Physically unclonable cryptographic primitives using self-assembled carbon nanotubes

Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled car...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 11; no. 6; pp. 559 - 565
Main Authors Hu, Zhaoying, Comeras, Jose Miguel M. Lobez, Park, Hongsik, Tang, Jianshi, Afzali, Ali, Tulevski, George S., Hannon, James B., Liehr, Michael, Han, Shu-Jen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2016
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO 2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size. Random two-dimensional arrays of carbon nanotubes, which are self-assembled via ion-exchange chemistry, can be used to create cryptographic keys by determining the connection yield and switching type of the nanotube devices.
AbstractList Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO 2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size. Random two-dimensional arrays of carbon nanotubes, which are self-assembled via ion-exchange chemistry, can be used to create cryptographic keys by determining the connection yield and switching type of the nanotube devices.
Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO sub(2) trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.
Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.
Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and information leakage through side-channel attacks (for example, by measuring power consumption, timing or electromagnetic radiation). Single-walled carbon nanotubes are a potential replacement for silicon as the channel material of transistors due to their superb electrical properties and intrinsic ultrathin body, but problems such as limited semiconducting purity and non-ideal assembly still need to be addressed before they can deliver high-performance electronics. Here, we show that by using these inherent imperfections, an unclonable electronic random structure can be constructed at low cost from carbon nanotubes. The nanotubes are self-assembled into patterned HfO2 trenches using ion-exchange chemistry, and the width of the trench is optimized to maximize the randomness of the nanotube placement. With this approach, two-dimensional (2D) random bit arrays are created that can offer ternary-bit architecture by determining the connection yield and switching type of the nanotube devices. As a result, our cryptographic keys provide a significantly higher level of security than conventional binary-bit architecture with the same key size.
Author Hu, Zhaoying
Liehr, Michael
Tang, Jianshi
Han, Shu-Jen
Tulevski, George S.
Hannon, James B.
Park, Hongsik
Comeras, Jose Miguel M. Lobez
Afzali, Ali
Author_xml – sequence: 1
  givenname: Zhaoying
  surname: Hu
  fullname: Hu, Zhaoying
  organization: College of Nanoscale Science and Engineering, State University of New York at Albany
– sequence: 2
  givenname: Jose Miguel M. Lobez
  surname: Comeras
  fullname: Comeras, Jose Miguel M. Lobez
  organization: IBM T. J. Watson Research Center, Yorktown Heights
– sequence: 3
  givenname: Hongsik
  surname: Park
  fullname: Park, Hongsik
  organization: IBM T. J. Watson Research Center, Yorktown Heights, School of Electronics Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 702-701
– sequence: 4
  givenname: Jianshi
  surname: Tang
  fullname: Tang, Jianshi
  organization: IBM T. J. Watson Research Center, Yorktown Heights
– sequence: 5
  givenname: Ali
  surname: Afzali
  fullname: Afzali, Ali
  organization: IBM T. J. Watson Research Center, Yorktown Heights
– sequence: 6
  givenname: George S.
  surname: Tulevski
  fullname: Tulevski, George S.
  organization: IBM T. J. Watson Research Center, Yorktown Heights
– sequence: 7
  givenname: James B.
  surname: Hannon
  fullname: Hannon, James B.
  organization: IBM T. J. Watson Research Center, Yorktown Heights
– sequence: 8
  givenname: Michael
  surname: Liehr
  fullname: Liehr, Michael
  organization: College of Nanoscale Science and Engineering, State University of New York at Albany
– sequence: 9
  givenname: Shu-Jen
  surname: Han
  fullname: Han, Shu-Jen
  email: sjhan@us.ibm.com
  organization: IBM T. J. Watson Research Center, Yorktown Heights
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26900757$$D View this record in MEDLINE/PubMed
BookMark eNqN0c1LHDEYBvBQFL_aW89loJceOms-J8mxSFsFwR70HDLZd9ZINtkmM4X975vpahFR9JQcfs_LmzzHaC-mCAh9JHhBMFOnMdqYFhSTbkHeoSMiuWoZ02Lv_13JQ3Rcyh3GgmrKD9Ah7TTGUsgjdP3rdlu8syFsmym6kKLtAzQubzdjWmW7ufWu2WS_9qP_A6WZio-rpkAYWlsKrCteNs7mPsVmXmSceijv0f5gQ4EP9-cJuvnx_frsvL28-nlx9u2ydVzpsZV9XYMKbikQJWg3SGWHjlICqnNYs2FJBq7pIAmzDoMGQTlzUtXYUgjN2An6spu7yen3BGU0a18chGAjpKkYoup0pSjTb6BYScIFla9TqYXqlOa80s9P6F2acqxvnhUnVGlNq_p0r6Z-DUszf6fNW_PQQgV0B1xOpWQYjPOjHX2KY7Y-GILNXLX5V7WZqzakhr4-CT3MfYG3O14qiyvIj1Z9zv8FvSO5pw
CitedBy_id crossref_primary_10_1039_D0NR01223H
crossref_primary_10_1021_acsanm_9b00322
crossref_primary_10_1039_D3MH00180F
crossref_primary_10_1021_acsnano_1c05984
crossref_primary_10_1021_acsanm_2c00808
crossref_primary_10_1038_s41467_024_47479_y
crossref_primary_10_1021_acsnano_7b06658
crossref_primary_10_1021_acsami_0c11103
crossref_primary_10_1063_1_5079407
crossref_primary_10_1002_smll_202405110
crossref_primary_10_1002_adfm_202006236
crossref_primary_10_1038_s41928_021_00569_x
crossref_primary_10_1007_s12274_023_5709_8
crossref_primary_10_3390_nano13040675
crossref_primary_10_3389_fphy_2020_576948
crossref_primary_10_1038_s41467_024_51756_1
crossref_primary_10_1007_s42979_020_00274_0
crossref_primary_10_1063_5_0004089
crossref_primary_10_1002_adma_202212294
crossref_primary_10_1002_smll_202205697
crossref_primary_10_1039_D4TC02206H
crossref_primary_10_1109_JEDS_2022_3149321
crossref_primary_10_1002_smtd_202400439
crossref_primary_10_1021_acsami_3c02193
crossref_primary_10_1002_admt_202001073
crossref_primary_10_1021_acsapm_8b00031
crossref_primary_10_1021_acs_nanolett_7b02118
crossref_primary_10_1002_anie_201916043
crossref_primary_10_1002_adma_201807880
crossref_primary_10_1038_s41377_023_01285_1
crossref_primary_10_1016_j_cej_2020_128350
crossref_primary_10_1021_acsami_4c09768
crossref_primary_10_1021_acsami_1c04076
crossref_primary_10_1021_acsnano_3c10308
crossref_primary_10_1039_D1TC05938F
crossref_primary_10_1002_adfm_202424079
crossref_primary_10_1021_acsami_1c18808
crossref_primary_10_1002_smll_202307232
crossref_primary_10_1016_j_jphotochem_2024_115801
crossref_primary_10_1002_anie_202115136
crossref_primary_10_1002_sdtp_15047
crossref_primary_10_1016_j_jallcom_2023_172329
crossref_primary_10_1002_adfm_202102108
crossref_primary_10_1007_s11426_021_1192_5
crossref_primary_10_1021_acs_langmuir_7b04368
crossref_primary_10_1109_TED_2021_3138365
crossref_primary_10_1021_acsnano_7b07568
crossref_primary_10_1039_C9TC04615A
crossref_primary_10_1007_s11432_019_9918_4
crossref_primary_10_1109_ACCESS_2021_3091491
crossref_primary_10_1002_inf2_12474
crossref_primary_10_1002_adfm_202205859
crossref_primary_10_1002_adma_202306003
crossref_primary_10_1002_adem_202101701
crossref_primary_10_1002_adfm_202201372
crossref_primary_10_1021_acsanm_0c03367
crossref_primary_10_1021_acsnano_3c08740
crossref_primary_10_1021_acsnanoscienceau_2c00017
crossref_primary_10_1038_s41467_019_10406_7
crossref_primary_10_1007_s12274_020_3033_0
crossref_primary_10_1021_acsaelm_9b00166
crossref_primary_10_1038_s41570_017_0031
crossref_primary_10_1016_j_matt_2020_10_005
crossref_primary_10_1021_acsapm_2c00803
crossref_primary_10_1002_ange_202115136
crossref_primary_10_1002_smll_202100377
crossref_primary_10_1038_s41598_024_59584_5
crossref_primary_10_1038_s41598_022_24658_9
crossref_primary_10_1002_adma_202409170
crossref_primary_10_1002_admt_202301055
crossref_primary_10_1186_s12967_019_1798_2
crossref_primary_10_1007_s12598_021_01842_w
crossref_primary_10_1109_TAP_2024_3396693
crossref_primary_10_1021_acs_nanolett_8b03338
crossref_primary_10_1002_adma_202102542
crossref_primary_10_1002_admi_202101281
crossref_primary_10_1038_s41377_022_00760_5
crossref_primary_10_1109_TVLSI_2017_2742943
crossref_primary_10_1002_adfm_202314883
crossref_primary_10_1109_TCAD_2017_2762919
crossref_primary_10_1109_JIOT_2018_2838580
crossref_primary_10_1088_1361_6528_ac96f6
crossref_primary_10_1021_acsami_1c08864
crossref_primary_10_1038_s42005_019_0139_3
crossref_primary_10_1038_s41467_020_19324_5
crossref_primary_10_1038_s41928_018_0039_7
crossref_primary_10_1021_acsami_1c13898
crossref_primary_10_1515_nanoph_2020_0049
crossref_primary_10_1039_D0MH00566E
crossref_primary_10_1039_D1TC02883A
crossref_primary_10_1021_acsami_1c20905
crossref_primary_10_1002_adfm_202211762
crossref_primary_10_1016_j_heliyon_2023_e22895
crossref_primary_10_1002_ange_201916043
crossref_primary_10_1038_natrevmats_2016_20
crossref_primary_10_1002_adom_202201549
crossref_primary_10_1038_s41467_019_14066_5
crossref_primary_10_1002_adma_201603895
crossref_primary_10_1016_j_jallcom_2021_162298
crossref_primary_10_1016_j_matt_2019_08_016
crossref_primary_10_1002_adpr_202100207
crossref_primary_10_1021_acsami_3c00414
crossref_primary_10_1002_adma_202203558
crossref_primary_10_1002_adpr_202100202
crossref_primary_10_1021_acsami_8b17403
crossref_primary_10_1002_adma_202203830
crossref_primary_10_1039_C7NR06561B
crossref_primary_10_1038_s41467_024_45428_3
crossref_primary_10_1063_5_0055400
crossref_primary_10_1039_C9TC05291G
crossref_primary_10_3390_micro2030024
crossref_primary_10_3390_app14051700
crossref_primary_10_1002_adom_202000985
crossref_primary_10_35848_1347_4065_ac506b
crossref_primary_10_1021_acs_nanolett_3c02916
crossref_primary_10_1002_adfm_202409004
crossref_primary_10_1016_j_cjsc_2024_100410
crossref_primary_10_1016_j_cej_2022_135601
crossref_primary_10_1016_j_apsusc_2021_150827
crossref_primary_10_1021_acs_nanolett_3c01145
crossref_primary_10_1186_s11671_019_3046_3
crossref_primary_10_1002_adma_202210621
crossref_primary_10_1021_acsami_4c01534
crossref_primary_10_1016_j_eurpolymj_2023_112598
crossref_primary_10_1002_adma_201905654
crossref_primary_10_1002_adom_202401779
crossref_primary_10_1016_j_physleta_2018_03_012
crossref_primary_10_1002_smll_202200662
crossref_primary_10_1038_s41928_022_00805_y
crossref_primary_10_1039_C8CS00888D
crossref_primary_10_1126_sciadv_1701384
crossref_primary_10_1364_OE_476991
crossref_primary_10_3390_nano13222930
crossref_primary_10_1002_advs_202001778
crossref_primary_10_3390_s19184048
crossref_primary_10_1126_sciadv_abn7753
crossref_primary_10_1021_acsami_0c16846
crossref_primary_10_3390_math12010077
crossref_primary_10_1016_j_carbon_2021_07_001
crossref_primary_10_1021_acsphotonics_4c00071
crossref_primary_10_1021_acsami_4c03283
crossref_primary_10_1002_adom_202301175
crossref_primary_10_1002_sstr_202400527
crossref_primary_10_1021_acsami_4c11340
crossref_primary_10_1038_s41928_022_00787_x
crossref_primary_10_1002_sstr_202200060
crossref_primary_10_1021_acsanm_4c04614
crossref_primary_10_1126_science_aaz7440
crossref_primary_10_1002_smll_201803825
crossref_primary_10_1109_TVLSI_2019_2924081
Cites_doi 10.1109/DAC.2007.375043
10.1038/nphoton.2008.227
10.1038/ncomms4086
10.1109/TCAD.2014.2370531
10.1109/ASPDAC.2013.6509623
10.1002/adfm.200901363
10.1126/science.1074376
10.1007/978-3-642-10366-7_40
10.7873/DATE.2014.083
10.1109/ISVLSI.2012.40
10.1145/586110.586132
10.1007/978-1-4419-8080-9_4
10.1038/nphoton.2009.235
10.1021/nn400053k
10.1038/436475a
10.1109/MDT.2010.25
10.1109/ICSENS.2011.6127174
10.1007/978-3-642-14452-3_1
10.1021/ja073647t
10.1109/FPL.2014.6927449
10.1021/ja806396h
10.1109/IEDM.2010.5703326
10.1007/978-3-540-74735-2_5
10.1007/978-3-642-33027-8_17
10.1109/PERCOM.2007.26
10.1109/ISQED.2015.7085467
10.1109/IEDM.2013.6724664
10.1021/nl401934a
10.1039/c3tc00818e
10.1021/nl052473f
10.1109/IEDM.2014.7047120
10.1038/nature13434
10.1109/ICCAD.2013.6691209
10.1038/srep03543
10.1038/ncomms6678
10.1002/adfm.201002563
10.1038/nnano.2012.189
10.1038/srep05490
10.1007/978-3-319-03491-1_3
10.1038/nmat4237
10.1088/0957-4484/25/15/155303
ContentType Journal Article
Copyright Springer Nature Limited 2016
Copyright Nature Publishing Group Jun 2016
Copyright_xml – notice: Springer Nature Limited 2016
– notice: Copyright Nature Publishing Group Jun 2016
DBID AAYXX
CITATION
NPM
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
DOI 10.1038/nnano.2016.1
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological science database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Solid State and Superconductivity Abstracts
ProQuest Central Student
MEDLINE - Academic
PubMed
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1748-3395
EndPage 565
ExternalDocumentID 4080000621
26900757
10_1038_nnano_2016_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ACSTC
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-c489t-7b690254a2e18526f78af6221e86c093fd1f492f713ac0e9e5243c78b69d55933
IEDL.DBID 7X7
ISSN 1748-3387
1748-3395
IngestDate Fri Jul 11 04:31:16 EDT 2025
Thu Jul 10 22:02:24 EDT 2025
Fri Jul 11 01:20:31 EDT 2025
Sat Aug 23 12:54:23 EDT 2025
Wed Feb 19 02:36:25 EST 2025
Tue Aug 05 12:03:46 EDT 2025
Thu Apr 24 23:06:33 EDT 2025
Fri Feb 21 02:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-7b690254a2e18526f78af6221e86c093fd1f492f713ac0e9e5243c78b69d55933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26900757
PQID 1794128992
PQPubID 546299
PageCount 7
ParticipantIDs proquest_miscellaneous_1825488239
proquest_miscellaneous_1808714527
proquest_miscellaneous_1795868944
proquest_journals_1794128992
pubmed_primary_26900757
crossref_citationtrail_10_1038_nnano_2016_1
crossref_primary_10_1038_nnano_2016_1
springer_journals_10_1038_nnano_2016_1
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nature Nanotech
PublicationTitleAlternate Nat Nanotechnol
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KanterIAviadYReidlerICohenERosenbluhMAn optical ultrafast random bit generatorNature Photon20094586110.1038/nphoton.2009.235
Rose, G. S., McDonald, N., Yan, L. K. & Wysocki, B. A write-time based memristive PUF for hardware security applications. In IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. 830–833 (IEEE, 2013).
LauPHFully printed, high performance carbon nanotube thin-film transistors on flexible substratesNano Lett201313386438691:CAS:528:DC%2BC3sXhtF2qsrrF10.1021/nl401934a
Rose, G. S. et al. Hardware security strategies exploiting nanoelectronic circuits. In 18th Asia South Pacific Des. Autom. Conf. 368–372 (IEEE, 2013).
SiegelACFoldable printed circuit boards on paper substratesAdv. Funct. Mater20102028351:CAS:528:DC%2BC3cXhtFKguw%3D%3D10.1002/adfm.200901363
YangFChirality-specific growth of single-walled carbon nanotubes on solid alloy catalystsNature20145105225241:CAS:528:DC%2BC2cXhtVGjsr%2FF10.1038/nature13434
TulevskiGSFranklinADAfzaliAHigh purity isolation and quantification of semiconducting carbon nanotubes via column chromatographyACS Nano20137297129761:CAS:528:DC%2BC3sXjvVKrsr4%3D10.1021/nn400053k
Rukhin, A. et al. Statistical Test Suite for Random and Pseudorando Number Generators for Cryptographic Applications Special Publication 800-22 Revision 1a (NIST, 2010); http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
Gassend, B., Clarke, D., van Dijk, M. & Devadas, S. Silicon physical random functions. In Proc. 9th ACM Conf. Comput. Commun. Secur. (Ed. Atluri, V.) 148–160 (ACM Press, 2002).
ParkHHigh-density integration of carbon nanotubes via chemical self-assemblyNature Nanotech201277877911:CAS:528:DC%2BC38XhsFOmt7jL10.1038/nnano.2012.189
PappuRRechtBTaylorJGershenfeldNPhysical one-way functionsScience2002297202620301:CAS:528:DC%2BD38Xnt1ans7s%3D10.1126/science.1074376
AkinwandeDPetroneNHoneJTwo-dimensional flexible nanoelectronicsNature Commun2014556781:CAS:528:DC%2BC2MXksVCitbk%3D10.1038/ncomms6678
Guajardo, J., Kumar, S. S., Schrijen, G.-J. & Tuyls, P. FPGA intrinsic PUFs and their use for IP protection. In Cryptogr. Hardw. Embed. Syst. - CHES 2007 (eds Paillier, P. & Verbauwhede, I.) 63–80 (Springer, 2007).
TulevskiGSChemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arraysJ. Am. Chem. Soc200712911964119681:CAS:528:DC%2BD2sXpvFOitrs%3D10.1021/ja073647t
DelvauxJGuDSchellekensDVerbauwhedeIHelper data algorithms for PUF-based key generation: overview and analysisIEEE Trans. Comput. Des. Integr. Circuits Syst20153488990210.1109/TCAD.2014.2370531
HorstmeyerRJudkewitzBVellekoopIMAssawaworraritSYangCPhysical key-protected one-time padSci. Rep20133354310.1038/srep03543
YuMDDevadasSSecure and robust error correction for physical unclonable functionsIEEE Des. Test Comput20102748651:CAS:528:DC%2BC3cXislamsrk%3D10.1109/MDT.2010.25
Wendt, J. B. & Potkonjak, M. Nanotechnology-based trusted remote sensing. In Proc. 2011 IEEE Sensors 1213–1216 (IEEE, 2011).
PeiTTemperature performance of doping-free top-gate CNT field-effect transistors: potential for low- and high-temperature electronicsAdv. Funct. Mater.201121184318491:CAS:528:DC%2BC3MXmtFyntLk%3D10.1002/adfm.201002563
ArmknechtFMaesRSadeghiARSunarBTuylsPLecture Notes in Computer Science2009591268570210.1007/978-3-642-10366-7_40
RuhrmairUDevadasSKoushanfarFIntroduction to Hardware Security and Trust20126510210.1007/978-1-4419-8080-9_4
Bhargava, M. & Mai, K. An efficient reliable PUF-based cryptographic key generator in 65 nm CMOS. In Des. Autom. Test Eur. Conf. Exhib. 2014 1–6 (IEEE, 2014).
Suh, G. E. & Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proc. 44th Annu. Conf. Des. Autom. 9–14 (ACM Press, 2007).
BuchananJDRForgery: ‘fingerprinting’ documents and packagingNature20054364751:CAS:528:DC%2BD2MXmsFChu7Y%3D10.1038/436475a
Bösch, C., Guajardo, J., Sadeghi, A. R., Shokrollahi, J. & Tuyls, P. in Lecture Notes in Computer Science Vol. 5154 (eds Oswald, E. & Rohatgi, P.) 181–197 (2008).
Shulaker, M. M. et al. Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In Proc. 2014 IEEE Int. Electron Devices Meet. 27.4.1–27.4.4 (IEEE, 2014).
DemirokUKBurdickJWangJOrthogonal multi-readout identification of alloy nanowire barcodesJ. Am. Chem. Soc200913122231:CAS:528:DC%2BD1cXhsFSjtbrE10.1021/ja806396h
Xu, T. & Potkonjak, M. Robust and flexible FPGA-based digital PUF. In 2014 24th Int. Conf. F. Program. Log. Appl. 1–6 (IEEE, 2014).
KoeberlPLiJWuWLecture Notes in Computer Science20138292365210.1007/978-3-319-03491-1_3
MarangonDGValloneGVilloresiPRandom bits, true and unbiased, from atmospheric turbulenceSci. Rep2014454901:CAS:528:DC%2BC2MXksVyrtrs%3D10.1038/srep05490
UchidaAFast physical random bit generation with chaotic semiconductor lasersNature Photon200827287321:CAS:528:DC%2BD1cXhsVentrvI10.1038/nphoton.2008.227
KimJAnti-counterfeit nanoscale fingerprints based on randomly distributed nanowiresNanotechnology20142515530310.1088/0957-4484/25/15/155303
MoonHSynthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronicsNature Mater2015146286351:CAS:528:DC%2BC2MXktVCnsbc%3D10.1038/nmat4237
Han, S.-J. et al. Carbon nanotube complementary logic based on Erbium contacts and self-assembled high purity solution tubes. In Proc. 2013 IEEE Int. Electron Devices Meet. 19.8.1–19.8.4 (IEEE, 2013).
Han, S. J. et al. Wafer scale fabrication of carbon nanotube FETs with embedded poly-gates. In Proc. 2010 IEEE Int. Electron Devices Meet. 9.1.1–9.1.4 (IEEE, 2010).
Bolotnyy, L. & Robins, G. Physically unclonable function-based security and privacy in RFID systems. In Fifth Ann. IEEE Int. Conf. Pervasive Comput. Commun. 211–220 (IEEE, 2007).
Rose, G. S. et al. in Networks in Cyber Security Vol. 55 (Ed. Pino, R. E.) 105–123 (Springer, 2014).
KatzenbeisserSLecture Notes in Computer Science2012742828330110.1007/978-3-642-33027-8_17
KlinkeCHannonJBAfzaliAAvourisPField-effect transistors assembled from functionalized carbon nanotubesNano Lett200669069101:CAS:528:DC%2BD28XjtFWrtb8%3D10.1021/nl052473f
MaesRVerbauwhedeITowards Hardware-Intrinsic Security201039610.1007/978-3-642-14452-3_1
Rajendran, J., Rose, G. S., Karri, R. & Potkonjak, M. Nano-PPUF: a memristor-based security primitive. In 2012 IEEE Comput. Soc. Annu. Symp. VLSI 84–87 (IEEE, 2012).
Edelstein, D. C., Fritz, G. M., Gates, S. M. & Pfeiffer, D. Structure with sub-lithographic random conductors as a physical unclonable function. US patent 8,759,976 (2014).
HanS-JGarciaAVOidaSJenkinsKAHaenschWGraphene radio frequency receiver integrated circuitNature Commun20145308610.1038/ncomms4086
YoonBRecent functional material based approaches to prevent and detect counterfeitingJ. Mater. Chem. C20131238824031:CAS:528:DC%2BC3sXjsFeksLY%3D10.1039/c3tc00818e
Xu, T. & Potkonjak, M. Digital PUF using intentional faults. In 2015 6th. Int. Symp. Qual. Electron. Des. 448–451 (IEEE, 2015).
F Armknecht (BFnnano20161_CR11) 2009; 5912
S-J Han (BFnnano20161_CR42) 2014; 5
H Moon (BFnnano20161_CR18) 2015; 14
R Horstmeyer (BFnnano20161_CR3) 2013; 3
J Kim (BFnnano20161_CR25) 2014; 25
H Park (BFnnano20161_CR33) 2012; 7
S Katzenbeisser (BFnnano20161_CR10) 2012; 7428
PH Lau (BFnnano20161_CR19) 2013; 13
BFnnano20161_CR21
BFnnano20161_CR43
GS Tulevski (BFnnano20161_CR45) 2013; 7
BFnnano20161_CR22
BFnnano20161_CR44
R Maes (BFnnano20161_CR7) 2010
B Yoon (BFnnano20161_CR23) 2013; 1
BFnnano20161_CR41
BFnnano20161_CR40
BFnnano20161_CR39
AC Siegel (BFnnano20161_CR20) 2010; 20
BFnnano20161_CR36
BFnnano20161_CR13
BFnnano20161_CR15
JDR Buchanan (BFnnano20161_CR5) 2005; 436
U Ruhrmair (BFnnano20161_CR1) 2012
UK Demirok (BFnnano20161_CR24) 2009; 131
P Koeberl (BFnnano20161_CR12) 2013; 8292
A Uchida (BFnnano20161_CR31) 2008; 2
I Kanter (BFnnano20161_CR32) 2009; 4
F Yang (BFnnano20161_CR37) 2014; 510
R Pappu (BFnnano20161_CR2) 2002; 297
J Delvaux (BFnnano20161_CR16) 2015; 34
BFnnano20161_CR30
GS Tulevski (BFnnano20161_CR35) 2007; 129
BFnnano20161_CR29
BFnnano20161_CR28
BFnnano20161_CR6
BFnnano20161_CR8
BFnnano20161_CR27
BFnnano20161_CR9
BFnnano20161_CR26
MD Yu (BFnnano20161_CR14) 2010; 27
DG Marangon (BFnnano20161_CR4) 2014; 4
C Klinke (BFnnano20161_CR34) 2006; 6
D Akinwande (BFnnano20161_CR17) 2014; 5
T Pei (BFnnano20161_CR38) 2011; 21
References_xml – reference: HorstmeyerRJudkewitzBVellekoopIMAssawaworraritSYangCPhysical key-protected one-time padSci. Rep20133354310.1038/srep03543
– reference: Guajardo, J., Kumar, S. S., Schrijen, G.-J. & Tuyls, P. FPGA intrinsic PUFs and their use for IP protection. In Cryptogr. Hardw. Embed. Syst. - CHES 2007 (eds Paillier, P. & Verbauwhede, I.) 63–80 (Springer, 2007).
– reference: ParkHHigh-density integration of carbon nanotubes via chemical self-assemblyNature Nanotech201277877911:CAS:528:DC%2BC38XhsFOmt7jL10.1038/nnano.2012.189
– reference: BuchananJDRForgery: ‘fingerprinting’ documents and packagingNature20054364751:CAS:528:DC%2BD2MXmsFChu7Y%3D10.1038/436475a
– reference: Rukhin, A. et al. Statistical Test Suite for Random and Pseudorando Number Generators for Cryptographic Applications Special Publication 800-22 Revision 1a (NIST, 2010); http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
– reference: YangFChirality-specific growth of single-walled carbon nanotubes on solid alloy catalystsNature20145105225241:CAS:528:DC%2BC2cXhtVGjsr%2FF10.1038/nature13434
– reference: Xu, T. & Potkonjak, M. Digital PUF using intentional faults. In 2015 6th. Int. Symp. Qual. Electron. Des. 448–451 (IEEE, 2015).
– reference: Rose, G. S. et al. Hardware security strategies exploiting nanoelectronic circuits. In 18th Asia South Pacific Des. Autom. Conf. 368–372 (IEEE, 2013).
– reference: Rose, G. S., McDonald, N., Yan, L. K. & Wysocki, B. A write-time based memristive PUF for hardware security applications. In IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. 830–833 (IEEE, 2013).
– reference: PeiTTemperature performance of doping-free top-gate CNT field-effect transistors: potential for low- and high-temperature electronicsAdv. Funct. Mater.201121184318491:CAS:528:DC%2BC3MXmtFyntLk%3D10.1002/adfm.201002563
– reference: Han, S. J. et al. Wafer scale fabrication of carbon nanotube FETs with embedded poly-gates. In Proc. 2010 IEEE Int. Electron Devices Meet. 9.1.1–9.1.4 (IEEE, 2010).
– reference: MaesRVerbauwhedeITowards Hardware-Intrinsic Security201039610.1007/978-3-642-14452-3_1
– reference: RuhrmairUDevadasSKoushanfarFIntroduction to Hardware Security and Trust20126510210.1007/978-1-4419-8080-9_4
– reference: LauPHFully printed, high performance carbon nanotube thin-film transistors on flexible substratesNano Lett201313386438691:CAS:528:DC%2BC3sXhtF2qsrrF10.1021/nl401934a
– reference: Bolotnyy, L. & Robins, G. Physically unclonable function-based security and privacy in RFID systems. In Fifth Ann. IEEE Int. Conf. Pervasive Comput. Commun. 211–220 (IEEE, 2007).
– reference: Bösch, C., Guajardo, J., Sadeghi, A. R., Shokrollahi, J. & Tuyls, P. in Lecture Notes in Computer Science Vol. 5154 (eds Oswald, E. & Rohatgi, P.) 181–197 (2008).
– reference: MoonHSynthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronicsNature Mater2015146286351:CAS:528:DC%2BC2MXktVCnsbc%3D10.1038/nmat4237
– reference: AkinwandeDPetroneNHoneJTwo-dimensional flexible nanoelectronicsNature Commun2014556781:CAS:528:DC%2BC2MXksVCitbk%3D10.1038/ncomms6678
– reference: ArmknechtFMaesRSadeghiARSunarBTuylsPLecture Notes in Computer Science2009591268570210.1007/978-3-642-10366-7_40
– reference: HanS-JGarciaAVOidaSJenkinsKAHaenschWGraphene radio frequency receiver integrated circuitNature Commun20145308610.1038/ncomms4086
– reference: Bhargava, M. & Mai, K. An efficient reliable PUF-based cryptographic key generator in 65 nm CMOS. In Des. Autom. Test Eur. Conf. Exhib. 2014 1–6 (IEEE, 2014).
– reference: YuMDDevadasSSecure and robust error correction for physical unclonable functionsIEEE Des. Test Comput20102748651:CAS:528:DC%2BC3cXislamsrk%3D10.1109/MDT.2010.25
– reference: Rose, G. S. et al. in Networks in Cyber Security Vol. 55 (Ed. Pino, R. E.) 105–123 (Springer, 2014).
– reference: KanterIAviadYReidlerICohenERosenbluhMAn optical ultrafast random bit generatorNature Photon20094586110.1038/nphoton.2009.235
– reference: Han, S.-J. et al. Carbon nanotube complementary logic based on Erbium contacts and self-assembled high purity solution tubes. In Proc. 2013 IEEE Int. Electron Devices Meet. 19.8.1–19.8.4 (IEEE, 2013).
– reference: DelvauxJGuDSchellekensDVerbauwhedeIHelper data algorithms for PUF-based key generation: overview and analysisIEEE Trans. Comput. Des. Integr. Circuits Syst20153488990210.1109/TCAD.2014.2370531
– reference: KoeberlPLiJWuWLecture Notes in Computer Science20138292365210.1007/978-3-319-03491-1_3
– reference: Wendt, J. B. & Potkonjak, M. Nanotechnology-based trusted remote sensing. In Proc. 2011 IEEE Sensors 1213–1216 (IEEE, 2011).
– reference: Xu, T. & Potkonjak, M. Robust and flexible FPGA-based digital PUF. In 2014 24th Int. Conf. F. Program. Log. Appl. 1–6 (IEEE, 2014).
– reference: KlinkeCHannonJBAfzaliAAvourisPField-effect transistors assembled from functionalized carbon nanotubesNano Lett200669069101:CAS:528:DC%2BD28XjtFWrtb8%3D10.1021/nl052473f
– reference: KimJAnti-counterfeit nanoscale fingerprints based on randomly distributed nanowiresNanotechnology20142515530310.1088/0957-4484/25/15/155303
– reference: MarangonDGValloneGVilloresiPRandom bits, true and unbiased, from atmospheric turbulenceSci. Rep2014454901:CAS:528:DC%2BC2MXksVyrtrs%3D10.1038/srep05490
– reference: UchidaAFast physical random bit generation with chaotic semiconductor lasersNature Photon200827287321:CAS:528:DC%2BD1cXhsVentrvI10.1038/nphoton.2008.227
– reference: Shulaker, M. M. et al. Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In Proc. 2014 IEEE Int. Electron Devices Meet. 27.4.1–27.4.4 (IEEE, 2014).
– reference: TulevskiGSFranklinADAfzaliAHigh purity isolation and quantification of semiconducting carbon nanotubes via column chromatographyACS Nano20137297129761:CAS:528:DC%2BC3sXjvVKrsr4%3D10.1021/nn400053k
– reference: Suh, G. E. & Devadas, S. Physical unclonable functions for device authentication and secret key generation. In Proc. 44th Annu. Conf. Des. Autom. 9–14 (ACM Press, 2007).
– reference: DemirokUKBurdickJWangJOrthogonal multi-readout identification of alloy nanowire barcodesJ. Am. Chem. Soc200913122231:CAS:528:DC%2BD1cXhsFSjtbrE10.1021/ja806396h
– reference: Gassend, B., Clarke, D., van Dijk, M. & Devadas, S. Silicon physical random functions. In Proc. 9th ACM Conf. Comput. Commun. Secur. (Ed. Atluri, V.) 148–160 (ACM Press, 2002).
– reference: Edelstein, D. C., Fritz, G. M., Gates, S. M. & Pfeiffer, D. Structure with sub-lithographic random conductors as a physical unclonable function. US patent 8,759,976 (2014).
– reference: PappuRRechtBTaylorJGershenfeldNPhysical one-way functionsScience2002297202620301:CAS:528:DC%2BD38Xnt1ans7s%3D10.1126/science.1074376
– reference: YoonBRecent functional material based approaches to prevent and detect counterfeitingJ. Mater. Chem. C20131238824031:CAS:528:DC%2BC3sXjsFeksLY%3D10.1039/c3tc00818e
– reference: SiegelACFoldable printed circuit boards on paper substratesAdv. Funct. Mater20102028351:CAS:528:DC%2BC3cXhtFKguw%3D%3D10.1002/adfm.200901363
– reference: Rajendran, J., Rose, G. S., Karri, R. & Potkonjak, M. Nano-PPUF: a memristor-based security primitive. In 2012 IEEE Comput. Soc. Annu. Symp. VLSI 84–87 (IEEE, 2012).
– reference: TulevskiGSChemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arraysJ. Am. Chem. Soc200712911964119681:CAS:528:DC%2BD2sXpvFOitrs%3D10.1021/ja073647t
– reference: KatzenbeisserSLecture Notes in Computer Science2012742828330110.1007/978-3-642-33027-8_17
– ident: BFnnano20161_CR36
  doi: 10.1109/DAC.2007.375043
– ident: BFnnano20161_CR27
– volume: 2
  start-page: 728
  year: 2008
  ident: BFnnano20161_CR31
  publication-title: Nature Photon
  doi: 10.1038/nphoton.2008.227
– volume: 5
  start-page: 3086
  year: 2014
  ident: BFnnano20161_CR42
  publication-title: Nature Commun
  doi: 10.1038/ncomms4086
– volume: 34
  start-page: 889
  year: 2015
  ident: BFnnano20161_CR16
  publication-title: IEEE Trans. Comput. Des. Integr. Circuits Syst
  doi: 10.1109/TCAD.2014.2370531
– ident: BFnnano20161_CR21
  doi: 10.1109/ASPDAC.2013.6509623
– volume: 20
  start-page: 28
  year: 2010
  ident: BFnnano20161_CR20
  publication-title: Adv. Funct. Mater
  doi: 10.1002/adfm.200901363
– volume: 297
  start-page: 2026
  year: 2002
  ident: BFnnano20161_CR2
  publication-title: Science
  doi: 10.1126/science.1074376
– volume: 5912
  start-page: 685
  year: 2009
  ident: BFnnano20161_CR11
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-10366-7_40
– ident: BFnnano20161_CR13
  doi: 10.7873/DATE.2014.083
– ident: BFnnano20161_CR28
  doi: 10.1109/ISVLSI.2012.40
– ident: BFnnano20161_CR6
  doi: 10.1145/586110.586132
– start-page: 65
  volume-title: Introduction to Hardware Security and Trust
  year: 2012
  ident: BFnnano20161_CR1
  doi: 10.1007/978-1-4419-8080-9_4
– volume: 4
  start-page: 58
  year: 2009
  ident: BFnnano20161_CR32
  publication-title: Nature Photon
  doi: 10.1038/nphoton.2009.235
– volume: 7
  start-page: 2971
  year: 2013
  ident: BFnnano20161_CR45
  publication-title: ACS Nano
  doi: 10.1021/nn400053k
– volume: 436
  start-page: 475
  year: 2005
  ident: BFnnano20161_CR5
  publication-title: Nature
  doi: 10.1038/436475a
– volume: 27
  start-page: 48
  year: 2010
  ident: BFnnano20161_CR14
  publication-title: IEEE Des. Test Comput
  doi: 10.1109/MDT.2010.25
– ident: BFnnano20161_CR26
  doi: 10.1109/ICSENS.2011.6127174
– start-page: 3
  volume-title: Towards Hardware-Intrinsic Security
  year: 2010
  ident: BFnnano20161_CR7
  doi: 10.1007/978-3-642-14452-3_1
– ident: BFnnano20161_CR15
– volume: 129
  start-page: 11964
  year: 2007
  ident: BFnnano20161_CR35
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja073647t
– ident: BFnnano20161_CR43
  doi: 10.1109/FPL.2014.6927449
– volume: 131
  start-page: 22
  year: 2009
  ident: BFnnano20161_CR24
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja806396h
– ident: BFnnano20161_CR41
  doi: 10.1109/IEDM.2010.5703326
– ident: BFnnano20161_CR9
  doi: 10.1007/978-3-540-74735-2_5
– volume: 7428
  start-page: 283
  year: 2012
  ident: BFnnano20161_CR10
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-33027-8_17
– ident: BFnnano20161_CR8
  doi: 10.1109/PERCOM.2007.26
– ident: BFnnano20161_CR44
  doi: 10.1109/ISQED.2015.7085467
– ident: BFnnano20161_CR39
  doi: 10.1109/IEDM.2013.6724664
– volume: 13
  start-page: 3864
  year: 2013
  ident: BFnnano20161_CR19
  publication-title: Nano Lett
  doi: 10.1021/nl401934a
– volume: 1
  start-page: 2388
  year: 2013
  ident: BFnnano20161_CR23
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc00818e
– volume: 6
  start-page: 906
  year: 2006
  ident: BFnnano20161_CR34
  publication-title: Nano Lett
  doi: 10.1021/nl052473f
– ident: BFnnano20161_CR30
– ident: BFnnano20161_CR40
  doi: 10.1109/IEDM.2014.7047120
– volume: 510
  start-page: 522
  year: 2014
  ident: BFnnano20161_CR37
  publication-title: Nature
  doi: 10.1038/nature13434
– ident: BFnnano20161_CR29
  doi: 10.1109/ICCAD.2013.6691209
– volume: 3
  start-page: 3543
  year: 2013
  ident: BFnnano20161_CR3
  publication-title: Sci. Rep
  doi: 10.1038/srep03543
– volume: 5
  start-page: 5678
  year: 2014
  ident: BFnnano20161_CR17
  publication-title: Nature Commun
  doi: 10.1038/ncomms6678
– volume: 21
  start-page: 1843
  year: 2011
  ident: BFnnano20161_CR38
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002563
– ident: BFnnano20161_CR22
– volume: 7
  start-page: 787
  year: 2012
  ident: BFnnano20161_CR33
  publication-title: Nature Nanotech
  doi: 10.1038/nnano.2012.189
– volume: 4
  start-page: 5490
  year: 2014
  ident: BFnnano20161_CR4
  publication-title: Sci. Rep
  doi: 10.1038/srep05490
– volume: 8292
  start-page: 36
  year: 2013
  ident: BFnnano20161_CR12
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-319-03491-1_3
– volume: 14
  start-page: 628
  year: 2015
  ident: BFnnano20161_CR18
  publication-title: Nature Mater
  doi: 10.1038/nmat4237
– volume: 25
  start-page: 155303
  year: 2014
  ident: BFnnano20161_CR25
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/15/155303
SSID ssj0052924
Score 2.5723348
Snippet Information security underpins many aspects of modern society. However, silicon chips are vulnerable to hazards such as counterfeiting, tampering and...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 559
SubjectTerms 142/126
147/135
639/166/987
639/301/357/73
639/925/927/1007
Architecture
Carbon
Carbon nanotubes
Construction costs
Cryptography
Electrical properties
Electromagnetic radiation
Electronics
Hafnium oxide
Hazards
Ion exchange
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Nanotubes
Organic chemistry
Power consumption
Self-assembly
Semiconductor devices
Silicon
Single wall carbon nanotubes
Transistors
Trenches
Two dimensional
Title Physically unclonable cryptographic primitives using self-assembled carbon nanotubes
URI https://link.springer.com/article/10.1038/nnano.2016.1
https://www.ncbi.nlm.nih.gov/pubmed/26900757
https://www.proquest.com/docview/1794128992
https://www.proquest.com/docview/1795868944
https://www.proquest.com/docview/1808714527
https://www.proquest.com/docview/1825488239
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvQASgvJaKJWRgAsyjR3HjxMqqEuFRFWhVtpb5Dg2QlqSZZM99N8zk3iXRYW95JKxZI_Hnvk8L0JeK6cqUAOKmaL2TALGYC7qyLgMHnZcqsgxG_nruTq7kl9mxSw9uHUprHJ9Jw4Xdd16fCM_RsHhiA7Eh8Uvhl2j0LuaWmjcJvtYugylWs82gKsQdmxqq6VhAMV0CnzPcnPcNK7B3D-u3vO_VdINO_OGj3RQPdMH5H6yGenJuMkPya3QHJB7J1sugANyd6uw4CNyeZHYP7-moLjm7ZAhRf3yetGPNap_eLrAjl5423UUo9-_0y7MIwNjOvwE4pp6t6zahuIS-lUVusfkanp6-emMpf4JzEtje6YrhU5E6UTAFGkVtXFRCcGDUT6zeax5lFZEwKnOZ8GGQsjcawPDagAaef6E7DVtE54RGjNZawnnNTdCVgU3VjhAUpWNUWkv7IS8W7Ow9Km4OPa4mJeDkzs35cDwEhle8gl5s6FejEU1_kN3uN6NMh2trvwjCBPyavMbDgV6OlwT2tVAUxhlrJQ7aEwGYFEWQu-iAfYBBslhgU9HadhMWABzwd6C0W_X4rE1yX-s5vnu1bwgd5BuDEM7JHv9chVegsHTV0eDVMPXTD8fkf2Pp-cX334DwpoB2g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcuAhISivhQJGolyQ6dpxbOeAUAUsW_oQh63UW-o4NkJakmWTFdo_xW9kJo9lUWFvPWcs2ePxzHyZFyEvlVUZmAHFTJw7JgFjMBt0YFx6BzcuVeBYjXxyqsZn8vN5fL5FfvW1MJhW2evERlHnpcN_5PsoOBzRgXg3-8FwahRGV_sRGq1YHPnlT4Bs1dvDD3C_e0KMPk7ej1k3VYA5aZKa6UxhaE1a4bFwWAVtbFBCcG-UA3wfch5kIgKgN-uGPvGxkJHTBpbl4H7jD1BQ-ddkBJYcK9NHn3rNH4ukHaKrpWEA_XSXaD-MzH5R2AJrDbl6w_82gZf82ksx2cbUje6Q252PSg9aobpLtnyxQ24drIUcdsjNtUaG98jkS3fd0yUFQzktm4os6ubLWd32xP7m6AwniKF2rShm23-llZ8GBs67_w7EOXV2npUFxSPUi8xX98nZlXD2AdkuysI_IjQMZa4l6IfICJnF3CTCAnLLkhCUdiIZkNc9C1PXNTPHmRrTtAmqRyZtGJ4iw1M-IHsr6lnbxOM_dLv9baTdU67SP4I3IC9Wn-ERYmTFFr5cNDSxUSaRcgONGQI4lbHQm2iAfYB5Ijjgw1YaVhsWwFzw72D1q1481jb5j9M83nya5-T6eHJynB4fnh49ITdwTZsCt0u26_nCPwVnq86eNRJOycVVP6nfu7E6ZA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemTkKAhGB8FQYYifGCTGvHsZ0HhAZbtTGoKrRJewuJY6NJXVKaVKj_Gn8dd_koRYO-7TlnyT6f7-6X-yLklUpUCmZAMRNmlknAGCzx2jMunYUbl8pzrEb-MlZHZ_LTeXi-RX51tTCYVtnpxFpRZ4XFf-QDFByO6EAMfJsWMTkYvZ_9YDhBCiOt3TiNRkRO3PInwLfy3fEB3PWeEKPD049HrJ0wwKw0UcV0qjDMJhPhsIhYeW0Sr4TgzigLWN9n3MtIeEByiR26yIVCBlYbWJaBK44_Q0H9b2tERT2y_eFwPPna2YFQRM1IXS0NAyCo27T7YWAGeZ7kWHnI1Vv-t0G84uVeidDWhm90l9xpPVa634jYPbLl8h1ye38tALFDbq21NbxPTift5U-XFMzmtKjrs6idL2dV0yH7wtIZzhNDXVtSzL3_Tks39QxceXcJxBm1yTwtcopHqBapKx-Qs2vh7UPSy4vcPSbUD2WmJWiLwAiZhtxEIgEcl0beK21F1CdvOhbGtm1tjhM2pnEdYg9MXDM8RobHvE_2VtSzpqXHf-h2u9uI24ddxn_EsE9erj7Dk8Q4S5K7YlHThEaZSMoNNGYIUFWGQm-iAfYBAgrggI8aaVhtWABzwduD1a878Vjb5D9O82TzaV6QG_Cc4s_H45On5CYuafLhdkmvmi_cM_C8qvR5K-KUfLvuV_UbqUI_9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physically+unclonable+cryptographic+primitives+using+self-assembled+carbon+nanotubes&rft.jtitle=Nature+nanotechnology&rft.au=Hu%2C+Zhaoying&rft.au=Comeras%2C+Jose+Miguel+M+Lobez&rft.au=Park%2C+Hongsik&rft.au=Tang%2C+Jianshi&rft.date=2016-06-01&rft.pub=Nature+Publishing+Group&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=11&rft.issue=6&rft.spage=559&rft_id=info:doi/10.1038%2Fnnano.2016.1&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4080000621
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon