Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms
[Display omitted] •We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each encoding were used to predict activity using machine learning classifiers.•NMF, which eliminates negative BOLD signal, performed poorly compared...
Saved in:
Published in | Journal of neuroscience methods Vol. 282; pp. 81 - 94 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each encoding were used to predict activity using machine learning classifiers.•NMF, which eliminates negative BOLD signal, performed poorly compared to ICA and sparse coding algorithms (K-SVD, L1 Regularized Learning).•L1 Regularized Learning and K-SVD frequently outperformed four variations of ICA to predict fMRI task activity.•Spatial sparsity of encoding maps were associated with increased classification accuracy, holding constant effects of algorithms.
Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks.
The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.
The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001).
The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. |
---|---|
AbstractList | Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks.
The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.
The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001).
The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks.BACKGROUNDBrain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks.The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.NEW METHODThe assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects.The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001).RESULTS AND COMPARISON WITH EXISTING METHODThe sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001).The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations.CONCLUSIONThe success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. Visual network manually identified across each algorithm, within a single scan. Sparsifying algorithms (K-SVD and LASSO/L1-Regularization) outperformed ICA and NMF algorithms for predicting whether a subject was viewing a video, listening to an audio stimulus, or resting, during an fMRI scan. Maps were rescaled to be on common scale for illustration purposes. [Display omitted] •We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each encoding were used to predict activity using machine learning classifiers.•NMF, which eliminates negative BOLD signal, performed poorly compared to ICA and sparse coding algorithms (K-SVD, L1 Regularized Learning).•L1 Regularized Learning and K-SVD frequently outperformed four variations of ICA to predict fMRI task activity.•Spatial sparsity of encoding maps were associated with increased classification accuracy, holding constant effects of algorithms. Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate biologically-plausible frameworks for generating brain networks. Non-negative matrix factorization (NMF) would suppress negative BOLD signal by enforcing positivity. Spatial sparse coding algorithms (L1 Regularized Learning and K-SVD) would impose local specialization and a discouragement of multitasking, where the total observed activity in a single voxel originates from a restricted number of possible brain networks. The assumptions of independence, positivity, and sparsity to encode task-related brain networks are compared; the resulting brain networks within scan for different constraints are used as basis functions to encode observed functional activity. These encodings are then decoded using machine learning, by using the time series weights to predict within scan whether a subject is viewing a video, listening to an audio cue, or at rest, in 304 fMRI scans from 51 subjects. The sparse coding algorithm of L1 Regularized Learning outperformed 4 variations of ICA (p<0.001) for predicting the task being performed within each scan using artifact-cleaned components. The NMF algorithms, which suppressed negative BOLD signal, had the poorest accuracy compared to the ICA and sparse coding algorithms. Holding constant the effect of the extraction algorithm, encodings using sparser spatial networks (containing more zero-valued voxels) had higher classification accuracy (p<0.001). Lower classification accuracy occurred when the extracted spatial maps contained more CSF regions (p<0.001). The success of sparse coding algorithms suggests that algorithms which enforce sparsity, discourage multitasking, and promote local specialization may capture better the underlying source processes than those which allow inexhaustible local processes such as ICA. Negative BOLD signal may capture task-related activations. |
Author | Xie, Jianwen Brody, Arthur L. Anderson, Ariana E. Douglas, Pamela K. Wu, Ying Nian |
AuthorAffiliation | 2 Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles 1 Department of Statistics, University of California, Los Angeles |
AuthorAffiliation_xml | – name: 2 Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles – name: 1 Department of Statistics, University of California, Los Angeles |
Author_xml | – sequence: 1 givenname: Jianwen surname: Xie fullname: Xie, Jianwen organization: Department of Statistics, University of California, Los Angeles, United States – sequence: 2 givenname: Pamela K. surname: Douglas fullname: Douglas, Pamela K. organization: Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States – sequence: 3 givenname: Ying Nian surname: Wu fullname: Wu, Ying Nian organization: Department of Statistics, University of California, Los Angeles, United States – sequence: 4 givenname: Arthur L. surname: Brody fullname: Brody, Arthur L. organization: Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, United States – sequence: 5 givenname: Ariana E. surname: Anderson fullname: Anderson, Ariana E. email: arianaanderson@mednet.ucla.edu organization: Department of Statistics, University of California, Los Angeles, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28322859$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUttuEzEQtVARvcAvVH4MEhu86714EaqoCoVKLUgIJN4sr3ecOOzawXYC5fv4MCZNgoCXvthj-VzGnnNMDpx3QMhpzqY5y-vni-nCwWqENJ8WLG-mjE8ZEw_IUS6aIqsb8eWAHCGwyljRsENyHOOCMVa2rH5EDgvBi0JU7RH59Rq0762b0TQHCm538IaaldPJeqcG2gVlHXWQvvvwNb6g546am49XVA8qRmusVhsg1X5cqmAjlsjHhjMHM7xaAx1VCvYHNUonH-zPLX7y_uby6TNqXQ9LwMWlOwl8KFYKjW-jjXRydXGOKOV6GlE-At31qIYZaqX5GB-Th0YNEZ7s9hPy-fLNp4t32fWHt8i-znQp2pS1ZamUKWvB2sJwUWndlIJrwTvNNec1CK0K1bUlNKwpu87UmvcNZ0KbHphp-Ak52-ouV90IvcY-gxrkMthRhVvplZX_3jg7lzO_llXFmrYsUGCyEwj-2wpikqONGoZBOfCrKHF4bV1XrK4Qevq31x-T_egQ8HIL0MHHGMBIbdPdx6K1HWTO5CYpciH3SZGbpEjGJSYF6fV_9L3DvcRXWyLgT68tBBm1xeBAbwPoJHtv75P4DaLc4po |
CitedBy_id | crossref_primary_10_1109_TNSE_2022_3210233 crossref_primary_10_3389_fnins_2021_804554 crossref_primary_10_3390_biomedicines9040386 crossref_primary_10_1109_ACCESS_2019_2892559 crossref_primary_10_1109_TMI_2019_2936046 crossref_primary_10_1109_TBME_2022_3162606 crossref_primary_10_3389_fnagi_2022_912895 crossref_primary_10_1016_j_neucom_2018_10_021 crossref_primary_10_1109_TNSRE_2022_3198679 crossref_primary_10_1016_j_neuroimage_2017_11_003 crossref_primary_10_1371_journal_pone_0190097 crossref_primary_10_1016_j_jneumeth_2019_108319 crossref_primary_10_1016_j_dsp_2018_07_003 crossref_primary_10_1016_j_jneumeth_2019_02_014 crossref_primary_10_1016_j_neuroimage_2021_118750 crossref_primary_10_1016_j_clinimag_2020_06_034 crossref_primary_10_1109_ACCESS_2024_3434655 crossref_primary_10_1002_ima_23195 crossref_primary_10_1007_s12559_018_9585_6 crossref_primary_10_3389_fpsyt_2024_1407267 crossref_primary_10_3390_bioengineering10091030 crossref_primary_10_1016_j_jneumeth_2020_109047 crossref_primary_10_1007_s11590_020_01619_7 crossref_primary_10_1371_journal_pone_0182968 crossref_primary_10_1162_neco_a_01628 crossref_primary_10_1016_j_neuroimage_2021_118719 crossref_primary_10_1162_neco_a_01709 crossref_primary_10_1109_ACCESS_2019_2932420 crossref_primary_10_3390_e21050445 crossref_primary_10_3389_fnins_2019_00806 crossref_primary_10_1016_j_neuroimage_2021_118200 crossref_primary_10_1016_j_jneumeth_2018_10_008 crossref_primary_10_1016_j_aci_2018_08_006 crossref_primary_10_3389_fpsyg_2021_717519 crossref_primary_10_1007_s11042_022_12943_8 crossref_primary_10_1109_ACCESS_2020_2994276 |
Cites_doi | 10.1162/089976699300016863 10.1371/journal.pone.0073309 10.1002/hbm.10062 10.1093/cercor/4.5.509 10.1002/hbm.20017 10.1002/hbm.22490 10.1016/j.neuroimage.2010.11.002 10.1016/1352-2310(94)00367-T 10.1016/j.jneumeth.2003.10.009 10.1016/j.neuroimage.2014.03.034 10.1146/annurev.ne.19.030196.003045 10.1016/j.neuroimage.2009.08.036 10.1162/neco.2007.19.10.2756 10.1152/jn.01199.2011 10.1097/00004647-200208000-00002 10.1016/j.neuroimage.2013.11.046 10.1371/journal.pone.0131520 10.1162/neco.1997.9.7.1483 10.1109/TNN.2006.875991 10.1002/hbm.22599 10.1109/TSP.2010.2055859 10.1073/pnas.0905267106 10.1016/S1053-8119(09)70563-4 10.1023/A:1010933404324 10.1007/s00422-013-0579-x 10.1038/jcbfm.2010.164 10.1109/TMI.2010.2097275 10.1016/j.patcog.2011.09.011 10.1016/0010-0285(77)90016-0 10.1109/TSP.2006.881199 10.1109/TBME.2014.2359211 10.1001/archgenpsychiatry.2010.193 10.1073/pnas.0903525106 10.1016/j.csda.2006.11.006 10.1006/nimg.2002.1132 10.1002/env.3170050203 10.1109/JPROC.2010.2040551 10.1038/381607a0 10.1109/72.761722 10.1016/j.conb.2003.09.012 10.1023/B:VLSI.0000027491.81326.7a 10.1016/j.neuroimage.2013.10.067 10.1016/j.neuroimage.2010.07.073 10.1371/journal.pcbi.1000840 10.1162/neco.1995.7.6.1129 10.1038/44565 10.1016/S0893-6080(00)00026-5 10.1023/A:1009715923555 10.1016/S1364-6613(98)01227-3 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.jneumeth.2017.03.008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1872-678X |
EndPage | 94 |
ExternalDocumentID | PMC5507942 28322859 10_1016_j_jneumeth_2017_03_008 S0165027017300651 |
Genre | Evaluation Study Journal Article Comparative Study |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: K25 AG051782 – fundername: CSRD VA grantid: I01 CX000412 – fundername: NIDA NIH HHS grantid: R01 DA020872 – fundername: NIMH NIH HHS grantid: R03 MH106922 – fundername: NCATS NIH HHS grantid: UL1 TR000124 – fundername: NCATS NIH HHS grantid: UL1 TR001881 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPCBC SSN SSZ T5K ~G- .55 .GJ 29L 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- RIG SEW SNS SSH WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7X8 5PM EFKBS |
ID | FETCH-LOGICAL-c489t-944aaf468092f385cc7483c83bc3c336e8ca2ab94e7074bbf6c3d7308cfde0f73 |
IEDL.DBID | .~1 |
ISSN | 0165-0270 1872-678X |
IngestDate | Thu Aug 21 18:12:39 EDT 2025 Thu Jul 10 22:49:11 EDT 2025 Thu Apr 03 06:55:55 EDT 2025 Thu Apr 24 23:10:19 EDT 2025 Tue Jul 01 02:57:07 EDT 2025 Fri Feb 23 02:33:10 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-negative matrix factorization Image processing ICA NMF Independent component analysis K-SVD Pattern recognition Random forests Support vector machines Artifacts Negative BOLD signal Sparsity Classification Machine learning FMRI L1 Regularized Learning |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-944aaf468092f385cc7483c83bc3c336e8ca2ab94e7074bbf6c3d7308cfde0f73 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Undefined-3 |
PMID | 28322859 |
PQID | 1879665065 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5507942 proquest_miscellaneous_1879665065 pubmed_primary_28322859 crossref_citationtrail_10_1016_j_jneumeth_2017_03_008 crossref_primary_10_1016_j_jneumeth_2017_03_008 elsevier_sciencedirect_doi_10_1016_j_jneumeth_2017_03_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-15 |
PublicationDateYYYYMMDD | 2017-04-15 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Journal of neuroscience methods |
PublicationTitleAlternate | J Neurosci Methods |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Burges (bib0065) 1998; 2 Lee, Tak, Ye (bib0215) 2011; 30 Paatero, Tapper (bib0300) 1994; 5 Spratling (bib0360) 2014; 108 Bianciardi, Fukunaga, van Gelderen, de Zwart, Duyn (bib0055) 2011; 31 Calhoun, Pearlson, Adali (bib0070) 2004; 37 Liaw, Wiener (bib0235) 2002; 2 the ICA and BSS group, U.o.H. (bib0365) 2014 Eavani, Filipovych, Davatzikos, Satterthwaite, Gur, Gur (bib0135) 2012 Cardoso, Souloumiac (bib0085) 1993 Douglas, Lau, Anderson, Head, Kerr, Wollner, Moyer, Li, Durnhofer, Bramen (bib0130) 2013 Haufe, Meinecke, Görgen, Dähne, Haynes, Blankertz, Bießmann (bib0170) 2014; 87 Rubinstein, Bruckstein, Elad (bib0325) 2010; 98 Delorme, Makeig (bib0110) 2004; 134 Aapo Hyvärinen (bib0005) 2000; 13 Ferdowsi, Abolghasemi, Sanei (bib0145) 2010 Guyon, Elisseeff (bib0160) 2003; 3 Meyer, Dimitriadou, Hornik, Weingessel, Leisch (bib0275) 2012 Lee, Ye (bib0220) 2010 Anttila, Paatero, Tapper, Järvinen (bib0040) 1995; 29 Logothetis, Sheinberg (bib0250) 1996; 19 Li, Adali (bib0230) 2010; 58 Moraschi, DiNuzzo, Giove (bib0280) 2012; 108 Anderson, Han, Douglas, Bramen, Cohen (bib0035) 2012 Rasmussen, Hansen, Madsen, Churchill, Strother (bib0315) 2012; 45 Lee, Seung (bib0200) 1999; 401 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib0335) 2014; 90 Jenkinson, Bannister, Brady, Smith (bib0185) 2002; 17 Mandelkow, de Zwart, Duyn (bib0260) 2016 Naselaris, Kay, Nishimoto, Gallant (bib0290) 2011; 56 Smith, Williams, Singh (bib0345) 2004; 21 Anderson, Douglas, Kerr, Haynes, Yuille, Xie, Wu, Brown, Cohen (bib0030) 2013 Aapo Hyvärinen, Juha Karhunen (bib0010) 2001 Lin (bib0240) 2007; 19 Wang, Tian, Li, Dai, Ai (bib0380) 2004 McKeown, Hansen, Sejnowsk (bib0265) 2003; 13 Lee, Battle, Raina, Ng (bib0210) 2007 Daubechies, Roussos, Takerkart, Benharrosh, Golden, D’ardenne, Richter, Cohen, Haxby (bib0105) 2009; 106 Aharon, Elad, Bruckstein (bib0255) 2006; 54 Anderson, Dinov, Sherin, Quintana, Yuille, Cohen (bib0025) 2010; 49 Berry, Browne, Langville, Paul Pauca, Plemmons (bib0285) 2007; 52 Breiman (bib0060) 2001; 45 Harel, Lee, Nagaoka, Kim, Kim (bib0165) 2002; 22 Sengupta, Stemmler, Laughlin, Niven (bib0340) 2010; 6 Cardoso (bib0080) 1999; 11 Leonardi, Shirer, Greicius, Van De Ville (bib0225) 2014; 35 Kim, Park (bib0190) 2007 Churchill, Yourganov, Strother (bib0095) 2014; 35 Ferdowsi, Abolghasemi, Makkiabadi, Sanei (bib0140) 2011 Hyvärinen, Oja (bib0175) 1997; 9 Ding, Lee, Lee (bib0115) 2012 Palmer (bib0305) 1977; 9 Culbertson, Bramen, Cohen, London, Olmstead, Gan, Costello, Shulenberger, Mandelkern, Brody (bib0100) 2011; 68 Churchill, Spring, Afshin-Pour, Dong, Strother (bib0090) 2015; 10 Douglas, Harris, Yuille, Cohen (bib0125) 2011; 56 Friston (bib0150) 1998; 2 Lee, Seung (bib0205) 2001 Potluru, Calhoun (bib0310) 2008 Smith (bib0350) 2002; 17 Bertsekas (bib0050) 1999 Calhoun, Potluru, Phlypo, Silva, Pearlmutter, Caprihan, Plis, Adalı (bib0075) 2013; 8 Liu, Chen, McKeown, Wang (bib0245) 2015; 62 Olshausen (bib0295) 1996; 381 Douglas, Harris, Cohen (bib0120) 2009; 47 Abolghasemi, Ferdowsi, Sanei (bib0015) 2013 Rubinstein, Elad, Zibulevsky (bib0330) 2008 McKeown, Makeig, Brown, Jung, Kindermann, Bell, Sejnowski (bib0270) 1997 Amari, Cichocki, Yang (bib0020) 1996 Wachsmuth, Oram, Perrett (bib0375) 1994; 4 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib0155) 2014; 95 Hyvärinen (bib0180) 1999; 10 Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib0370) 2016 Koldovsky, Tichavsky, Oja (bib0195) 2006; 17 Risk, Matteson, Ruppert, Eloyan, Caffo (bib0320) 2013 Smith, Fox, Miller, Glahn, Fox, Mackay, Filippini, Watkins, Toro, Laird (bib0355) 2009; 106 Bell, Sejnowski (bib0045) 1995; 7 Wachsmuth (10.1016/j.jneumeth.2017.03.008_bib0375) 1994; 4 Moraschi (10.1016/j.jneumeth.2017.03.008_bib0280) 2012; 108 Bell (10.1016/j.jneumeth.2017.03.008_bib0045) 1995; 7 Ferdowsi (10.1016/j.jneumeth.2017.03.008_bib0145) 2010 Churchill (10.1016/j.jneumeth.2017.03.008_bib0090) 2015; 10 Rubinstein (10.1016/j.jneumeth.2017.03.008_bib0325) 2010; 98 Calhoun (10.1016/j.jneumeth.2017.03.008_bib0070) 2004; 37 Naselaris (10.1016/j.jneumeth.2017.03.008_bib0290) 2011; 56 Haufe (10.1016/j.jneumeth.2017.03.008_bib0170) 2014; 87 Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0175) 1997; 9 Meyer (10.1016/j.jneumeth.2017.03.008_bib0275) 2012 McKeown (10.1016/j.jneumeth.2017.03.008_bib0265) 2003; 13 Aapo Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0005) 2000; 13 Mandelkow (10.1016/j.jneumeth.2017.03.008_bib0260) 2016 McKeown (10.1016/j.jneumeth.2017.03.008_bib0270) 1997 Smith (10.1016/j.jneumeth.2017.03.008_bib0350) 2002; 17 Bianciardi (10.1016/j.jneumeth.2017.03.008_bib0055) 2011; 31 Liaw (10.1016/j.jneumeth.2017.03.008_bib0235) 2002; 2 Lin (10.1016/j.jneumeth.2017.03.008_bib0240) 2007; 19 Jenkinson (10.1016/j.jneumeth.2017.03.008_bib0185) 2002; 17 Lee (10.1016/j.jneumeth.2017.03.008_bib0215) 2011; 30 Delorme (10.1016/j.jneumeth.2017.03.008_bib0110) 2004; 134 Leonardi (10.1016/j.jneumeth.2017.03.008_bib0225) 2014; 35 Varoquaux (10.1016/j.jneumeth.2017.03.008_bib0370) 2016 Douglas (10.1016/j.jneumeth.2017.03.008_bib0120) 2009; 47 Lee (10.1016/j.jneumeth.2017.03.008_bib0210) 2007 Daubechies (10.1016/j.jneumeth.2017.03.008_bib0105) 2009; 106 Olshausen (10.1016/j.jneumeth.2017.03.008_bib0295) 1996; 381 Guyon (10.1016/j.jneumeth.2017.03.008_bib0160) 2003; 3 Burges (10.1016/j.jneumeth.2017.03.008_bib0065) 1998; 2 Aharon (10.1016/j.jneumeth.2017.03.008_bib0255) 2006; 54 Anderson (10.1016/j.jneumeth.2017.03.008_bib0025) 2010; 49 Friston (10.1016/j.jneumeth.2017.03.008_bib0150) 1998; 2 Rubinstein (10.1016/j.jneumeth.2017.03.008_bib0330) 2008 Lee (10.1016/j.jneumeth.2017.03.008_bib0205) 2001 Anderson (10.1016/j.jneumeth.2017.03.008_bib0030) 2013 Liu (10.1016/j.jneumeth.2017.03.008_bib0245) 2015; 62 Aapo Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0010) 2001 Berry (10.1016/j.jneumeth.2017.03.008_bib0285) 2007; 52 Cardoso (10.1016/j.jneumeth.2017.03.008_bib0085) 1993 Smith (10.1016/j.jneumeth.2017.03.008_bib0355) 2009; 106 Logothetis (10.1016/j.jneumeth.2017.03.008_bib0250) 1996; 19 Amari (10.1016/j.jneumeth.2017.03.008_bib0020) 1996 Ding (10.1016/j.jneumeth.2017.03.008_bib0115) 2012 Koldovsky (10.1016/j.jneumeth.2017.03.008_bib0195) 2006; 17 Palmer (10.1016/j.jneumeth.2017.03.008_bib0305) 1977; 9 Harel (10.1016/j.jneumeth.2017.03.008_bib0165) 2002; 22 Wang (10.1016/j.jneumeth.2017.03.008_bib0380) 2004 Lee (10.1016/j.jneumeth.2017.03.008_bib0200) 1999; 401 Bertsekas (10.1016/j.jneumeth.2017.03.008_bib0050) 1999 Cardoso (10.1016/j.jneumeth.2017.03.008_bib0080) 1999; 11 Abolghasemi (10.1016/j.jneumeth.2017.03.008_bib0015) 2013 Hyvärinen (10.1016/j.jneumeth.2017.03.008_bib0180) 1999; 10 Calhoun (10.1016/j.jneumeth.2017.03.008_bib0075) 2013; 8 Spratling (10.1016/j.jneumeth.2017.03.008_bib0360) 2014; 108 Ferdowsi (10.1016/j.jneumeth.2017.03.008_bib0140) 2011 the ICA and BSS group, U.o.H. (10.1016/j.jneumeth.2017.03.008_bib0365) 2014 Lee (10.1016/j.jneumeth.2017.03.008_bib0220) 2010 Anttila (10.1016/j.jneumeth.2017.03.008_bib0040) 1995; 29 Douglas (10.1016/j.jneumeth.2017.03.008_bib0125) 2011; 56 Eavani (10.1016/j.jneumeth.2017.03.008_bib0135) 2012 Risk (10.1016/j.jneumeth.2017.03.008_bib0320) 2013 Potluru (10.1016/j.jneumeth.2017.03.008_bib0310) 2008 Churchill (10.1016/j.jneumeth.2017.03.008_bib0095) 2014; 35 Anderson (10.1016/j.jneumeth.2017.03.008_bib0035) 2012 Griffanti (10.1016/j.jneumeth.2017.03.008_bib0155) 2014; 95 Li (10.1016/j.jneumeth.2017.03.008_bib0230) 2010; 58 Paatero (10.1016/j.jneumeth.2017.03.008_bib0300) 1994; 5 Culbertson (10.1016/j.jneumeth.2017.03.008_bib0100) 2011; 68 Rasmussen (10.1016/j.jneumeth.2017.03.008_bib0315) 2012; 45 Sengupta (10.1016/j.jneumeth.2017.03.008_bib0340) 2010; 6 Kim (10.1016/j.jneumeth.2017.03.008_bib0190) 2007 Smith (10.1016/j.jneumeth.2017.03.008_bib0345) 2004; 21 Salimi-Khorshidi (10.1016/j.jneumeth.2017.03.008_bib0335) 2014; 90 Douglas (10.1016/j.jneumeth.2017.03.008_bib0130) 2013 Breiman (10.1016/j.jneumeth.2017.03.008_bib0060) 2001; 45 |
References_xml | – start-page: 556 year: 2001 end-page: 562 ident: bib0205 article-title: Algorithms for non-negative matrix factorization publication-title: Advances in Neural Information Processing Systems, vol. 13 – year: 2012 ident: bib0275 article-title: e1071: Misc Functions of the Department of Statistics (e1071), TU Wien – volume: 108 start-page: 2339 year: 2012 end-page: 2342 ident: bib0280 article-title: On the origin of sustained negative BOLD response publication-title: J. Neurophysiol. – volume: 13 start-page: 411 year: 2000 end-page: 430 ident: bib0005 article-title: Independent component analysis: algorithms and application publication-title: Neural Netw. – volume: 11 start-page: 157 year: 1999 end-page: 192 ident: bib0080 article-title: High-order contrasts for independent component analysis publication-title: Neural Comput. – volume: 19 start-page: 2756 year: 2007 end-page: 2779 ident: bib0240 article-title: Projected gradient methods for non-negative matrix factorization publication-title: Neural Comput. – volume: 2 start-page: 373 year: 1998 end-page: 375 ident: bib0150 article-title: Modes or models: a critique on independent component analysis for fMRI publication-title: Trends Cogn. Sci. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib0235 article-title: Classification and regression by random forest publication-title: R News – volume: 29 start-page: 1705 year: 1995 end-page: 1718 ident: bib0040 article-title: Source identification of bulk wet deposition in F inland by positive matrix factorization publication-title: Atmosp. Environ. – start-page: 362 year: 1993 end-page: 370 ident: bib0085 article-title: Blind beamforming for non-Gaussian signals publication-title: IEEE Proceedings F (Radar and Signal Processing), vol. 140, IET – volume: 87 start-page: 96 year: 2014 end-page: 110 ident: bib0170 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage – volume: 98 start-page: 1045 year: 2010 end-page: 1057 ident: bib0325 article-title: Dictionaries for sparse representation modeling publication-title: Proc. IEEE – volume: 62 start-page: 501 year: 2015 end-page: 510 ident: bib0245 article-title: A sticky weighted regression model for time-varying resting-state brain connectivity estimation publication-title: IEEE Trans. Biomed. Eng. – year: 2014 ident: bib0365 article-title: The fastica package for matlab – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib0160 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 381 start-page: 607 year: 1996 end-page: 609 ident: bib0295 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – volume: 56 start-page: 544 year: 2011 end-page: 553 ident: bib0125 article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief publication-title: NeuroImage – volume: 9 start-page: 1483 year: 1997 end-page: 1492 ident: bib0175 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Comput. – volume: 17 start-page: 1265 year: 2006 end-page: 1277 ident: bib0195 article-title: Efficient variant of algorithm fastica for independent component analysis attaining the cram&# 201; r-rao lower bound publication-title: IEEE Trans. Neural Netw. – volume: 6 start-page: e1000840 year: 2010 ident: bib0340 article-title: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates publication-title: PLoS Comput. Biol. – volume: 13 start-page: 620 year: 2003 end-page: 629 ident: bib0265 article-title: Independent component analysis of functional MRI: what is signal and what is noise? publication-title: Curr. Opin. Neurobiol. – start-page: 1 year: 2013 end-page: 12 ident: bib0015 article-title: Fast and incoherent dictionary learning algorithms with application to fMRI publication-title: Signal Image Video Process. – volume: 2 start-page: 121 year: 1998 end-page: 167 ident: bib0065 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl. Discov. – year: 2008 ident: bib0330 article-title: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. Technical Report – CS Technion – start-page: 1336 year: 2008 end-page: 1339 ident: bib0310 article-title: Group learning using contrast NMF: application to functional and structural MRI of schizophrenia publication-title: IEEE International Symposium on Circuits and Systems. ISCAS 2008 – start-page: 660 year: 2010 end-page: 663 ident: bib0220 article-title: Statistical parametric mapping of fMRI data using sparse dictionary learning publication-title: IEEE International Symposium on Biomedical Imaging: From Nano to Macro – volume: 8 start-page: e73309 year: 2013 ident: bib0075 article-title: Independent component analysis for brain fMRI does indeed select for maximal independence publication-title: PLoS ONE – volume: 5 start-page: 111 year: 1994 end-page: 126 ident: bib0300 article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics – start-page: 242 year: 2012 end-page: 255 ident: bib0035 article-title: Real-time functional MRI classification of brain states using Markov-SVM hybrid models: peering inside the rt-fMRI black box publication-title: Machine Learning and Interpretation in Neuroimaging – volume: 31 start-page: 401 year: 2011 end-page: 412 ident: bib0055 article-title: Negative BOLD-fMRI signals in large cerebral veins publication-title: J. Cerebral Blood Flow Metab. – start-page: 73 year: 2012 end-page: 76 ident: bib0135 article-title: Sparse dictionary learning of resting state fMRI networks publication-title: International Workshop on IEEE Pattern Recognition in NeuroImaging (PRNI) – volume: 10 start-page: e0131520 year: 2015 ident: bib0090 article-title: An automated, adaptive framework for optimizing preprocessing pipelines in task-based functional MRI publication-title: PLOS ONE – start-page: 77 year: 2010 end-page: 82 ident: bib0145 article-title: A constrained NMF algorithm for BOLD detection in fMRI publication-title: IEEE International Workshop on Machine Learning for Signal Processing (MLSP) – volume: 52 start-page: 155 year: 2007 end-page: 173 ident: bib0285 article-title: Algorithms and applications for approximate nonnegative matrix factorization publication-title: Comput. Stat. Data Anal. – year: 1997 ident: bib0270 article-title: Analysis of fMRI data by blind separation into independent spatial components, Tech. Rep., DTIC Document – volume: 22 start-page: 908 year: 2002 end-page: 917 ident: bib0165 article-title: Origin of negative blood oxygenation level-dependent fMRI signals publication-title: J. Cereb. Blood Flow Metab. – start-page: 801 year: 2007 end-page: 808 ident: bib0210 article-title: Efficient sparse coding algorithms publication-title: Advances in Neural Information Processing Systems, vol. 19 – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib0155 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage – volume: 45 start-page: 2085 year: 2012 end-page: 2100 ident: bib0315 article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging publication-title: Pattern Recogn. – volume: 19 start-page: 577 year: 1996 end-page: 621 ident: bib0250 article-title: Visual object recognition publication-title: Annu. Rev. Neurosci. – volume: 108 start-page: 61 year: 2014 end-page: 73 ident: bib0360 article-title: Classification using sparse representations: a biologically plausible approach publication-title: Biol. Cybern. – year: 2016 ident: bib0370 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: NeuroImage – start-page: 757 year: 1996 end-page: 763 ident: bib0020 article-title: A new learning algorithm for blind signal separation publication-title: Adv. Neural Inf. Process. Syst. – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: bib0045 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. – volume: 21 start-page: 213 year: 2004 end-page: 220 ident: bib0345 article-title: Negative BOLD in the visual cortex: evidence against blood stealing publication-title: Hum. Brain Mapp. – start-page: 5052 year: 2011 end-page: 5055 ident: bib0140 article-title: A new spatially constrained NMF with application to fMRI publication-title: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib0335 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: NeuroImage – volume: 30 start-page: 1076 year: 2011 end-page: 1089 ident: bib0215 article-title: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion publication-title: IEEE Trans. Med. Imaging – volume: 54 start-page: 4311 year: 2006 end-page: 4322 ident: bib0255 article-title: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. – volume: 68 start-page: 505 year: 2011 end-page: 515 ident: bib0100 article-title: Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers publication-title: Arch. Gen. Psychiatry – year: 2013 ident: bib0320 article-title: An evaluation of independent component analyses with an application to resting-state fMRI publication-title: Biometrics – year: 2001 ident: bib0010 article-title: Independent Component Analysis – volume: 106 start-page: 10415 year: 2009 end-page: 10422 ident: bib0105 article-title: Independent component analysis for brain fMRI does not select for independence publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 37 start-page: 281 year: 2004 end-page: 291 ident: bib0070 article-title: Independent component analysis applied to fMRI data: a generative model for validating results publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol. – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib0200 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 35 start-page: 5984 year: 2014 end-page: 5995 ident: bib0225 article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time publication-title: Hum. Brain Mapp. – volume: 56 start-page: 400 year: 2011 end-page: 410 ident: bib0290 article-title: Encoding and decoding in FMRI publication-title: Neuroimage – volume: 49 start-page: 2509 year: 2010 end-page: 2519 ident: bib0025 article-title: Classification of spatially unaligned fMRI scans publication-title: NeuroImage – volume: 17 start-page: 143 year: 2002 end-page: 155 ident: bib0350 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. – volume: 17 start-page: 825 year: 2002 end-page: 841 ident: bib0185 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage – year: 2007 ident: bib0190 article-title: Non-negative matrix factorization based on alternating non-negativity constrained least squares and active set method. Technical report, Technical Report GT-CSE-07-01 – volume: 4 start-page: 509 year: 1994 end-page: 522 ident: bib0375 article-title: Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque publication-title: Cereb. Cortex – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: bib0355 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 441 year: 1977 end-page: 474 ident: bib0305 article-title: Hierarchical structure in perceptual representation publication-title: Cogn. Psychol. – year: 2012 ident: bib0115 article-title: Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data publication-title: Magn. Reson. Imaging – start-page: 10 year: 2016 ident: bib0260 article-title: Linear discriminant analysis achieves high classification accuracy for the bold fMRI response to naturalistic movie stimuli publication-title: Front. Hum. Neurosci. – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: bib0180 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0060 article-title: Random forests publication-title: Machine Learn. – volume: 35 start-page: 4499 year: 2014 end-page: 4517 ident: bib0095 article-title: Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes publication-title: Hum. Brain Mapping – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib0110 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics publication-title: J. Neurosci. Methods – start-page: 7 year: 2013 ident: bib0130 article-title: Single trial decoding of belief decision making from EEG and fMRI data using independent components features publication-title: Front. Hum. Neurosci. – year: 2013 ident: bib0030 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: NeuroImage – year: 1999 ident: bib0050 article-title: Nonlinear Programming – volume: 47 start-page: S80 year: 2009 ident: bib0120 article-title: Naïve bayes classification of belief verses disbelief using event related neuroimaging data publication-title: NeuroImage – start-page: 675 year: 2004 end-page: 682 ident: bib0380 article-title: Detecting brain activations by constrained non-negative matrix factorization from task-related BOLD fMRI publication-title: Medical Imaging 2004 – volume: 58 start-page: 5151 year: 2010 end-page: 5164 ident: bib0230 article-title: Independent component analysis by entropy bound minimization publication-title: IEEE Trans. Signal Process. – volume: 11 start-page: 157 issue: 1 year: 1999 ident: 10.1016/j.jneumeth.2017.03.008_bib0080 article-title: High-order contrasts for independent component analysis publication-title: Neural Comput. doi: 10.1162/089976699300016863 – volume: 8 start-page: e73309 issue: 8 year: 2013 ident: 10.1016/j.jneumeth.2017.03.008_bib0075 article-title: Independent component analysis for brain fMRI does indeed select for maximal independence publication-title: PLoS ONE doi: 10.1371/journal.pone.0073309 – start-page: 1336 year: 2008 ident: 10.1016/j.jneumeth.2017.03.008_bib0310 article-title: Group learning using contrast NMF: application to functional and structural MRI of schizophrenia – volume: 17 start-page: 143 issue: 3 year: 2002 ident: 10.1016/j.jneumeth.2017.03.008_bib0350 article-title: Fast robust automated brain extraction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.10062 – volume: 4 start-page: 509 issue: 5 year: 1994 ident: 10.1016/j.jneumeth.2017.03.008_bib0375 article-title: Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque publication-title: Cereb. Cortex doi: 10.1093/cercor/4.5.509 – volume: 21 start-page: 213 issue: 4 year: 2004 ident: 10.1016/j.jneumeth.2017.03.008_bib0345 article-title: Negative BOLD in the visual cortex: evidence against blood stealing publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20017 – volume: 35 start-page: 4499 issue: 9 year: 2014 ident: 10.1016/j.jneumeth.2017.03.008_bib0095 article-title: Comparing within-subject classification and regularization methods in fMRI for large and small sample sizes publication-title: Hum. Brain Mapping doi: 10.1002/hbm.22490 – volume: 56 start-page: 544 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2017.03.008_bib0125 article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.11.002 – volume: 29 start-page: 1705 issue: 14 year: 1995 ident: 10.1016/j.jneumeth.2017.03.008_bib0040 article-title: Source identification of bulk wet deposition in F inland by positive matrix factorization publication-title: Atmosp. Environ. doi: 10.1016/1352-2310(94)00367-T – year: 2013 ident: 10.1016/j.jneumeth.2017.03.008_bib0320 article-title: An evaluation of independent component analyses with an application to resting-state fMRI publication-title: Biometrics – volume: 134 start-page: 9 year: 2004 ident: 10.1016/j.jneumeth.2017.03.008_bib0110 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.jneumeth.2017.03.008_bib0155 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.034 – start-page: 801 year: 2007 ident: 10.1016/j.jneumeth.2017.03.008_bib0210 article-title: Efficient sparse coding algorithms – start-page: 660 year: 2010 ident: 10.1016/j.jneumeth.2017.03.008_bib0220 article-title: Statistical parametric mapping of fMRI data using sparse dictionary learning – year: 1997 ident: 10.1016/j.jneumeth.2017.03.008_bib0270 – volume: 19 start-page: 577 issue: 1 year: 1996 ident: 10.1016/j.jneumeth.2017.03.008_bib0250 article-title: Visual object recognition publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.ne.19.030196.003045 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.jneumeth.2017.03.008_bib0235 article-title: Classification and regression by random forest publication-title: R News – start-page: 7 year: 2013 ident: 10.1016/j.jneumeth.2017.03.008_bib0130 article-title: Single trial decoding of belief decision making from EEG and fMRI data using independent components features publication-title: Front. Hum. Neurosci. – start-page: 675 year: 2004 ident: 10.1016/j.jneumeth.2017.03.008_bib0380 article-title: Detecting brain activations by constrained non-negative matrix factorization from task-related BOLD fMRI – volume: 49 start-page: 2509 issue: 3 year: 2010 ident: 10.1016/j.jneumeth.2017.03.008_bib0025 article-title: Classification of spatially unaligned fMRI scans publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.08.036 – year: 1999 ident: 10.1016/j.jneumeth.2017.03.008_bib0050 – volume: 19 start-page: 2756 year: 2007 ident: 10.1016/j.jneumeth.2017.03.008_bib0240 article-title: Projected gradient methods for non-negative matrix factorization publication-title: Neural Comput. doi: 10.1162/neco.2007.19.10.2756 – year: 2007 ident: 10.1016/j.jneumeth.2017.03.008_bib0190 – volume: 108 start-page: 2339 issue: 9 year: 2012 ident: 10.1016/j.jneumeth.2017.03.008_bib0280 article-title: On the origin of sustained negative BOLD response publication-title: J. Neurophysiol. doi: 10.1152/jn.01199.2011 – volume: 22 start-page: 908 issue: 8 year: 2002 ident: 10.1016/j.jneumeth.2017.03.008_bib0165 article-title: Origin of negative blood oxygenation level-dependent fMRI signals publication-title: J. Cereb. Blood Flow Metab. doi: 10.1097/00004647-200208000-00002 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.jneumeth.2017.03.008_bib0335 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 10 start-page: e0131520 issue: 7 year: 2015 ident: 10.1016/j.jneumeth.2017.03.008_bib0090 article-title: An automated, adaptive framework for optimizing preprocessing pipelines in task-based functional MRI publication-title: PLOS ONE doi: 10.1371/journal.pone.0131520 – volume: 9 start-page: 1483 issue: 7 year: 1997 ident: 10.1016/j.jneumeth.2017.03.008_bib0175 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Comput. doi: 10.1162/neco.1997.9.7.1483 – volume: 17 start-page: 1265 issue: 5 year: 2006 ident: 10.1016/j.jneumeth.2017.03.008_bib0195 article-title: Efficient variant of algorithm fastica for independent component analysis attaining the cram&# 201; r-rao lower bound publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.875991 – start-page: 10 year: 2016 ident: 10.1016/j.jneumeth.2017.03.008_bib0260 article-title: Linear discriminant analysis achieves high classification accuracy for the bold fMRI response to naturalistic movie stimuli publication-title: Front. Hum. Neurosci. – start-page: 77 year: 2010 ident: 10.1016/j.jneumeth.2017.03.008_bib0145 article-title: A constrained NMF algorithm for BOLD detection in fMRI – volume: 35 start-page: 5984 issue: 12 year: 2014 ident: 10.1016/j.jneumeth.2017.03.008_bib0225 article-title: Disentangling dynamic networks: separated and joint expressions of functional connectivity patterns in time publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22599 – volume: 58 start-page: 5151 issue: 10 year: 2010 ident: 10.1016/j.jneumeth.2017.03.008_bib0230 article-title: Independent component analysis by entropy bound minimization publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2055859 – volume: 106 start-page: 13040 issue: 31 year: 2009 ident: 10.1016/j.jneumeth.2017.03.008_bib0355 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0905267106 – year: 2008 ident: 10.1016/j.jneumeth.2017.03.008_bib0330 – start-page: 1 year: 2013 ident: 10.1016/j.jneumeth.2017.03.008_bib0015 article-title: Fast and incoherent dictionary learning algorithms with application to fMRI publication-title: Signal Image Video Process. – volume: 47 start-page: S80 year: 2009 ident: 10.1016/j.jneumeth.2017.03.008_bib0120 article-title: Naïve bayes classification of belief verses disbelief using event related neuroimaging data publication-title: NeuroImage doi: 10.1016/S1053-8119(09)70563-4 – year: 2016 ident: 10.1016/j.jneumeth.2017.03.008_bib0370 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: NeuroImage – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jneumeth.2017.03.008_bib0060 article-title: Random forests publication-title: Machine Learn. doi: 10.1023/A:1010933404324 – volume: 108 start-page: 61 issue: 1 year: 2014 ident: 10.1016/j.jneumeth.2017.03.008_bib0360 article-title: Classification using sparse representations: a biologically plausible approach publication-title: Biol. Cybern. doi: 10.1007/s00422-013-0579-x – start-page: 757 year: 1996 ident: 10.1016/j.jneumeth.2017.03.008_bib0020 article-title: A new learning algorithm for blind signal separation publication-title: Adv. Neural Inf. Process. Syst. – year: 2012 ident: 10.1016/j.jneumeth.2017.03.008_bib0115 article-title: Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data publication-title: Magn. Reson. Imaging – year: 2014 ident: 10.1016/j.jneumeth.2017.03.008_bib0365 – year: 2001 ident: 10.1016/j.jneumeth.2017.03.008_bib0010 – volume: 31 start-page: 401 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2017.03.008_bib0055 article-title: Negative BOLD-fMRI signals in large cerebral veins publication-title: J. Cerebral Blood Flow Metab. doi: 10.1038/jcbfm.2010.164 – volume: 30 start-page: 1076 issue: 5 year: 2011 ident: 10.1016/j.jneumeth.2017.03.008_bib0215 article-title: A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2010.2097275 – volume: 45 start-page: 2085 issue: 6 year: 2012 ident: 10.1016/j.jneumeth.2017.03.008_bib0315 article-title: Model sparsity and brain pattern interpretation of classification models in neuroimaging publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.09.011 – start-page: 5052 year: 2011 ident: 10.1016/j.jneumeth.2017.03.008_bib0140 article-title: A new spatially constrained NMF with application to fMRI – volume: 9 start-page: 441 issue: 4 year: 1977 ident: 10.1016/j.jneumeth.2017.03.008_bib0305 article-title: Hierarchical structure in perceptual representation publication-title: Cogn. Psychol. doi: 10.1016/0010-0285(77)90016-0 – volume: 54 start-page: 4311 issue: 11 year: 2006 ident: 10.1016/j.jneumeth.2017.03.008_bib0255 article-title: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2006.881199 – volume: 62 start-page: 501 issue: 2 year: 2015 ident: 10.1016/j.jneumeth.2017.03.008_bib0245 article-title: A sticky weighted regression model for time-varying resting-state brain connectivity estimation publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2359211 – start-page: 362 year: 1993 ident: 10.1016/j.jneumeth.2017.03.008_bib0085 article-title: Blind beamforming for non-Gaussian signals – volume: 68 start-page: 505 issue: 5 year: 2011 ident: 10.1016/j.jneumeth.2017.03.008_bib0100 article-title: Effect of bupropion treatment on brain activation induced by cigarette-related cues in smokers publication-title: Arch. Gen. Psychiatry doi: 10.1001/archgenpsychiatry.2010.193 – year: 2013 ident: 10.1016/j.jneumeth.2017.03.008_bib0030 article-title: Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD publication-title: NeuroImage – volume: 106 start-page: 10415 issue: 26 year: 2009 ident: 10.1016/j.jneumeth.2017.03.008_bib0105 article-title: Independent component analysis for brain fMRI does not select for independence publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0903525106 – year: 2012 ident: 10.1016/j.jneumeth.2017.03.008_bib0275 – volume: 52 start-page: 155 issue: 1 year: 2007 ident: 10.1016/j.jneumeth.2017.03.008_bib0285 article-title: Algorithms and applications for approximate nonnegative matrix factorization publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2006.11.006 – start-page: 556 year: 2001 ident: 10.1016/j.jneumeth.2017.03.008_bib0205 article-title: Algorithms for non-negative matrix factorization – volume: 17 start-page: 825 issue: 2 year: 2002 ident: 10.1016/j.jneumeth.2017.03.008_bib0185 article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images publication-title: NeuroImage doi: 10.1006/nimg.2002.1132 – start-page: 73 year: 2012 ident: 10.1016/j.jneumeth.2017.03.008_bib0135 article-title: Sparse dictionary learning of resting state fMRI networks – volume: 5 start-page: 111 issue: 2 year: 1994 ident: 10.1016/j.jneumeth.2017.03.008_bib0300 article-title: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values publication-title: Environmetrics doi: 10.1002/env.3170050203 – volume: 98 start-page: 1045 issue: 6 year: 2010 ident: 10.1016/j.jneumeth.2017.03.008_bib0325 article-title: Dictionaries for sparse representation modeling publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2040551 – volume: 381 start-page: 607 issue: 6583 year: 1996 ident: 10.1016/j.jneumeth.2017.03.008_bib0295 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature doi: 10.1038/381607a0 – volume: 10 start-page: 626 issue: 3 year: 1999 ident: 10.1016/j.jneumeth.2017.03.008_bib0180 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.761722 – volume: 13 start-page: 620 issue: 5 year: 2003 ident: 10.1016/j.jneumeth.2017.03.008_bib0265 article-title: Independent component analysis of functional MRI: what is signal and what is noise? publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2003.09.012 – volume: 37 start-page: 281 issue: 2–3 year: 2004 ident: 10.1016/j.jneumeth.2017.03.008_bib0070 article-title: Independent component analysis applied to fMRI data: a generative model for validating results publication-title: J. VLSI Signal Process. Syst. Signal Image Video Technol. doi: 10.1023/B:VLSI.0000027491.81326.7a – volume: 87 start-page: 96 year: 2014 ident: 10.1016/j.jneumeth.2017.03.008_bib0170 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.10.067 – volume: 56 start-page: 400 issue: 2 year: 2011 ident: 10.1016/j.jneumeth.2017.03.008_bib0290 article-title: Encoding and decoding in FMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.07.073 – volume: 6 start-page: e1000840 issue: 7 year: 2010 ident: 10.1016/j.jneumeth.2017.03.008_bib0340 article-title: Action potential energy efficiency varies among neuron types in vertebrates and invertebrates publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000840 – start-page: 242 year: 2012 ident: 10.1016/j.jneumeth.2017.03.008_bib0035 article-title: Real-time functional MRI classification of brain states using Markov-SVM hybrid models: peering inside the rt-fMRI black box – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 10.1016/j.jneumeth.2017.03.008_bib0045 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput. doi: 10.1162/neco.1995.7.6.1129 – volume: 401 start-page: 788 year: 1999 ident: 10.1016/j.jneumeth.2017.03.008_bib0200 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 13 start-page: 411 issue: 4–5 year: 2000 ident: 10.1016/j.jneumeth.2017.03.008_bib0005 article-title: Independent component analysis: algorithms and application publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 10.1016/j.jneumeth.2017.03.008_bib0065 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Mining Knowl. Discov. doi: 10.1023/A:1009715923555 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.jneumeth.2017.03.008_bib0160 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 2 start-page: 373 issue: 10 year: 1998 ident: 10.1016/j.jneumeth.2017.03.008_bib0150 article-title: Modes or models: a critique on independent component analysis for fMRI publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(98)01227-3 |
SSID | ssj0004906 |
Score | 2.4073708 |
Snippet | [Display omitted]
•We compared ICA, K-SVD, NMF, and L1-Regularized Learning for encoding brain components within an fMRI scan.•The temporal weights of each... Brain networks in fMRI are typically identified using spatial independent component analysis (ICA), yet other mathematical constraints provide alternate... Visual network manually identified across each algorithm, within a single scan. Sparsifying algorithms (K-SVD and LASSO/L1-Regularization) outperformed ICA and... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 81 |
SubjectTerms | Algorithms Auditory Perception - physiology Brain - diagnostic imaging Brain - physiology Brain Mapping - methods Cerebrovascular Circulation - physiology Classification FMRI Humans ICA Image processing Independent component analysis K-SVD L1 Regularized Learning Machine learning Magnetic Resonance Imaging - methods Motion Perception - physiology Negative BOLD signal Neural Pathways - diagnostic imaging Neural Pathways - physiology Neuropsychological Tests NMF Non-negative matrix factorization Oxygen - blood Pattern recognition Random forests Rest Sparsity Support vector machines |
Title | Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms |
URI | https://dx.doi.org/10.1016/j.jneumeth.2017.03.008 https://www.ncbi.nlm.nih.gov/pubmed/28322859 https://www.proquest.com/docview/1879665065 https://pubmed.ncbi.nlm.nih.gov/PMC5507942 |
Volume | 282 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELemISFeEGx8FMZkJISGRNcQOx_mLSpULah9ACbtLbIde2u1utOaSuOFv44_jDvHCSsI7YG3fNiRkzv77uK734-QVyJW4CbEmOcXyz43EKcIphXMKwUxUCUZF1goPJ2l4xP-6TQ53SHDthYG0yrD2t-s6X61DlcG4WsOLufzwVcsxIGgClSKoSH1Few8Qy0__vE7zYMLz6-JjXG_MrpRJbw4XjizQaZmTPHKAtjpvwzU3w7on3mUNwzT6AG5HzxKWjSDfkh2jNsj-4WDaHr5nb6mPsfT_zzfI3enYSt9n_z8AIEnGi4KLiBFOEt_srIUTV3zh5AqJJCgrkkVX7-nhaN2-mVCNfrcmGTk5Up1R2aI_d3K9Z0584jidIkUANe0ofUJNZ_0aDYdvXlL5x0Fb-0fsXJ4JANMCj2aDAtoJV1FYdm7WhsaxigvzuBZ9fly_YicjD5-G477gdKhr3ku6r7gXErL0zwSsWV5onXGc6ZzpjTTjKUm1zKWSoDSgG-jlE01q0C-ubaViWzGHpNdeAvzlFCTm7SKLaLvcG51LkyUVlUllNVVpVLRI0krx1IHvHOk3bgo28S2RdnKv0T5lxErQf49Muj6XTaIH7f2EK2alFu6W4JZurXvy1avSpjYuFsjnVlt1iXSwKeg4WnSI08aPevGg_xSiDzYI9mWBnYNEDR8-46bn3vwcMSvEzx-9h9jfk7u4Rnuqb1LDshufbUxL8A1q9Whn3uH5E4x-Tye_QIm5j-m |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5VRQIuqLQ8QnksEkJFwo3xrh0vtygQJVDnAK3U28r7ahM1m6pxJLjw6_hhzNjr0IBQD9z82LXWntmdGe_M9xHySiQK3IQE8_ySMuIW4hTBtIJ5pSAGMiXjAguFi0k2OuGfTtPTLTJoa2EwrTKs_c2aXq_W4Uo3fM3u5XTa_YqFOBBUgUoxNKQQAt3iMH2RxuDwx-88Dy5qgk1sjRuW8bUy4dnhzNsVUjVjjlcvoJ3-y0L97YH-mUh5zTINd8i94FLSfjPq-2TL-l2y1_cQTs-_09e0TvKs_57vkttF2EvfIz8_QOSJlouCD0gRz7I-WTiKtq75RUgVMkhQ3-SKL9_Tvqeu-DKmGp1uzDKqBUv1ms0Q-_uFj7w9qyHF6Rw5AL7RhtcnFH3Sg0kxfPOWTtccvFX9iIXHozLgpNCD8aAPrUpvKKx7V0tLwxjLizN4VnU-Xz4gJ8OPx4NRFDgdIs1zUUWC87J0PMtjkTiWp1r3eM50zpRmmrHM5rpMSiVAa8C5UcplmhkQcK6dsbHrsYdkG97CPibU5jYziUP4Hc6dzoWNM2OMUE4bozLRIWkrR6kD4DnyblzINrNtJlv5S5S_jJkE-XdId93vsoH8uLGHaNVEbiivBLt0Y9-XrV5JmNm4XVN6u1gtJfLAZ6DiWdohjxo9W48HCaYQerBDehsauG6AqOGbd_z0vEYPRwA7wZMn_zHmF-TO6Lg4kkfjyed9chfv4Abbu_Qp2a6uVvYZ-GmVel7Pw18QH0E0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+the+encoding+of+functional+brain+networks%3A+An+fMRI+classification+comparison+of+non-negative+matrix+factorization+%28NMF%29%2C+independent+component+analysis+%28ICA%29%2C+and+sparse+coding+algorithms&rft.jtitle=Journal+of+neuroscience+methods&rft.au=Xie%2C+Jianwen&rft.au=Douglas%2C+Pamela+K.&rft.au=Wu%2C+Ying+Nian&rft.au=Brody%2C+Arthur+L.&rft.date=2017-04-15&rft.pub=Elsevier+B.V&rft.issn=0165-0270&rft.eissn=1872-678X&rft.volume=282&rft.spage=81&rft.epage=94&rft_id=info:doi/10.1016%2Fj.jneumeth.2017.03.008&rft.externalDocID=S0165027017300651 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0270&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0270&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0270&client=summon |