Electromagnetohydrodynamic (EMHD) Flow in a Microchannel with Random Surface Roughness

This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the...

Full description

Saved in:
Bibliographic Details
Published inMicromachines (Basel) Vol. 14; no. 8; p. 1617
Main Authors Ma, Nailin, Sun, Yanjun, Jian, Yongjun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
MDPI
Subjects
Online AccessGet full text
ISSN2072-666X
2072-666X
DOI10.3390/mi14081617

Cover

Loading…
Abstract This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π).
AbstractList This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π).
This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ , which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha . Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase ( θ = 0) compared with the one that is out of phase ( θ = π ).
This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π).This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the perturbation method based upon stationary random function theory. An exact solution of a random corrugation function ξ, which is a measure of the flow rate deviated from the case without the roughness of two plates, is obtained by integrating the spectral density. After the sinusoidal, triangular, rectangular, and sawtooth functions that satisfy the Dirichlet condition are expanded into the Fourier sine series, the spectral density of the sine function is used to represent the corrugation function. Interestingly, for sinusoidal roughness, the final expression of the corrugation function is in good agreement with our previous work. Results show that no matter the shape of the wall roughness, the flow rate always decreases due to the existence of wall corrugation. Variations of the corrugation function and the flow rate strongly depend on fluid wavenumber λ and Hartmann number Ha. Finally, the flow resistance is found to become small, and the flow rate increases with roughness that is in phase (θ = 0) compared with the one that is out of phase (θ = π).
Audience Academic
Author Ma, Nailin
Jian, Yongjun
Sun, Yanjun
AuthorAffiliation 2 School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
1 School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China; nlmamail@163.com (N.M.); sunyanjun.2006@163.com (Y.S.)
AuthorAffiliation_xml – name: 1 School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China; nlmamail@163.com (N.M.); sunyanjun.2006@163.com (Y.S.)
– name: 2 School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
Author_xml – sequence: 1
  givenname: Nailin
  surname: Ma
  fullname: Ma, Nailin
– sequence: 2
  givenname: Yanjun
  surname: Sun
  fullname: Sun, Yanjun
– sequence: 3
  givenname: Yongjun
  orcidid: 0000-0003-0263-8422
  surname: Jian
  fullname: Jian, Yongjun
BookMark eNptUt9LHDEQDsVS9epL_4KFvljhbLLJJrtPRexZBaVgpfQtZPNjN8duYpPdyv33nfOkrdIEkmHyzffNTOYQ7YUYLELvCD6ltMEfR08Yrgkn4hU6KLEol5zzH3v_2PvoKOc1hiVEA8cbtE8Fp5hU9AB9Xw1WTymOqgt2iv3GpGg2QY1eF8erm8vPH4qLIT4UPhSquPE6Rd2rEOxQPPipL25VMHEsvs3JKW2L2zh3fbA5v0WvnRqyPXq6F-juYnV3frm8_vrl6vzseqlZ3UzL2jGjqaYtLgXmwta2pdhURjelg-IaCjYljWNKCSNUSwRjrDEWUmeEV3SBrna0Jqq1vE9-VGkjo_Ly0RFTJ1WavB6sdIJDBzTImIYRolsmGgUSuqIl2eou0Kcd1_3cjtZoG6akhmekz1-C72UXf0mCWcVFRYHh-IkhxZ-zzZMcfdZ2GFSwcc6yrCtRVxhTAdD3L6DrOKcArXpEESowJYA63aE6BRX44CIIa9jGwv_AHDgP_jPBS1ZTUjEIONkFwD_lnKz7kz7Bcjsu8u-4ABi_AGs_qcnHbXl--F_Ib6ABwG0
CitedBy_id crossref_primary_10_3390_mi15010004
crossref_primary_10_1063_5_0242851
crossref_primary_10_1063_5_0255007
crossref_primary_10_1063_5_0209606
crossref_primary_10_7498_aps_73_20231685
crossref_primary_10_3390_mi14112054
crossref_primary_10_1088_1361_6463_ad2007
crossref_primary_10_3390_mi15111315
Cites_doi 10.1021/ac802569n
10.1088/0022-3727/48/8/085501
10.1007/s002160051548
10.1134/S1061933X20050075
10.1002/zamm.19800601206
10.1016/S0304-8853(03)00547-X
10.1615/JPorMedia.v20.i8.40
10.1016/S1056-8719(98)00027-6
10.1016/j.jmmm.2022.170320
10.1115/1.3424575
10.1016/j.jcis.2007.03.033
10.1007/s10665-008-9259-6
10.1063/1.5063869
10.1016/j.molliq.2016.04.054
10.1140/epjp/s13360-023-03689-9
10.1016/j.euromechflu.2019.04.003
10.1088/0022-3727/34/24/317
10.1007/s10409-013-0051-0
10.1016/S0924-4247(99)00302-7
10.1080/17455030.2021.1985185
10.1088/0960-1317/24/6/065018
10.1016/j.mechrescom.2008.06.013
10.1109/TAES.2002.1039414
10.1109/TCAPT.2002.800599
10.1007/s12346-022-00625-7
10.1088/0022-3727/33/6/307
10.1002/elps.201500029
10.1016/j.fluiddyn.2006.05.004
10.1002/zamm.19810610308
10.1007/s11242-010-9580-1
10.1088/0022-3727/47/42/425501
10.1088/0022-3727/39/24/038
10.1016/S0020-7462(99)00096-7
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
7SP
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOA
DOI 10.3390/mi14081617
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2072-666X
ExternalDocumentID oai_doaj_org_article_f76000c706d9411cb479a909c53218eb
PMC10456753
A762483154
10_3390_mi14081617
GrantInformation_xml – fundername: Natural Science Foundation of Inner Mongolia Autonomous Region of China
  grantid: 2021MS01007
– fundername: Research Program of science and technology at Universities of Inner Mongolia Autonomous Region
  grantid: NJZY23054
– fundername: National Natural Science Foundation of China
  grantid: 12262026
– fundername: Inner Mongolia Grassland Talent
  grantid: 12000-12102013
GroupedDBID 53G
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
L6V
M7S
MM.
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
RPM
TR2
TUS
7SP
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c489t-8f4dc3c3b027067e8eb30d5dc92f39093d5d319f4aa7d7ab174449de15341653
IEDL.DBID DOA
ISSN 2072-666X
IngestDate Wed Aug 27 01:29:38 EDT 2025
Thu Aug 21 18:36:36 EDT 2025
Fri Jul 11 04:37:12 EDT 2025
Fri Jul 25 11:56:42 EDT 2025
Tue Jul 01 05:45:28 EDT 2025
Thu Apr 24 23:05:20 EDT 2025
Tue Jul 01 03:41:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-8f4dc3c3b027067e8eb30d5dc92f39093d5d319f4aa7d7ab174449de15341653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0263-8422
OpenAccessLink https://doaj.org/article/f76000c706d9411cb479a909c53218eb
PMID 37630153
PQID 2857137031
PQPubID 2032359
ParticipantIDs doaj_primary_oai_doaj_org_article_f76000c706d9411cb479a909c53218eb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10456753
proquest_miscellaneous_2857850037
proquest_journals_2857137031
gale_infotracacademiconefile_A762483154
crossref_primary_10_3390_mi14081617
crossref_citationtrail_10_3390_mi14081617
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Micromachines (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dash (ref_2) 1998; 40
Si (ref_13) 2015; 48
Jang (ref_5) 2000; 80
Chakraborty (ref_7) 2006; 39
ref_14
Faltas (ref_32) 2020; 82
Tashtoush (ref_22) 2004; 268
ref_33
Ko (ref_6) 2001; 36
Wang (ref_17) 2009; 81
Stephen (ref_1) 2000; 366
Su (ref_25) 2013; 29
Faltas (ref_31) 2017; 20
Chang (ref_23) 2016; 220
Wang (ref_20) 1979; 46
Asterios (ref_10) 2009; 64
Bujurke (ref_27) 2007; 39
Jiang (ref_3) 2002; 25
Parsa (ref_19) 2014; 24
Tso (ref_12) 2001; 34
Bruschi (ref_4) 2002; 38
Ng (ref_26) 2010; 85
Qian (ref_9) 2009; 36
Bhatti (ref_16) 2022; 21
Buren (ref_11) 2014; 47
Lei (ref_24) 2019; 31
Buren (ref_34) 2015; 36
Chen (ref_18) 2007; 312
Chu (ref_21) 2000; 33
Awatif (ref_8) 2023; 138
Faisal (ref_15) 2023; 568
(ref_30) 1981; 61
(ref_29) 1980; 60
Ashmawy (ref_28) 2019; 76
References_xml – volume: 81
  start-page: 2953
  year: 2009
  ident: ref_17
  article-title: Electrokinetic transport in microchannels with random roughness
  publication-title: Anal. Chem.
  doi: 10.1021/ac802569n
– volume: 48
  start-page: 085501
  year: 2015
  ident: ref_13
  article-title: Electromagnetohydrodynamic (EMHD) micropump of Jeffrey fluids through two parallel microchannels with corrugated walls
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/48/8/085501
– volume: 366
  start-page: 525
  year: 2000
  ident: ref_1
  article-title: Miniaturized total analysis systems for biological analysis
  publication-title: Fresnius J. Anal. Chem.
  doi: 10.1007/s002160051548
– volume: 82
  start-page: 604
  year: 2020
  ident: ref_32
  article-title: Darcy–Brinkman micropolar fluid flow through corrugated micro-tube with stationary random model
  publication-title: Colloid J.
  doi: 10.1134/S1061933X20050075
– volume: 60
  start-page: 675
  year: 1980
  ident: ref_29
  article-title: On Stokes flow between parallel plates with stationary random surface roughness
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19800601206
– volume: 268
  start-page: 357
  year: 2004
  ident: ref_22
  article-title: Magnetic field effect on heat and fluid flow over a wavy surface with a variable heat flux
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(03)00547-X
– volume: 20
  start-page: 723
  year: 2017
  ident: ref_31
  article-title: Slip-brinkman flow through corrugated channel with stationary random model
  publication-title: J. Porous Media
  doi: 10.1615/JPorMedia.v20.i8.40
– volume: 40
  start-page: 1
  year: 1998
  ident: ref_2
  article-title: Therapeutic applications of implantable drug delivery systems
  publication-title: J. Pharmacol. Toxicol. Methods.
  doi: 10.1016/S1056-8719(98)00027-6
– volume: 568
  start-page: 170320
  year: 2023
  ident: ref_15
  article-title: The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2022.170320
– volume: 46
  start-page: 462
  year: 1979
  ident: ref_20
  article-title: On Stokes flow between corrugated Plates
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3424575
– volume: 312
  start-page: 470
  year: 2007
  ident: ref_18
  article-title: Electrokinetically-driven flow mixing in microchannels with wavy surface
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.03.033
– volume: 64
  start-page: 303
  year: 2009
  ident: ref_10
  article-title: EMHD free-convection boundary-layer flow from a Riga-plate
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-008-9259-6
– volume: 31
  start-page: 012001
  year: 2019
  ident: ref_24
  article-title: Electro-osmotic pumping through a bumpy microtube: Boundary perturbation and detection of roughness
  publication-title: Phys. Fluids
  doi: 10.1063/1.5063869
– volume: 220
  start-page: 258
  year: 2016
  ident: ref_23
  article-title: Electroosmotic flow through a microtube with sinusoidal roughness
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.04.054
– volume: 138
  start-page: 137
  year: 2023
  ident: ref_8
  article-title: Effect of magnetic force and moderate Reynolds number on MHD Jeffrey hybrid nanofluid through peristaltic channel: Application of cancer treatment
  publication-title: Eur. Phys. J. Plus.
  doi: 10.1140/epjp/s13360-023-03689-9
– volume: 76
  start-page: 365
  year: 2019
  ident: ref_28
  article-title: Effects of surface roughness on a couple stress fluid flow through corrugated tube
  publication-title: Eur. J. Mech. B-Fluid
  doi: 10.1016/j.euromechflu.2019.04.003
– volume: 34
  start-page: 3522
  year: 2001
  ident: ref_12
  article-title: Capillary flow between parallel plates in the presence of an electromagnetic field
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/34/24/317
– volume: 29
  start-page: 534
  year: 2013
  ident: ref_25
  article-title: Transient electro-osmotic and pressure driven flows of two-layer fluids through a slit microchannel
  publication-title: Acta Mech. Sin.
  doi: 10.1007/s10409-013-0051-0
– volume: 80
  start-page: 84
  year: 2000
  ident: ref_5
  article-title: Theoretical and experimental study of MHD (magnetohydrodynamic) micropump
  publication-title: Sensor Actuat. A-Phys.
  doi: 10.1016/S0924-4247(99)00302-7
– ident: ref_14
  doi: 10.1080/17455030.2021.1985185
– ident: ref_33
– volume: 24
  start-page: 065018
  year: 2014
  ident: ref_19
  article-title: Experimental and CFD modeling of fluid mixing in sinusoidal microchannels with different phase shift between side walls
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/24/6/065018
– volume: 36
  start-page: 10
  year: 2009
  ident: ref_9
  article-title: Magneto-hydrodynamics based microfluidics
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2008.06.013
– volume: 38
  start-page: 982
  year: 2002
  ident: ref_4
  article-title: Micromachined gas flow regulator for ion propulsion systems
  publication-title: IEEE. Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2002.1039414
– volume: 25
  start-page: 347
  year: 2002
  ident: ref_3
  article-title: Closed-loop electroosmotic microchannel cooling system for VLSI circuits IEEE Trans
  publication-title: Compon. Packag. Technol.
  doi: 10.1109/TCAPT.2002.800599
– volume: 21
  start-page: 97
  year: 2022
  ident: ref_16
  article-title: Natural Convection Non-Newtonian EMHD dissipative flow through a microchannel containing a non-darcy porous medium: Homotopy perturbation method study
  publication-title: Qual. Theory Dyn. Syst.
  doi: 10.1007/s12346-022-00625-7
– volume: 33
  start-page: 627
  year: 2000
  ident: ref_21
  article-title: Slip flow in an annulus with corrugated walls
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/33/6/307
– volume: 36
  start-page: 1539
  year: 2015
  ident: ref_34
  article-title: Electromagnetohydrodynamic (EMHD) flow between two transversely wavy microparallel plates
  publication-title: Electrophoresis
  doi: 10.1002/elps.201500029
– volume: 39
  start-page: 334
  year: 2007
  ident: ref_27
  article-title: MHD lubrication flow between rough rectangular plates
  publication-title: Fluid Dyn. Res.
  doi: 10.1016/j.fluiddyn.2006.05.004
– volume: 61
  start-page: 193
  year: 1981
  ident: ref_30
  article-title: On Stokes flows in channels and pipes with parallel stationary random surface roughness
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.19810610308
– volume: 85
  start-page: 605
  year: 2010
  ident: ref_26
  article-title: Darcy–Brinkman flow through a corrugated channel
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-010-9580-1
– volume: 47
  start-page: 425501
  year: 2014
  ident: ref_11
  article-title: Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/47/42/425501
– volume: 39
  start-page: 5364
  year: 2006
  ident: ref_7
  article-title: Microchannel flow control through a combined electromagnetohydrodynamic transport
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/39/24/038
– volume: 36
  start-page: 155
  year: 2001
  ident: ref_6
  article-title: Non-reflective boundaryconditions for a consistent two-dimensional planar model of electro-magneto-hydrodynamics(EMHD)
  publication-title: Int. J. Nonlinear Mech.
  doi: 10.1016/S0020-7462(99)00096-7
SSID ssj0000779007
Score 2.3325317
Snippet This study investigates the effect of small random transverse wall roughness on electromagnetohydrodynamic (EMHD) flow is in a microchannel, employing the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1617
SubjectTerms Boundary conditions
Corrugation
corrugation function
Density
Dirichlet problem
Electric fields
electromagnetohydrodynamic (EMHD) flow
Exact solutions
Flow resistance
Flow velocity
Fourier series
Hartmann number
Magnetic fields
microchannel
Microchannels
Perturbation methods
random wall roughness
Reynolds number
Sine series
Sine waves
spectral density
Surface roughness
Trigonometric functions
Velocity
Wavelengths
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB61cGkPiNJWLKWVUSsBhxX78CbeU0XbpFGlcABacbO8fkCkxEtDIsS_Z2bXCaRF3FZZK-ux5_X58Q3AFyMwbohKx5lIXcxzJWJB9Nq5LlCllCiT5h738KQz-M1_XRQXYcHtJhyrXPjExlGbWtMa-VEmCsRTxLb-9fpvTFWjaHc1lNB4CespRhrScNH_uVxjSYhML-m2rKQ5ovujyQgBhaCcfiUONXT9_zvlfw9KPoo8_U3YCCkjO27n-A28sH4LXj8iEnwLf3ptNZuJuvR2Vl_dGfSLba15dtAbDn4csv64vmUjzxQb0hk8uvDr7ZjROiw7Vd7UE3Y2nzqlLTulyj3kAt_Beb93_n0Qh4oJseainMXCcaNznVcINjEMWYFQOTGF0WXmUPwyx2e0OceV6pquqhCOcF4ai24PE7Mifw9rvvZ2GxhmDZlzpko7HQRoSqk0cx2XOfx7BDGCR3C4GD6pA5s4FbUYS0QVNNTyYagj-Lxse91yaDzZ6hvNwrIF8V43P9TTSxnMSDraR0w0CmdKnqa64t1SoWC6wG6htBHs0xxKsk7sjlbhkgEKRTxX8hh9Pxc55o0R7C6mWQazvZEPShbB3vI1Ghztoihv63nbRhTE2xOBWFGPla6vvvGjq4a6O6UMGhHizvNf_wCvqKx9e9BwF9Zm07n9iMnPrPrUaPg9R7sDYA
  priority: 102
  providerName: ProQuest
Title Electromagnetohydrodynamic (EMHD) Flow in a Microchannel with Random Surface Roughness
URI https://www.proquest.com/docview/2857137031
https://www.proquest.com/docview/2857850037
https://pubmed.ncbi.nlm.nih.gov/PMC10456753
https://doaj.org/article/f76000c706d9411cb479a909c53218eb
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFH-CcYHDxKfIGJURSLBDtCR2Evu4sZYKqRMqA-1mOf7YKrXJtLVC_Pe8l2SlHUhcuEWJldjP7-sX278H8M5JjBuysnEm0xALbmQsiV6b2xxVykiVtOe4J6fF-Jv4fJ6fb5T6oj1hHT1wJ7jDQCtHiS2TwimRprYSpTIqUTbn-BVfkffFmLcBplofTDR6SdnxkXLE9YeLGUIJSdn8VgRqifr_dMd3t0huxJzRY9jtk0V21HXyCdzz9VN4tEEh-Ay-D7s6NgtzUftlc_nToUfsqsyzD8PJ-OSAjebNDzarmWET2n1HR31rP2f0B5ZNTe2aBfu6ug7Gejalmj3k_J7D2Wh49nEc97USYiukWsYyCGe55RXCTAxAHiXDE5c7q7KAw1ccr9HagjCmdKWpEIgIoZxHh4cpWc5fwE7d1P4lMMwXshBclRYFQjNjTJqFImQBX4_wRYoIDm7Fp23PI07lLOYa8QSJWv8WdQRv122vOvaMv7Y6pllYtyDG6_YG6oHu9UD_Sw8ieE9zqMkusTvW9McLcFDEcKWP0OsLyTFjjGD_dpp1b7A3OpM5wnUi84_gzfoxmhqtn5jaN6uujcyJsScCuaUeW13fflLPLlvS7pRyZ8SGe_9jsK_gIZW97zYi7sPO8nrlX2NytKwGcF-OPg3gwfHw9Mt00FrFL6KFDV4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V5QAcEE_hUmARIOjBqr1eJ-sDQoUmpLTpoQTU22q9jzZSYpc0UdUfxX9kxo-0AcStN8u7svcxOzPf7uw3AG-sRLshcxNyGftQJFqGkui1E5OiSGmZRdU97uFhZ_BdfD1Oj9fgV3sXhsIqW51YKWpbGtoj3-YyRTxFbOsfz36GlDWKTlfbFBq1WOy7ywuEbOcf9nZxft9y3u-NPg_CJqtAaITM5qH0wprEJDkCMlTVTiKcjGxqTcZ9kiHAx2eUSy-07tquztFlFyKzDlUDOi-UJAI1_i2RJBlFEMr-l-WWTkTcfVG3JkHF8mh7Okb8IglCrJi9KjvA3zbgz7jMa4aufx_uNR4q26lF6gGsueIh3L3GW_gIfvTq5DlTfVK4eXl6aVEN16nt2fvecLC7xfqT8oKNC6bZkEL-6H5x4SaMtn3ZkS5sOWXfFjOvjWNHlCiINO5jGN3EUD6B9aIs3FNg6KRw720edzqIB7XWMfcdzz1-HjGTFAFstcOnTENeTjk0JgpBDA21uhrqAF4v657VlB3_rPWJZmFZg2i2qxfl7EQ1q1Z5OraMDHbOZiKOTS66mcaOmRSbhb0N4B3NoSJlgM0xurnTgJ0iWi21g6ZGyATd1AA222lWjZY4V1cyHcCrZTGubzq00YUrF3UdmRJNUAByRTxWmr5aUoxPK6bwmBx2BKQb___7S7g9GA0P1MHe4f4zuMPRj6tjHDdhfT5buOfod83zF5W0M1A3vLp-A-JsPvo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VRUJwQOUlTAssAgQ9WPFjHa8PCBWSkFJSoVKq3lbrfbSRErukiar-NP4dM36kDSBuvUX2ytnH7Ox8u7PfB_DaCFw3RK79SITO57ESviB67VgnaFJKZEF1j3u03x3-4F-Ok-M1-NXehaG0ytYnVo7alJr2yDuRSBBPEdt6xzVpEd96gw9nP31SkKKT1lZOozaRPXt5gfDt_P1uD8f6TRQN-oefhn6jMOBrLrK5Lxw3OtZxjuAM3bYVCC0DkxidRS7OEOzjb7RRx5VKTapyDN85z4xFN4GBDAlGoPe_lcYiIPEEMfi83N4JiMcvSGtC1Bi_1ZmOEcsIghMrS2ClFPD3evBnjua1RW-wAfeaaJXt1OZ1H9Zs8QDuXuMwfAhH_VpIZ6pOCjsvTy8NuuRa5p6964-GvW02mJQXbFwwxUaU_kd3jQs7YbQFzA5UYcop-76YOaUtOyDRIPK-j-DwJrryMawXZWGfAMOAJXLO5GG3i9hQKRVGrusih59H_CS4B9tt90ndEJmTnsZEIqChrpZXXe3Bq2XZs5q-45-lPtIoLEsQ5Xb1oJydyGYGS0dHmIHGxpmMh6HOeZopbJhOsFrYWg_e0hhKcgxYHa2a-w3YKKLYkju47HARY8jqwVY7zLLxGOfyyr49eLl8jXOdDnBUYctFXUYkRBnkgVgxj5Wqr74pxqcVa3hIwTuC06f___cXcBvnlfy6u7-3CXciDOnqdMctWJ_PFvYZhmDz_Hll7AzkDU-u34hTQyc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromagnetohydrodynamic+%28EMHD%29+Flow+in+a+Microchannel+with+Random+Surface+Roughness&rft.jtitle=Micromachines+%28Basel%29&rft.au=Ma%2C+Nailin&rft.au=Sun%2C+Yanjun&rft.au=Jian%2C+Yongjun&rft.date=2023-08-01&rft.issn=2072-666X&rft.eissn=2072-666X&rft.volume=14&rft.issue=8&rft.spage=1617&rft_id=info:doi/10.3390%2Fmi14081617&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_mi14081617
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-666X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-666X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-666X&client=summon