Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals
•We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms, including both easy and difficult decoding tasks, various subject populations, and differing electrode densities.•We found that the combination...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 316; p. 121304 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.08.2025
Elsevier Limited Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 1053-8119 1095-9572 |
DOI | 10.1016/j.neuroimage.2025.121304 |
Cover
Loading…
Abstract | •We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms, including both easy and difficult decoding tasks, various subject populations, and differing electrode densities.•We found that the combination of artifact correction and rejection did not significantly enhance decoding performance in the vast majority of cases.•However, we strongly recommended using artifact correction prior to decoding analyses to reduce artifact-related confounds.
Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased statistical power for conventional univariate analyses. However, it is not clear whether eliminating these artifacts during preprocessing enhances the performance of multivariate pattern analysis (MVPA; decoding), especially given that artifact rejection reduces the number of trials available for training the decoder. This study aimed to evaluate the impact of artifact-minimization approaches on the decoding performance of support vector machines. Independent component analysis (ICA) was used to correct ocular artifacts, and artifact rejection was used to discard trials with large voltage deflections from other sources (e.g., muscle artifacts). We assessed decoding performance in relatively simple binary classification tasks using data from seven commonly-used event-related potential paradigms (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity), as well as more challenging multi-way decoding tasks, including stimulus location and stimulus orientation. The results indicated that the combination of artifact correction and rejection did not improve decoding performance in the vast majority of cases. However, artifact correction may still be essential to minimize artifact-related confounds that might artificially inflate decoding accuracy. Researchers who are using similar methods to decode EEG data from paradigms, populations, and recording setups that are similar to those examined here may benefit from our recommendations to optimize decoding performance and avoid incorrect conclusions. |
---|---|
AbstractList | Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased statistical power for conventional univariate analyses. However, it is not clear whether eliminating these artifacts during preprocessing enhances the performance of multivariate pattern analysis (MVPA; decoding), especially given that artifact rejection reduces the number of trials available for training the decoder. This study aimed to evaluate the impact of artifact-minimization approaches on the decoding performance of support vector machines. Independent component analysis (ICA) was used to correct ocular artifacts, and artifact rejection was used to discard trials with large voltage deflections from other sources (e.g., muscle artifacts). We assessed decoding performance in relatively simple binary classification tasks using data from seven commonly-used event-related potential paradigms (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity), as well as more challenging multi-way decoding tasks, including stimulus location and stimulus orientation. The results indicated that the combination of artifact correction and rejection did not improve decoding performance in the vast majority of cases. However, artifact correction may still be essential to minimize artifact-related confounds that might artificially inflate decoding accuracy. Researchers who are using similar methods to decode EEG data from paradigms, populations, and recording setups that are similar to those examined here may benefit from our recommendations to optimize decoding performance and avoid incorrect conclusions. •We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms, including both easy and difficult decoding tasks, various subject populations, and differing electrode densities.•We found that the combination of artifact correction and rejection did not significantly enhance decoding performance in the vast majority of cases.•However, we strongly recommended using artifact correction prior to decoding analyses to reduce artifact-related confounds. Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased statistical power for conventional univariate analyses. However, it is not clear whether eliminating these artifacts during preprocessing enhances the performance of multivariate pattern analysis (MVPA; decoding), especially given that artifact rejection reduces the number of trials available for training the decoder. This study aimed to evaluate the impact of artifact-minimization approaches on the decoding performance of support vector machines. Independent component analysis (ICA) was used to correct ocular artifacts, and artifact rejection was used to discard trials with large voltage deflections from other sources (e.g., muscle artifacts). We assessed decoding performance in relatively simple binary classification tasks using data from seven commonly-used event-related potential paradigms (N170, mismatch negativity, N2pc, P3b, N400, lateralized readiness potential, and error-related negativity), as well as more challenging multi-way decoding tasks, including stimulus location and stimulus orientation. The results indicated that the combination of artifact correction and rejection did not improve decoding performance in the vast majority of cases. However, artifact correction may still be essential to minimize artifact-related confounds that might artificially inflate decoding accuracy. Researchers who are using similar methods to decode EEG data from paradigms, populations, and recording setups that are similar to those examined here may benefit from our recommendations to optimize decoding performance and avoid incorrect conclusions. |
ArticleNumber | 121304 |
Author | Luck, Steven J. Zhang, Guanghui |
Author_xml | – sequence: 1 givenname: Guanghui orcidid: 0000-0003-0134-3614 surname: Zhang fullname: Zhang, Guanghui email: zhang.guanghui@foxmail.com organization: Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, Liaoning, China – sequence: 2 givenname: Steven J. orcidid: 0000-0002-3725-1474 surname: Luck fullname: Luck, Steven J. organization: Center for Mind & Brain, University of California-Davis, Davis, CA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40472911$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUU1v3CAQRVWq5qP9C5Wlnr0BDDbcuk22SaSteujHFWEYtri7ZgveSjn3jxfibSL1FAlpRjNv3jDvnaOTMYyAUEXwgmDSXg6LEQ4x-J3ewIJiyheEkgazF-iMYMlryTt6UnLe1IIQeYrOUxowxpIw8QqdMsw6Kgk5Q3-WKUFKftxU0w-o_G6vzVQFV-k4eVdyE2IEM_kwVnq0T_UIw7GcX5ndQ3Qh7vRooBB8-f6pfphYXy_rXiewlQUTbFmV26vVTZX8ZtTb9Bq9dDnAm2O8QN8-rr5e3dbrzzd3V8t1bZiQU53_iy2mxGqGTcMdCIq7xrIW617y3BCc6kY4Q6V0lnJDBMNdaxkhTnSkay7Q3cxrgx7UPmb54r0K2quHQogbVa4zW1BOkNbRptUdBkZZKzrac95hSm2PG7CZ693MtY_h1wHSpIZwiOUa1VAiqWCsYxn19og69Duwjzv_6Z8BYgaYGFKK4B4hBKtitRrUk9WqWK1mq_Poh3kUsmS_PUSVjIcsvvXFr3yTfw7J-_9IzNaP3ujtT7h_HsVf0z3Jog |
Cites_doi | 10.1016/j.bspc.2021.103292 10.1088/1741-2552/ab0ab5 10.1109/JSEN.2020.3012394 10.1111/psyp.14570 10.1088/1741-2552/ad788e 10.1101/2024.09.26.615254 10.1016/j.dcn.2022.101094 10.1093/cercor/bhab479 10.1038/s41562-023-01680-z 10.1016/j.neuroimage.2017.07.058 10.1523/ENEURO.0401-17.2018 10.1016/j.clinph.2009.07.045 10.1016/j.neubiorev.2024.105718 10.1016/j.neuroimage.2019.116117 10.1016/j.neuroimage.2017.08.005 10.1073/pnas.2114966119 10.1162/jocn_a_01068 10.1016/j.neuroimage.2024.120625 10.1111/1469-8986.3720163 10.1111/psyp.14530 10.1111/psyp.14511 10.1093/texcom/tgaa093 10.1523/JNEUROSCI.2860-17.2017 10.1111/epi.17220 10.1111/ejn.16150 10.1111/psyp.14491 10.3389/fpsyg.2013.00863 10.1109/JSEN.2011.2115236 10.1016/j.neuroimage.2023.120347 10.1088/1741-2560/12/3/031001 10.1016/j.neuroimage.2017.06.030 10.3389/fnhum.2014.00213 10.1111/psyp.13793 10.1002/hbm.25013 10.1111/psyp.14531 10.1016/j.neuroimage.2023.120268 10.1111/j.1469-8986.2007.00612.x 10.1038/s41562-023-01714-6 10.1016/j.neuroimage.2018.09.029 10.1016/j.neuroimage.2019.05.026 10.7551/mitpress/11442.003.0075 10.1016/j.neuroimage.2023.119960 10.1109/TBME.2019.2930186 10.1016/j.neuroimage.2020.117465 10.1016/j.dcn.2022.101096 10.1111/psyp.13731 10.1088/1741-2552/abbd50 10.1093/cercor/bhz287 10.1111/ejn.14992 10.1016/j.bspc.2020.102172 10.1016/j.jneumeth.2003.10.009 10.7554/eLife.67517 10.1016/j.neuroimage.2020.116660 10.1016/j.jneumeth.2021.109080 10.1111/psyp.12147 10.1111/psyp.14052 10.1109/TCDS.2021.3079712 10.1016/j.neuroimage.2022.119374 10.1016/j.bspc.2018.02.021 10.1109/JBHI.2017.2723420 10.1016/0301-0511(83)90059-5 10.1016/j.dcn.2019.100635 10.1523/JNEUROSCI.0590-22.2022 10.1002/hbm.25094 10.1038/s41598-019-54018-z 10.1016/j.neuroimage.2021.118366 10.1016/j.jneumeth.2021.109249 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. P64 RC3 DOA |
DOI | 10.1016/j.neuroimage.2025.121304 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Genetics Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
ExternalDocumentID | oai_doaj_org_article_f816f236a70e4246872b557022db03ed 40472911 10_1016_j_neuroimage_2025_121304 S1053811925003076 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPKN AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BENPR BHPHI BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HCIFZ IHE J1W KOM LG5 LX8 M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OK1 OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAE SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K TEORI UV1 YK3 Z5R ZU3 ~G- 6I. AAFTH AGRNS ALIPV 29N 53G 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAQFI AAQXK AAYXX ABUWG ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AFKRA AGHFR AGQPQ AKRLJ ASPBG AVWKF AZFZN AZQEC BBNVY BPHCQ BVXVI CAG CCPQU CITATION COF DWQXO EJD FEDTE FGOYB FYUFA G-2 GNUQQ HDW HEI HMCUK HMK HMO HMQ HVGLF HZ~ LK8 M1P PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO R2- SNS UKHRP WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 8FD FR3 K9. P64 RC3 |
ID | FETCH-LOGICAL-c489t-9110d021da40c35fe82073d460ab95021852a38fc299fd25c184076d411f87173 |
IEDL.DBID | DOA |
ISSN | 1053-8119 |
IngestDate | Wed Aug 27 01:22:17 EDT 2025 Sat Aug 23 13:33:12 EDT 2025 Mon Jul 21 06:06:21 EDT 2025 Thu Aug 28 04:20:45 EDT 2025 Sat Aug 09 17:30:45 EDT 2025 Tue Aug 26 17:21:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Artifact rejection ERP Artifact correction EEG MVPA |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-9110d021da40c35fe82073d460ab95021852a38fc299fd25c184076d411f87173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0134-3614 0000-0002-3725-1474 |
OpenAccessLink | https://doaj.org/article/f816f236a70e4246872b557022db03ed |
PMID | 40472911 |
PQID | 3219284474 |
PQPubID | 2031077 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f816f236a70e4246872b557022db03ed proquest_journals_3219284474 pubmed_primary_40472911 crossref_primary_10_1016_j_neuroimage_2025_121304 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2025_121304 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2025_121304 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 2025-08-00 2025-Aug-01 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2025 |
Publisher | Elsevier Inc Elsevier Limited Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited – name: Elsevier |
References | Keil, Bernat, Cohen, Ding, Fabiani, Gratton, Kappenman, Maris, Mathewson, Ward, Weisz (bib0032) 2022; 59 Chang, Hsu, Pion-Tonachini, Jung (bib0012) 2020; 67 Kappenman, Farrens, Zhang, Stewart, Luck (bib0030) 2021; 225 Xiong, C., Petro, N.M., Bo, K., Cui, L., Keil, A., & Ding, M. (2024). Rhythmic sampling and competition of target and distractor in a motion detection task. bioRxiv. Biondi, Santoro, Viana, Laiou, Pal, Bruno, Richardson (bib0009) 2022; 63 Keil, Debener, Gratton, Junghöfer, Kappenman, Luck, Luu, Miller, Yee (bib0033) 2014; 51 Zhang, Garrett, Luck (bib0069) 2024 Mostert, Albers, Brinkman, Todorova, Kok, De Lange (bib0047) 2018; 5 Tu, Li, Zhang, Zhang, Bi, Yue, Hu (bib0061) 2023; 8 Despouy, Curot, Deudon, Gardy, Denuelle, Sol, Lotterie, Valton, Barbeau (bib0016) 2020; 30 Zhang, Garrett, Simmons, Kiat, Luck (bib0070) 2024 Li, Wang, Li, Chen (bib0038) 2022; 42 Ng, Reh, Mostafavi (bib0048) 2022; 54 Yang, Duan, Fan, Hu, Wang (bib0066) 2018; 43 Peelen, Downing (bib0049) 2023; 7 Richer, Bradford, Ferris (bib0053) 2024; 162 Woestenburg, Verbaten, Slangen (bib0064) 1983; 16 Carlson, T.A., Grootswagers, T., & Robinson, A.K. (2019). An introduction to time-resolved decoding analysis for M/EEG (Version 1). ArXiv. Pion-Tonachini, Kreutz-Delgado, Makeig (bib0051) 2019; 198 Bae (bib0005) 2021; 2 Mammone, La Foresta, Morabito (bib0044) 2012; 12 Meier, Staresina, Schwabe (bib0046) 2022; 11 Lopez-Calderon, Luck (bib0040) 2014; 8 Kato, Okumura, Tsubo, Honda, Sugiyama, Touhara, Okamoto (bib0031) 2022; 119 Islam, Ghorbanzadeh, Rastegarnia (bib0025) 2021; 360 . Sun, Chan, H. Hsiao, Tang (bib0057) 2021; 58 Dimigen (bib0018) 2020; 207 Lakens (bib0035) 2013; 4 Alizadeh, Jamalabadi, Schönauer, Leibold, Gais (bib0001) 2017; 159 Al-Saegh, Dawwd, Abdul-Jabbar (bib0002) 2021; 63 Stergiadis, Kostaridou, Klados (bib0056) 2022; 72 Bae, Luck (bib0007) 2019; 184 Bibián, Irastorza-Landa, Schönauer, Birbaumer, López-Larraz, Ramos-Murguialday (bib0008) 2022; 32 Luck (bib0041) 2014 Li, Wu, Xia, He, Jin (bib0037) 2020; 17 He, Sommer, Hansen-Schirra, Nagels (bib0022) 2024; 61 Urigüen, Garcia-Zapirain (bib0062) 2015; 12 Shad, Molinas, Ytterdal (bib0055) 2020; 20 Talsma (bib0058) 2008; 45 Kang, Chen, Wallraven (bib0029) 2024 Jas, Engemann, Bekhti, Raimondo, Gramfort (bib0027) 2017; 159 Luck, Stewart, Simmons, Rhemtulla (bib0043) 2021; 58 Jaatinen, Väntänen, Salmela, Alho (bib0026) 2023; 58 Hong, Bo, Meyyappan, Tong, Ding (bib0024) 2020; 41 Hebart, Baker (bib0023) 2018; 180 Den Ouden, Zhou, Mepani, Kovács, Vogels, Feuerriegel (bib0015) 2023; 280 Peñalver, López-García, González-García, Aguado-López, Górriz, Ruz (bib0050) 2023; 271 Gong, Xing, Cichocki, Li (bib0020) 2022; 14 Zhang, Carrasco, Winsler, Bahle, Cong, Luck (bib0067) 2024; 293 Luck, S.J. (2022). Applied event-related potential data analysis. LibreTexts. Thielen, Bosch, Van Leeuwen, Van Gerven, Van Lier (bib0059) 2019; 9 Lau-Zhu, Lau, McLoughlin (bib0036) 2019; 36 Klug, Gramann (bib0034) 2021; 54 Sai, Mokhtar, Arof, Cumming, Iwahashi (bib0054) 2018; 22 Bae (bib0004) 2021; 240 Delorme, Makeig (bib0014) 2004; 134 Mares, Ewing, Farran, Smith, Smith (bib0045) 2020; 211 Ashton, Zinszer, Cichy, Nelson, Aslin, Bayet (bib0003) 2022; 54 Bae, Luck (bib0006) 2018; 38 Zhang, Garrett, Luck (bib0068) 2024 Carrasco, Bahle, Simmons, Luck (bib0011) 2024; 61 Rashid, Calhoun (bib0052) 2020; 41 Di Flumeri, Arico, Borghini, Colosimo, Babiloni (bib0017) 2016 Van Driel, Olivers, Fahrenfort (bib0063) 2021; 352 Grootswagers, Wardle, Carlson (bib0021) 2017; 29 Jung, Makeig, Humphries, Lee, McKeown, Iragui, Sejnowski (bib0028) 2000; 37 Li, Zhang, Liu, Luo (bib0039) 2022; 258 Trammel, Khodayari, Luck, Traxler, Swaab (bib0060) 2023; 277 Craik, He, Contreras-Vidal (bib0013) 2019; 16 Duncan, Barry, Connolly, Fischer, Michie, Näätänen, Polich, Reinvang, Van Petten (bib0019) 2009; 120 Li (10.1016/j.neuroimage.2025.121304_bib0039) 2022; 258 Bibián (10.1016/j.neuroimage.2025.121304_bib0008) 2022; 32 Hong (10.1016/j.neuroimage.2025.121304_bib0024) 2020; 41 Zhang (10.1016/j.neuroimage.2025.121304_bib0068) 2024 Lakens (10.1016/j.neuroimage.2025.121304_bib0035) 2013; 4 Craik (10.1016/j.neuroimage.2025.121304_bib0013) 2019; 16 Lau-Zhu (10.1016/j.neuroimage.2025.121304_bib0036) 2019; 36 Mammone (10.1016/j.neuroimage.2025.121304_bib0044) 2012; 12 Sai (10.1016/j.neuroimage.2025.121304_bib0054) 2018; 22 Peñalver (10.1016/j.neuroimage.2025.121304_bib0050) 2023; 271 Chang (10.1016/j.neuroimage.2025.121304_bib0012) 2020; 67 Al-Saegh (10.1016/j.neuroimage.2025.121304_bib0002) 2021; 63 Jas (10.1016/j.neuroimage.2025.121304_bib0027) 2017; 159 Li (10.1016/j.neuroimage.2025.121304_bib0037) 2020; 17 Peelen (10.1016/j.neuroimage.2025.121304_bib0049) 2023; 7 Gong (10.1016/j.neuroimage.2025.121304_bib0020) 2022; 14 Rashid (10.1016/j.neuroimage.2025.121304_bib0052) 2020; 41 Zhang (10.1016/j.neuroimage.2025.121304_bib0067) 2024; 293 Luck (10.1016/j.neuroimage.2025.121304_bib0041) 2014 Islam (10.1016/j.neuroimage.2025.121304_bib0025) 2021; 360 Bae (10.1016/j.neuroimage.2025.121304_bib0004) 2021; 240 10.1016/j.neuroimage.2025.121304_bib0065 Di Flumeri (10.1016/j.neuroimage.2025.121304_bib0017) 2016 Tu (10.1016/j.neuroimage.2025.121304_bib0061) 2023; 8 Klug (10.1016/j.neuroimage.2025.121304_bib0034) 2021; 54 Jung (10.1016/j.neuroimage.2025.121304_bib0028) 2000; 37 Zhang (10.1016/j.neuroimage.2025.121304_bib0069) 2024 Woestenburg (10.1016/j.neuroimage.2025.121304_bib0064) 1983; 16 Keil (10.1016/j.neuroimage.2025.121304_bib0033) 2014; 51 Yang (10.1016/j.neuroimage.2025.121304_bib0066) 2018; 43 Hebart (10.1016/j.neuroimage.2025.121304_bib0023) 2018; 180 Meier (10.1016/j.neuroimage.2025.121304_bib0046) 2022; 11 Biondi (10.1016/j.neuroimage.2025.121304_bib0009) 2022; 63 Pion-Tonachini (10.1016/j.neuroimage.2025.121304_bib0051) 2019; 198 Urigüen (10.1016/j.neuroimage.2025.121304_bib0062) 2015; 12 Mostert (10.1016/j.neuroimage.2025.121304_bib0047) 2018; 5 Ng (10.1016/j.neuroimage.2025.121304_bib0048) 2022; 54 Ashton (10.1016/j.neuroimage.2025.121304_bib0003) 2022; 54 Bae (10.1016/j.neuroimage.2025.121304_bib0006) 2018; 38 Despouy (10.1016/j.neuroimage.2025.121304_bib0016) 2020; 30 10.1016/j.neuroimage.2025.121304_bib0010 Keil (10.1016/j.neuroimage.2025.121304_bib0032) 2022; 59 Bae (10.1016/j.neuroimage.2025.121304_bib0007) 2019; 184 Stergiadis (10.1016/j.neuroimage.2025.121304_bib0056) 2022; 72 Delorme (10.1016/j.neuroimage.2025.121304_bib0014) 2004; 134 Kato (10.1016/j.neuroimage.2025.121304_bib0031) 2022; 119 Trammel (10.1016/j.neuroimage.2025.121304_bib0060) 2023; 277 Luck (10.1016/j.neuroimage.2025.121304_bib0043) 2021; 58 Dimigen (10.1016/j.neuroimage.2025.121304_bib0018) 2020; 207 Jaatinen (10.1016/j.neuroimage.2025.121304_bib0026) 2023; 58 Van Driel (10.1016/j.neuroimage.2025.121304_bib0063) 2021; 352 10.1016/j.neuroimage.2025.121304_bib0042 Zhang (10.1016/j.neuroimage.2025.121304_bib0070) 2024 Carrasco (10.1016/j.neuroimage.2025.121304_bib0011) 2024; 61 Kappenman (10.1016/j.neuroimage.2025.121304_bib0030) 2021; 225 Duncan (10.1016/j.neuroimage.2025.121304_bib0019) 2009; 120 Alizadeh (10.1016/j.neuroimage.2025.121304_bib0001) 2017; 159 Mares (10.1016/j.neuroimage.2025.121304_bib0045) 2020; 211 Grootswagers (10.1016/j.neuroimage.2025.121304_bib0021) 2017; 29 He (10.1016/j.neuroimage.2025.121304_bib0022) 2024; 61 Lopez-Calderon (10.1016/j.neuroimage.2025.121304_bib0040) 2014; 8 Den Ouden (10.1016/j.neuroimage.2025.121304_bib0015) 2023; 280 Richer (10.1016/j.neuroimage.2025.121304_bib0053) 2024; 162 Kang (10.1016/j.neuroimage.2025.121304_bib0029) 2024 Talsma (10.1016/j.neuroimage.2025.121304_bib0058) 2008; 45 Shad (10.1016/j.neuroimage.2025.121304_bib0055) 2020; 20 Bae (10.1016/j.neuroimage.2025.121304_bib0005) 2021; 2 Sun (10.1016/j.neuroimage.2025.121304_bib0057) 2021; 58 Thielen (10.1016/j.neuroimage.2025.121304_bib0059) 2019; 9 Li (10.1016/j.neuroimage.2025.121304_bib0038) 2022; 42 40060477 - bioRxiv. 2025 Feb 25:2025.02.22.639684. doi: 10.1101/2025.02.22.639684. |
References_xml | – volume: 58 start-page: 3686 year: 2023 end-page: 3704 ident: bib0026 article-title: Subjectively preferred octave size is resolved at the late stages of cerebral auditory processing publication-title: Eur. J. Neurosci. – volume: 271 year: 2023 ident: bib0050 article-title: Top-down specific preparatory activations for selective attention and perceptual expectations publication-title: Neuroimage – volume: 119 year: 2022 ident: bib0031 article-title: Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding publication-title: Proc. Natl. Acad. Sci. – volume: 225 year: 2021 ident: bib0030 article-title: ERP CORE: an open resource for human event-related potential research publication-title: Neuroimage – year: 2024 ident: bib0069 article-title: Optimal filters for ERP research II: recommended settings for seven common ERP components publication-title: Psychophysiology – volume: 9 year: 2019 ident: bib0059 article-title: Evidence for confounding eye movements under attempted fixation and active viewing in cognitive neuroscience publication-title: Sci. Rep. – volume: 67 start-page: 1114 year: 2020 end-page: 1121 ident: bib0012 article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings publication-title: IEEE Trans. Biomed. Eng. – volume: 207 year: 2020 ident: bib0018 article-title: Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments publication-title: Neuroimage – volume: 42 start-page: 6800 year: 2022 end-page: 6809 ident: bib0038 article-title: Decoding the specificity of post-error adjustments using EEG-based multivariate pattern analysis publication-title: J. Neurosci. – volume: 11 year: 2022 ident: bib0046 article-title: Stress diminishes outcome but enhances response representations during instrumental learning publication-title: Elife – volume: 41 start-page: 3468 year: 2020 end-page: 3535 ident: bib0052 article-title: Towards a brain-based predictome of mental illness publication-title: Hum. Brain Mapp. – volume: 58 year: 2021 ident: bib0043 article-title: Standardized measurement error: a universal metric of data quality for averaged event-related potentials publication-title: Psychophysiology – volume: 8 start-page: 149 year: 2023 end-page: 163 ident: bib0061 article-title: Pain-preferential thalamocortical neural dynamics across species publication-title: Nat. Hum. Behav. – volume: 12 year: 2015 ident: bib0062 article-title: EEG artifact removal—state-of-the-art and guidelines publication-title: J. Neural Eng. – volume: 41 start-page: 3900 year: 2020 end-page: 3921 ident: bib0024 article-title: Decoding attention control and selection in visual spatial attention publication-title: Hum. Brain Mapp. – volume: 22 start-page: 664 year: 2018 end-page: 670 ident: bib0054 article-title: Automated classification and removal of EEG artifacts with SVM and wavelet-ICA publication-title: IEEE J. Biomed. Health Inform. – volume: 43 start-page: 148 year: 2018 end-page: 158 ident: bib0066 article-title: Automatic ocular artifacts removal in EEG using deep learning publication-title: Biomed. Signal. Process. Control – volume: 258 year: 2022 ident: bib0039 article-title: EEG decoding of multidimensional information from emotional faces publication-title: Neuroimage – volume: 54 year: 2022 ident: bib0048 article-title: A practical guide to applying machine learning to infant EEG data publication-title: Dev. Cogn. Neurosci. – volume: 162 year: 2024 ident: bib0053 article-title: Mobile neuroimaging: what we have learned about the neural control of human walking, with an emphasis on EEG-based research publication-title: Neurosci. Biobehav. Rev. – reference: Luck, S.J. (2022). Applied event-related potential data analysis. LibreTexts. – volume: 29 start-page: 677 year: 2017 end-page: 697 ident: bib0021 article-title: Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data publication-title: J. Cogn. Neurosci. – volume: 198 start-page: 181 year: 2019 end-page: 197 ident: bib0051 article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset, and website publication-title: Neuroimage – volume: 58 year: 2021 ident: bib0057 article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG publication-title: Psychophysiology – volume: 159 start-page: 417 year: 2017 end-page: 429 ident: bib0027 article-title: Autoreject: automated artifact rejection for MEG and EEG data publication-title: Neuroimage – volume: 38 start-page: 409 year: 2018 end-page: 422 ident: bib0006 article-title: Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials publication-title: J. Neurosci. – reference: Carlson, T.A., Grootswagers, T., & Robinson, A.K. (2019). An introduction to time-resolved decoding analysis for M/EEG (Version 1). ArXiv. – volume: 2 start-page: tgaa093 year: 2021 ident: bib0005 article-title: The time course of face representations during perception and working memory maintenance publication-title: Cereb. Cortex. Commun. – volume: 61 year: 2024 ident: bib0022 article-title: Multivariate pattern analysis of EEG reveals nuanced impact of negation on sentence processing in the N400 and later time windows publication-title: Psychophysiology – volume: 59 year: 2022 ident: bib0032 article-title: Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series publication-title: Psychophysiology – volume: 30 start-page: 2961 year: 2020 end-page: 2971 ident: bib0016 article-title: A fast visual recognition memory system in humans identified using intracerebral ERP publication-title: Cereb. Cortex – volume: 32 start-page: 4243 year: 2022 end-page: 4254 ident: bib0008 article-title: On the extraction of purely motor EEG neural correlates during an upper limb visuomotor task publication-title: Cereb. Cortex – volume: 61 year: 2024 ident: bib0011 article-title: Using multivariate pattern analysis to increase effect sizes for event-related potential analyses publication-title: Psychophysiology – volume: 63 start-page: 1041 year: 2022 end-page: 1063 ident: bib0009 article-title: Noninvasive mobile EEG as a tool for seizure monitoring and management: a systematic review publication-title: Epilepsia – volume: 14 start-page: 348 year: 2022 end-page: 365 ident: bib0020 article-title: Deep learning in EEG: advance of the last ten-year critical period publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 5 year: 2018 ident: bib0047 article-title: Eye movement-related confounds in neural decoding of visual working memory representations publication-title: eNeuro – volume: 240 year: 2021 ident: bib0004 article-title: Neural evidence for categorical biases in location and orientation representations in a working memory task publication-title: Neuroimage – volume: 37 start-page: 163 year: 2000 end-page: 178 ident: bib0028 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology – year: 2014 ident: bib0041 article-title: An Introduction to the Event-Related Potential Technique (Second) – volume: 211 year: 2020 ident: bib0045 article-title: Developmental changes in the processing of faces as revealed by EEG decoding publication-title: Neuroimage – volume: 120 start-page: 1883 year: 2009 end-page: 1908 ident: bib0019 article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400 publication-title: Clin. Neurophysiol. – volume: 16 start-page: 127 year: 1983 end-page: 147 ident: bib0064 article-title: The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain publication-title: Biol. Psychol. – volume: 45 start-page: 216 year: 2008 end-page: 228 ident: bib0058 article-title: Auto-adaptive averaging: detecting artifacts in event-related potential data using a fully automated procedure publication-title: Psychophysiology – volume: 352 year: 2021 ident: bib0063 article-title: High-pass filtering artifacts in multivariate classification of neural time series data publication-title: J. Neurosci. Methods – volume: 12 start-page: 533 year: 2012 end-page: 542 ident: bib0044 article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA publication-title: IEEE Sens. J. – volume: 8 year: 2014 ident: bib0040 article-title: ERPLAB: an open-source toolbox for the analysis of event-related potentials publication-title: Front. Hum. Neurosci. – volume: 63 year: 2021 ident: bib0002 article-title: Deep learning for motor imagery EEG-based classification: a review publication-title: Biomed. Signal. Process. Control – volume: 280 year: 2023 ident: bib0015 article-title: Stimulus expectations do not modulate visual event-related potentials in probabilistic cueing designs publication-title: Neuroimage – volume: 36 year: 2019 ident: bib0036 article-title: Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges publication-title: Dev. Cogn. Neurosci. – year: 2024 ident: bib0029 article-title: I see artifacts: iCA-based EEG artifact removal does not improve deep network decoding across three BCI tasks publication-title: J. Neural Eng. – volume: 184 start-page: 242 year: 2019 end-page: 255 ident: bib0007 article-title: Decoding motion direction using the topography of sustained ERPs and alpha oscillations publication-title: Neuroimage – start-page: 3187 year: 2016 end-page: 3190 ident: bib0017 article-title: A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel publication-title: Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 159 start-page: 449 year: 2017 end-page: 458 ident: bib0001 article-title: Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis publication-title: Neuroimage – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: bib0014 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods – year: 2024 ident: bib0070 article-title: Evaluating the effectiveness of artifact correction and rejection in event-related potential research publication-title: Psychophysiology – volume: 72 year: 2022 ident: bib0056 article-title: Which BSS method separates better the EEG signals? A comparison of five different algorithms publication-title: Biomed. Signal. Process. Control – volume: 360 year: 2021 ident: bib0025 article-title: Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications publication-title: J. Neurosci. Methods – volume: 7 start-page: 1430 year: 2023 end-page: 1441 ident: bib0049 article-title: Testing cognitive theories with multivariate pattern analysis of neuroimaging data publication-title: Nat. Hum. Behav. – volume: 293 year: 2024 ident: bib0067 article-title: Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data publication-title: Neuroimage – volume: 51 start-page: 1 year: 2014 end-page: 21 ident: bib0033 article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography: guidelines for EEG and MEG publication-title: Psychophysiology – volume: 20 start-page: 14565 year: 2020 end-page: 14577 ident: bib0055 article-title: Impedance and noise of passive and active dry EEG electrodes: a review publication-title: IEEE Sens. J. – volume: 180 start-page: 4 year: 2018 end-page: 18 ident: bib0023 article-title: Deconstructing multivariate decoding for the study of brain function publication-title: Neuroimage – year: 2024 ident: bib0068 article-title: Optimal filters for ERP research I: a general approach for selecting filter settings publication-title: Psychophysiology – reference: . – volume: 16 year: 2019 ident: bib0013 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. – volume: 54 year: 2022 ident: bib0003 article-title: Time-resolved multivariate pattern analysis of infant EEG data: a practical tutorial publication-title: Dev. Cogn. Neurosci. – reference: Xiong, C., Petro, N.M., Bo, K., Cui, L., Keil, A., & Ding, M. (2024). Rhythmic sampling and competition of target and distractor in a motion detection task. bioRxiv. – volume: 17 year: 2020 ident: bib0037 article-title: Review of semi-dry electrodes for EEG recording publication-title: J. Neural Eng. – volume: 4 year: 2013 ident: bib0035 article-title: Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for publication-title: Front. Psychol. – volume: 54 start-page: 8406 year: 2021 end-page: 8420 ident: bib0034 article-title: Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments publication-title: Eur. J. Neurosci. – volume: 277 year: 2023 ident: bib0060 article-title: Decoding semantic relatedness and prediction from EEG: a classification method comparison publication-title: Neuroimage – volume: 72 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0056 article-title: Which BSS method separates better the EEG signals? A comparison of five different algorithms publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2021.103292 – volume: 16 issue: 3 year: 2019 ident: 10.1016/j.neuroimage.2025.121304_bib0013 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab0ab5 – volume: 20 start-page: 14565 issue: 24 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0055 article-title: Impedance and noise of passive and active dry EEG electrodes: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3012394 – volume: 61 issue: 7 year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0011 article-title: Using multivariate pattern analysis to increase effect sizes for event-related potential analyses publication-title: Psychophysiology doi: 10.1111/psyp.14570 – year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0029 article-title: I see artifacts: iCA-based EEG artifact removal does not improve deep network decoding across three BCI tasks publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ad788e – ident: 10.1016/j.neuroimage.2025.121304_bib0065 doi: 10.1101/2024.09.26.615254 – volume: 54 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0003 article-title: Time-resolved multivariate pattern analysis of infant EEG data: a practical tutorial publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2022.101094 – volume: 32 start-page: 4243 issue: 19 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0008 article-title: On the extraction of purely motor EEG neural correlates during an upper limb visuomotor task publication-title: Cereb. Cortex doi: 10.1093/cercor/bhab479 – volume: 7 start-page: 1430 issue: 9 year: 2023 ident: 10.1016/j.neuroimage.2025.121304_bib0049 article-title: Testing cognitive theories with multivariate pattern analysis of neuroimaging data publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-023-01680-z – volume: 159 start-page: 449 year: 2017 ident: 10.1016/j.neuroimage.2025.121304_bib0001 article-title: Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.058 – volume: 5 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2025.121304_bib0047 article-title: Eye movement-related confounds in neural decoding of visual working memory representations publication-title: eNeuro doi: 10.1523/ENEURO.0401-17.2018 – year: 2014 ident: 10.1016/j.neuroimage.2025.121304_bib0041 – ident: 10.1016/j.neuroimage.2025.121304_bib0042 – volume: 120 start-page: 1883 issue: 11 year: 2009 ident: 10.1016/j.neuroimage.2025.121304_bib0019 article-title: Event-related potentials in clinical research: guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400 publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2009.07.045 – volume: 162 year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0053 article-title: Mobile neuroimaging: what we have learned about the neural control of human walking, with an emphasis on EEG-based research publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2024.105718 – volume: 207 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0018 article-title: Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116117 – volume: 180 start-page: 4 year: 2018 ident: 10.1016/j.neuroimage.2025.121304_bib0023 article-title: Deconstructing multivariate decoding for the study of brain function publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.005 – volume: 119 issue: 21 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0031 article-title: Spatiotemporal dynamics of odor representations in the human brain revealed by EEG decoding publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2114966119 – volume: 29 start-page: 677 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2025.121304_bib0021 article-title: Decoding dynamic brain patterns from evoked responses: a tutorial on multivariate pattern analysis applied to time series neuroimaging data publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_01068 – volume: 293 year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0067 article-title: Assessing the effectiveness of spatial PCA on SVM-based decoding of EEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2024.120625 – volume: 37 start-page: 163 issue: 2 year: 2000 ident: 10.1016/j.neuroimage.2025.121304_bib0028 article-title: Removing electroencephalographic artifacts by blind source separation publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0069 article-title: Optimal filters for ERP research II: recommended settings for seven common ERP components publication-title: Psychophysiology doi: 10.1111/psyp.14530 – year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0070 article-title: Evaluating the effectiveness of artifact correction and rejection in event-related potential research publication-title: Psychophysiology doi: 10.1111/psyp.14511 – volume: 2 start-page: tgaa093 issue: 1 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0005 article-title: The time course of face representations during perception and working memory maintenance publication-title: Cereb. Cortex. Commun. doi: 10.1093/texcom/tgaa093 – volume: 38 start-page: 409 issue: 2 year: 2018 ident: 10.1016/j.neuroimage.2025.121304_bib0006 article-title: Dissociable decoding of spatial attention and working memory from EEG oscillations and sustained potentials publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2860-17.2017 – volume: 63 start-page: 1041 issue: 5 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0009 article-title: Noninvasive mobile EEG as a tool for seizure monitoring and management: a systematic review publication-title: Epilepsia doi: 10.1111/epi.17220 – volume: 58 start-page: 3686 issue: 7 year: 2023 ident: 10.1016/j.neuroimage.2025.121304_bib0026 article-title: Subjectively preferred octave size is resolved at the late stages of cerebral auditory processing publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.16150 – volume: 61 issue: 4 year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0022 article-title: Multivariate pattern analysis of EEG reveals nuanced impact of negation on sentence processing in the N400 and later time windows publication-title: Psychophysiology doi: 10.1111/psyp.14491 – volume: 4 year: 2013 ident: 10.1016/j.neuroimage.2025.121304_bib0035 article-title: Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs publication-title: Front. Psychol. doi: 10.3389/fpsyg.2013.00863 – volume: 12 start-page: 533 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2025.121304_bib0044 article-title: Automatic artifact rejection from multichannel scalp EEG by wavelet ICA publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2115236 – volume: 280 year: 2023 ident: 10.1016/j.neuroimage.2025.121304_bib0015 article-title: Stimulus expectations do not modulate visual event-related potentials in probabilistic cueing designs publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.120347 – volume: 12 issue: 3 year: 2015 ident: 10.1016/j.neuroimage.2025.121304_bib0062 article-title: EEG artifact removal—state-of-the-art and guidelines publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/3/031001 – volume: 159 start-page: 417 year: 2017 ident: 10.1016/j.neuroimage.2025.121304_bib0027 article-title: Autoreject: automated artifact rejection for MEG and EEG data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.06.030 – volume: 8 year: 2014 ident: 10.1016/j.neuroimage.2025.121304_bib0040 article-title: ERPLAB: an open-source toolbox for the analysis of event-related potentials publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2014.00213 – volume: 58 issue: 6 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0043 article-title: Standardized measurement error: a universal metric of data quality for averaged event-related potentials publication-title: Psychophysiology doi: 10.1111/psyp.13793 – volume: 41 start-page: 3468 issue: 12 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0052 article-title: Towards a brain-based predictome of mental illness publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25013 – year: 2024 ident: 10.1016/j.neuroimage.2025.121304_bib0068 article-title: Optimal filters for ERP research I: a general approach for selecting filter settings publication-title: Psychophysiology doi: 10.1111/psyp.14531 – volume: 277 year: 2023 ident: 10.1016/j.neuroimage.2025.121304_bib0060 article-title: Decoding semantic relatedness and prediction from EEG: a classification method comparison publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.120268 – volume: 45 start-page: 216 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2025.121304_bib0058 article-title: Auto-adaptive averaging: detecting artifacts in event-related potential data using a fully automated procedure publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2007.00612.x – volume: 8 start-page: 149 issue: 1 year: 2023 ident: 10.1016/j.neuroimage.2025.121304_bib0061 article-title: Pain-preferential thalamocortical neural dynamics across species publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-023-01714-6 – volume: 184 start-page: 242 year: 2019 ident: 10.1016/j.neuroimage.2025.121304_bib0007 article-title: Decoding motion direction using the topography of sustained ERPs and alpha oscillations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.09.029 – volume: 198 start-page: 181 year: 2019 ident: 10.1016/j.neuroimage.2025.121304_bib0051 article-title: ICLabel: an automated electroencephalographic independent component classifier, dataset, and website publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.05.026 – ident: 10.1016/j.neuroimage.2025.121304_bib0010 doi: 10.7551/mitpress/11442.003.0075 – volume: 271 year: 2023 ident: 10.1016/j.neuroimage.2025.121304_bib0050 article-title: Top-down specific preparatory activations for selective attention and perceptual expectations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2023.119960 – volume: 67 start-page: 1114 issue: 4 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0012 article-title: Evaluation of artifact subspace reconstruction for automatic artifact components removal in multi-channel EEG recordings publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2930186 – start-page: 3187 year: 2016 ident: 10.1016/j.neuroimage.2025.121304_bib0017 article-title: A new regression-based method for the eye blinks artifacts correction in the EEG signal, without using any EOG channel – volume: 225 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0030 article-title: ERP CORE: an open resource for human event-related potential research publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117465 – volume: 54 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0048 article-title: A practical guide to applying machine learning to infant EEG data publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2022.101096 – volume: 58 issue: 2 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0057 article-title: Validation of SOBI-DANS method for automatic identification of horizontal and vertical eye movement components from EEG publication-title: Psychophysiology doi: 10.1111/psyp.13731 – volume: 17 issue: 5 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0037 article-title: Review of semi-dry electrodes for EEG recording publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abbd50 – volume: 30 start-page: 2961 issue: 5 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0016 article-title: A fast visual recognition memory system in humans identified using intracerebral ERP publication-title: Cereb. Cortex doi: 10.1093/cercor/bhz287 – volume: 54 start-page: 8406 issue: 12 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0034 article-title: Identifying key factors for improving ICA-based decomposition of EEG data in mobile and stationary experiments publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.14992 – volume: 63 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0002 article-title: Deep learning for motor imagery EEG-based classification: a review publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2020.102172 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.neuroimage.2025.121304_bib0014 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 11 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0046 article-title: Stress diminishes outcome but enhances response representations during instrumental learning publication-title: Elife doi: 10.7554/eLife.67517 – volume: 211 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0045 article-title: Developmental changes in the processing of faces as revealed by EEG decoding publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116660 – volume: 352 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0063 article-title: High-pass filtering artifacts in multivariate classification of neural time series data publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109080 – volume: 51 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2025.121304_bib0033 article-title: Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography: guidelines for EEG and MEG publication-title: Psychophysiology doi: 10.1111/psyp.12147 – volume: 59 issue: 5 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0032 article-title: Recommendations and publication guidelines for studies using frequency domain and time-frequency domain analyses of neural time series publication-title: Psychophysiology doi: 10.1111/psyp.14052 – volume: 14 start-page: 348 issue: 2 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0020 article-title: Deep learning in EEG: advance of the last ten-year critical period publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3079712 – volume: 258 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0039 article-title: EEG decoding of multidimensional information from emotional faces publication-title: Neuroimage doi: 10.1016/j.neuroimage.2022.119374 – volume: 43 start-page: 148 year: 2018 ident: 10.1016/j.neuroimage.2025.121304_bib0066 article-title: Automatic ocular artifacts removal in EEG using deep learning publication-title: Biomed. Signal. Process. Control doi: 10.1016/j.bspc.2018.02.021 – volume: 22 start-page: 664 issue: 3 year: 2018 ident: 10.1016/j.neuroimage.2025.121304_bib0054 article-title: Automated classification and removal of EEG artifacts with SVM and wavelet-ICA publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2723420 – volume: 16 start-page: 127 issue: 1–2 year: 1983 ident: 10.1016/j.neuroimage.2025.121304_bib0064 article-title: The removal of the eye-movement artifact from the EEG by regression analysis in the frequency domain publication-title: Biol. Psychol. doi: 10.1016/0301-0511(83)90059-5 – volume: 36 year: 2019 ident: 10.1016/j.neuroimage.2025.121304_bib0036 article-title: Mobile EEG in research on neurodevelopmental disorders: opportunities and challenges publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2019.100635 – volume: 42 start-page: 6800 issue: 35 year: 2022 ident: 10.1016/j.neuroimage.2025.121304_bib0038 article-title: Decoding the specificity of post-error adjustments using EEG-based multivariate pattern analysis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0590-22.2022 – volume: 41 start-page: 3900 issue: 14 year: 2020 ident: 10.1016/j.neuroimage.2025.121304_bib0024 article-title: Decoding attention control and selection in visual spatial attention publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25094 – volume: 9 issue: 1 year: 2019 ident: 10.1016/j.neuroimage.2025.121304_bib0059 article-title: Evidence for confounding eye movements under attempted fixation and active viewing in cognitive neuroscience publication-title: Sci. Rep. doi: 10.1038/s41598-019-54018-z – volume: 240 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0004 article-title: Neural evidence for categorical biases in location and orientation representations in a working memory task publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118366 – volume: 360 year: 2021 ident: 10.1016/j.neuroimage.2025.121304_bib0025 article-title: Probability mapping based artifact detection and removal from single-channel EEG signals for brain–computer interface applications publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2021.109249 – reference: 40060477 - bioRxiv. 2025 Feb 25:2025.02.22.639684. doi: 10.1101/2025.02.22.639684. |
SSID | ssj0009148 |
Score | 2.4889958 |
Snippet | •We evaluated the impact of artifact correction and artifact rejection on EEG/ERP decoding performance.•We explored a wide range of experimental paradigms,... Numerous studies have demonstrated that eyeblinks and other large artifacts can decrease the signal-to-noise ratio of EEG data, resulting in decreased... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 121304 |
SubjectTerms | Accuracy Adult Artifact correction Artifact rejection Brain - physiology Classification College students Datasets EEG Electroencephalography Electroencephalography - methods ERP Event-related potentials Evoked Potentials - physiology Eye movements Female Humans Male Mismatch negativity MVPA Signal Processing, Computer-Assisted Support Vector Machine Support vector machines Young Adult |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFLcQh2kXNNgGHQX5wDU08UfiaKfC2qGJculA3CzHjqci0VZduXLZP857ttOKAxLSpBwSJ3Y-3vP7_Ry_90zImVfelEXLs8JAbxI2d1ljWJ1ZpzzHX_oi_Mqe3JRXt-LXvbzfIZddLAy6VSbbH216sNapZJC-5mA5mw2mwAwAboChyKCpmHZbiArz558_b9086kLEcDjJM7w6efNEH6-QM3L2CD0XRopMYqoFnpZs6yAqZPJ_hVRvMdGASONPZC9RSTqMT7tPdtr5AfkwSZPln8m_OKEL2ESB5dEYD0kXnuL7YUADtbg0RwhsoGbutuWr9iEVw4Z1l9vwAmxgejfJQo3rH8MMcdBRB8NYhEE8PRr9pOgXApr9hdyOR78vr7K05kJmharXaPtyB7jvjMgtl74FhlBxJ8rcNLVEQiAZSNVbgDHvmLQ4QqxKJ4rCK5zR_0p254t5e0RonTdVLoyTxuAgRzYGV-NUhVVCWdjpkaL7zHoZU2vozufsQW9Fo1E0OoqmRy5QHpvrMTl2KFis_uikHdqrovSMl6bKW8FEqSrWYKYxxlyT89b1SN1JU3fxp2AxoaHZOx7g-6buKz19Z-1-pzw62Yq_mgNoAEkA1e2Rw6hQm_cTmMwTZPLtv257TD7iUfRb7JPd9eqpPQEutW5OQ2d5AfdaGYU priority: 102 providerName: Elsevier |
Title | Assessing the impact of artifact correction and artifact rejection on the performance of SVM- and LDA-based decoding of EEG signals |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811925003076 https://dx.doi.org/10.1016/j.neuroimage.2025.121304 https://www.ncbi.nlm.nih.gov/pubmed/40472911 https://www.proquest.com/docview/3219284474 https://doaj.org/article/f816f236a70e4246872b557022db03ed |
Volume | 316 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZ4SIgF8aY8Kg-sgcRxEkdMBQrl0S5QxGY5diy1Ei2CsrLwx7mLnRYGBANSh8qJIzt39vddfA9CDq2wKo3KOIgUrCauQxMUiuWBNsLG-EmfV5-yu7200-fXj8njl1Jf6BPm0gO7F3dsRZRaFqcqC0vOeCoyVmDaKMZMEcalwd0XMK82pup0u8Dyvd-O8-aqskMOnmCNgk3IEkyqEPvibDUYVTn7v2HST5yzwp6LVbLiSSNtucGukblytE6Wuv5YfIN8uKNbQCEKfI66yEc6thSnh6ELVGMRjiqEgaqRmbW_lEPfDD_s-zwLJMAH3D10g6rH7XkrQMQz1IDBioCHl9vtS4oeIKDDm6R_0b4_6wS-ukKgucgnuMuFBhDeKB7qOLElcIEsNjwNVZEnCP0JA_lZDYBlDUs02oJZangUWYFn91tkYTQelTuE5mGRhVyZRCk0Z5JCYd1NEWnBhYY_DRLVr1k-uyQasvYuG8qZaCSKRjrRNMgpymN6P6bBrhpAOaRXDvmbcjRIXktT1pGmsDfCgwZ_GMDJtK9nI45l_LH3fq080u8KrzIGeAA6wDO4vO0Uajo_jmk7QSa7_zHvPbKMY3GOivtkYfLyVh4AeZoUTTJ_9B41yWLr6qbTa1ar5hP2CxZ6 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swELcYSBsvE_ukDDY_7DVq4o_EEU8dKyuj7Qsw8WY5doyKtLbqur9g__jubKcVD0hISHmI7F6a5M73-zm-OxPy1StvyqLlWWFgNAmbu6wxrM6sU57jJ30RPmVPpuXoRvy8lbc75KzLhcGwyuT7o08P3jq19NPb7C9ns_4VMAOAG2AoMlhq-YLsYXUqMPa9wcXlaLqtvVuImBEneYYCKaAnhnmFspGz3zB4YbLIJFZb4GnXtg6lQjH_B2D1GBkNoHR-QF4nNkkH8YbfkJ12_pa8nKT18nfkX1zTBXiiQPRoTImkC0_xETGngVrcnSPkNlAzd9v2VXufmuFA2eU2wwAvcPVrkgWJ8fdBhlDoqIOZLCIhdg-HPyiGhoBxvyc358Prs1GWtl3IrFD1Gt1f7gD6nRG55dK3QBIq7kSZm6aWyAkkA8V6C0jmHZMWJ4lV6URReIWL-h_I7nwxbw8JrfOmyoVx0hic58jG4IacqrBKKAsnPVJ0r1kvY3UN3YWd3eutajSqRkfV9Mg31Mfm91gfOzQsVnc6GYj2qig946Wp8lYwUaqKNVhsjDHX5Lx1PVJ32tRdCio4TbjQ7Ak3cLqRfWCqT5Q-7oxHJ3fxR3PADeAJooLuj9GgNs8nsJ4n6OToWX_7hbwaXU_GenwxvfxE9rEnhjEek9316m97AtRq3XxOQ-c_cLwdxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+impact+of+artifact+correction+and+artifact+rejection+on+the+performance+of+SVM-+and+LDA-based+decoding+of+EEG+signals&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Zhang%2C+Guanghui&rft.au=Luck%2C+Steven+J.&rft.date=2025-08-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.volume=316&rft_id=info:doi/10.1016%2Fj.neuroimage.2025.121304&rft.externalDocID=S1053811925003076 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |