Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals

•We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms, including both easy and difficult decoding tasks, various subject populations, and differing electrode densities.•We found that the combination...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 316; p. 121304
Main Authors Zhang, Guanghui, Luck, Steven J.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.08.2025
Elsevier Limited
Elsevier
Subjects
Online AccessGet full text
ISSN1053-8119
1095-9572
DOI10.1016/j.neuroimage.2025.121304

Cover

Loading…
Abstract •We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms, including both easy and difficult decoding tasks, various subject populations, and differing electrode densities.•We found that the combination of artifact correction and rejection did not significantly enhance decoding performance in the vast majority of cases.•However, we strongly recommended using artifact correction prior to decoding analyses to reduce artifact-related confounds. Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased statistical power for conventional univariate analyses. However, it is not clear whether eliminating these artifacts during preprocessing enhances the performance of multivariate pattern analysis (MVPA; decoding), especially given that artifact rejection reduces the number of trials available for training the decoder. This study aimed to evaluate the impact of artifact-minimization approaches on the decoding performance of support vector machines. Independent component analysis (ICA) was used to correct ocular artifacts, and artifact rejection was used to discard trials with large voltage deflections from other sources (e.g., muscle artifacts). We assessed decoding performance in relatively simple binary classification tasks using data from seven commonly-used event-related potential paradigms (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity), as well as more challenging multi-way decoding tasks, including stimulus location and stimulus orientation. The results indicated that the combination of artifact correction and rejection did not improve decoding performance in the vast majority of cases. However, artifact correction may still be essential to minimize artifact-related confounds that might artificially inflate decoding accuracy. Researchers who are using similar methods to decode EEG data from paradigms, populations, and recording setups that are similar to those examined here may benefit from our recommendations to optimize decoding performance and avoid incorrect conclusions.
AbstractList Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased statistical power for conventional univariate analyses. However, it is not clear whether eliminating these artifacts during preprocessing enhances the performance of multivariate pattern analysis (MVPA; decoding), especially given that artifact rejection reduces the number of trials available for training the decoder. This study aimed to evaluate the impact of artifact-minimization approaches on the decoding performance of support vector machines. Independent component analysis (ICA) was used to correct ocular artifacts, and artifact rejection was used to discard trials with large voltage deflections from other sources (e.g., muscle artifacts). We assessed decoding performance in relatively simple binary classification tasks using data from seven commonly-used event-related potential paradigms (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity), as well as more challenging multi-way decoding tasks, including stimulus location and stimulus orientation. The results indicated that the combination of artifact correction and rejection did not improve decoding performance in the vast majority of cases. However, artifact correction may still be essential to minimize artifact-related confounds that might artificially inflate decoding accuracy. Researchers who are using similar methods to decode EEG data from paradigms, populations, and recording setups that are similar to those examined here may benefit from our recommendations to optimize decoding performance and avoid incorrect conclusions.
•We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms, including both easy and difficult decoding tasks, various subject populations, and differing electrode densities.•We found that the combination of artifact correction and rejection did not significantly enhance decoding performance in the vast majority of cases.•However, we strongly recommended using artifact correction prior to decoding analyses to reduce artifact-related confounds. Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased statistical power for conventional univariate analyses. However, it is not clear whether eliminating these artifacts during preprocessing enhances the performance of multivariate pattern analysis (MVPA; decoding), especially given that artifact rejection reduces the number of trials available for training the decoder. This study aimed to evaluate the impact of artifact-minimization approaches on the decoding performance of support vector machines. Independent component analysis (ICA) was used to correct ocular artifacts, and artifact rejection was used to discard trials with large voltage deflections from other sources (e.g., muscle artifacts). We assessed decoding performance in relatively simple binary classification tasks using data from seven commonly-used event-related potential paradigms (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity), as well as more challenging multi-way decoding tasks, including stimulus location and stimulus orientation. The results indicated that the combination of artifact correction and rejection did not improve decoding performance in the vast majority of cases. However, artifact correction may still be essential to minimize artifact-related confounds that might artificially inflate decoding accuracy. Researchers who are using similar methods to decode EEG data from paradigms, populations, and recording setups that are similar to those examined here may benefit from our recommendations to optimize decoding performance and avoid incorrect conclusions.
ArticleNumber 121304
Author Luck, Steven J.
Zhang, Guanghui
Author_xml – sequence: 1
  givenname: Guanghui
  orcidid: 0000-0003-0134-3614
  surname: Zhang
  fullname: Zhang, Guanghui
  email: zhang.guanghui@foxmail.com
  organization: Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, China
– sequence: 2
  givenname: Steven J.
  orcidid: 0000-0002-3725-1474
  surname: Luck
  fullname: Luck, Steven J.
  organization: Center for Mind & Brain, University of California-Davis, Davis, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40472911$$D View this record in MEDLINE/PubMed
BookMark eNqNUU1v3CAQRVWq5qP9C5Wlnr0BDDbcuk22SaSteujHFWEYtri7ZgveSjn3jxfibSL1FAlpRjNv3jDvnaOTMYyAUEXwgmDSXg6LEQ4x-J3ewIJiyheEkgazF-iMYMlryTt6UnLe1IIQeYrOUxowxpIw8QqdMsw6Kgk5Q3-WKUFKftxU0w-o_G6vzVQFV-k4eVdyE2IEM_kwVnq0T_UIw7GcX5ndQ3Qh7vRooBB8-f6pfphYXy_rXiewlQUTbFmV26vVTZX8ZtTb9Bq9dDnAm2O8QN8-rr5e3dbrzzd3V8t1bZiQU53_iy2mxGqGTcMdCIq7xrIW617y3BCc6kY4Q6V0lnJDBMNdaxkhTnSkay7Q3cxrgx7UPmb54r0K2quHQogbVa4zW1BOkNbRptUdBkZZKzrac95hSm2PG7CZ693MtY_h1wHSpIZwiOUa1VAiqWCsYxn19og69Duwjzv_6Z8BYgaYGFKK4B4hBKtitRrUk9WqWK1mq_Poh3kUsmS_PUSVjIcsvvXFr3yTfw7J-_9IzNaP3ujtT7h_HsVf0z3Jog
Cites_doi 10.1016/j.bspc.2021.103292
10.1088/1741-2552/ab0ab5
10.1109/JSEN.2020.3012394
10.1111/psyp.14570
10.1088/1741-2552/ad788e
10.1101/2024.09.26.615254
10.1016/j.dcn.2022.101094
10.1093/cercor/bhab479
10.1038/s41562-023-01680-z
10.1016/j.neuroimage.2017.07.058
10.1523/ENEURO.0401-17.2018
10.1016/j.clinph.2009.07.045
10.1016/j.neubiorev.2024.105718
10.1016/j.neuroimage.2019.116117
10.1016/j.neuroimage.2017.08.005
10.1073/pnas.2114966119
10.1162/jocn_a_01068
10.1016/j.neuroimage.2024.120625
10.1111/1469-8986.3720163
10.1111/psyp.14530
10.1111/psyp.14511
10.1093/texcom/tgaa093
10.1523/JNEUROSCI.2860-17.2017
10.1111/epi.17220
10.1111/ejn.16150
10.1111/psyp.14491
10.3389/fpsyg.2013.00863
10.1109/JSEN.2011.2115236
10.1016/j.neuroimage.2023.120347
10.1088/1741-2560/12/3/031001
10.1016/j.neuroimage.2017.06.030
10.3389/fnhum.2014.00213
10.1111/psyp.13793
10.1002/hbm.25013
10.1111/psyp.14531
10.1016/j.neuroimage.2023.120268
10.1111/j.1469-8986.2007.00612.x
10.1038/s41562-023-01714-6
10.1016/j.neuroimage.2018.09.029
10.1016/j.neuroimage.2019.05.026
10.7551/mitpress/11442.003.0075
10.1016/j.neuroimage.2023.119960
10.1109/TBME.2019.2930186
10.1016/j.neuroimage.2020.117465
10.1016/j.dcn.2022.101096
10.1111/psyp.13731
10.1088/1741-2552/abbd50
10.1093/cercor/bhz287
10.1111/ejn.14992
10.1016/j.bspc.2020.102172
10.1016/j.jneumeth.2003.10.009
10.7554/eLife.67517
10.1016/j.neuroimage.2020.116660
10.1016/j.jneumeth.2021.109080
10.1111/psyp.12147
10.1111/psyp.14052
10.1109/TCDS.2021.3079712
10.1016/j.neuroimage.2022.119374
10.1016/j.bspc.2018.02.021
10.1109/JBHI.2017.2723420
10.1016/0301-0511(83)90059-5
10.1016/j.dcn.2019.100635
10.1523/JNEUROSCI.0590-22.2022
10.1002/hbm.25094
10.1038/s41598-019-54018-z
10.1016/j.neuroimage.2021.118366
10.1016/j.jneumeth.2021.109249
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
P64
RC3
DOA
DOI 10.1016/j.neuroimage.2025.121304
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE



ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
ExternalDocumentID oai_doaj_org_article_f816f236a70e4246872b557022db03ed
40472911
10_1016_j_neuroimage_2025_121304
S1053811925003076
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPKN
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HCIFZ
IHE
J1W
KOM
LG5
LX8
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
TEORI
UV1
YK3
Z5R
ZU3
~G-
6I.
AAFTH
AGRNS
ALIPV
29N
53G
7X7
88E
8AO
8FE
8FH
8FI
8FJ
AAQFI
AAQXK
AAYXX
ABUWG
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADXHL
AFKRA
AGHFR
AGQPQ
AKRLJ
ASPBG
AVWKF
AZFZN
AZQEC
BBNVY
BPHCQ
BVXVI
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
HDW
HEI
HMCUK
HMK
HMO
HMQ
HVGLF
HZ~
LK8
M1P
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
R2-
SNS
UKHRP
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
P64
RC3
ID FETCH-LOGICAL-c489t-9110d021da40c35fe82073d460ab95021852a38fc299fd25c184076d411f87173
IEDL.DBID DOA
ISSN 1053-8119
IngestDate Wed Aug 27 01:22:17 EDT 2025
Sat Aug 23 13:33:12 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
Thu Aug 28 04:20:45 EDT 2025
Sat Aug 09 17:30:45 EDT 2025
Tue Aug 26 17:21:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Artifact rejection
ERP
Artifact correction
EEG
MVPA
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-9110d021da40c35fe82073d460ab95021852a38fc299fd25c184076d411f87173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0134-3614
0000-0002-3725-1474
OpenAccessLink https://doaj.org/article/f816f236a70e4246872b557022db03ed
PMID 40472911
PQID 3219284474
PQPubID 2031077
ParticipantIDs doaj_primary_oai_doaj_org_article_f816f236a70e4246872b557022db03ed
proquest_journals_3219284474
pubmed_primary_40472911
crossref_primary_10_1016_j_neuroimage_2025_121304
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2025_121304
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2025_121304
PublicationCentury 2000
PublicationDate 2025-08-01
2025-08-00
2025-Aug-01
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2025
Publisher Elsevier Inc
Elsevier Limited
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Elsevier
References Keil, Bernat, Cohen, Ding, Fabiani, Gratton, Kappenman, Maris, Mathewson, Ward, Weisz (bib0032) 2022; 59
Chang, Hsu, Pion-Tonachini, Jung (bib0012) 2020; 67
Kappenman, Farrens, Zhang, Stewart, Luck (bib0030) 2021; 225
Xiong, C., Petro, N.M., Bo, K., Cui, L., Keil, A., & Ding, M. (2024). Rhythmic sampling and competition of target and distractor in a motion detection task. bioRxiv.
Biondi, Santoro, Viana, Laiou, Pal, Bruno, Richardson (bib0009) 2022; 63
Keil, Debener, Gratton, Junghöfer, Kappenman, Luck, Luu, Miller, Yee (bib0033) 2014; 51
Zhang, Garrett, Luck (bib0069) 2024
Mostert, Albers, Brinkman, Todorova, Kok, De Lange (bib0047) 2018; 5
Tu, Li, Zhang, Zhang, Bi, Yue, Hu (bib0061) 2023; 8
Despouy, Curot, Deudon, Gardy, Denuelle, Sol, Lotterie, Valton, Barbeau (bib0016) 2020; 30
Zhang, Garrett, Simmons, Kiat, Luck (bib0070) 2024
Li, Wang, Li, Chen (bib0038) 2022; 42
Ng, Reh, Mostafavi (bib0048) 2022; 54
Yang, Duan, Fan, Hu, Wang (bib0066) 2018; 43
Peelen, Downing (bib0049) 2023; 7
Richer, Bradford, Ferris (bib0053) 2024; 162
Woestenburg, Verbaten, Slangen (bib0064) 1983; 16
Carlson, T.A., Grootswagers, T., & Robinson, A.K. (2019). An introduction to time-resolved decoding analysis for M/EEG (Version 1). ArXiv.
Pion-Tonachini, Kreutz-Delgado, Makeig (bib0051) 2019; 198
Bae (bib0005) 2021; 2
Mammone, La Foresta, Morabito (bib0044) 2012; 12
Meier, Staresina, Schwabe (bib0046) 2022; 11
Lopez-Calderon, Luck (bib0040) 2014; 8
Kato, Okumura, Tsubo, Honda, Sugiyama, Touhara, Okamoto (bib0031) 2022; 119
Islam, Ghorbanzadeh, Rastegarnia (bib0025) 2021; 360
.
Sun, Chan, H. Hsiao, Tang (bib0057) 2021; 58
Dimigen (bib0018) 2020; 207
Lakens (bib0035) 2013; 4
Alizadeh, Jamalabadi, Schönauer, Leibold, Gais (bib0001) 2017; 159
Al-Saegh, Dawwd, Abdul-Jabbar (bib0002) 2021; 63
Stergiadis, Kostaridou, Klados (bib0056) 2022; 72
Bae, Luck (bib0007) 2019; 184
Bibián, Irastorza-Landa, Schönauer, Birbaumer, López-Larraz, Ramos-Murguialday (bib0008) 2022; 32
Luck (bib0041) 2014
Li, Wu, Xia, He, Jin (bib0037) 2020; 17
He, Sommer, Hansen-Schirra, Nagels (bib0022) 2024; 61
Urigüen, Garcia-Zapirain (bib0062) 2015; 12
Shad, Molinas, Ytterdal (bib0055) 2020; 20
Talsma (bib0058) 2008; 45
Kang, Chen, Wallraven (bib0029) 2024
Jas, Engemann, Bekhti, Raimondo, Gramfort (bib0027) 2017; 159
Luck, Stewart, Simmons, Rhemtulla (bib0043) 2021; 58
Jaatinen, Väntänen, Salmela, Alho (bib0026) 2023; 58
Hong, Bo, Meyyappan, Tong, Ding (bib0024) 2020; 41
Hebart, Baker (bib0023) 2018; 180
Den Ouden, Zhou, Mepani, Kovács, Vogels, Feuerriegel (bib0015) 2023; 280
Peñalver, López-García, González-García, Aguado-López, Górriz, Ruz (bib0050) 2023; 271
Gong, Xing, Cichocki, Li (bib0020) 2022; 14
Zhang, Carrasco, Winsler, Bahle, Cong, Luck (bib0067) 2024; 293
Luck, S.J. (2022). Applied event-related potential data analysis. LibreTexts.
Thielen, Bosch, Van Leeuwen, Van Gerven, Van Lier (bib0059) 2019; 9
Lau-Zhu, Lau, McLoughlin (bib0036) 2019; 36
Klug, Gramann (bib0034) 2021; 54
Sai, Mokhtar, Arof, Cumming, Iwahashi (bib0054) 2018; 22
Bae (bib0004) 2021; 240
Delorme, Makeig (bib0014) 2004; 134
Mares, Ewing, Farran, Smith, Smith (bib0045) 2020; 211
Ashton, Zinszer, Cichy, Nelson, Aslin, Bayet (bib0003) 2022; 54
Bae, Luck (bib0006) 2018; 38
Zhang, Garrett, Luck (bib0068) 2024
Carrasco, Bahle, Simmons, Luck (bib0011) 2024; 61
Rashid, Calhoun (bib0052) 2020; 41
Di Flumeri, Arico, Borghini, Colosimo, Babiloni (bib0017) 2016
Van Driel, Olivers, Fahrenfort (bib0063) 2021; 352
Grootswagers, Wardle, Carlson (bib0021) 2017; 29
Jung, Makeig, Humphries, Lee, McKeown, Iragui, Sejnowski (bib0028) 2000; 37
Li, Zhang, Liu, Luo (bib0039) 2022; 258
Trammel, Khodayari, Luck, Traxler, Swaab (bib0060) 2023; 277
Craik, He, Contreras-Vidal (bib0013) 2019; 16
Duncan, Barry, Connolly, Fischer, Michie, Näätänen, Polich, Reinvang, Van Petten (bib0019) 2009; 120
Li (10.1016/j.neuroimage.2025.121304_bib0039) 2022; 258
Bibián (10.1016/j.neuroimage.2025.121304_bib0008) 2022; 32
Hong (10.1016/j.neuroimage.2025.121304_bib0024) 2020; 41
Zhang (10.1016/j.neuroimage.2025.121304_bib0068) 2024
Lakens (10.1016/j.neuroimage.2025.121304_bib0035) 2013; 4
Craik (10.1016/j.neuroimage.2025.121304_bib0013) 2019; 16
Lau-Zhu (10.1016/j.neuroimage.2025.121304_bib0036) 2019; 36
Mammone (10.1016/j.neuroimage.2025.121304_bib0044) 2012; 12
Sai (10.1016/j.neuroimage.2025.121304_bib0054) 2018; 22
Peñalver (10.1016/j.neuroimage.2025.121304_bib0050) 2023; 271
Chang (10.1016/j.neuroimage.2025.121304_bib0012) 2020; 67
Al-Saegh (10.1016/j.neuroimage.2025.121304_bib0002) 2021; 63
Jas (10.1016/j.neuroimage.2025.121304_bib0027) 2017; 159
Li (10.1016/j.neuroimage.2025.121304_bib0037) 2020; 17
Peelen (10.1016/j.neuroimage.2025.121304_bib0049) 2023; 7
Gong (10.1016/j.neuroimage.2025.121304_bib0020) 2022; 14
Rashid (10.1016/j.neuroimage.2025.121304_bib0052) 2020; 41
Zhang (10.1016/j.neuroimage.2025.121304_bib0067) 2024; 293
Luck (10.1016/j.neuroimage.2025.121304_bib0041) 2014
Islam (10.1016/j.neuroimage.2025.121304_bib0025) 2021; 360
Bae (10.1016/j.neuroimage.2025.121304_bib0004) 2021; 240
10.1016/j.neuroimage.2025.121304_bib0065
Di Flumeri (10.1016/j.neuroimage.2025.121304_bib0017) 2016
Tu (10.1016/j.neuroimage.2025.121304_bib0061) 2023; 8
Klug (10.1016/j.neuroimage.2025.121304_bib0034) 2021; 54
Jung (10.1016/j.neuroimage.2025.121304_bib0028) 2000; 37
Zhang (10.1016/j.neuroimage.2025.121304_bib0069) 2024
Woestenburg (10.1016/j.neuroimage.2025.121304_bib0064) 1983; 16
Keil (10.1016/j.neuroimage.2025.121304_bib0033) 2014; 51
Yang (10.1016/j.neuroimage.2025.121304_bib0066) 2018; 43
Hebart (10.1016/j.neuroimage.2025.121304_bib0023) 2018; 180
Meier (10.1016/j.neuroimage.2025.121304_bib0046) 2022; 11
Biondi (10.1016/j.neuroimage.2025.121304_bib0009) 2022; 63
Pion-Tonachini (10.1016/j.neuroimage.2025.121304_bib0051) 2019; 198
Urigüen (10.1016/j.neuroimage.2025.121304_bib0062) 2015; 12
Mostert (10.1016/j.neuroimage.2025.121304_bib0047) 2018; 5
Ng (10.1016/j.neuroimage.2025.121304_bib0048) 2022; 54
Ashton (10.1016/j.neuroimage.2025.121304_bib0003) 2022; 54
Bae (10.1016/j.neuroimage.2025.121304_bib0006) 2018; 38
Despouy (10.1016/j.neuroimage.2025.121304_bib0016) 2020; 30
10.1016/j.neuroimage.2025.121304_bib0010
Keil (10.1016/j.neuroimage.2025.121304_bib0032) 2022; 59
Bae (10.1016/j.neuroimage.2025.121304_bib0007) 2019; 184
Stergiadis (10.1016/j.neuroimage.2025.121304_bib0056) 2022; 72
Delorme (10.1016/j.neuroimage.2025.121304_bib0014) 2004; 134
Kato (10.1016/j.neuroimage.2025.121304_bib0031) 2022; 119
Trammel (10.1016/j.neuroimage.2025.121304_bib0060) 2023; 277
Luck (10.1016/j.neuroimage.2025.121304_bib0043) 2021; 58
Dimigen (10.1016/j.neuroimage.2025.121304_bib0018) 2020; 207
Jaatinen (10.1016/j.neuroimage.2025.121304_bib0026) 2023; 58
Van Driel (10.1016/j.neuroimage.2025.121304_bib0063) 2021; 352
10.1016/j.neuroimage.2025.121304_bib0042
Zhang (10.1016/j.neuroimage.2025.121304_bib0070) 2024
Carrasco (10.1016/j.neuroimage.2025.121304_bib0011) 2024; 61
Kappenman (10.1016/j.neuroimage.2025.121304_bib0030) 2021; 225
Duncan (10.1016/j.neuroimage.2025.121304_bib0019) 2009; 120
Alizadeh (10.1016/j.neuroimage.2025.121304_bib0001) 2017; 159
Mares (10.1016/j.neuroimage.2025.121304_bib0045) 2020; 211
Grootswagers (10.1016/j.neuroimage.2025.121304_bib0021) 2017; 29
He (10.1016/j.neuroimage.2025.121304_bib0022) 2024; 61
Lopez-Calderon (10.1016/j.neuroimage.2025.121304_bib0040) 2014; 8
Den Ouden (10.1016/j.neuroimage.2025.121304_bib0015) 2023; 280
Richer (10.1016/j.neuroimage.2025.121304_bib0053) 2024; 162
Kang (10.1016/j.neuroimage.2025.121304_bib0029) 2024
Talsma (10.1016/j.neuroimage.2025.121304_bib0058) 2008; 45
Shad (10.1016/j.neuroimage.2025.121304_bib0055) 2020; 20
Bae (10.1016/j.neuroimage.2025.121304_bib0005) 2021; 2
Sun (10.1016/j.neuroimage.2025.121304_bib0057) 2021; 58
Thielen (10.1016/j.neuroimage.2025.121304_bib0059) 2019; 9
Li (10.1016/j.neuroimage.2025.121304_bib0038) 2022; 42
40060477 - bioRxiv. 2025 Feb 25:2025.02.22.639684. doi: 10.1101/2025.02.22.639684.
References_xml – volume: 58
  start-page: 3686
  year: 2023
  end-page: 3704
  ident: bib0026
  article-title: Subjectively preferred octave size is resolved at the late stages of cerebral auditory processing
  publication-title: Eur. J. Neurosci.
– volume: 271
  year: 2023
  ident: bib0050
  article-title: Top-down specific preparatory activations for selective attention and perceptual expectations
  publication-title: Neuroimage
– volume: 119
  year: 2022
  ident: bib0031
  article-title: Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding
  publication-title: Proc. Natl. Acad. Sci.
– volume: 225
  year: 2021
  ident: bib0030
  article-title: ERP CORE: an open resource for human event-related potential research
  publication-title: Neuroimage
– year: 2024
  ident: bib0069
  article-title: Optimal filters for ERP research II: recommended settings for seven common ERP components
  publication-title: Psychophysiology
– volume: 9
  year: 2019
  ident: bib0059
  article-title: Evidence for confounding eye movements under attempted fixation and active viewing in cognitive neuroscience
  publication-title: Sci. Rep.
– volume: 67
  start-page: 1114
  year: 2020
  end-page: 1121
  ident: bib0012
  article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 207
  year: 2020
  ident: bib0018
  article-title: Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments
  publication-title: Neuroimage
– volume: 42
  start-page: 6800
  year: 2022
  end-page: 6809
  ident: bib0038
  article-title: Decoding the specificity of post-error adjustments using EEG-based multivariate pattern analysis
  publication-title: J. Neurosci.
– volume: 11
  year: 2022
  ident: bib0046
  article-title: Stress diminishes outcome but enhances response representations during instrumental learning
  publication-title: Elife
– volume: 41
  start-page: 3468
  year: 2020
  end-page: 3535
  ident: bib0052
  article-title: Towards a brain-based predictome of mental illness
  publication-title: Hum. Brain Mapp.
– volume: 58
  year: 2021
  ident: bib0043
  article-title: Standardized measurement error: a universal metric of data quality for averaged event-related potentials
  publication-title: Psychophysiology
– volume: 8
  start-page: 149
  year: 2023
  end-page: 163
  ident: bib0061
  article-title: Pain-preferential thalamocortical neural dynamics across species
  publication-title: Nat. Hum. Behav.
– volume: 12
  year: 2015
  ident: bib0062
  article-title: EEG artifact removal—state-of-the-art and guidelines
  publication-title: J. Neural Eng.
– volume: 41
  start-page: 3900
  year: 2020
  end-page: 3921
  ident: bib0024
  article-title: Decoding attention control and selection in visual spatial attention
  publication-title: Hum. Brain Mapp.
– volume: 22
  start-page: 664
  year: 2018
  end-page: 670
  ident: bib0054
  article-title: Automated classification and removal of EEG artifacts with SVM and wavelet-ICA
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 43
  start-page: 148
  year: 2018
  end-page: 158
  ident: bib0066
  article-title: Automatic ocular artifacts removal in EEG using deep learning
  publication-title: Biomed. Signal. Process. Control
– volume: 258
  year: 2022
  ident: bib0039
  article-title: EEG decoding of multidimensional information from emotional faces
  publication-title: Neuroimage
– volume: 54
  year: 2022
  ident: bib0048
  article-title: A practical guide to applying machine learning to infant EEG data
  publication-title: Dev. Cogn. Neurosci.
– volume: 162
  year: 2024
  ident: bib0053
  article-title: Mobile neuroimaging: what we have learned about the neural control of human walking, with an emphasis on EEG-based research
  publication-title: Neurosci. Biobehav. Rev.
– reference: Luck, S.J. (2022). Applied event-related potential data analysis. LibreTexts.
– volume: 29
  start-page: 677
  year: 2017
  end-page: 697
  ident: bib0021
  article-title: Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data
  publication-title: J. Cogn. Neurosci.
– volume: 198
  start-page: 181
  year: 2019
  end-page: 197
  ident: bib0051
  article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset, and website
  publication-title: Neuroimage
– volume: 58
  year: 2021
  ident: bib0057
  article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG
  publication-title: Psychophysiology
– volume: 159
  start-page: 417
  year: 2017
  end-page: 429
  ident: bib0027
  article-title: Autoreject: automated artifact rejection for MEG and EEG data
  publication-title: Neuroimage
– volume: 38
  start-page: 409
  year: 2018
  end-page: 422
  ident: bib0006
  article-title: Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials
  publication-title: J. Neurosci.
– reference: Carlson, T.A., Grootswagers, T., & Robinson, A.K. (2019). An introduction to time-resolved decoding analysis for M/EEG (Version 1). ArXiv.
– volume: 2
  start-page: tgaa093
  year: 2021
  ident: bib0005
  article-title: The time course of face representations during perception and working memory maintenance
  publication-title: Cereb. Cortex. Commun.
– volume: 61
  year: 2024
  ident: bib0022
  article-title: Multivariate pattern analysis of EEG reveals nuanced impact of negation on sentence processing in the N400 and later time windows
  publication-title: Psychophysiology
– volume: 59
  year: 2022
  ident: bib0032
  article-title: Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series
  publication-title: Psychophysiology
– volume: 30
  start-page: 2961
  year: 2020
  end-page: 2971
  ident: bib0016
  article-title: A fast visual recognition memory system in humans identified using intracerebral ERP
  publication-title: Cereb. Cortex
– volume: 32
  start-page: 4243
  year: 2022
  end-page: 4254
  ident: bib0008
  article-title: On the extraction of purely motor EEG neural correlates during an upper limb visuomotor task
  publication-title: Cereb. Cortex
– volume: 61
  year: 2024
  ident: bib0011
  article-title: Using multivariate pattern analysis to increase effect sizes for event-related potential analyses
  publication-title: Psychophysiology
– volume: 63
  start-page: 1041
  year: 2022
  end-page: 1063
  ident: bib0009
  article-title: Noninvasive mobile EEG as a tool for seizure monitoring and management: a systematic review
  publication-title: Epilepsia
– volume: 14
  start-page: 348
  year: 2022
  end-page: 365
  ident: bib0020
  article-title: Deep learning in EEG: advance of the last ten-year critical period
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 5
  year: 2018
  ident: bib0047
  article-title: Eye movement-related confounds in neural decoding of visual working memory representations
  publication-title: eNeuro
– volume: 240
  year: 2021
  ident: bib0004
  article-title: Neural evidence for categorical biases in location and orientation representations in a working memory task
  publication-title: Neuroimage
– volume: 37
  start-page: 163
  year: 2000
  end-page: 178
  ident: bib0028
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
– year: 2014
  ident: bib0041
  article-title: An Introduction to the Event-Related Potential Technique (Second)
– volume: 211
  year: 2020
  ident: bib0045
  article-title: Developmental changes in the processing of faces as revealed by EEG decoding
  publication-title: Neuroimage
– volume: 120
  start-page: 1883
  year: 2009
  end-page: 1908
  ident: bib0019
  article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400
  publication-title: Clin. Neurophysiol.
– volume: 16
  start-page: 127
  year: 1983
  end-page: 147
  ident: bib0064
  article-title: The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain
  publication-title: Biol. Psychol.
– volume: 45
  start-page: 216
  year: 2008
  end-page: 228
  ident: bib0058
  article-title: Auto-adaptive averaging: detecting artifacts in event-related potential data using a fully automated procedure
  publication-title: Psychophysiology
– volume: 352
  year: 2021
  ident: bib0063
  article-title: High-pass filtering artifacts in multivariate classification of neural time series data
  publication-title: J. Neurosci. Methods
– volume: 12
  start-page: 533
  year: 2012
  end-page: 542
  ident: bib0044
  article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA
  publication-title: IEEE Sens. J.
– volume: 8
  year: 2014
  ident: bib0040
  article-title: ERPLAB: an open-source toolbox for the analysis of event-related potentials
  publication-title: Front. Hum. Neurosci.
– volume: 63
  year: 2021
  ident: bib0002
  article-title: Deep learning for motor imagery EEG-based classification: a review
  publication-title: Biomed. Signal. Process. Control
– volume: 280
  year: 2023
  ident: bib0015
  article-title: Stimulus expectations do not modulate visual event-related potentials in probabilistic cueing designs
  publication-title: Neuroimage
– volume: 36
  year: 2019
  ident: bib0036
  article-title: Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges
  publication-title: Dev. Cogn. Neurosci.
– year: 2024
  ident: bib0029
  article-title: I see artifacts: iCA-based EEG artifact removal does not improve deep network decoding across three BCI tasks
  publication-title: J. Neural Eng.
– volume: 184
  start-page: 242
  year: 2019
  end-page: 255
  ident: bib0007
  article-title: Decoding motion direction using the topography of sustained ERPs and alpha oscillations
  publication-title: Neuroimage
– start-page: 3187
  year: 2016
  end-page: 3190
  ident: bib0017
  article-title: A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel
  publication-title: Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 159
  start-page: 449
  year: 2017
  end-page: 458
  ident: bib0001
  article-title: Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis
  publication-title: Neuroimage
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: bib0014
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
– year: 2024
  ident: bib0070
  article-title: Evaluating the effectiveness of artifact correction and rejection in event-related potential research
  publication-title: Psychophysiology
– volume: 72
  year: 2022
  ident: bib0056
  article-title: Which BSS method separates better the EEG signals? A comparison of five different algorithms
  publication-title: Biomed. Signal. Process. Control
– volume: 360
  year: 2021
  ident: bib0025
  article-title: Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications
  publication-title: J. Neurosci. Methods
– volume: 7
  start-page: 1430
  year: 2023
  end-page: 1441
  ident: bib0049
  article-title: Testing cognitive theories with multivariate pattern analysis of neuroimaging data
  publication-title: Nat. Hum. Behav.
– volume: 293
  year: 2024
  ident: bib0067
  article-title: Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data
  publication-title: Neuroimage
– volume: 51
  start-page: 1
  year: 2014
  end-page: 21
  ident: bib0033
  article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography: guidelines for EEG and MEG
  publication-title: Psychophysiology
– volume: 20
  start-page: 14565
  year: 2020
  end-page: 14577
  ident: bib0055
  article-title: Impedance and noise of passive and active dry EEG electrodes: a review
  publication-title: IEEE Sens. J.
– volume: 180
  start-page: 4
  year: 2018
  end-page: 18
  ident: bib0023
  article-title: Deconstructing multivariate decoding for the study of brain function
  publication-title: Neuroimage
– year: 2024
  ident: bib0068
  article-title: Optimal filters for ERP research I: a general approach for selecting filter settings
  publication-title: Psychophysiology
– reference: .
– volume: 16
  year: 2019
  ident: bib0013
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
– volume: 54
  year: 2022
  ident: bib0003
  article-title: Time-resolved multivariate pattern analysis of infant EEG data: a practical tutorial
  publication-title: Dev. Cogn. Neurosci.
– reference: Xiong, C., Petro, N.M., Bo, K., Cui, L., Keil, A., & Ding, M. (2024). Rhythmic sampling and competition of target and distractor in a motion detection task. bioRxiv.
– volume: 17
  year: 2020
  ident: bib0037
  article-title: Review of semi-dry electrodes for EEG recording
  publication-title: J. Neural Eng.
– volume: 4
  year: 2013
  ident: bib0035
  article-title: Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for
  publication-title: Front. Psychol.
– volume: 54
  start-page: 8406
  year: 2021
  end-page: 8420
  ident: bib0034
  article-title: Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments
  publication-title: Eur. J. Neurosci.
– volume: 277
  year: 2023
  ident: bib0060
  article-title: Decoding semantic relatedness and prediction from EEG: a classification method comparison
  publication-title: Neuroimage
– volume: 72
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0056
  article-title: Which BSS method separates better the EEG signals? A comparison of five different algorithms
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2021.103292
– volume: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121304_bib0013
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab0ab5
– volume: 20
  start-page: 14565
  issue: 24
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0055
  article-title: Impedance and noise of passive and active dry EEG electrodes: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3012394
– volume: 61
  issue: 7
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0011
  article-title: Using multivariate pattern analysis to increase effect sizes for event-related potential analyses
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14570
– year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0029
  article-title: I see artifacts: iCA-based EEG artifact removal does not improve deep network decoding across three BCI tasks
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ad788e
– ident: 10.1016/j.neuroimage.2025.121304_bib0065
  doi: 10.1101/2024.09.26.615254
– volume: 54
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0003
  article-title: Time-resolved multivariate pattern analysis of infant EEG data: a practical tutorial
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2022.101094
– volume: 32
  start-page: 4243
  issue: 19
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0008
  article-title: On the extraction of purely motor EEG neural correlates during an upper limb visuomotor task
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhab479
– volume: 7
  start-page: 1430
  issue: 9
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121304_bib0049
  article-title: Testing cognitive theories with multivariate pattern analysis of neuroimaging data
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-023-01680-z
– volume: 159
  start-page: 449
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121304_bib0001
  article-title: Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.058
– volume: 5
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121304_bib0047
  article-title: Eye movement-related confounds in neural decoding of visual working memory representations
  publication-title: eNeuro
  doi: 10.1523/ENEURO.0401-17.2018
– year: 2014
  ident: 10.1016/j.neuroimage.2025.121304_bib0041
– ident: 10.1016/j.neuroimage.2025.121304_bib0042
– volume: 120
  start-page: 1883
  issue: 11
  year: 2009
  ident: 10.1016/j.neuroimage.2025.121304_bib0019
  article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.07.045
– volume: 162
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0053
  article-title: Mobile neuroimaging: what we have learned about the neural control of human walking, with an emphasis on EEG-based research
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2024.105718
– volume: 207
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0018
  article-title: Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116117
– volume: 180
  start-page: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121304_bib0023
  article-title: Deconstructing multivariate decoding for the study of brain function
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.005
– volume: 119
  issue: 21
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0031
  article-title: Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2114966119
– volume: 29
  start-page: 677
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121304_bib0021
  article-title: Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_01068
– volume: 293
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0067
  article-title: Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2024.120625
– volume: 37
  start-page: 163
  issue: 2
  year: 2000
  ident: 10.1016/j.neuroimage.2025.121304_bib0028
  article-title: Removing electroencephalographic artifacts by blind source separation
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0069
  article-title: Optimal filters for ERP research II: recommended settings for seven common ERP components
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14530
– year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0070
  article-title: Evaluating the effectiveness of artifact correction and rejection in event-related potential research
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14511
– volume: 2
  start-page: tgaa093
  issue: 1
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0005
  article-title: The time course of face representations during perception and working memory maintenance
  publication-title: Cereb. Cortex. Commun.
  doi: 10.1093/texcom/tgaa093
– volume: 38
  start-page: 409
  issue: 2
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121304_bib0006
  article-title: Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2860-17.2017
– volume: 63
  start-page: 1041
  issue: 5
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0009
  article-title: Noninvasive mobile EEG as a tool for seizure monitoring and management: a systematic review
  publication-title: Epilepsia
  doi: 10.1111/epi.17220
– volume: 58
  start-page: 3686
  issue: 7
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121304_bib0026
  article-title: Subjectively preferred octave size is resolved at the late stages of cerebral auditory processing
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.16150
– volume: 61
  issue: 4
  year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0022
  article-title: Multivariate pattern analysis of EEG reveals nuanced impact of negation on sentence processing in the N400 and later time windows
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14491
– volume: 4
  year: 2013
  ident: 10.1016/j.neuroimage.2025.121304_bib0035
  article-title: Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2013.00863
– volume: 12
  start-page: 533
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2025.121304_bib0044
  article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2115236
– volume: 280
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121304_bib0015
  article-title: Stimulus expectations do not modulate visual event-related potentials in probabilistic cueing designs
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120347
– volume: 12
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroimage.2025.121304_bib0062
  article-title: EEG artifact removal—state-of-the-art and guidelines
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/3/031001
– volume: 159
  start-page: 417
  year: 2017
  ident: 10.1016/j.neuroimage.2025.121304_bib0027
  article-title: Autoreject: automated artifact rejection for MEG and EEG data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.06.030
– volume: 8
  year: 2014
  ident: 10.1016/j.neuroimage.2025.121304_bib0040
  article-title: ERPLAB: an open-source toolbox for the analysis of event-related potentials
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2014.00213
– volume: 58
  issue: 6
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0043
  article-title: Standardized measurement error: a universal metric of data quality for averaged event-related potentials
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13793
– volume: 41
  start-page: 3468
  issue: 12
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0052
  article-title: Towards a brain-based predictome of mental illness
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25013
– year: 2024
  ident: 10.1016/j.neuroimage.2025.121304_bib0068
  article-title: Optimal filters for ERP research I: a general approach for selecting filter settings
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14531
– volume: 277
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121304_bib0060
  article-title: Decoding semantic relatedness and prediction from EEG: a classification method comparison
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.120268
– volume: 45
  start-page: 216
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2025.121304_bib0058
  article-title: Auto-adaptive averaging: detecting artifacts in event-related potential data using a fully automated procedure
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2007.00612.x
– volume: 8
  start-page: 149
  issue: 1
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121304_bib0061
  article-title: Pain-preferential thalamocortical neural dynamics across species
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-023-01714-6
– volume: 184
  start-page: 242
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121304_bib0007
  article-title: Decoding motion direction using the topography of sustained ERPs and alpha oscillations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.09.029
– volume: 198
  start-page: 181
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121304_bib0051
  article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset, and website
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.05.026
– ident: 10.1016/j.neuroimage.2025.121304_bib0010
  doi: 10.7551/mitpress/11442.003.0075
– volume: 271
  year: 2023
  ident: 10.1016/j.neuroimage.2025.121304_bib0050
  article-title: Top-down specific preparatory activations for selective attention and perceptual expectations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.119960
– volume: 67
  start-page: 1114
  issue: 4
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0012
  article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2930186
– start-page: 3187
  year: 2016
  ident: 10.1016/j.neuroimage.2025.121304_bib0017
  article-title: A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel
– volume: 225
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0030
  article-title: ERP CORE: an open resource for human event-related potential research
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117465
– volume: 54
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0048
  article-title: A practical guide to applying machine learning to infant EEG data
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2022.101096
– volume: 58
  issue: 2
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0057
  article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13731
– volume: 17
  issue: 5
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0037
  article-title: Review of semi-dry electrodes for EEG recording
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abbd50
– volume: 30
  start-page: 2961
  issue: 5
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0016
  article-title: A fast visual recognition memory system in humans identified using intracerebral ERP
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhz287
– volume: 54
  start-page: 8406
  issue: 12
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0034
  article-title: Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.14992
– volume: 63
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0002
  article-title: Deep learning for motor imagery EEG-based classification: a review
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2020.102172
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 10.1016/j.neuroimage.2025.121304_bib0014
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 11
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0046
  article-title: Stress diminishes outcome but enhances response representations during instrumental learning
  publication-title: Elife
  doi: 10.7554/eLife.67517
– volume: 211
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0045
  article-title: Developmental changes in the processing of faces as revealed by EEG decoding
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116660
– volume: 352
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0063
  article-title: High-pass filtering artifacts in multivariate classification of neural time series data
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2021.109080
– volume: 51
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2025.121304_bib0033
  article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography: guidelines for EEG and MEG
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12147
– volume: 59
  issue: 5
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0032
  article-title: Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series
  publication-title: Psychophysiology
  doi: 10.1111/psyp.14052
– volume: 14
  start-page: 348
  issue: 2
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0020
  article-title: Deep learning in EEG: advance of the last ten-year critical period
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3079712
– volume: 258
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0039
  article-title: EEG decoding of multidimensional information from emotional faces
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2022.119374
– volume: 43
  start-page: 148
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121304_bib0066
  article-title: Automatic ocular artifacts removal in EEG using deep learning
  publication-title: Biomed. Signal. Process. Control
  doi: 10.1016/j.bspc.2018.02.021
– volume: 22
  start-page: 664
  issue: 3
  year: 2018
  ident: 10.1016/j.neuroimage.2025.121304_bib0054
  article-title: Automated classification and removal of EEG artifacts with SVM and wavelet-ICA
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2723420
– volume: 16
  start-page: 127
  issue: 1–2
  year: 1983
  ident: 10.1016/j.neuroimage.2025.121304_bib0064
  article-title: The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain
  publication-title: Biol. Psychol.
  doi: 10.1016/0301-0511(83)90059-5
– volume: 36
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121304_bib0036
  article-title: Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2019.100635
– volume: 42
  start-page: 6800
  issue: 35
  year: 2022
  ident: 10.1016/j.neuroimage.2025.121304_bib0038
  article-title: Decoding the specificity of post-error adjustments using EEG-based multivariate pattern analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0590-22.2022
– volume: 41
  start-page: 3900
  issue: 14
  year: 2020
  ident: 10.1016/j.neuroimage.2025.121304_bib0024
  article-title: Decoding attention control and selection in visual spatial attention
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25094
– volume: 9
  issue: 1
  year: 2019
  ident: 10.1016/j.neuroimage.2025.121304_bib0059
  article-title: Evidence for confounding eye movements under attempted fixation and active viewing in cognitive neuroscience
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-54018-z
– volume: 240
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0004
  article-title: Neural evidence for categorical biases in location and orientation representations in a working memory task
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118366
– volume: 360
  year: 2021
  ident: 10.1016/j.neuroimage.2025.121304_bib0025
  article-title: Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2021.109249
– reference: 40060477 - bioRxiv. 2025 Feb 25:2025.02.22.639684. doi: 10.1101/2025.02.22.639684.
SSID ssj0009148
Score 2.4889958
Snippet •We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms,...
Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 121304
SubjectTerms Accuracy
Adult
Artifact correction
Artifact rejection
Brain - physiology
Classification
College students
Datasets
EEG
Electroencephalography
Electroencephalography - methods
ERP
Event-related potentials
Evoked Potentials - physiology
Eye movements
Female
Humans
Male
Mismatch negativity
MVPA
Signal Processing, Computer-Assisted
Support Vector Machine
Support vector machines
Young Adult
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcQh2kXNNgGHQX5wDU08UfiaKfC2qGJculA3CzHjqci0VZduXLZP857ttOKAxLSpBwSJ3Y-3vP7_Ry_90zImVfelEXLs8JAbxI2d1ljWJ1ZpzzHX_oi_Mqe3JRXt-LXvbzfIZddLAy6VSbbH216sNapZJC-5mA5mw2mwAwAboChyKCpmHZbiArz558_b9086kLEcDjJM7w6efNEH6-QM3L2CD0XRopMYqoFnpZs6yAqZPJ_hVRvMdGASONPZC9RSTqMT7tPdtr5AfkwSZPln8m_OKEL2ESB5dEYD0kXnuL7YUADtbg0RwhsoGbutuWr9iEVw4Z1l9vwAmxgejfJQo3rH8MMcdBRB8NYhEE8PRr9pOgXApr9hdyOR78vr7K05kJmharXaPtyB7jvjMgtl74FhlBxJ8rcNLVEQiAZSNVbgDHvmLQ4QqxKJ4rCK5zR_0p254t5e0RonTdVLoyTxuAgRzYGV-NUhVVCWdjpkaL7zHoZU2vozufsQW9Fo1E0OoqmRy5QHpvrMTl2KFis_uikHdqrovSMl6bKW8FEqSrWYKYxxlyT89b1SN1JU3fxp2AxoaHZOx7g-6buKz19Z-1-pzw62Yq_mgNoAEkA1e2Rw6hQm_cTmMwTZPLtv257TD7iUfRb7JPd9eqpPQEutW5OQ2d5AfdaGYU
  priority: 102
  providerName: Elsevier
Title Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811925003076
https://dx.doi.org/10.1016/j.neuroimage.2025.121304
https://www.ncbi.nlm.nih.gov/pubmed/40472911
https://www.proquest.com/docview/3219284474
https://doaj.org/article/f816f236a70e4246872b557022db03ed
Volume 316
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4SIgF8aY8Kg-sgcRxEkdMBQrl0S5QxGY5diy1Ei2CsrLwx7mLnRYGBANSh8qJIzt39vddfA9CDq2wKo3KOIgUrCauQxMUiuWBNsLG-EmfV5-yu7200-fXj8njl1Jf6BPm0gO7F3dsRZRaFqcqC0vOeCoyVmDaKMZMEcalwd0XMK82pup0u8Dyvd-O8-aqskMOnmCNgk3IEkyqEPvibDUYVTn7v2HST5yzwp6LVbLiSSNtucGukblytE6Wuv5YfIN8uKNbQCEKfI66yEc6thSnh6ELVGMRjiqEgaqRmbW_lEPfDD_s-zwLJMAH3D10g6rH7XkrQMQz1IDBioCHl9vtS4oeIKDDm6R_0b4_6wS-ukKgucgnuMuFBhDeKB7qOLElcIEsNjwNVZEnCP0JA_lZDYBlDUs02oJZangUWYFn91tkYTQelTuE5mGRhVyZRCk0Z5JCYd1NEWnBhYY_DRLVr1k-uyQasvYuG8qZaCSKRjrRNMgpymN6P6bBrhpAOaRXDvmbcjRIXktT1pGmsDfCgwZ_GMDJtK9nI45l_LH3fq080u8KrzIGeAA6wDO4vO0Uajo_jmk7QSa7_zHvPbKMY3GOivtkYfLyVh4AeZoUTTJ_9B41yWLr6qbTa1ar5hP2CxZ6
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcYSBsvE_ukDDY_7DVq4o_EEU8dKyuj7Qsw8WY5doyKtLbqur9g__jubKcVD0hISHmI7F6a5M73-zm-OxPy1StvyqLlWWFgNAmbu6wxrM6sU57jJ30RPmVPpuXoRvy8lbc75KzLhcGwyuT7o08P3jq19NPb7C9ns_4VMAOAG2AoMlhq-YLsYXUqMPa9wcXlaLqtvVuImBEneYYCKaAnhnmFspGz3zB4YbLIJFZb4GnXtg6lQjH_B2D1GBkNoHR-QF4nNkkH8YbfkJ12_pa8nKT18nfkX1zTBXiiQPRoTImkC0_xETGngVrcnSPkNlAzd9v2VXufmuFA2eU2wwAvcPVrkgWJ8fdBhlDoqIOZLCIhdg-HPyiGhoBxvyc358Prs1GWtl3IrFD1Gt1f7gD6nRG55dK3QBIq7kSZm6aWyAkkA8V6C0jmHZMWJ4lV6URReIWL-h_I7nwxbw8JrfOmyoVx0hic58jG4IacqrBKKAsnPVJ0r1kvY3UN3YWd3eutajSqRkfV9Mg31Mfm91gfOzQsVnc6GYj2qig946Wp8lYwUaqKNVhsjDHX5Lx1PVJ32tRdCio4TbjQ7Ak3cLqRfWCqT5Q-7oxHJ3fxR3PADeAJooLuj9GgNs8nsJ4n6OToWX_7hbwaXU_GenwxvfxE9rEnhjEek9316m97AtRq3XxOQ-c_cLwdxA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+impact+of+artifact+correction+and+artifact+rejection+on+the+performance+of+SVM-+and+LDA-based+decoding+of+EEG+signals&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Zhang%2C+Guanghui&rft.au=Luck%2C+Steven+J.&rft.date=2025-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=316&rft_id=info:doi/10.1016%2Fj.neuroimage.2025.121304&rft.externalDocID=S1053811925003076
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon