Electromagnetohydrodynamic (EMHD) Flow in a Microchannel with Random Surface Roughness
This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the...
Saved in:
Published in | Micromachines (Basel) Vol. 14; no. 8; p. 1617 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2072-666X 2072-666X |
DOI | 10.3390/mi14081617 |
Cover
Loading…
Abstract | This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π). |
---|---|
AbstractList | This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π). This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ , which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha . Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase ( θ = 0) compared with the one that is out of phase ( θ = π ). This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π).This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π). |
Audience | Academic |
Author | Ma, Nailin Jian, Yongjun Sun, Yanjun |
AuthorAffiliation | 2 School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China 1 School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China; nlmamail@163.com (N.M.); sunyanjun.2006@163.com (Y.S.) |
AuthorAffiliation_xml | – name: 1 School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China; nlmamail@163.com (N.M.); sunyanjun.2006@163.com (Y.S.) – name: 2 School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China |
Author_xml | – sequence: 1 givenname: Nailin surname: Ma fullname: Ma, Nailin – sequence: 2 givenname: Yanjun surname: Sun fullname: Sun, Yanjun – sequence: 3 givenname: Yongjun orcidid: 0000-0003-0263-8422 surname: Jian fullname: Jian, Yongjun |
BookMark | eNptUt9LHDEQDsVS9epL_4KFvljhbLLJJrtPRexZBaVgpfQtZPNjN8duYpPdyv33nfOkrdIEkmHyzffNTOYQ7YUYLELvCD6ltMEfR08Yrgkn4hU6KLEol5zzH3v_2PvoKOc1hiVEA8cbtE8Fp5hU9AB9Xw1WTymOqgt2iv3GpGg2QY1eF8erm8vPH4qLIT4UPhSquPE6Rd2rEOxQPPipL25VMHEsvs3JKW2L2zh3fbA5v0WvnRqyPXq6F-juYnV3frm8_vrl6vzseqlZ3UzL2jGjqaYtLgXmwta2pdhURjelg-IaCjYljWNKCSNUSwRjrDEWUmeEV3SBrna0Jqq1vE9-VGkjo_Ly0RFTJ1WavB6sdIJDBzTImIYRolsmGgUSuqIl2eou0Kcd1_3cjtZoG6akhmekz1-C72UXf0mCWcVFRYHh-IkhxZ-zzZMcfdZ2GFSwcc6yrCtRVxhTAdD3L6DrOKcArXpEESowJYA63aE6BRX44CIIa9jGwv_AHDgP_jPBS1ZTUjEIONkFwD_lnKz7kz7Bcjsu8u-4ABi_AGs_qcnHbXl--F_Ib6ABwG0 |
CitedBy_id | crossref_primary_10_3390_mi15010004 crossref_primary_10_1063_5_0242851 crossref_primary_10_1063_5_0255007 crossref_primary_10_1063_5_0209606 crossref_primary_10_7498_aps_73_20231685 crossref_primary_10_3390_mi14112054 crossref_primary_10_1088_1361_6463_ad2007 crossref_primary_10_3390_mi15111315 |
Cites_doi | 10.1021/ac802569n 10.1088/0022-3727/48/8/085501 10.1007/s002160051548 10.1134/S1061933X20050075 10.1002/zamm.19800601206 10.1016/S0304-8853(03)00547-X 10.1615/JPorMedia.v20.i8.40 10.1016/S1056-8719(98)00027-6 10.1016/j.jmmm.2022.170320 10.1115/1.3424575 10.1016/j.jcis.2007.03.033 10.1007/s10665-008-9259-6 10.1063/1.5063869 10.1016/j.molliq.2016.04.054 10.1140/epjp/s13360-023-03689-9 10.1016/j.euromechflu.2019.04.003 10.1088/0022-3727/34/24/317 10.1007/s10409-013-0051-0 10.1016/S0924-4247(99)00302-7 10.1080/17455030.2021.1985185 10.1088/0960-1317/24/6/065018 10.1016/j.mechrescom.2008.06.013 10.1109/TAES.2002.1039414 10.1109/TCAPT.2002.800599 10.1007/s12346-022-00625-7 10.1088/0022-3727/33/6/307 10.1002/elps.201500029 10.1016/j.fluiddyn.2006.05.004 10.1002/zamm.19810610308 10.1007/s11242-010-9580-1 10.1088/0022-3727/47/42/425501 10.1088/0022-3727/39/24/038 10.1016/S0020-7462(99)00096-7 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION 7SP 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.3390/mi14081617 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2072-666X |
ExternalDocumentID | oai_doaj_org_article_f76000c706d9411cb479a909c53218eb PMC10456753 A762483154 10_3390_mi14081617 |
GrantInformation_xml | – fundername: Natural Science Foundation of Inner Mongolia Autonomous Region of China grantid: 2021MS01007 – fundername: Research Program of science and technology at Universities of Inner Mongolia Autonomous Region grantid: NJZY23054 – fundername: National Natural Science Foundation of China grantid: 12262026 – fundername: Inner Mongolia Grassland Talent grantid: 12000-12102013 |
GroupedDBID | 53G 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 L6V M7S MM. MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC PTHSS RPM TR2 TUS 7SP 7TB 8FD ABUWG AZQEC DWQXO FR3 L7M PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c489t-8f4dc3c3b027067e8eb30d5dc92f39093d5d319f4aa7d7ab174449de15341653 |
IEDL.DBID | DOA |
ISSN | 2072-666X |
IngestDate | Wed Aug 27 01:29:38 EDT 2025 Thu Aug 21 18:36:36 EDT 2025 Fri Jul 11 04:37:12 EDT 2025 Fri Jul 25 11:56:42 EDT 2025 Tue Jul 01 05:45:28 EDT 2025 Thu Apr 24 23:05:20 EDT 2025 Tue Jul 01 03:41:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-8f4dc3c3b027067e8eb30d5dc92f39093d5d319f4aa7d7ab174449de15341653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0263-8422 |
OpenAccessLink | https://doaj.org/article/f76000c706d9411cb479a909c53218eb |
PMID | 37630153 |
PQID | 2857137031 |
PQPubID | 2032359 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f76000c706d9411cb479a909c53218eb pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456753 proquest_miscellaneous_2857850037 proquest_journals_2857137031 gale_infotracacademiconefile_A762483154 crossref_primary_10_3390_mi14081617 crossref_citationtrail_10_3390_mi14081617 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Micromachines (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Dash (ref_2) 1998; 40 Si (ref_13) 2015; 48 Jang (ref_5) 2000; 80 Chakraborty (ref_7) 2006; 39 ref_14 Faltas (ref_32) 2020; 82 Tashtoush (ref_22) 2004; 268 ref_33 Ko (ref_6) 2001; 36 Wang (ref_17) 2009; 81 Stephen (ref_1) 2000; 366 Su (ref_25) 2013; 29 Faltas (ref_31) 2017; 20 Chang (ref_23) 2016; 220 Wang (ref_20) 1979; 46 Asterios (ref_10) 2009; 64 Bujurke (ref_27) 2007; 39 Jiang (ref_3) 2002; 25 Parsa (ref_19) 2014; 24 Tso (ref_12) 2001; 34 Bruschi (ref_4) 2002; 38 Ng (ref_26) 2010; 85 Qian (ref_9) 2009; 36 Bhatti (ref_16) 2022; 21 Buren (ref_11) 2014; 47 Lei (ref_24) 2019; 31 Buren (ref_34) 2015; 36 Chen (ref_18) 2007; 312 Chu (ref_21) 2000; 33 Awatif (ref_8) 2023; 138 Faisal (ref_15) 2023; 568 (ref_30) 1981; 61 (ref_29) 1980; 60 Ashmawy (ref_28) 2019; 76 |
References_xml | – volume: 81 start-page: 2953 year: 2009 ident: ref_17 article-title: Electrokinetic transport in microchannels with random roughness publication-title: Anal. Chem. doi: 10.1021/ac802569n – volume: 48 start-page: 085501 year: 2015 ident: ref_13 article-title: Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/48/8/085501 – volume: 366 start-page: 525 year: 2000 ident: ref_1 article-title: Miniaturized total analysis systems for biological analysis publication-title: Fresnius J. Anal. Chem. doi: 10.1007/s002160051548 – volume: 82 start-page: 604 year: 2020 ident: ref_32 article-title: Darcy–Brinkman micropolar fluid flow through corrugated micro-tube with stationary random model publication-title: Colloid J. doi: 10.1134/S1061933X20050075 – volume: 60 start-page: 675 year: 1980 ident: ref_29 article-title: On Stokes flow between parallel plates with stationary random surface roughness publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19800601206 – volume: 268 start-page: 357 year: 2004 ident: ref_22 article-title: Magnetic field effect on heat and fluid flow over a wavy surface with a variable heat flux publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(03)00547-X – volume: 20 start-page: 723 year: 2017 ident: ref_31 article-title: Slip-brinkman flow through corrugated channel with stationary random model publication-title: J. Porous Media doi: 10.1615/JPorMedia.v20.i8.40 – volume: 40 start-page: 1 year: 1998 ident: ref_2 article-title: Therapeutic applications of implantable drug delivery systems publication-title: J. Pharmacol. Toxicol. Methods. doi: 10.1016/S1056-8719(98)00027-6 – volume: 568 start-page: 170320 year: 2023 ident: ref_15 article-title: The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2022.170320 – volume: 46 start-page: 462 year: 1979 ident: ref_20 article-title: On Stokes flow between corrugated Plates publication-title: J. Appl. Mech. doi: 10.1115/1.3424575 – volume: 312 start-page: 470 year: 2007 ident: ref_18 article-title: Electrokinetically-driven flow mixing in microchannels with wavy surface publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2007.03.033 – volume: 64 start-page: 303 year: 2009 ident: ref_10 article-title: EMHD free-convection boundary-layer flow from a Riga-plate publication-title: J. Eng. Math. doi: 10.1007/s10665-008-9259-6 – volume: 31 start-page: 012001 year: 2019 ident: ref_24 article-title: Electro-osmotic pumping through a bumpy microtube: Boundary perturbation and detection of roughness publication-title: Phys. Fluids doi: 10.1063/1.5063869 – volume: 220 start-page: 258 year: 2016 ident: ref_23 article-title: Electroosmotic flow through a microtube with sinusoidal roughness publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.04.054 – volume: 138 start-page: 137 year: 2023 ident: ref_8 article-title: Effect of magnetic force and moderate Reynolds number on MHD Jeffrey hybrid nanofluid through peristaltic channel: Application of cancer treatment publication-title: Eur. Phys. J. Plus. doi: 10.1140/epjp/s13360-023-03689-9 – volume: 76 start-page: 365 year: 2019 ident: ref_28 article-title: Effects of surface roughness on a couple stress fluid flow through corrugated tube publication-title: Eur. J. Mech. B-Fluid doi: 10.1016/j.euromechflu.2019.04.003 – volume: 34 start-page: 3522 year: 2001 ident: ref_12 article-title: Capillary flow between parallel plates in the presence of an electromagnetic field publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/34/24/317 – volume: 29 start-page: 534 year: 2013 ident: ref_25 article-title: Transient electro-osmotic and pressure driven flows of two-layer fluids through a slit microchannel publication-title: Acta Mech. Sin. doi: 10.1007/s10409-013-0051-0 – volume: 80 start-page: 84 year: 2000 ident: ref_5 article-title: Theoretical and experimental study of MHD (magnetohydrodynamic) micropump publication-title: Sensor Actuat. A-Phys. doi: 10.1016/S0924-4247(99)00302-7 – ident: ref_14 doi: 10.1080/17455030.2021.1985185 – ident: ref_33 – volume: 24 start-page: 065018 year: 2014 ident: ref_19 article-title: Experimental and CFD modeling of fluid mixing in sinusoidal microchannels with different phase shift between side walls publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/24/6/065018 – volume: 36 start-page: 10 year: 2009 ident: ref_9 article-title: Magneto-hydrodynamics based microfluidics publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2008.06.013 – volume: 38 start-page: 982 year: 2002 ident: ref_4 article-title: Micromachined gas flow regulator for ion propulsion systems publication-title: IEEE. Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2002.1039414 – volume: 25 start-page: 347 year: 2002 ident: ref_3 article-title: Closed-loop electroosmotic microchannel cooling system for VLSI circuits IEEE Trans publication-title: Compon. Packag. Technol. doi: 10.1109/TCAPT.2002.800599 – volume: 21 start-page: 97 year: 2022 ident: ref_16 article-title: Natural Convection Non-Newtonian EMHD dissipative flow through a microchannel containing a non-darcy porous medium: Homotopy perturbation method study publication-title: Qual. Theory Dyn. Syst. doi: 10.1007/s12346-022-00625-7 – volume: 33 start-page: 627 year: 2000 ident: ref_21 article-title: Slip flow in an annulus with corrugated walls publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/33/6/307 – volume: 36 start-page: 1539 year: 2015 ident: ref_34 article-title: Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates publication-title: Electrophoresis doi: 10.1002/elps.201500029 – volume: 39 start-page: 334 year: 2007 ident: ref_27 article-title: MHD lubrication flow between rough rectangular plates publication-title: Fluid Dyn. Res. doi: 10.1016/j.fluiddyn.2006.05.004 – volume: 61 start-page: 193 year: 1981 ident: ref_30 article-title: On Stokes flows in channels and pipes with parallel stationary random surface roughness publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.19810610308 – volume: 85 start-page: 605 year: 2010 ident: ref_26 article-title: Darcy–Brinkman flow through a corrugated channel publication-title: Transp. Porous Media doi: 10.1007/s11242-010-9580-1 – volume: 47 start-page: 425501 year: 2014 ident: ref_11 article-title: Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/42/425501 – volume: 39 start-page: 5364 year: 2006 ident: ref_7 article-title: Microchannel flow control through a combined electromagnetohydrodynamic transport publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/39/24/038 – volume: 36 start-page: 155 year: 2001 ident: ref_6 article-title: Non-reflective boundaryconditions for a consistent two-dimensional planar model of electro-magneto-hydrodynamics(EMHD) publication-title: Int. J. Nonlinear Mech. doi: 10.1016/S0020-7462(99)00096-7 |
SSID | ssj0000779007 |
Score | 2.3325317 |
Snippet | This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the... |
SourceID | doaj pubmedcentral proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1617 |
SubjectTerms | Boundary conditions Corrugation corrugation function Density Dirichlet problem Electric fields electromagnetohydrodynamic (EMHD) flow Exact solutions Flow resistance Flow velocity Fourier series Hartmann number Magnetic fields microchannel Microchannels Perturbation methods random wall roughness Reynolds number Sine series Sine waves spectral density Surface roughness Trigonometric functions Velocity Wavelengths |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB61cGkPiNJWLKWVUSsBhxX78CbeU0XbpFGlcABacbO8fkCkxEtDIsS_Z2bXCaRF3FZZK-ux5_X58Q3AFyMwbohKx5lIXcxzJWJB9Nq5LlCllCiT5h738KQz-M1_XRQXYcHtJhyrXPjExlGbWtMa-VEmCsRTxLb-9fpvTFWjaHc1lNB4CespRhrScNH_uVxjSYhML-m2rKQ5ovujyQgBhaCcfiUONXT9_zvlfw9KPoo8_U3YCCkjO27n-A28sH4LXj8iEnwLf3ptNZuJuvR2Vl_dGfSLba15dtAbDn4csv64vmUjzxQb0hk8uvDr7ZjROiw7Vd7UE3Y2nzqlLTulyj3kAt_Beb93_n0Qh4oJseainMXCcaNznVcINjEMWYFQOTGF0WXmUPwyx2e0OceV6pquqhCOcF4ai24PE7Mifw9rvvZ2GxhmDZlzpko7HQRoSqk0cx2XOfx7BDGCR3C4GD6pA5s4FbUYS0QVNNTyYagj-Lxse91yaDzZ6hvNwrIF8V43P9TTSxnMSDraR0w0CmdKnqa64t1SoWC6wG6htBHs0xxKsk7sjlbhkgEKRTxX8hh9Pxc55o0R7C6mWQazvZEPShbB3vI1Ghztoihv63nbRhTE2xOBWFGPla6vvvGjq4a6O6UMGhHizvNf_wCvqKx9e9BwF9Zm07n9iMnPrPrUaPg9R7sDYA priority: 102 providerName: ProQuest |
Title | Electromagnetohydrodynamic (EMHD) Flow in a Microchannel with Random Surface Roughness |
URI | https://www.proquest.com/docview/2857137031 https://www.proquest.com/docview/2857850037 https://pubmed.ncbi.nlm.nih.gov/PMC10456753 https://doaj.org/article/f76000c706d9411cb479a909c53218eb |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CcYHDxKfIGJURSLBDtCR2Evu4sZYKqRMqA-1mOf7YKrXJtLVC_Pe8l2SlHUhcuEWJldjP7-sX278H8M5JjBuysnEm0xALbmQsiV6b2xxVykiVtOe4J6fF-Jv4fJ6fb5T6oj1hHT1wJ7jDQCtHiS2TwimRprYSpTIqUTbn-BVfkffFmLcBplofTDR6SdnxkXLE9YeLGUIJSdn8VgRqifr_dMd3t0huxJzRY9jtk0V21HXyCdzz9VN4tEEh-Ay-D7s6NgtzUftlc_nToUfsqsyzD8PJ-OSAjebNDzarmWET2n1HR31rP2f0B5ZNTe2aBfu6ug7Gejalmj3k_J7D2Wh49nEc97USYiukWsYyCGe55RXCTAxAHiXDE5c7q7KAw1ccr9HagjCmdKWpEIgIoZxHh4cpWc5fwE7d1P4lMMwXshBclRYFQjNjTJqFImQBX4_wRYoIDm7Fp23PI07lLOYa8QSJWv8WdQRv122vOvaMv7Y6pllYtyDG6_YG6oHu9UD_Sw8ieE9zqMkusTvW9McLcFDEcKWP0OsLyTFjjGD_dpp1b7A3OpM5wnUi84_gzfoxmhqtn5jaN6uujcyJsScCuaUeW13fflLPLlvS7pRyZ8SGe_9jsK_gIZW97zYi7sPO8nrlX2NytKwGcF-OPg3gwfHw9Mt00FrFL6KFDV4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcEE_hUmARIOjBqr1eJ-sDQoUmpLTpoQTU22q9jzZSYpc0UdUfxX9kxo-0AcStN8u7svcxOzPf7uw3AG-sRLshcxNyGftQJFqGkui1E5OiSGmZRdU97uFhZ_BdfD1Oj9fgV3sXhsIqW51YKWpbGtoj3-YyRTxFbOsfz36GlDWKTlfbFBq1WOy7ywuEbOcf9nZxft9y3u-NPg_CJqtAaITM5qH0wprEJDkCMlTVTiKcjGxqTcZ9kiHAx2eUSy-07tquztFlFyKzDlUDOi-UJAI1_i2RJBlFEMr-l-WWTkTcfVG3JkHF8mh7Okb8IglCrJi9KjvA3zbgz7jMa4aufx_uNR4q26lF6gGsueIh3L3GW_gIfvTq5DlTfVK4eXl6aVEN16nt2fvecLC7xfqT8oKNC6bZkEL-6H5x4SaMtn3ZkS5sOWXfFjOvjWNHlCiINO5jGN3EUD6B9aIs3FNg6KRw720edzqIB7XWMfcdzz1-HjGTFAFstcOnTENeTjk0JgpBDA21uhrqAF4v657VlB3_rPWJZmFZg2i2qxfl7EQ1q1Z5OraMDHbOZiKOTS66mcaOmRSbhb0N4B3NoSJlgM0xurnTgJ0iWi21g6ZGyATd1AA222lWjZY4V1cyHcCrZTGubzq00YUrF3UdmRJNUAByRTxWmr5aUoxPK6bwmBx2BKQb___7S7g9GA0P1MHe4f4zuMPRj6tjHDdhfT5buOfod83zF5W0M1A3vLp-A-JsPvo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJwQOUlTAssAgQ9WPFjHa8PCBWSkFJSoVKq3lbrfbSRErukiar-NP4dM36kDSBuvUX2ytnH7Ox8u7PfB_DaCFw3RK79SITO57ESviB67VgnaFJKZEF1j3u03x3-4F-Ok-M1-NXehaG0ytYnVo7alJr2yDuRSBBPEdt6xzVpEd96gw9nP31SkKKT1lZOozaRPXt5gfDt_P1uD8f6TRQN-oefhn6jMOBrLrK5Lxw3OtZxjuAM3bYVCC0DkxidRS7OEOzjb7RRx5VKTapyDN85z4xFN4GBDAlGoPe_lcYiIPEEMfi83N4JiMcvSGtC1Bi_1ZmOEcsIghMrS2ClFPD3evBnjua1RW-wAfeaaJXt1OZ1H9Zs8QDuXuMwfAhH_VpIZ6pOCjsvTy8NuuRa5p6964-GvW02mJQXbFwwxUaU_kd3jQs7YbQFzA5UYcop-76YOaUtOyDRIPK-j-DwJrryMawXZWGfAMOAJXLO5GG3i9hQKRVGrusih59H_CS4B9tt90ndEJmTnsZEIqChrpZXXe3Bq2XZs5q-45-lPtIoLEsQ5Xb1oJydyGYGS0dHmIHGxpmMh6HOeZopbJhOsFrYWg_e0hhKcgxYHa2a-w3YKKLYkju47HARY8jqwVY7zLLxGOfyyr49eLl8jXOdDnBUYctFXUYkRBnkgVgxj5Wqr74pxqcVa3hIwTuC06f___cXcBvnlfy6u7-3CXciDOnqdMctWJ_PFvYZhmDz_Hll7AzkDU-u34hTQyc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetohydrodynamic+%28EMHD%29+Flow+in+a+Microchannel+with+Random+Surface+Roughness&rft.jtitle=Micromachines+%28Basel%29&rft.au=Ma%2C+Nailin&rft.au=Sun%2C+Yanjun&rft.au=Jian%2C+Yongjun&rft.date=2023-08-01&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=14&rft.issue=8&rft.spage=1617&rft_id=info:doi/10.3390%2Fmi14081617&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mi14081617 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon |