bib0105) 2009; 106
Aharon, Elad, Bruckstein (bib0255) 2006; 54
Anderson, Dinov, Sherin, Quintana, Yuille, Cohen (bib0025) 2010; 49
Berry, Browne, Langville, Paul Pauca, Plemmons (bib0285) 2007; 52
Breiman (bib0060) 2001; 45
Harel, Lee, Nagaoka, Kim, Kim (bib0165) 2002; 22
Sengupta, Stemmler, Laughlin, Niven (bib0340) 2010; 6
Cardoso (bib0080) 1999; 11
Leonardi, Shirer, Greicius, Van De Ville (bib0225) 2014; 35
Kim, Park (bib0190) 2007
Churchill, Yourganov, Strother (bib0095) 2014; 35
Ferdowsi, Abolghasemi, Makkiabadi, Sanei (bib0140) 2011
Hyvärinen, Oja (bib0175) 1997; 9
Ding, Lee, Lee (bib0115) 2012
Palmer (bib0305) 1977; 9
Culbertson, Bramen, Cohen, London, Olmstead, Gan, Costello, Shulenberger, Mandelkern, Brody (bib0100) 2011; 68
Churchill, Spring, Afshin-Pour, Dong, Strother (bib0090) 2015; 10
Douglas, Harris, Yuille, Cohen (bib0125) 2011; 56
Friston (bib0150) 1998; 2
Lee, Seung (bib0205) 2001
Potluru, Calhoun (bib0310) 2008
Smith (bib0350) 2002; 17
Bertsekas (bib0050) 1999
Calhoun, Potluru, Phlypo, Silva, Pearlmutter, Caprihan, Plis, Adalı (bib0075) 2013; 8
Liu, Chen, McKeown, Wang (bib0245) 2015; 62
Olshausen (bib0295) 1996; 381
Douglas, Harris, Cohen (bib0120) 2009; 47
Abolghasemi, Ferdowsi, Sanei (bib0015) 2013
Rubinstein, Elad, Zibulevsky (bib0330) 2008
McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib0270) 1997
Amari, Cichocki, Yang (bib0020) 1996
Wachsmuth, Oram, Perrett (bib0375) 1994; 4
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0155) 2014; 95
Hyvärinen (bib0180) 1999; 10
Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib0370) 2016
Koldovsky, Tichavsky, Oja (bib0195) 2006; 17
Risk, Matteson, Ruppert, Eloyan, Caffo (bib0320) 2013
Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (bib0355) 2009; 106
Bell, Sejnowski (bib0045) 1995; 7
Wachsmuth (10.1016/j.jneumeth.2017.03.008_bib0375) 1994; 4
Moraschi (10.1016/j.jneumeth.2017.03.008_bib0280) 2012; 108
Bell (10.1016/j.jneumeth.2017.03.008_bib0045) 1995; 7
Ferdowsi (10.1016/j.jneumeth.2017.03.008_bib0145) 2010
Churchill (10.1016/j.jneumeth.2017.03.008_bib0090) 2015; 10
Rubinstein (10.1016/j.jneumeth.2017.03.008_bib0325) 2010; 98
Calhoun (10.1016/j.jneumeth.2017.03.008_bib0070) 2004; 37
Naselaris (10.1016/j.jneumeth.2017.03.008_bib0290) 2011; 56
Haufe (10.1016/j.jneumeth.2017.03.008_bib0170) 2014; 87
Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0175) 1997; 9
Meyer (10.1016/j.jneumeth.2017.03.008_bib0275) 2012
McKeown (10.1016/j.jneumeth.2017.03.008_bib0265) 2003; 13
Aapo Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0005) 2000; 13
Mandelkow (10.1016/j.jneumeth.2017.03.008_bib0260) 2016
McKeown (10.1016/j.jneumeth.2017.03.008_bib0270) 1997
Smith (10.1016/j.jneumeth.2017.03.008_bib0350) 2002; 17
Bianciardi (10.1016/j.jneumeth.2017.03.008_bib0055) 2011; 31
Liaw (10.1016/j.jneumeth.2017.03.008_bib0235) 2002; 2
Lin (10.1016/j.jneumeth.2017.03.008_bib0240) 2007; 19
Jenkinson (10.1016/j.jneumeth.2017.03.008_bib0185) 2002; 17
Lee (10.1016/j.jneumeth.2017.03.008_bib0215) 2011; 30
Delorme (10.1016/j.jneumeth.2017.03.008_bib0110) 2004; 134
Leonardi (10.1016/j.jneumeth.2017.03.008_bib0225) 2014; 35
Varoquaux (10.1016/j.jneumeth.2017.03.008_bib0370) 2016
Douglas (10.1016/j.jneumeth.2017.03.008_bib0120) 2009; 47
Lee (10.1016/j.jneumeth.2017.03.008_bib0210) 2007
Daubechies (10.1016/j.jneumeth.2017.03.008_bib0105) 2009; 106
Olshausen (10.1016/j.jneumeth.2017.03.008_bib0295) 1996; 381
Guyon (10.1016/j.jneumeth.2017.03.008_bib0160) 2003; 3
Burges (10.1016/j.jneumeth.2017.03.008_bib0065) 1998; 2
Aharon (10.1016/j.jneumeth.2017.03.008_bib0255) 2006; 54
Anderson (10.1016/j.jneumeth.2017.03.008_bib0025) 2010; 49
Friston (10.1016/j.jneumeth.2017.03.008_bib0150) 1998; 2
Rubinstein (10.1016/j.jneumeth.2017.03.008_bib0330) 2008
Lee (10.1016/j.jneumeth.2017.03.008_bib0205) 2001
Anderson (10.1016/j.jneumeth.2017.03.008_bib0030) 2013
Liu (10.1016/j.jneumeth.2017.03.008_bib0245) 2015; 62
Aapo Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0010) 2001
Berry (10.1016/j.jneumeth.2017.03.008_bib0285) 2007; 52
Cardoso (10.1016/j.jneumeth.2017.03.008_bib0085) 1993
Smith (10.1016/j.jneumeth.2017.03.008_bib0355) 2009; 106
Logothetis (10.1016/j.jneumeth.2017.03.008_bib0250) 1996; 19
Amari (10.1016/j.jneumeth.2017.03.008_bib0020) 1996
Ding (10.1016/j.jneumeth.2017.03.008_bib0115) 2012
Koldovsky (10.1016/j.jneumeth.2017.03.008_bib0195) 2006; 17
Palmer (10.1016/j.jneumeth.2017.03.008_bib0305) 1977; 9
Harel (10.1016/j.jneumeth.2017.03.008_bib0165) 2002; 22
Wang (10.1016/j.jneumeth.2017.03.008_bib0380) 2004
Lee (10.1016/j.jneumeth.2017.03.008_bib0200) 1999; 401
Bertsekas (10.1016/j.jneumeth.2017.03.008_bib0050) 1999
Cardoso (10.1016/j.jneumeth.2017.03.008_bib0080) 1999; 11
Abolghasemi (10.1016/j.jneumeth.2017.03.008_bib0015) 2013
Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0180) 1999; 10
Calhoun (10.1016/j.jneumeth.2017.03.008_bib0075) 2013; 8
Spratling (10.1016/j.jneumeth.2017.03.008_bib0360) 2014; 108
Ferdowsi (10.1016/j.jneumeth.2017.03.008_bib0140) 2011
the ICA and BSS group, U.o.H. (10.1016/j.jneumeth.2017.03.008_bib0365) 2014
Lee (10.1016/j.jneumeth.2017.03.008_bib0220) 2010
Anttila (10.1016/j.jneumeth.2017.03.008_bib0040) 1995; 29
Douglas (10.1016/j.jneumeth.2017.03.008_bib0125) 2011; 56
Eavani (10.1016/j.jneumeth.2017.03.008_bib0135) 2012
Risk (10.1016/j.jneumeth.2017.03.008_bib0320) 2013
Potluru (10.1016/j.jneumeth.2017.03.008_bib0310) 2008
Churchill (10.1016/j.jneumeth.2017.03.008_bib0095) 2014; 35
Anderson (10.1016/j.jneumeth.2017.03.008_bib0035) 2012
Griffanti (10.1016/j.jneumeth.2017.03.008_bib0155) 2014; 95
Li (10.1016/j.jneumeth.2017.03.008_bib0230) 2010; 58
Paatero (10.1016/j.jneumeth.2017.03.008_bib0300) 1994; 5
Culbertson (10.1016/j.jneumeth.2017.03.008_bib0100) 2011; 68
Rasmussen (10.1016/j.jneumeth.2017.03.008_bib0315) 2012; 45
Sengupta (10.1016/j.jneumeth.2017.03.008_bib0340) 2010; 6
Kim (10.1016/j.jneumeth.2017.03.008_bib0190) 2007
Smith (10.1016/j.jneumeth.2017.03.008_bib0345) 2004; 21
Salimi-Khorshidi (10.1016/j.jneumeth.2017.03.008_bib0335) 2014; 90
Douglas (10.1016/j.jneumeth.2017.03.008_bib0130) 2013
Breiman (10.1016/j.jneumeth.2017.03.008_bib0060) 2001; 45
References_xml – start-page: 556
  year: 2001
  end-page: 562
  ident: bib0205
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Advances in Neural Information Processing Systems, vol. 13
– year: 2012
  ident: bib0275
  article-title: e1071: Misc Functions of the Department of Statistics (e1071), TU Wien
– volume: 108
  start-page: 2339
  year: 2012
  end-page: 2342
  ident: bib0280
  article-title: On the origin of sustained negative BOLD response
  publication-title: J. Neurophysiol.
– volume: 13
  start-page: 411
  year: 2000
  end-page: 430
  ident: bib0005
  article-title: Independent component analysis: algorithms and application
  publication-title: Neural Netw.
– volume: 11
  start-page: 157
  year: 1999
  end-page: 192
  ident: bib0080
  article-title: High-order contrasts for independent component analysis
  publication-title: Neural Comput.
– volume: 19
  start-page: 2756
  year: 2007
  end-page: 2779
  ident: bib0240
  article-title: Projected gradient methods for non-negative matrix factorization
  publication-title: Neural Comput.
– volume: 2
  start-page: 373
  year: 1998
  end-page: 375
  ident: bib0150
  article-title: Modes or models: a critique on independent component analysis for fMRI
  publication-title: Trends Cogn. Sci.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib0235
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 29
  start-page: 1705
  year: 1995
  end-page: 1718
  ident: bib0040
  article-title: Source identification of bulk wet deposition in F inland by positive matrix factorization
  publication-title: Atmosp. Environ.
– start-page: 362
  year: 1993
  end-page: 370
  ident: bib0085
  article-title: Blind beamforming for non-Gaussian signals
  publication-title: IEEE Proceedings F (Radar and Signal Processing), vol. 140, IET
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  ident: bib0170
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: Neuroimage
– volume: 98
  start-page: 1045
  year: 2010
  end-page: 1057
  ident: bib0325
  article-title: Dictionaries for sparse representation modeling
  publication-title: Proc. IEEE
– volume: 62
  start-page: 501
  year: 2015
  end-page: 510
  ident: bib0245
  article-title: A sticky weighted regression model for time-varying resting-state brain connectivity estimation
  publication-title: IEEE Trans. Biomed. Eng.
– year: 2014
  ident: bib0365
  article-title: The fastica package for matlab
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib0160
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  ident: bib0295
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– volume: 56
  start-page: 544
  year: 2011
  end-page: 553
  ident: bib0125
  article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief
  publication-title: NeuroImage
– volume: 9
  start-page: 1483
  year: 1997
  end-page: 1492
  ident: bib0175
  article-title: A fast fixed-point algorithm for independent component analysis
  publication-title: Neural Comput.
– volume: 17
  start-page: 1265
  year: 2006
  end-page: 1277
  ident: bib0195
  article-title: Efficient variant of algorithm fastica for independent component analysis attaining the cram&# 201; r-rao lower bound
  publication-title: IEEE Trans. Neural Netw.
– volume: 6
  start-page: e1000840
  year: 2010
  ident: bib0340
  article-title: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates
  publication-title: PLoS Comput. Biol.
– volume: 13
  start-page: 620
  year: 2003
  end-page: 629
  ident: bib0265
  article-title: Independent component analysis of functional MRI: what is signal and what is noise?
  publication-title: Curr. Opin. Neurobiol.
– start-page: 1
  year: 2013
  end-page: 12
  ident: bib0015
  article-title: Fast and incoherent dictionary learning algorithms with application to fMRI
  publication-title: Signal Image Video Process.
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  ident: bib0065
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discov.
– year: 2008
  ident: bib0330
  article-title: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical Report – CS Technion
– start-page: 1336
  year: 2008
  end-page: 1339
  ident: bib0310
  article-title: Group learning using contrast NMF: application to functional and structural MRI of schizophrenia
  publication-title: IEEE International Symposium on Circuits and Systems. ISCAS 2008
– start-page: 660
  year: 2010
  end-page: 663
  ident: bib0220
  article-title: Statistical parametric mapping of fMRI data using sparse dictionary learning
  publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro
– volume: 8
  start-page: e73309
  year: 2013
  ident: bib0075
  article-title: Independent component analysis for brain fMRI does indeed select for maximal independence
  publication-title: PLoS ONE
– volume: 5
  start-page: 111
  year: 1994
  end-page: 126
  ident: bib0300
  article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
– start-page: 242
  year: 2012
  end-page: 255
  ident: bib0035
  article-title: Real-time functional MRI classification of brain states using Markov-SVM hybrid models: peering inside the rt-fMRI black box
  publication-title: Machine Learning and Interpretation in Neuroimaging
– volume: 31
  start-page: 401
  year: 2011
  end-page: 412
  ident: bib0055
  article-title: Negative BOLD-fMRI signals in large cerebral veins
  publication-title: J. Cerebral Blood Flow Metab.
– start-page: 73
  year: 2012
  end-page: 76
  ident: bib0135
  article-title: Sparse dictionary learning of resting state fMRI networks
  publication-title: International Workshop on IEEE Pattern Recognition in NeuroImaging (PRNI)
– volume: 10
  start-page: e0131520
  year: 2015
  ident: bib0090
  article-title: An automated, adaptive framework for optimizing preprocessing pipelines in task-based functional MRI
  publication-title: PLOS ONE
– start-page: 77
  year: 2010
  end-page: 82
  ident: bib0145
  article-title: A constrained NMF algorithm for BOLD detection in fMRI
  publication-title: IEEE International Workshop on Machine Learning for Signal Processing (MLSP)
– volume: 52
  start-page: 155
  year: 2007
  end-page: 173
  ident: bib0285
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Comput. Stat. Data Anal.
– year: 1997
  ident: bib0270
  article-title: Analysis of fMRI data by blind separation into independent spatial components, Tech. Rep., DTIC Document
– volume: 22
  start-page: 908
  year: 2002
  end-page: 917
  ident: bib0165
  article-title: Origin of negative blood oxygenation level-dependent fMRI signals
  publication-title: J. Cereb. Blood Flow Metab.
– start-page: 801
  year: 2007
  end-page: 808
  ident: bib0210
  article-title: Efficient sparse coding algorithms
  publication-title: Advances in Neural Information Processing Systems, vol. 19
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib0155
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
– volume: 45
  start-page: 2085
  year: 2012
  end-page: 2100
  ident: bib0315
  article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging
  publication-title: Pattern Recogn.
– volume: 19
  start-page: 577
  year: 1996
  end-page: 621
  ident: bib0250
  article-title: Visual object recognition
  publication-title: Annu. Rev. Neurosci.
– volume: 108
  start-page: 61
  year: 2014
  end-page: 73
  ident: bib0360
  article-title: Classification using sparse representations: a biologically plausible approach
  publication-title: Biol. Cybern.
– year: 2016
  ident: bib0370
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: NeuroImage
– start-page: 757
  year: 1996
  end-page: 763
  ident: bib0020
  article-title: A new learning algorithm for blind signal separation
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: bib0045
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
– volume: 21
  start-page: 213
  year: 2004
  end-page: 220
  ident: bib0345
  article-title: Negative BOLD in the visual cortex: evidence against blood stealing
  publication-title: Hum. Brain Mapp.
– start-page: 5052
  year: 2011
  end-page: 5055
  ident: bib0140
  article-title: A new spatially constrained NMF with application to fMRI
  publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib0335
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
– volume: 30
  start-page: 1076
  year: 2011
  end-page: 1089
  ident: bib0215
  article-title: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion
  publication-title: IEEE Trans. Med. Imaging
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: bib0255
  article-title: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– volume: 68
  start-page: 505
  year: 2011
  end-page: 515
  ident: bib0100
  article-title: Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers
  publication-title: Arch. Gen. Psychiatry
– year: 2013
  ident: bib0320
  article-title: An evaluation of independent component analyses with an application to resting-state fMRI
  publication-title: Biometrics
– year: 2001
  ident: bib0010
  article-title: Independent Component Analysis
– volume: 106
  start-page: 10415
  year: 2009
  end-page: 10422
  ident: bib0105
  article-title: Independent component analysis for brain fMRI does not select for independence
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 37
  start-page: 281
  year: 2004
  end-page: 291
  ident: bib0070
  article-title: Independent component analysis applied to fMRI data: a generative model for validating results
  publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol.
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib0200
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 35
  start-page: 5984
  year: 2014
  end-page: 5995
  ident: bib0225
  article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time
  publication-title: Hum. Brain Mapp.
– volume: 56
  start-page: 400
  year: 2011
  end-page: 410
  ident: bib0290
  article-title: Encoding and decoding in FMRI
  publication-title: Neuroimage
– volume: 49
  start-page: 2509
  year: 2010
  end-page: 2519
  ident: bib0025
  article-title: Classification of spatially unaligned fMRI scans
  publication-title: NeuroImage
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  ident: bib0350
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bib0185
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
– year: 2007
  ident: bib0190
  article-title: Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method. Technical report, Technical Report GT-CSE-07-01
– volume: 4
  start-page: 509
  year: 1994
  end-page: 522
  ident: bib0375
  article-title: Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque
  publication-title: Cereb. Cortex
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: bib0355
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 9
  start-page: 441
  year: 1977
  end-page: 474
  ident: bib0305
  article-title: Hierarchical structure in perceptual representation
  publication-title: Cogn. Psychol.
– year: 2012
  ident: bib0115
  article-title: Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data
  publication-title: Magn. Reson. Imaging
– start-page: 10
  year: 2016
  ident: bib0260
  article-title: Linear discriminant analysis achieves high classification accuracy for the bold fMRI response to naturalistic movie stimuli
  publication-title: Front. Hum. Neurosci.
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: bib0180
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0060
  article-title: Random forests
  publication-title: Machine Learn.
– volume: 35
  start-page: 4499
  year: 2014
  end-page: 4517
  ident: bib0095
  article-title: Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes
  publication-title: Hum. Brain Mapping
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib0110
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
  publication-title: J. Neurosci. Methods
– start-page: 7
  year: 2013
  ident: bib0130
  article-title: Single trial decoding of belief decision making from EEG and fMRI data using independent components features
  publication-title: Front. Hum. Neurosci.
– year: 2013
  ident: bib0030
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: NeuroImage
– year: 1999
  ident: bib0050
  article-title: Nonlinear Programming
– volume: 47
  start-page: S80
  year: 2009
  ident: bib0120
  article-title: Naïve bayes classification of belief verses disbelief using event related neuroimaging data
  publication-title: NeuroImage
– start-page: 675
  year: 2004
  end-page: 682
  ident: bib0380
  article-title: Detecting brain activations by constrained non-negative matrix factorization from task-related BOLD fMRI
  publication-title: Medical Imaging 2004
– volume: 58
  start-page: 5151
  year: 2010
  end-page: 5164
  ident: bib0230
  article-title: Independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Signal Process.
– volume: 11
  start-page: 157
  issue: 1
  year: 1999
  ident: 10.1016/j.jneumeth.2017.03.008_bib0080
  article-title: High-order contrasts for independent component analysis
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016863
– volume: 8
  start-page: e73309
  issue: 8
  year: 2013
  ident: 10.1016/j.jneumeth.2017.03.008_bib0075
  article-title: Independent component analysis for brain fMRI does indeed select for maximal independence
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0073309
– start-page: 1336
  year: 2008
  ident: 10.1016/j.jneumeth.2017.03.008_bib0310
  article-title: Group learning using contrast NMF: application to functional and structural MRI of schizophrenia
– volume: 17
  start-page: 143
  issue: 3
  year: 2002
  ident: 10.1016/j.jneumeth.2017.03.008_bib0350
  article-title: Fast robust automated brain extraction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.10062
– volume: 4
  start-page: 509
  issue: 5
  year: 1994
  ident: 10.1016/j.jneumeth.2017.03.008_bib0375
  article-title: Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/4.5.509
– volume: 21
  start-page: 213
  issue: 4
  year: 2004
  ident: 10.1016/j.jneumeth.2017.03.008_bib0345
  article-title: Negative BOLD in the visual cortex: evidence against blood stealing
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20017
– volume: 35
  start-page: 4499
  issue: 9
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.008_bib0095
  article-title: Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes
  publication-title: Hum. Brain Mapping
  doi: 10.1002/hbm.22490
– volume: 56
  start-page: 544
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2017.03.008_bib0125
  article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.11.002
– volume: 29
  start-page: 1705
  issue: 14
  year: 1995
  ident: 10.1016/j.jneumeth.2017.03.008_bib0040
  article-title: Source identification of bulk wet deposition in F inland by positive matrix factorization
  publication-title: Atmosp. Environ.
  doi: 10.1016/1352-2310(94)00367-T
– year: 2013
  ident: 10.1016/j.jneumeth.2017.03.008_bib0320
  article-title: An evaluation of independent component analyses with an application to resting-state fMRI
  publication-title: Biometrics
– volume: 134
  start-page: 9
  year: 2004
  ident: 10.1016/j.jneumeth.2017.03.008_bib0110
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.008_bib0155
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.034
– start-page: 801
  year: 2007
  ident: 10.1016/j.jneumeth.2017.03.008_bib0210
  article-title: Efficient sparse coding algorithms
– start-page: 660
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.008_bib0220
  article-title: Statistical parametric mapping of fMRI data using sparse dictionary learning
– year: 1997
  ident: 10.1016/j.jneumeth.2017.03.008_bib0270
– volume: 19
  start-page: 577
  issue: 1
  year: 1996
  ident: 10.1016/j.jneumeth.2017.03.008_bib0250
  article-title: Visual object recognition
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.ne.19.030196.003045
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.jneumeth.2017.03.008_bib0235
  article-title: Classification and regression by random forest
  publication-title: R News
– start-page: 7
  year: 2013
  ident: 10.1016/j.jneumeth.2017.03.008_bib0130
  article-title: Single trial decoding of belief decision making from EEG and fMRI data using independent components features
  publication-title: Front. Hum. Neurosci.
– start-page: 675
  year: 2004
  ident: 10.1016/j.jneumeth.2017.03.008_bib0380
  article-title: Detecting brain activations by constrained non-negative matrix factorization from task-related BOLD fMRI
– volume: 49
  start-page: 2509
  issue: 3
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.008_bib0025
  article-title: Classification of spatially unaligned fMRI scans
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.08.036
– year: 1999
  ident: 10.1016/j.jneumeth.2017.03.008_bib0050
– volume: 19
  start-page: 2756
  year: 2007
  ident: 10.1016/j.jneumeth.2017.03.008_bib0240
  article-title: Projected gradient methods for non-negative matrix factorization
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.10.2756
– year: 2007
  ident: 10.1016/j.jneumeth.2017.03.008_bib0190
– volume: 108
  start-page: 2339
  issue: 9
  year: 2012
  ident: 10.1016/j.jneumeth.2017.03.008_bib0280
  article-title: On the origin of sustained negative BOLD response
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.01199.2011
– volume: 22
  start-page: 908
  issue: 8
  year: 2002
  ident: 10.1016/j.jneumeth.2017.03.008_bib0165
  article-title: Origin of negative blood oxygenation level-dependent fMRI signals
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1097/00004647-200208000-00002
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.008_bib0335
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 10
  start-page: e0131520
  issue: 7
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.008_bib0090
  article-title: An automated, adaptive framework for optimizing preprocessing pipelines in task-based functional MRI
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0131520
– volume: 9
  start-page: 1483
  issue: 7
  year: 1997
  ident: 10.1016/j.jneumeth.2017.03.008_bib0175
  article-title: A fast fixed-point algorithm for independent component analysis
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.7.1483
– volume: 17
  start-page: 1265
  issue: 5
  year: 2006
  ident: 10.1016/j.jneumeth.2017.03.008_bib0195
  article-title: Efficient variant of algorithm fastica for independent component analysis attaining the cram&# 201; r-rao lower bound
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.875991
– start-page: 10
  year: 2016
  ident: 10.1016/j.jneumeth.2017.03.008_bib0260
  article-title: Linear discriminant analysis achieves high classification accuracy for the bold fMRI response to naturalistic movie stimuli
  publication-title: Front. Hum. Neurosci.
– start-page: 77
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.008_bib0145
  article-title: A constrained NMF algorithm for BOLD detection in fMRI
– volume: 35
  start-page: 5984
  issue: 12
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.008_bib0225
  article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22599
– volume: 58
  start-page: 5151
  issue: 10
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.008_bib0230
  article-title: Independent component analysis by entropy bound minimization
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2055859
– volume: 106
  start-page: 13040
  issue: 31
  year: 2009
  ident: 10.1016/j.jneumeth.2017.03.008_bib0355
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0905267106
– year: 2008
  ident: 10.1016/j.jneumeth.2017.03.008_bib0330
– start-page: 1
  year: 2013
  ident: 10.1016/j.jneumeth.2017.03.008_bib0015
  article-title: Fast and incoherent dictionary learning algorithms with application to fMRI
  publication-title: Signal Image Video Process.
– volume: 47
  start-page: S80
  year: 2009
  ident: 10.1016/j.jneumeth.2017.03.008_bib0120
  article-title: Naïve bayes classification of belief verses disbelief using event related neuroimaging data
  publication-title: NeuroImage
  doi: 10.1016/S1053-8119(09)70563-4
– year: 2016
  ident: 10.1016/j.jneumeth.2017.03.008_bib0370
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: NeuroImage
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jneumeth.2017.03.008_bib0060
  article-title: Random forests
  publication-title: Machine Learn.
  doi: 10.1023/A:1010933404324
– volume: 108
  start-page: 61
  issue: 1
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.008_bib0360
  article-title: Classification using sparse representations: a biologically plausible approach
  publication-title: Biol. Cybern.
  doi: 10.1007/s00422-013-0579-x
– start-page: 757
  year: 1996
  ident: 10.1016/j.jneumeth.2017.03.008_bib0020
  article-title: A new learning algorithm for blind signal separation
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2012
  ident: 10.1016/j.jneumeth.2017.03.008_bib0115
  article-title: Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data
  publication-title: Magn. Reson. Imaging
– year: 2014
  ident: 10.1016/j.jneumeth.2017.03.008_bib0365
– year: 2001
  ident: 10.1016/j.jneumeth.2017.03.008_bib0010
– volume: 31
  start-page: 401
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2017.03.008_bib0055
  article-title: Negative BOLD-fMRI signals in large cerebral veins
  publication-title: J. Cerebral Blood Flow Metab.
  doi: 10.1038/jcbfm.2010.164
– volume: 30
  start-page: 1076
  issue: 5
  year: 2011
  ident: 10.1016/j.jneumeth.2017.03.008_bib0215
  article-title: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2097275
– volume: 45
  start-page: 2085
  issue: 6
  year: 2012
  ident: 10.1016/j.jneumeth.2017.03.008_bib0315
  article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.09.011
– start-page: 5052
  year: 2011
  ident: 10.1016/j.jneumeth.2017.03.008_bib0140
  article-title: A new spatially constrained NMF with application to fMRI
– volume: 9
  start-page: 441
  issue: 4
  year: 1977
  ident: 10.1016/j.jneumeth.2017.03.008_bib0305
  article-title: Hierarchical structure in perceptual representation
  publication-title: Cogn. Psychol.
  doi: 10.1016/0010-0285(77)90016-0
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.jneumeth.2017.03.008_bib0255
  article-title: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 62
  start-page: 501
  issue: 2
  year: 2015
  ident: 10.1016/j.jneumeth.2017.03.008_bib0245
  article-title: A sticky weighted regression model for time-varying resting-state brain connectivity estimation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2359211
– start-page: 362
  year: 1993
  ident: 10.1016/j.jneumeth.2017.03.008_bib0085
  article-title: Blind beamforming for non-Gaussian signals
– volume: 68
  start-page: 505
  issue: 5
  year: 2011
  ident: 10.1016/j.jneumeth.2017.03.008_bib0100
  article-title: Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers
  publication-title: Arch. Gen. Psychiatry
  doi: 10.1001/archgenpsychiatry.2010.193
– year: 2013
  ident: 10.1016/j.jneumeth.2017.03.008_bib0030
  article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
  publication-title: NeuroImage
– volume: 106
  start-page: 10415
  issue: 26
  year: 2009
  ident: 10.1016/j.jneumeth.2017.03.008_bib0105
  article-title: Independent component analysis for brain fMRI does not select for independence
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0903525106
– year: 2012
  ident: 10.1016/j.jneumeth.2017.03.008_bib0275
– volume: 52
  start-page: 155
  issue: 1
  year: 2007
  ident: 10.1016/j.jneumeth.2017.03.008_bib0285
  article-title: Algorithms and applications for approximate nonnegative matrix factorization
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2006.11.006
– start-page: 556
  year: 2001
  ident: 10.1016/j.jneumeth.2017.03.008_bib0205
  article-title: Algorithms for non-negative matrix factorization
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.jneumeth.2017.03.008_bib0185
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: NeuroImage
  doi: 10.1006/nimg.2002.1132
– start-page: 73
  year: 2012
  ident: 10.1016/j.jneumeth.2017.03.008_bib0135
  article-title: Sparse dictionary learning of resting state fMRI networks
– volume: 5
  start-page: 111
  issue: 2
  year: 1994
  ident: 10.1016/j.jneumeth.2017.03.008_bib0300
  article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values
  publication-title: Environmetrics
  doi: 10.1002/env.3170050203
– volume: 98
  start-page: 1045
  issue: 6
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.008_bib0325
  article-title: Dictionaries for sparse representation modeling
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2040551
– volume: 381
  start-page: 607
  issue: 6583
  year: 1996
  ident: 10.1016/j.jneumeth.2017.03.008_bib0295
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– volume: 10
  start-page: 626
  issue: 3
  year: 1999
  ident: 10.1016/j.jneumeth.2017.03.008_bib0180
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.761722
– volume: 13
  start-page: 620
  issue: 5
  year: 2003
  ident: 10.1016/j.jneumeth.2017.03.008_bib0265
  article-title: Independent component analysis of functional MRI: what is signal and what is noise?
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2003.09.012
– volume: 37
  start-page: 281
  issue: 2–3
  year: 2004
  ident: 10.1016/j.jneumeth.2017.03.008_bib0070
  article-title: Independent component analysis applied to fMRI data: a generative model for validating results
  publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol.
  doi: 10.1023/B:VLSI.0000027491.81326.7a
– volume: 87
  start-page: 96
  year: 2014
  ident: 10.1016/j.jneumeth.2017.03.008_bib0170
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.10.067
– volume: 56
  start-page: 400
  issue: 2
  year: 2011
  ident: 10.1016/j.jneumeth.2017.03.008_bib0290
  article-title: Encoding and decoding in FMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.07.073
– volume: 6
  start-page: e1000840
  issue: 7
  year: 2010
  ident: 10.1016/j.jneumeth.2017.03.008_bib0340
  article-title: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000840
– start-page: 242
  year: 2012
  ident: 10.1016/j.jneumeth.2017.03.008_bib0035
  article-title: Real-time functional MRI classification of brain states using Markov-SVM hybrid models: peering inside the rt-fMRI black box
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 10.1016/j.jneumeth.2017.03.008_bib0045
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.6.1129
– volume: 401
  start-page: 788
  year: 1999
  ident: 10.1016/j.jneumeth.2017.03.008_bib0200
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  ident: 10.1016/j.jneumeth.2017.03.008_bib0005
  article-title: Independent component analysis: algorithms and application
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 10.1016/j.jneumeth.2017.03.008_bib0065
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining Knowl. Discov.
  doi: 10.1023/A:1009715923555
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.jneumeth.2017.03.008_bib0160
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 373
  issue: 10
  year: 1998
  ident: 10.1016/j.jneumeth.2017.03.008_bib0150
  article-title: Modes or models: a critique on independent component analysis for fMRI
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(98)01227-3
SSID ssj0004906
Score 2.4073708
Snippet [Display omitted] •We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each...
Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate...
Visual network manually identified across each algorithm, within a single scan. Sparsifying algorithms (K-SVD and LASSO/L1-Regularization) outperformed ICA and...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 81
SubjectTerms Algorithms
Auditory Perception - physiology
Brain - diagnostic imaging
Brain - physiology
Brain Mapping - methods
Cerebrovascular Circulation - physiology
Classification
FMRI
Humans
ICA
Image processing
Independent component analysis
K-SVD
L1 Regularized Learning
Machine learning
Magnetic Resonance Imaging - methods
Motion Perception - physiology
Negative BOLD signal
Neural Pathways - diagnostic imaging
Neural Pathways - physiology
Neuropsychological Tests
NMF
Non-negative matrix factorization
Oxygen - blood
Pattern recognition
Random forests
Rest
Sparsity
Support vector machines
Title Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms
URI https://dx.doi.org/10.1016/j.jneumeth.2017.03.008
https://www.ncbi.nlm.nih.gov/pubmed/28322859
https://www.proquest.com/docview/1879665065
https://pubmed.ncbi.nlm.nih.gov/PMC5507942
Volume 282
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEGx8FMZkJISGRNcQOx_mLSpULah9ACbtLbIde2u1utOaSuOFv44_jDvHCSsI7YG3fNiRkzv77uK734-QVyJW4CbEmOcXyz43EKcIphXMKwUxUCUZF1goPJ2l4xP-6TQ53SHDthYG0yrD2t-s6X61DlcG4WsOLufzwVcsxIGgClSKoSH1Few8Qy0__vE7zYMLz6-JjXG_MrpRJbw4XjizQaZmTPHKAtjpvwzU3w7on3mUNwzT6AG5HzxKWjSDfkh2jNsj-4WDaHr5nb6mPsfT_zzfI3enYSt9n_z8AIEnGi4KLiBFOEt_srIUTV3zh5AqJJCgrkkVX7-nhaN2-mVCNfrcmGTk5Up1R2aI_d3K9Z0584jidIkUANe0ofUJNZ_0aDYdvXlL5x0Fb-0fsXJ4JANMCj2aDAtoJV1FYdm7WhsaxigvzuBZ9fly_YicjD5-G477gdKhr3ku6r7gXErL0zwSsWV5onXGc6ZzpjTTjKUm1zKWSoDSgG-jlE01q0C-ubaViWzGHpNdeAvzlFCTm7SKLaLvcG51LkyUVlUllNVVpVLRI0krx1IHvHOk3bgo28S2RdnKv0T5lxErQf49Muj6XTaIH7f2EK2alFu6W4JZurXvy1avSpjYuFsjnVlt1iXSwKeg4WnSI08aPevGg_xSiDzYI9mWBnYNEDR8-46bn3vwcMSvEzx-9h9jfk7u4Rnuqb1LDshufbUxL8A1q9Whn3uH5E4x-Tye_QIm5j-m
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VRQIuqLQ8QnksEkJFwo3xrh0vtygQJVDnAK3U28r7ahM1m6pxJLjw6_hhzNjr0IBQD9z82LXWntmdGe_M9xHySiQK3IQE8_ySMuIW4hTBtIJ5pSAGMiXjAguFi0k2OuGfTtPTLTJoa2EwrTKs_c2aXq_W4Uo3fM3u5XTa_YqFOBBUgUoxNKQQAt3iMH2RxuDwx-88Dy5qgk1sjRuW8bUy4dnhzNsVUjVjjlcvoJ3-y0L97YH-mUh5zTINd8i94FLSfjPq-2TL-l2y1_cQTs-_09e0TvKs_57vkttF2EvfIz8_QOSJlouCD0gRz7I-WTiKtq75RUgVMkhQ3-SKL9_Tvqeu-DKmGp1uzDKqBUv1ms0Q-_uFj7w9qyHF6Rw5AL7RhtcnFH3Sg0kxfPOWTtccvFX9iIXHozLgpNCD8aAPrUpvKKx7V0tLwxjLizN4VnU-Xz4gJ8OPx4NRFDgdIs1zUUWC87J0PMtjkTiWp1r3eM50zpRmmrHM5rpMSiVAa8C5UcplmhkQcK6dsbHrsYdkG97CPibU5jYziUP4Hc6dzoWNM2OMUE4bozLRIWkrR6kD4DnyblzINrNtJlv5S5S_jJkE-XdId93vsoH8uLGHaNVEbiivBLt0Y9-XrV5JmNm4XVN6u1gtJfLAZ6DiWdohjxo9W48HCaYQerBDehsauG6AqOGbd_z0vEYPRwA7wZMn_zHmF-TO6Lg4kkfjyed9chfv4Abbu_Qp2a6uVvYZ-GmVel7Pw18QH0E0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+the+encoding+of+functional+brain+networks%3A+An+fMRI+classification+comparison+of+non-negative+matrix+factorization+%28NMF%29%2C+independent+component+analysis+%28ICA%29%2C+and+sparse+coding+algorithms&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Xie%2C+Jianwen&rft.au=Douglas%2C+Pamela+K.&rft.au=Wu%2C+Ying+Nian&rft.au=Brody%2C+Arthur+L.&rft.date=2017-04-15&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=282&rft.spage=81&rft.epage=94&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.03.008&rft.externalDocID=S0165027017300651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon