Physically unclonable cryptographic primitives using self-assembled carbon nanotubes
Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled car...
Saved in:
Published in | Nature nanotechnology Vol. 11; no. 6; pp. 559 - 565 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO
2
trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.
Random two-dimensional arrays of carbon nanotubes, which are self-assembled via ion-exchange chemistry, can be used to create cryptographic keys by determining the connection yield and switching type of the nanotube devices. |
---|---|
AbstractList | Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO
2
trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.
Random two-dimensional arrays of carbon nanotubes, which are self-assembled via ion-exchange chemistry, can be used to create cryptographic keys by determining the connection yield and switching type of the nanotube devices. Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO sub(2) trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size. Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size. Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size. |
Author | Hu, Zhaoying Liehr, Michael Tang, Jianshi Han, Shu-Jen Tulevski, George S. Hannon, James B. Park, Hongsik Comeras, Jose Miguel M. Lobez Afzali, Ali |
Author_xml | – sequence: 1 givenname: Zhaoying surname: Hu fullname: Hu, Zhaoying organization: College of Nanoscale Science and Engineering, State University of New York at Albany – sequence: 2 givenname: Jose Miguel M. Lobez surname: Comeras fullname: Comeras, Jose Miguel M. Lobez organization: IBM T. J. Watson Research Center, Yorktown Heights – sequence: 3 givenname: Hongsik surname: Park fullname: Park, Hongsik organization: IBM T. J. Watson Research Center, Yorktown Heights, School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701 – sequence: 4 givenname: Jianshi surname: Tang fullname: Tang, Jianshi organization: IBM T. J. Watson Research Center, Yorktown Heights – sequence: 5 givenname: Ali surname: Afzali fullname: Afzali, Ali organization: IBM T. J. Watson Research Center, Yorktown Heights – sequence: 6 givenname: George S. surname: Tulevski fullname: Tulevski, George S. organization: IBM T. J. Watson Research Center, Yorktown Heights – sequence: 7 givenname: James B. surname: Hannon fullname: Hannon, James B. organization: IBM T. J. Watson Research Center, Yorktown Heights – sequence: 8 givenname: Michael surname: Liehr fullname: Liehr, Michael organization: College of Nanoscale Science and Engineering, State University of New York at Albany – sequence: 9 givenname: Shu-Jen surname: Han fullname: Han, Shu-Jen email: sjhan@us.ibm.com organization: IBM T. J. Watson Research Center, Yorktown Heights |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26900757$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0c1LHDEYBvBQFL_aW89loJceOms-J8mxSFsFwR70HDLZd9ZINtkmM4X975vpahFR9JQcfs_LmzzHaC-mCAh9JHhBMFOnMdqYFhSTbkHeoSMiuWoZ02Lv_13JQ3Rcyh3GgmrKD9Ah7TTGUsgjdP3rdlu8syFsmym6kKLtAzQubzdjWmW7ufWu2WS_9qP_A6WZio-rpkAYWlsKrCteNs7mPsVmXmSceijv0f5gQ4EP9-cJuvnx_frsvL28-nlx9u2ydVzpsZV9XYMKbikQJWg3SGWHjlICqnNYs2FJBq7pIAmzDoMGQTlzUtXYUgjN2An6spu7yen3BGU0a18chGAjpKkYoup0pSjTb6BYScIFla9TqYXqlOa80s9P6F2acqxvnhUnVGlNq_p0r6Z-DUszf6fNW_PQQgV0B1xOpWQYjPOjHX2KY7Y-GILNXLX5V7WZqzakhr4-CT3MfYG3O14qiyvIj1Z9zv8FvSO5pw |
CitedBy_id | crossref_primary_10_1039_D0NR01223H crossref_primary_10_1021_acsanm_9b00322 crossref_primary_10_1039_D3MH00180F crossref_primary_10_1021_acsnano_1c05984 crossref_primary_10_1021_acsanm_2c00808 crossref_primary_10_1038_s41467_024_47479_y crossref_primary_10_1021_acsnano_7b06658 crossref_primary_10_1021_acsami_0c11103 crossref_primary_10_1063_1_5079407 crossref_primary_10_1002_smll_202405110 crossref_primary_10_1002_adfm_202006236 crossref_primary_10_1038_s41928_021_00569_x crossref_primary_10_1007_s12274_023_5709_8 crossref_primary_10_3390_nano13040675 crossref_primary_10_3389_fphy_2020_576948 crossref_primary_10_1038_s41467_024_51756_1 crossref_primary_10_1007_s42979_020_00274_0 crossref_primary_10_1063_5_0004089 crossref_primary_10_1002_adma_202212294 crossref_primary_10_1002_smll_202205697 crossref_primary_10_1039_D4TC02206H crossref_primary_10_1109_JEDS_2022_3149321 crossref_primary_10_1002_smtd_202400439 crossref_primary_10_1021_acsami_3c02193 crossref_primary_10_1002_admt_202001073 crossref_primary_10_1021_acsapm_8b00031 crossref_primary_10_1021_acs_nanolett_7b02118 crossref_primary_10_1002_anie_201916043 crossref_primary_10_1002_adma_201807880 crossref_primary_10_1038_s41377_023_01285_1 crossref_primary_10_1016_j_cej_2020_128350 crossref_primary_10_1021_acsami_4c09768 crossref_primary_10_1021_acsami_1c04076 crossref_primary_10_1021_acsnano_3c10308 crossref_primary_10_1039_D1TC05938F crossref_primary_10_1002_adfm_202424079 crossref_primary_10_1021_acsami_1c18808 crossref_primary_10_1002_smll_202307232 crossref_primary_10_1016_j_jphotochem_2024_115801 crossref_primary_10_1002_anie_202115136 crossref_primary_10_1002_sdtp_15047 crossref_primary_10_1016_j_jallcom_2023_172329 crossref_primary_10_1002_adfm_202102108 crossref_primary_10_1007_s11426_021_1192_5 crossref_primary_10_1021_acs_langmuir_7b04368 crossref_primary_10_1109_TED_2021_3138365 crossref_primary_10_1021_acsnano_7b07568 crossref_primary_10_1039_C9TC04615A crossref_primary_10_1007_s11432_019_9918_4 crossref_primary_10_1109_ACCESS_2021_3091491 crossref_primary_10_1002_inf2_12474 crossref_primary_10_1002_adfm_202205859 crossref_primary_10_1002_adma_202306003 crossref_primary_10_1002_adem_202101701 crossref_primary_10_1002_adfm_202201372 crossref_primary_10_1021_acsanm_0c03367 crossref_primary_10_1021_acsnano_3c08740 crossref_primary_10_1021_acsnanoscienceau_2c00017 crossref_primary_10_1038_s41467_019_10406_7 crossref_primary_10_1007_s12274_020_3033_0 crossref_primary_10_1021_acsaelm_9b00166 crossref_primary_10_1038_s41570_017_0031 crossref_primary_10_1016_j_matt_2020_10_005 crossref_primary_10_1021_acsapm_2c00803 crossref_primary_10_1002_ange_202115136 crossref_primary_10_1002_smll_202100377 crossref_primary_10_1038_s41598_024_59584_5 crossref_primary_10_1038_s41598_022_24658_9 crossref_primary_10_1002_adma_202409170 crossref_primary_10_1002_admt_202301055 crossref_primary_10_1186_s12967_019_1798_2 crossref_primary_10_1007_s12598_021_01842_w crossref_primary_10_1109_TAP_2024_3396693 crossref_primary_10_1021_acs_nanolett_8b03338 crossref_primary_10_1002_adma_202102542 crossref_primary_10_1002_admi_202101281 crossref_primary_10_1038_s41377_022_00760_5 crossref_primary_10_1109_TVLSI_2017_2742943 crossref_primary_10_1002_adfm_202314883 crossref_primary_10_1109_TCAD_2017_2762919 crossref_primary_10_1109_JIOT_2018_2838580 crossref_primary_10_1088_1361_6528_ac96f6 crossref_primary_10_1021_acsami_1c08864 crossref_primary_10_1038_s42005_019_0139_3 crossref_primary_10_1038_s41467_020_19324_5 crossref_primary_10_1038_s41928_018_0039_7 crossref_primary_10_1021_acsami_1c13898 crossref_primary_10_1515_nanoph_2020_0049 crossref_primary_10_1039_D0MH00566E crossref_primary_10_1039_D1TC02883A crossref_primary_10_1021_acsami_1c20905 crossref_primary_10_1002_adfm_202211762 crossref_primary_10_1016_j_heliyon_2023_e22895 crossref_primary_10_1002_ange_201916043 crossref_primary_10_1038_natrevmats_2016_20 crossref_primary_10_1002_adom_202201549 crossref_primary_10_1038_s41467_019_14066_5 crossref_primary_10_1002_adma_201603895 crossref_primary_10_1016_j_jallcom_2021_162298 crossref_primary_10_1016_j_matt_2019_08_016 crossref_primary_10_1002_adpr_202100207 crossref_primary_10_1021_acsami_3c00414 crossref_primary_10_1002_adma_202203558 crossref_primary_10_1002_adpr_202100202 crossref_primary_10_1021_acsami_8b17403 crossref_primary_10_1002_adma_202203830 crossref_primary_10_1039_C7NR06561B crossref_primary_10_1038_s41467_024_45428_3 crossref_primary_10_1063_5_0055400 crossref_primary_10_1039_C9TC05291G crossref_primary_10_3390_micro2030024 crossref_primary_10_3390_app14051700 crossref_primary_10_1002_adom_202000985 crossref_primary_10_35848_1347_4065_ac506b crossref_primary_10_1021_acs_nanolett_3c02916 crossref_primary_10_1002_adfm_202409004 crossref_primary_10_1016_j_cjsc_2024_100410 crossref_primary_10_1016_j_cej_2022_135601 crossref_primary_10_1016_j_apsusc_2021_150827 crossref_primary_10_1021_acs_nanolett_3c01145 crossref_primary_10_1186_s11671_019_3046_3 crossref_primary_10_1002_adma_202210621 crossref_primary_10_1021_acsami_4c01534 crossref_primary_10_1016_j_eurpolymj_2023_112598 crossref_primary_10_1002_adma_201905654 crossref_primary_10_1002_adom_202401779 crossref_primary_10_1016_j_physleta_2018_03_012 crossref_primary_10_1002_smll_202200662 crossref_primary_10_1038_s41928_022_00805_y crossref_primary_10_1039_C8CS00888D crossref_primary_10_1126_sciadv_1701384 crossref_primary_10_1364_OE_476991 crossref_primary_10_3390_nano13222930 crossref_primary_10_1002_advs_202001778 crossref_primary_10_3390_s19184048 crossref_primary_10_1126_sciadv_abn7753 crossref_primary_10_1021_acsami_0c16846 crossref_primary_10_3390_math12010077 crossref_primary_10_1016_j_carbon_2021_07_001 crossref_primary_10_1021_acsphotonics_4c00071 crossref_primary_10_1021_acsami_4c03283 crossref_primary_10_1002_adom_202301175 crossref_primary_10_1002_sstr_202400527 crossref_primary_10_1021_acsami_4c11340 crossref_primary_10_1038_s41928_022_00787_x crossref_primary_10_1002_sstr_202200060 crossref_primary_10_1021_acsanm_4c04614 crossref_primary_10_1126_science_aaz7440 crossref_primary_10_1002_smll_201803825 crossref_primary_10_1109_TVLSI_2019_2924081 |
Cites_doi | 10.1109/DAC.2007.375043 10.1038/nphoton.2008.227 10.1038/ncomms4086 10.1109/TCAD.2014.2370531 10.1109/ASPDAC.2013.6509623 10.1002/adfm.200901363 10.1126/science.1074376 10.1007/978-3-642-10366-7_40 10.7873/DATE.2014.083 10.1109/ISVLSI.2012.40 10.1145/586110.586132 10.1007/978-1-4419-8080-9_4 10.1038/nphoton.2009.235 10.1021/nn400053k 10.1038/436475a 10.1109/MDT.2010.25 10.1109/ICSENS.2011.6127174 10.1007/978-3-642-14452-3_1 10.1021/ja073647t 10.1109/FPL.2014.6927449 10.1021/ja806396h 10.1109/IEDM.2010.5703326 10.1007/978-3-540-74735-2_5 10.1007/978-3-642-33027-8_17 10.1109/PERCOM.2007.26 10.1109/ISQED.2015.7085467 10.1109/IEDM.2013.6724664 10.1021/nl401934a 10.1039/c3tc00818e 10.1021/nl052473f 10.1109/IEDM.2014.7047120 10.1038/nature13434 10.1109/ICCAD.2013.6691209 10.1038/srep03543 10.1038/ncomms6678 10.1002/adfm.201002563 10.1038/nnano.2012.189 10.1038/srep05490 10.1007/978-3-319-03491-1_3 10.1038/nmat4237 10.1088/0957-4484/25/15/155303 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2016 Copyright Nature Publishing Group Jun 2016 |
Copyright_xml | – notice: Springer Nature Limited 2016 – notice: Copyright Nature Publishing Group Jun 2016 |
DBID | AAYXX CITATION NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 |
DOI | 10.1038/nnano.2016.1 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological science database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Solid State and Superconductivity Abstracts ProQuest Central Student MEDLINE - Academic PubMed Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1748-3395 |
EndPage | 565 |
ExternalDocumentID | 4080000621 26900757 10_1038_nnano_2016_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ACSTC ALPWD ATHPR CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI PRINS 7X8 |
ID | FETCH-LOGICAL-c489t-7b690254a2e18526f78af6221e86c093fd1f492f713ac0e9e5243c78b69d55933 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 04:31:16 EDT 2025 Thu Jul 10 22:02:24 EDT 2025 Fri Jul 11 01:20:31 EDT 2025 Sat Aug 23 12:54:23 EDT 2025 Wed Feb 19 02:36:25 EST 2025 Tue Aug 05 12:03:46 EDT 2025 Thu Apr 24 23:06:33 EDT 2025 Fri Feb 21 02:40:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-7b690254a2e18526f78af6221e86c093fd1f492f713ac0e9e5243c78b69d55933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26900757 |
PQID | 1794128992 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1825488239 proquest_miscellaneous_1808714527 proquest_miscellaneous_1795868944 proquest_journals_1794128992 pubmed_primary_26900757 crossref_citationtrail_10_1038_nnano_2016_1 crossref_primary_10_1038_nnano_2016_1 springer_journals_10_1038_nnano_2016_1 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nature Nanotech |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KanterIAviadYReidlerICohenERosenbluhMAn optical ultrafast random bit generatorNature Photon20094586110.1038/nphoton.2009.235 Rose, G. S., McDonald, N., Yan, L. K. & Wysocki, B. A write-time based memristive PUF for hardware security applications. In IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. 830–833 (IEEE, 2013). LauPHFully printed, high performance carbon nanotube thin-film transistors on flexible substratesNano Lett201313386438691:CAS:528:DC%2BC3sXhtF2qsrrF10.1021/nl401934a Rose, G. S. et al. Hardware security strategies exploiting nanoelectronic circuits. In 18th Asia South Pacific Des. Autom. Conf. 368–372 (IEEE, 2013). SiegelACFoldable printed circuit boards on paper substratesAdv. Funct. Mater20102028351:CAS:528:DC%2BC3cXhtFKguw%3D%3D10.1002/adfm.200901363 YangFChirality-specific growth of single-walled carbon nanotubes on solid alloy catalystsNature20145105225241:CAS:528:DC%2BC2cXhtVGjsr%2FF10.1038/nature13434 TulevskiGSFranklinADAfzaliAHigh purity isolation and quantification of semiconducting carbon nanotubes via column chromatographyACS Nano20137297129761:CAS:528:DC%2BC3sXjvVKrsr4%3D10.1021/nn400053k Rukhin, A. et al. Statistical Test Suite for Random and Pseudorando Number Generators for Cryptographic Applications Special Publication 800-22 Revision 1a (NIST, 2010); http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf Gassend, B., Clarke, D., van Dijk, M. & Devadas, S. Silicon physical random functions. In Proc. 9th ACM Conf. Comput. Commun. Secur. (Ed. Atluri, V.) 148–160 (ACM Press, 2002). ParkHHigh-density integration of carbon nanotubes via chemical self-assemblyNature Nanotech201277877911:CAS:528:DC%2BC38XhsFOmt7jL10.1038/nnano.2012.189 PappuRRechtBTaylorJGershenfeldNPhysical one-way functionsScience2002297202620301:CAS:528:DC%2BD38Xnt1ans7s%3D10.1126/science.1074376 AkinwandeDPetroneNHoneJTwo-dimensional flexible nanoelectronicsNature Commun2014556781:CAS:528:DC%2BC2MXksVCitbk%3D10.1038/ncomms6678 Guajardo, J., Kumar, S. S., Schrijen, G.-J. & Tuyls, P. FPGA intrinsic PUFs and their use for IP protection. In Cryptogr. Hardw. Embed. Syst. - CHES 2007 (eds Paillier, P. & Verbauwhede, I.) 63–80 (Springer, 2007). TulevskiGSChemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arraysJ. Am. Chem. Soc200712911964119681:CAS:528:DC%2BD2sXpvFOitrs%3D10.1021/ja073647t DelvauxJGuDSchellekensDVerbauwhedeIHelper data algorithms for PUF-based key generation: overview and analysisIEEE Trans. Comput. Des. Integr. Circuits Syst20153488990210.1109/TCAD.2014.2370531 HorstmeyerRJudkewitzBVellekoopIMAssawaworraritSYangCPhysical key-protected one-time padSci. Rep20133354310.1038/srep03543 YuMDDevadasSSecure and robust error correction for physical unclonable functionsIEEE Des. Test Comput20102748651:CAS:528:DC%2BC3cXislamsrk%3D10.1109/MDT.2010.25 Wendt, J. B. & Potkonjak, M. Nanotechnology-based trusted remote sensing. In Proc. 2011 IEEE Sensors 1213–1216 (IEEE, 2011). PeiTTemperature performance of doping-free top-gate CNT field-effect transistors: potential for low- and high-temperature electronicsAdv. Funct. Mater.201121184318491:CAS:528:DC%2BC3MXmtFyntLk%3D10.1002/adfm.201002563 ArmknechtFMaesRSadeghiARSunarBTuylsPLecture Notes in Computer Science2009591268570210.1007/978-3-642-10366-7_40 RuhrmairUDevadasSKoushanfarFIntroduction to Hardware Security and Trust20126510210.1007/978-1-4419-8080-9_4 Bhargava, M. & Mai, K. An efficient reliable PUF-based cryptographic key generator in 65 nm CMOS. In Des. Autom. Test Eur. Conf. Exhib. 2014 1–6 (IEEE, 2014). Suh, G. E. & Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proc. 44th Annu. Conf. Des. Autom. 9–14 (ACM Press, 2007). BuchananJDRForgery: ‘fingerprinting’ documents and packagingNature20054364751:CAS:528:DC%2BD2MXmsFChu7Y%3D10.1038/436475a Bösch, C., Guajardo, J., Sadeghi, A. R., Shokrollahi, J. & Tuyls, P. in Lecture Notes in Computer Science Vol. 5154 (eds Oswald, E. & Rohatgi, P.) 181–197 (2008). Shulaker, M. M. et al. Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In Proc. 2014 IEEE Int. Electron Devices Meet. 27.4.1–27.4.4 (IEEE, 2014). DemirokUKBurdickJWangJOrthogonal multi-readout identification of alloy nanowire barcodesJ. Am. Chem. Soc200913122231:CAS:528:DC%2BD1cXhsFSjtbrE10.1021/ja806396h Xu, T. & Potkonjak, M. Robust and flexible FPGA-based digital PUF. In 2014 24th Int. Conf. F. Program. Log. Appl. 1–6 (IEEE, 2014). KoeberlPLiJWuWLecture Notes in Computer Science20138292365210.1007/978-3-319-03491-1_3 MarangonDGValloneGVilloresiPRandom bits, true and unbiased, from atmospheric turbulenceSci. Rep2014454901:CAS:528:DC%2BC2MXksVyrtrs%3D10.1038/srep05490 UchidaAFast physical random bit generation with chaotic semiconductor lasersNature Photon200827287321:CAS:528:DC%2BD1cXhsVentrvI10.1038/nphoton.2008.227 KimJAnti-counterfeit nanoscale fingerprints based on randomly distributed nanowiresNanotechnology20142515530310.1088/0957-4484/25/15/155303 MoonHSynthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronicsNature Mater2015146286351:CAS:528:DC%2BC2MXktVCnsbc%3D10.1038/nmat4237 Han, S.-J. et al. Carbon nanotube complementary logic based on Erbium contacts and self-assembled high purity solution tubes. In Proc. 2013 IEEE Int. Electron Devices Meet. 19.8.1–19.8.4 (IEEE, 2013). Han, S. J. et al. Wafer scale fabrication of carbon nanotube FETs with embedded poly-gates. In Proc. 2010 IEEE Int. Electron Devices Meet. 9.1.1–9.1.4 (IEEE, 2010). Bolotnyy, L. & Robins, G. Physically unclonable function-based security and privacy in RFID systems. In Fifth Ann. IEEE Int. Conf. Pervasive Comput. Commun. 211–220 (IEEE, 2007). Rose, G. S. et al. in Networks in Cyber Security Vol. 55 (Ed. Pino, R. E.) 105–123 (Springer, 2014). KatzenbeisserSLecture Notes in Computer Science2012742828330110.1007/978-3-642-33027-8_17 KlinkeCHannonJBAfzaliAAvourisPField-effect transistors assembled from functionalized carbon nanotubesNano Lett200669069101:CAS:528:DC%2BD28XjtFWrtb8%3D10.1021/nl052473f MaesRVerbauwhedeITowards Hardware-Intrinsic Security201039610.1007/978-3-642-14452-3_1 Rajendran, J., Rose, G. S., Karri, R. & Potkonjak, M. Nano-PPUF: a memristor-based security primitive. In 2012 IEEE Comput. Soc. Annu. Symp. VLSI 84–87 (IEEE, 2012). Edelstein, D. C., Fritz, G. M., Gates, S. M. & Pfeiffer, D. Structure with sub-lithographic random conductors as a physical unclonable function. US patent 8,759,976 (2014). HanS-JGarciaAVOidaSJenkinsKAHaenschWGraphene radio frequency receiver integrated circuitNature Commun20145308610.1038/ncomms4086 YoonBRecent functional material based approaches to prevent and detect counterfeitingJ. Mater. Chem. C20131238824031:CAS:528:DC%2BC3sXjsFeksLY%3D10.1039/c3tc00818e Xu, T. & Potkonjak, M. Digital PUF using intentional faults. In 2015 6th. Int. Symp. Qual. Electron. Des. 448–451 (IEEE, 2015). F Armknecht (BFnnano20161_CR11) 2009; 5912 S-J Han (BFnnano20161_CR42) 2014; 5 H Moon (BFnnano20161_CR18) 2015; 14 R Horstmeyer (BFnnano20161_CR3) 2013; 3 J Kim (BFnnano20161_CR25) 2014; 25 H Park (BFnnano20161_CR33) 2012; 7 S Katzenbeisser (BFnnano20161_CR10) 2012; 7428 PH Lau (BFnnano20161_CR19) 2013; 13 BFnnano20161_CR21 BFnnano20161_CR43 GS Tulevski (BFnnano20161_CR45) 2013; 7 BFnnano20161_CR22 BFnnano20161_CR44 R Maes (BFnnano20161_CR7) 2010 B Yoon (BFnnano20161_CR23) 2013; 1 BFnnano20161_CR41 BFnnano20161_CR40 BFnnano20161_CR39 AC Siegel (BFnnano20161_CR20) 2010; 20 BFnnano20161_CR36 BFnnano20161_CR13 BFnnano20161_CR15 JDR Buchanan (BFnnano20161_CR5) 2005; 436 U Ruhrmair (BFnnano20161_CR1) 2012 UK Demirok (BFnnano20161_CR24) 2009; 131 P Koeberl (BFnnano20161_CR12) 2013; 8292 A Uchida (BFnnano20161_CR31) 2008; 2 I Kanter (BFnnano20161_CR32) 2009; 4 F Yang (BFnnano20161_CR37) 2014; 510 R Pappu (BFnnano20161_CR2) 2002; 297 J Delvaux (BFnnano20161_CR16) 2015; 34 BFnnano20161_CR30 GS Tulevski (BFnnano20161_CR35) 2007; 129 BFnnano20161_CR29 BFnnano20161_CR28 BFnnano20161_CR6 BFnnano20161_CR8 BFnnano20161_CR27 BFnnano20161_CR9 BFnnano20161_CR26 MD Yu (BFnnano20161_CR14) 2010; 27 DG Marangon (BFnnano20161_CR4) 2014; 4 C Klinke (BFnnano20161_CR34) 2006; 6 D Akinwande (BFnnano20161_CR17) 2014; 5 T Pei (BFnnano20161_CR38) 2011; 21 |
References_xml | – reference: HorstmeyerRJudkewitzBVellekoopIMAssawaworraritSYangCPhysical key-protected one-time padSci. Rep20133354310.1038/srep03543 – reference: Guajardo, J., Kumar, S. S., Schrijen, G.-J. & Tuyls, P. FPGA intrinsic PUFs and their use for IP protection. In Cryptogr. Hardw. Embed. Syst. - CHES 2007 (eds Paillier, P. & Verbauwhede, I.) 63–80 (Springer, 2007). – reference: ParkHHigh-density integration of carbon nanotubes via chemical self-assemblyNature Nanotech201277877911:CAS:528:DC%2BC38XhsFOmt7jL10.1038/nnano.2012.189 – reference: BuchananJDRForgery: ‘fingerprinting’ documents and packagingNature20054364751:CAS:528:DC%2BD2MXmsFChu7Y%3D10.1038/436475a – reference: Rukhin, A. et al. Statistical Test Suite for Random and Pseudorando Number Generators for Cryptographic Applications Special Publication 800-22 Revision 1a (NIST, 2010); http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf – reference: YangFChirality-specific growth of single-walled carbon nanotubes on solid alloy catalystsNature20145105225241:CAS:528:DC%2BC2cXhtVGjsr%2FF10.1038/nature13434 – reference: Xu, T. & Potkonjak, M. Digital PUF using intentional faults. In 2015 6th. Int. Symp. Qual. Electron. Des. 448–451 (IEEE, 2015). – reference: Rose, G. S. et al. Hardware security strategies exploiting nanoelectronic circuits. In 18th Asia South Pacific Des. Autom. Conf. 368–372 (IEEE, 2013). – reference: Rose, G. S., McDonald, N., Yan, L. K. & Wysocki, B. A write-time based memristive PUF for hardware security applications. In IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. 830–833 (IEEE, 2013). – reference: PeiTTemperature performance of doping-free top-gate CNT field-effect transistors: potential for low- and high-temperature electronicsAdv. Funct. Mater.201121184318491:CAS:528:DC%2BC3MXmtFyntLk%3D10.1002/adfm.201002563 – reference: Han, S. J. et al. Wafer scale fabrication of carbon nanotube FETs with embedded poly-gates. In Proc. 2010 IEEE Int. Electron Devices Meet. 9.1.1–9.1.4 (IEEE, 2010). – reference: MaesRVerbauwhedeITowards Hardware-Intrinsic Security201039610.1007/978-3-642-14452-3_1 – reference: RuhrmairUDevadasSKoushanfarFIntroduction to Hardware Security and Trust20126510210.1007/978-1-4419-8080-9_4 – reference: LauPHFully printed, high performance carbon nanotube thin-film transistors on flexible substratesNano Lett201313386438691:CAS:528:DC%2BC3sXhtF2qsrrF10.1021/nl401934a – reference: Bolotnyy, L. & Robins, G. Physically unclonable function-based security and privacy in RFID systems. In Fifth Ann. IEEE Int. Conf. Pervasive Comput. Commun. 211–220 (IEEE, 2007). – reference: Bösch, C., Guajardo, J., Sadeghi, A. R., Shokrollahi, J. & Tuyls, P. in Lecture Notes in Computer Science Vol. 5154 (eds Oswald, E. & Rohatgi, P.) 181–197 (2008). – reference: MoonHSynthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronicsNature Mater2015146286351:CAS:528:DC%2BC2MXktVCnsbc%3D10.1038/nmat4237 – reference: AkinwandeDPetroneNHoneJTwo-dimensional flexible nanoelectronicsNature Commun2014556781:CAS:528:DC%2BC2MXksVCitbk%3D10.1038/ncomms6678 – reference: ArmknechtFMaesRSadeghiARSunarBTuylsPLecture Notes in Computer Science2009591268570210.1007/978-3-642-10366-7_40 – reference: HanS-JGarciaAVOidaSJenkinsKAHaenschWGraphene radio frequency receiver integrated circuitNature Commun20145308610.1038/ncomms4086 – reference: Bhargava, M. & Mai, K. An efficient reliable PUF-based cryptographic key generator in 65 nm CMOS. In Des. Autom. Test Eur. Conf. Exhib. 2014 1–6 (IEEE, 2014). – reference: YuMDDevadasSSecure and robust error correction for physical unclonable functionsIEEE Des. Test Comput20102748651:CAS:528:DC%2BC3cXislamsrk%3D10.1109/MDT.2010.25 – reference: Rose, G. S. et al. in Networks in Cyber Security Vol. 55 (Ed. Pino, R. E.) 105–123 (Springer, 2014). – reference: KanterIAviadYReidlerICohenERosenbluhMAn optical ultrafast random bit generatorNature Photon20094586110.1038/nphoton.2009.235 – reference: Han, S.-J. et al. Carbon nanotube complementary logic based on Erbium contacts and self-assembled high purity solution tubes. In Proc. 2013 IEEE Int. Electron Devices Meet. 19.8.1–19.8.4 (IEEE, 2013). – reference: DelvauxJGuDSchellekensDVerbauwhedeIHelper data algorithms for PUF-based key generation: overview and analysisIEEE Trans. Comput. Des. Integr. Circuits Syst20153488990210.1109/TCAD.2014.2370531 – reference: KoeberlPLiJWuWLecture Notes in Computer Science20138292365210.1007/978-3-319-03491-1_3 – reference: Wendt, J. B. & Potkonjak, M. Nanotechnology-based trusted remote sensing. In Proc. 2011 IEEE Sensors 1213–1216 (IEEE, 2011). – reference: Xu, T. & Potkonjak, M. Robust and flexible FPGA-based digital PUF. In 2014 24th Int. Conf. F. Program. Log. Appl. 1–6 (IEEE, 2014). – reference: KlinkeCHannonJBAfzaliAAvourisPField-effect transistors assembled from functionalized carbon nanotubesNano Lett200669069101:CAS:528:DC%2BD28XjtFWrtb8%3D10.1021/nl052473f – reference: KimJAnti-counterfeit nanoscale fingerprints based on randomly distributed nanowiresNanotechnology20142515530310.1088/0957-4484/25/15/155303 – reference: MarangonDGValloneGVilloresiPRandom bits, true and unbiased, from atmospheric turbulenceSci. Rep2014454901:CAS:528:DC%2BC2MXksVyrtrs%3D10.1038/srep05490 – reference: UchidaAFast physical random bit generation with chaotic semiconductor lasersNature Photon200827287321:CAS:528:DC%2BD1cXhsVentrvI10.1038/nphoton.2008.227 – reference: Shulaker, M. M. et al. Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In Proc. 2014 IEEE Int. Electron Devices Meet. 27.4.1–27.4.4 (IEEE, 2014). – reference: TulevskiGSFranklinADAfzaliAHigh purity isolation and quantification of semiconducting carbon nanotubes via column chromatographyACS Nano20137297129761:CAS:528:DC%2BC3sXjvVKrsr4%3D10.1021/nn400053k – reference: Suh, G. E. & Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proc. 44th Annu. Conf. Des. Autom. 9–14 (ACM Press, 2007). – reference: DemirokUKBurdickJWangJOrthogonal multi-readout identification of alloy nanowire barcodesJ. Am. Chem. Soc200913122231:CAS:528:DC%2BD1cXhsFSjtbrE10.1021/ja806396h – reference: Gassend, B., Clarke, D., van Dijk, M. & Devadas, S. Silicon physical random functions. In Proc. 9th ACM Conf. Comput. Commun. Secur. (Ed. Atluri, V.) 148–160 (ACM Press, 2002). – reference: Edelstein, D. C., Fritz, G. M., Gates, S. M. & Pfeiffer, D. Structure with sub-lithographic random conductors as a physical unclonable function. US patent 8,759,976 (2014). – reference: PappuRRechtBTaylorJGershenfeldNPhysical one-way functionsScience2002297202620301:CAS:528:DC%2BD38Xnt1ans7s%3D10.1126/science.1074376 – reference: YoonBRecent functional material based approaches to prevent and detect counterfeitingJ. Mater. Chem. C20131238824031:CAS:528:DC%2BC3sXjsFeksLY%3D10.1039/c3tc00818e – reference: SiegelACFoldable printed circuit boards on paper substratesAdv. Funct. Mater20102028351:CAS:528:DC%2BC3cXhtFKguw%3D%3D10.1002/adfm.200901363 – reference: Rajendran, J., Rose, G. S., Karri, R. & Potkonjak, M. Nano-PPUF: a memristor-based security primitive. In 2012 IEEE Comput. Soc. Annu. Symp. VLSI 84–87 (IEEE, 2012). – reference: TulevskiGSChemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arraysJ. Am. Chem. Soc200712911964119681:CAS:528:DC%2BD2sXpvFOitrs%3D10.1021/ja073647t – reference: KatzenbeisserSLecture Notes in Computer Science2012742828330110.1007/978-3-642-33027-8_17 – ident: BFnnano20161_CR36 doi: 10.1109/DAC.2007.375043 – ident: BFnnano20161_CR27 – volume: 2 start-page: 728 year: 2008 ident: BFnnano20161_CR31 publication-title: Nature Photon doi: 10.1038/nphoton.2008.227 – volume: 5 start-page: 3086 year: 2014 ident: BFnnano20161_CR42 publication-title: Nature Commun doi: 10.1038/ncomms4086 – volume: 34 start-page: 889 year: 2015 ident: BFnnano20161_CR16 publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst doi: 10.1109/TCAD.2014.2370531 – ident: BFnnano20161_CR21 doi: 10.1109/ASPDAC.2013.6509623 – volume: 20 start-page: 28 year: 2010 ident: BFnnano20161_CR20 publication-title: Adv. Funct. Mater doi: 10.1002/adfm.200901363 – volume: 297 start-page: 2026 year: 2002 ident: BFnnano20161_CR2 publication-title: Science doi: 10.1126/science.1074376 – volume: 5912 start-page: 685 year: 2009 ident: BFnnano20161_CR11 publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-10366-7_40 – ident: BFnnano20161_CR13 doi: 10.7873/DATE.2014.083 – ident: BFnnano20161_CR28 doi: 10.1109/ISVLSI.2012.40 – ident: BFnnano20161_CR6 doi: 10.1145/586110.586132 – start-page: 65 volume-title: Introduction to Hardware Security and Trust year: 2012 ident: BFnnano20161_CR1 doi: 10.1007/978-1-4419-8080-9_4 – volume: 4 start-page: 58 year: 2009 ident: BFnnano20161_CR32 publication-title: Nature Photon doi: 10.1038/nphoton.2009.235 – volume: 7 start-page: 2971 year: 2013 ident: BFnnano20161_CR45 publication-title: ACS Nano doi: 10.1021/nn400053k – volume: 436 start-page: 475 year: 2005 ident: BFnnano20161_CR5 publication-title: Nature doi: 10.1038/436475a – volume: 27 start-page: 48 year: 2010 ident: BFnnano20161_CR14 publication-title: IEEE Des. Test Comput doi: 10.1109/MDT.2010.25 – ident: BFnnano20161_CR26 doi: 10.1109/ICSENS.2011.6127174 – start-page: 3 volume-title: Towards Hardware-Intrinsic Security year: 2010 ident: BFnnano20161_CR7 doi: 10.1007/978-3-642-14452-3_1 – ident: BFnnano20161_CR15 – volume: 129 start-page: 11964 year: 2007 ident: BFnnano20161_CR35 publication-title: J. Am. Chem. Soc doi: 10.1021/ja073647t – ident: BFnnano20161_CR43 doi: 10.1109/FPL.2014.6927449 – volume: 131 start-page: 22 year: 2009 ident: BFnnano20161_CR24 publication-title: J. Am. Chem. Soc doi: 10.1021/ja806396h – ident: BFnnano20161_CR41 doi: 10.1109/IEDM.2010.5703326 – ident: BFnnano20161_CR9 doi: 10.1007/978-3-540-74735-2_5 – volume: 7428 start-page: 283 year: 2012 ident: BFnnano20161_CR10 publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-33027-8_17 – ident: BFnnano20161_CR8 doi: 10.1109/PERCOM.2007.26 – ident: BFnnano20161_CR44 doi: 10.1109/ISQED.2015.7085467 – ident: BFnnano20161_CR39 doi: 10.1109/IEDM.2013.6724664 – volume: 13 start-page: 3864 year: 2013 ident: BFnnano20161_CR19 publication-title: Nano Lett doi: 10.1021/nl401934a – volume: 1 start-page: 2388 year: 2013 ident: BFnnano20161_CR23 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc00818e – volume: 6 start-page: 906 year: 2006 ident: BFnnano20161_CR34 publication-title: Nano Lett doi: 10.1021/nl052473f – ident: BFnnano20161_CR30 – ident: BFnnano20161_CR40 doi: 10.1109/IEDM.2014.7047120 – volume: 510 start-page: 522 year: 2014 ident: BFnnano20161_CR37 publication-title: Nature doi: 10.1038/nature13434 – ident: BFnnano20161_CR29 doi: 10.1109/ICCAD.2013.6691209 – volume: 3 start-page: 3543 year: 2013 ident: BFnnano20161_CR3 publication-title: Sci. Rep doi: 10.1038/srep03543 – volume: 5 start-page: 5678 year: 2014 ident: BFnnano20161_CR17 publication-title: Nature Commun doi: 10.1038/ncomms6678 – volume: 21 start-page: 1843 year: 2011 ident: BFnnano20161_CR38 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002563 – ident: BFnnano20161_CR22 – volume: 7 start-page: 787 year: 2012 ident: BFnnano20161_CR33 publication-title: Nature Nanotech doi: 10.1038/nnano.2012.189 – volume: 4 start-page: 5490 year: 2014 ident: BFnnano20161_CR4 publication-title: Sci. Rep doi: 10.1038/srep05490 – volume: 8292 start-page: 36 year: 2013 ident: BFnnano20161_CR12 publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-319-03491-1_3 – volume: 14 start-page: 628 year: 2015 ident: BFnnano20161_CR18 publication-title: Nature Mater doi: 10.1038/nmat4237 – volume: 25 start-page: 155303 year: 2014 ident: BFnnano20161_CR25 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/15/155303 |
SSID | ssj0052924 |
Score | 2.5723348 |
Snippet | Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 559 |
SubjectTerms | 142/126 147/135 639/166/987 639/301/357/73 639/925/927/1007 Architecture Carbon Carbon nanotubes Construction costs Cryptography Electrical properties Electromagnetic radiation Electronics Hafnium oxide Hazards Ion exchange Materials Science Nanotechnology Nanotechnology and Microengineering Nanotubes Organic chemistry Power consumption Self-assembly Semiconductor devices Silicon Single wall carbon nanotubes Transistors Trenches Two dimensional |
Title | Physically unclonable cryptographic primitives using self-assembled carbon nanotubes |
URI | https://link.springer.com/article/10.1038/nnano.2016.1 https://www.ncbi.nlm.nih.gov/pubmed/26900757 https://www.proquest.com/docview/1794128992 https://www.proquest.com/docview/1795868944 https://www.proquest.com/docview/1808714527 https://www.proquest.com/docview/1825488239 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvQASgvJaKJWRgAsyjR3HjxMqqEuFRFWhVtpb5Dg2QlqSZZM99N8zk3iXRYW95JKxZI_Hnvk8L0JeK6cqUAOKmaL2TALGYC7qyLgMHnZcqsgxG_nruTq7kl9mxSw9uHUprHJ9Jw4Xdd16fCM_RsHhiA7Eh8Uvhl2j0LuaWmjcJvtYugylWs82gKsQdmxqq6VhAMV0CnzPcnPcNK7B3D-u3vO_VdINO_OGj3RQPdMH5H6yGenJuMkPya3QHJB7J1sugANyd6uw4CNyeZHYP7-moLjm7ZAhRf3yetGPNap_eLrAjl5423UUo9-_0y7MIwNjOvwE4pp6t6zahuIS-lUVusfkanp6-emMpf4JzEtje6YrhU5E6UTAFGkVtXFRCcGDUT6zeax5lFZEwKnOZ8GGQsjcawPDagAaef6E7DVtE54RGjNZawnnNTdCVgU3VjhAUpWNUWkv7IS8W7Ow9Km4OPa4mJeDkzs35cDwEhle8gl5s6FejEU1_kN3uN6NMh2trvwjCBPyavMbDgV6OlwT2tVAUxhlrJQ7aEwGYFEWQu-iAfYBBslhgU9HadhMWABzwd6C0W_X4rE1yX-s5vnu1bwgd5BuDEM7JHv9chVegsHTV0eDVMPXTD8fkf2Pp-cX334DwpoB2g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcuAhISivhQJGolyQ6dpxbOeAUAUsW_oQh63UW-o4NkJakmWTFdo_xW9kJo9lUWFvPWcs2ePxzHyZFyEvlVUZmAHFTJw7JgFjMBt0YFx6BzcuVeBYjXxyqsZn8vN5fL5FfvW1MJhW2evERlHnpcN_5PsoOBzRgXg3-8FwahRGV_sRGq1YHPnlT4Bs1dvDD3C_e0KMPk7ej1k3VYA5aZKa6UxhaE1a4bFwWAVtbFBCcG-UA3wfch5kIgKgN-uGPvGxkJHTBpbl4H7jD1BQ-ddkBJYcK9NHn3rNH4ukHaKrpWEA_XSXaD-MzH5R2AJrDbl6w_82gZf82ksx2cbUje6Q252PSg9aobpLtnyxQ24drIUcdsjNtUaG98jkS3fd0yUFQzktm4os6ubLWd32xP7m6AwniKF2rShm23-llZ8GBs67_w7EOXV2npUFxSPUi8xX98nZlXD2AdkuysI_IjQMZa4l6IfICJnF3CTCAnLLkhCUdiIZkNc9C1PXNTPHmRrTtAmqRyZtGJ4iw1M-IHsr6lnbxOM_dLv9baTdU67SP4I3IC9Wn-ERYmTFFr5cNDSxUSaRcgONGQI4lbHQm2iAfYB5Ijjgw1YaVhsWwFzw72D1q1481jb5j9M83nya5-T6eHJynB4fnh49ITdwTZsCt0u26_nCPwVnq86eNRJOycVVP6nfu7E6ZA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkKAhGB8FQYYifGCTGvHsZ0HhAZbtTGoKrRJewuJY6NJXVKaVKj_Gn8dd_koRYO-7TlnyT6f7-6X-yLklUpUCmZAMRNmlknAGCzx2jMunYUbl8pzrEb-MlZHZ_LTeXi-RX51tTCYVtnpxFpRZ4XFf-QDFByO6EAMfJsWMTkYvZ_9YDhBCiOt3TiNRkRO3PInwLfy3fEB3PWeEKPD049HrJ0wwKw0UcV0qjDMJhPhsIhYeW0Sr4TgzigLWN9n3MtIeEByiR26yIVCBlYbWJaBK44_Q0H9b2tERT2y_eFwPPna2YFQRM1IXS0NAyCo27T7YWAGeZ7kWHnI1Vv-t0G84uVeidDWhm90l9xpPVa634jYPbLl8h1ye38tALFDbq21NbxPTift5U-XFMzmtKjrs6idL2dV0yH7wtIZzhNDXVtSzL3_Tks39QxceXcJxBm1yTwtcopHqBapKx-Qs2vh7UPSy4vcPSbUD2WmJWiLwAiZhtxEIgEcl0beK21F1CdvOhbGtm1tjhM2pnEdYg9MXDM8RobHvE_2VtSzpqXHf-h2u9uI24ddxn_EsE9erj7Dk8Q4S5K7YlHThEaZSMoNNGYIUFWGQm-iAfYBAgrggI8aaVhtWABzwduD1a878Vjb5D9O82TzaV6QG_Cc4s_H45On5CYuafLhdkmvmi_cM_C8qvR5K-KUfLvuV_UbqUI_9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physically+unclonable+cryptographic+primitives+using+self-assembled+carbon+nanotubes&rft.jtitle=Nature+nanotechnology&rft.au=Hu%2C+Zhaoying&rft.au=Comeras%2C+Jose+Miguel+M+Lobez&rft.au=Park%2C+Hongsik&rft.au=Tang%2C+Jianshi&rft.date=2016-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=11&rft.issue=6&rft.spage=559&rft_id=info:doi/10.1038%2Fnnano.2016.1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4080000621 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |