High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction
Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conduc...
Saved in:
Published in | Ceramics international Vol. 42; no. 10; pp. 12156 - 12160 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conductivity of LLZO were investigated. The phase composition of the products was confirmed to be cubic LLZO via XRD. The morphology and chemical composition of calcined powders were investigated with SEM, EDS, and TEM. The Li-ion conductivity was measured by AC impedance. The results indicated the optimum sintering temperature range is 800–950°C, the appropriate molar ratio of LiOH·H2O, La(OH)3, ZrO2 and Al2O3 is 7.7:3:2:(0.2–0.4), and the Li-ion conductivity of LLZO sintered at 900°C with 0.3mol of Al-doped was 2.11×10−4Scm−1 at 25°C. |
---|---|
AbstractList | Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conductivity of LLZO were investigated. The phase composition of the products was confirmed to be cubic LLZO via XRD. The morphology and chemical composition of calcined powders were investigated with SEM, EDS, and TEM. The Li-ion conductivity was measured by AC impedance. The results indicated the optimum sintering temperature range is 800–950°C, the appropriate molar ratio of LiOH·H2O, La(OH)3, ZrO2 and Al2O3 is 7.7:3:2:(0.2–0.4), and the Li-ion conductivity of LLZO sintered at 900°C with 0.3mol of Al-doped was 2.11×10−4Scm−1 at 25°C. |
Author | Su, Yongyao Hu, Zhongli Ruan, Haibo Hu, Rong Liu, Hongdong Zhang, Lei |
Author_xml | – sequence: 1 givenname: Zhongli surname: Hu fullname: Hu, Zhongli organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China – sequence: 2 givenname: Hongdong surname: Liu fullname: Liu, Hongdong email: lhd0415@126.com organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China – sequence: 3 givenname: Haibo surname: Ruan fullname: Ruan, Haibo organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China – sequence: 4 givenname: Rong surname: Hu fullname: Hu, Rong organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China – sequence: 5 givenname: Yongyao surname: Su fullname: Su, Yongyao organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China – sequence: 6 givenname: Lei surname: Zhang fullname: Zhang, Lei email: leizhang0215@126.com organization: College of Life Science, Chongqing Normal University, Chongqing 401331, PR China |
BookMark | eNqFkEFLAzEQhYNUsK3-Bdk_sGuSzW6y4MFS1AoLvdiLl5BNpjZluylJLNRfb0r14qWnYXjzPd68CRoNbgCE7gkuCCb1w7bQ4NXODrGgaS8wKwhrrtCYCF7mZVPVIzTGlNNcCEZv0CSELU6HDcNjtFrYz03W2ty6IdNuMF862oONx8yts1mfG7cHk3TeqvLD0yWhWTgOcQPBfiehO2bB9dbkIaoImQeVcDfcouu16gPc_c4pWr08v88Xebt8fZvP2lwz0cScY1FRXVa1KbsUxwhBy04ogKphAtecm4pVtWaY1xp3UDaaG6LAUI41rigpp-jx7Ku9C8HDWmqbgqQE0SvbS4LlqSK5lX8VyVNFEjOZKkp4_Q_fe7tT_ngZfDqDkJ47WPAyaAuDBmM96CiNs5csfgAfcoaR |
CitedBy_id | crossref_primary_10_3390_ijms241612905 crossref_primary_10_1016_j_nanoen_2018_04_076 crossref_primary_10_1021_acsami_0c14056 crossref_primary_10_1088_2053_1591_ab2799 crossref_primary_10_1021_acsami_8b17217 crossref_primary_10_1039_D0TA07347D crossref_primary_10_1039_D3TA02627B crossref_primary_10_1080_17436753_2023_2167680 crossref_primary_10_1007_s10008_023_05522_w crossref_primary_10_1016_j_jpowsour_2024_234061 crossref_primary_10_1016_j_ceramint_2021_04_295 crossref_primary_10_1038_s43246_024_00550_z crossref_primary_10_1007_s11581_022_04761_7 crossref_primary_10_1016_j_ceramint_2019_04_236 crossref_primary_10_1038_s41467_022_35287_1 crossref_primary_10_1016_j_jallcom_2023_171666 crossref_primary_10_1016_j_ssi_2017_08_016 crossref_primary_10_1016_j_jmat_2018_09_004 crossref_primary_10_1016_j_ceramint_2018_09_133 crossref_primary_10_61435_ijred_2024_60351 crossref_primary_10_1007_s10854_019_01131_4 crossref_primary_10_1016_j_jechem_2019_01_013 crossref_primary_10_1142_S1793604718500297 crossref_primary_10_1016_j_ceramint_2017_10_072 crossref_primary_10_1016_j_ceramint_2024_08_267 crossref_primary_10_1016_j_jpowsour_2020_228803 crossref_primary_10_1016_j_ssi_2017_12_034 crossref_primary_10_1039_C9TA03263K crossref_primary_10_1007_s40242_020_9110_9 crossref_primary_10_1016_j_mtsust_2023_100614 crossref_primary_10_1039_D0CC04437G crossref_primary_10_3390_ma13030560 crossref_primary_10_1016_j_ceramint_2019_04_052 crossref_primary_10_1016_j_ceramint_2022_06_232 crossref_primary_10_1016_j_electacta_2018_03_101 crossref_primary_10_1021_acs_chemmater_2c00379 crossref_primary_10_1021_acsami_2c15980 crossref_primary_10_1149_1945_7111_ac6c1c crossref_primary_10_1002_er_5562 crossref_primary_10_1039_D4TA01487A crossref_primary_10_1007_s10854_021_05353_3 crossref_primary_10_1016_j_ceramint_2018_02_118 crossref_primary_10_1021_acsaem_4c02708 crossref_primary_10_1007_s43207_024_00470_1 crossref_primary_10_1039_D4TA07630C crossref_primary_10_1002_ente_202100211 crossref_primary_10_1016_j_actamat_2019_06_033 crossref_primary_10_1016_j_ssi_2018_01_036 crossref_primary_10_1016_j_ceramint_2019_10_290 crossref_primary_10_1016_j_jallcom_2021_160620 crossref_primary_10_1016_j_matchemphys_2022_126762 crossref_primary_10_1111_ijac_14218 crossref_primary_10_1021_acs_energyfuels_3c01821 crossref_primary_10_1016_j_ceramint_2022_11_230 crossref_primary_10_1088_2053_1591_ac672e crossref_primary_10_1021_acs_jpcc_7b04004 crossref_primary_10_1021_acsenergylett_4c00800 crossref_primary_10_1016_j_ssi_2023_116446 crossref_primary_10_1007_s11581_021_03919_z crossref_primary_10_1021_acsami_9b20812 crossref_primary_10_1039_D2TA00545J crossref_primary_10_1007_s10853_023_09090_2 crossref_primary_10_1016_j_jpowsour_2021_230551 crossref_primary_10_1016_j_jpowsour_2024_234831 crossref_primary_10_1016_j_jallcom_2022_168380 crossref_primary_10_1016_j_electacta_2020_136965 crossref_primary_10_1016_j_ensm_2022_04_026 crossref_primary_10_1021_acsaem_8b00976 crossref_primary_10_1021_acs_nanolett_1c00315 crossref_primary_10_14710_jksa_24_3_77_84 crossref_primary_10_1039_D4TA04862H crossref_primary_10_1007_s40145_021_0489_7 crossref_primary_10_1016_j_ceramint_2018_04_172 crossref_primary_10_1021_acs_chemmater_3c03097 crossref_primary_10_1016_j_ceramint_2023_06_153 crossref_primary_10_20964_2017_12_70 crossref_primary_10_1016_j_ensm_2021_04_016 crossref_primary_10_1557_s43579_022_00162_z crossref_primary_10_1007_s00339_021_05128_x crossref_primary_10_1111_jace_18994 crossref_primary_10_1007_s10853_021_06514_9 crossref_primary_10_1007_s12613_020_2239_1 crossref_primary_10_1016_j_matchemphys_2025_130596 crossref_primary_10_1007_s10854_019_02804_w crossref_primary_10_1016_j_ceramint_2020_09_047 |
Cites_doi | 10.1016/j.electacta.2012.11.059 10.1016/j.jeurceramsoc.2014.09.007 10.1021/am4060194 10.1016/j.jpowsour.2012.01.131 10.1007/s10853-012-6300-y 10.1016/j.ceramint.2013.09.009 10.1021/am900643t 10.1021/cm5008069 10.1039/c3ta11338h 10.1016/j.ssi.2010.04.017 10.1039/c1dt10516g 10.1021/ic500803h 10.1002/anie.200701144 10.1039/c2cc35089k 10.1016/j.ssi.2013.04.016 10.1016/j.elecom.2011.08.014 10.1016/j.jpowsour.2010.11.089 10.1016/j.jpowsour.2008.10.056 10.1002/adfm.200400044 10.1021/cg3012348 10.1016/j.jpowsour.2014.12.066 10.1021/acs.inorgchem.5b00184 10.1021/am503731h 10.1016/j.ssi.2013.12.006 10.1016/j.elecom.2012.04.032 10.1016/j.jpowsour.2011.04.047 10.1039/C3TA13999A |
ContentType | Journal Article |
Copyright | 2016 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2016 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2016.04.149 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 12160 |
ExternalDocumentID | 10_1016_j_ceramint_2016_04_149 S0272884216305569 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SMS SPC SPCBC SSM SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RNS SEW SSH WUQ XPP |
ID | FETCH-LOGICAL-c489t-70852c356d3b694d8823b8aee59480677d5456c4076c0be39c7d1aed270c05213 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Tue Jul 01 04:26:29 EDT 2025 Thu Apr 24 22:50:51 EDT 2025 Fri Feb 23 02:29:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Al-doped content Li-ion conductivity Sintering temperature Li7La3Zr2O12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-70852c356d3b694d8823b8aee59480677d5456c4076c0be39c7d1aed270c05213 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ceramint_2016_04_149 crossref_primary_10_1016_j_ceramint_2016_04_149 elsevier_sciencedirect_doi_10_1016_j_ceramint_2016_04_149 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-01 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Ceramics international |
PublicationYear | 2016 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Okumura, Yokoo, Fukutsuka, Uchimoto, Saito, Amezawa (bib7) 2009; 189 Tong, Thangadurai, Wachsman (bib23) 2015; 54 Zeier, Zhou, Lopez-Bermudez, Page, Melot (bib5) 2014; 6 Murugan, Thangadurai, Weppner (bib10) 2007; 46 Murugan, Ramakumar, Janani (bib11) 2011; 13 Ramzy, Thangadurai (bib1) 2010; 2 Dhivya, Murugan (bib4) 2014; 6 Cheng, Park, Hou, Zorba, Chen, Richardson, Cabana, Russo, Doeff (bib16) 2014; 2 Hubaud, Schroeder, Key, Ingram, Dogan, Vaughey (bib19) 2013; 1 Dumon, Huang, Shen, Nan (bib26) 2013; 243 Bernuy-Lopez, Manalastas, Lopez del Amo, Aguadero, Aguesse, Kilner (bib12) 2014; 26 Mizuno, Wagata, Onodera, Yubuta, Shishido, Oishi, Teshima (bib3) 2013; 13 Han, Zhu, Li, Yu, Wang, Wu, Xie, Vogel, Izumi, Momma, Kawamura, Huang, Goodenough, Zhao (bib21) 2012; 48 Jee, Lee, Ahn, Kim, Choi, Yoon, Nam, Kim, Yoon (bib8) 2010; 181 Kotobuki, Kanamura, Sato, Yoshida (bib24) 2011; 196 Arbi, Paris, Sanz (bib6) 2011; 40 Huang, Dumon, Nan (bib13) 2012; 21 Takano, Tadanaga, Hayashi, Tatsumisago (bib20) 2014; 255 Rettenwander, Geiger, Tribus, Tropper, Amthauer (bib14) 2014; 53 Wolfenstine, Sakamoto, Allen (bib22) 2012; 47 Ren, Deng, Chen, Shen, Lin, Nan (bib25) 2015; 35 Ohta, Kobayashi, Asaoka (bib27) 2011; 196 Thangadurai, Weppner (bib9) 2005; 15 Kotobuki, Koishi (bib2) 2014; 40 Rosenkiewitz, Schuhmacher, Bockmeyer, Deubener (bib15) 2015; 278 Allen, Wolfenstine, Rangasamy, Sakamoto (bib18) 2012; 206 Jin, McGinn (bib17) 2013; 89 Takano (10.1016/j.ceramint.2016.04.149_bib20) 2014; 255 Han (10.1016/j.ceramint.2016.04.149_bib21) 2012; 48 Kotobuki (10.1016/j.ceramint.2016.04.149_bib2) 2014; 40 Hubaud (10.1016/j.ceramint.2016.04.149_bib19) 2013; 1 Dumon (10.1016/j.ceramint.2016.04.149_bib26) 2013; 243 Okumura (10.1016/j.ceramint.2016.04.149_bib7) 2009; 189 Dhivya (10.1016/j.ceramint.2016.04.149_bib4) 2014; 6 Mizuno (10.1016/j.ceramint.2016.04.149_bib3) 2013; 13 Kotobuki (10.1016/j.ceramint.2016.04.149_bib24) 2011; 196 Huang (10.1016/j.ceramint.2016.04.149_bib13) 2012; 21 Zeier (10.1016/j.ceramint.2016.04.149_bib5) 2014; 6 Arbi (10.1016/j.ceramint.2016.04.149_bib6) 2011; 40 Thangadurai (10.1016/j.ceramint.2016.04.149_bib9) 2005; 15 Ren (10.1016/j.ceramint.2016.04.149_bib25) 2015; 35 Jin (10.1016/j.ceramint.2016.04.149_bib17) 2013; 89 Rettenwander (10.1016/j.ceramint.2016.04.149_bib14) 2014; 53 Bernuy-Lopez (10.1016/j.ceramint.2016.04.149_bib12) 2014; 26 Rosenkiewitz (10.1016/j.ceramint.2016.04.149_bib15) 2015; 278 Wolfenstine (10.1016/j.ceramint.2016.04.149_bib22) 2012; 47 Tong (10.1016/j.ceramint.2016.04.149_bib23) 2015; 54 Ramzy (10.1016/j.ceramint.2016.04.149_bib1) 2010; 2 Jee (10.1016/j.ceramint.2016.04.149_bib8) 2010; 181 Cheng (10.1016/j.ceramint.2016.04.149_bib16) 2014; 2 Ohta (10.1016/j.ceramint.2016.04.149_bib27) 2011; 196 Murugan (10.1016/j.ceramint.2016.04.149_bib11) 2011; 13 Allen (10.1016/j.ceramint.2016.04.149_bib18) 2012; 206 Murugan (10.1016/j.ceramint.2016.04.149_bib10) 2007; 46 |
References_xml | – volume: 21 start-page: 62 year: 2012 end-page: 64 ident: bib13 article-title: Effect of Si, In and Ge doping on high ionic conductivity of Li publication-title: Electrochem. Commun. – volume: 6 start-page: 10900 year: 2014 end-page: 10907 ident: bib5 article-title: Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li publication-title: ACS Appl. Mater. Interfaces – volume: 196 start-page: 3342 year: 2011 end-page: 3345 ident: bib27 article-title: High lithium ionic conductivity in the garnet-type oxide Li publication-title: J. Power Sources – volume: 26 start-page: 3610 year: 2014 end-page: 3617 ident: bib12 article-title: Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics publication-title: Chem. Mater. – volume: 54 start-page: 3600 year: 2015 end-page: 3607 ident: bib23 article-title: Highly conductive Li garnets by a multielement doping strategy publication-title: Inorg. Chem. – volume: 35 start-page: 561 year: 2015 end-page: 572 ident: bib25 article-title: Effects of Li source on microstructure and ionic conductivity of Al-contained Li publication-title: J. Eur. Ceram. Soc. – volume: 2 start-page: 172 year: 2014 end-page: 181 ident: bib16 article-title: Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li publication-title: J. Mater. Chem. A – volume: 196 start-page: 7750 year: 2011 end-page: 7754 ident: bib24 article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al publication-title: J. Power Sources – volume: 2 start-page: 385 year: 2010 end-page: 390 ident: bib1 article-title: Tailor-made development of fast Li ion conducting garnet-like solid electrolytes publication-title: ACS Appl. Mater. Interfaces – volume: 206 start-page: 315 year: 2012 end-page: 319 ident: bib18 article-title: Effect of substitution (Ta, Al, Ga) on the conductivity of Li publication-title: J. Power Sources – volume: 243 start-page: 36 year: 2013 end-page: 41 ident: bib26 article-title: High Li ion conductivity in strontium doped Li publication-title: Solid State Ion. – volume: 46 start-page: 7778 year: 2007 end-page: 7781 ident: bib10 article-title: Fast lithium ion conduction in garnet-type Li publication-title: Angew. Chem. Int. Ed. – volume: 89 start-page: 407 year: 2013 end-page: 412 ident: bib17 article-title: Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li publication-title: Electrochim. Acta – volume: 47 start-page: 4428 year: 2012 end-page: 4431 ident: bib22 article-title: Electron microscopy characterization of hot-pressed Al substituted Li publication-title: J. Mater. Sci. – volume: 1 start-page: 8813 year: 2013 end-page: 8818 ident: bib19 article-title: Low temperature stabilization of cubic (Li publication-title: J. Mater. Chem. A – volume: 6 start-page: 17606 year: 2014 end-page: 17615 ident: bib4 article-title: Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 10195 year: 2011 end-page: 10202 ident: bib6 article-title: Li mobility in nasicon-type materials LiM publication-title: Dalton Trans. – volume: 189 start-page: 536 year: 2009 end-page: 538 ident: bib7 article-title: Improvement of Li-ion conductivity in A-site disordering lithium-lanthanum-titanate perovskite oxides by adding LiF in synthesis publication-title: J. Power Sources – volume: 15 start-page: 107 year: 2005 end-page: 112 ident: bib9 article-title: Li publication-title: Adv. Funct. Mater. – volume: 48 start-page: 9840 year: 2012 end-page: 9842 ident: bib21 article-title: Experimental visualization of lithium conduction pathways in garnet-type Li publication-title: Chem. Commun. – volume: 13 start-page: 479 year: 2013 end-page: 484 ident: bib3 article-title: Environmentally friendly flux growth of high-quality, idiomorphic Li publication-title: Cryst. Growth Des. – volume: 255 start-page: 104 year: 2014 end-page: 107 ident: bib20 article-title: Low temperature synthesis of Al-doped Li publication-title: Solid State Ion. – volume: 181 start-page: 902 year: 2010 end-page: 906 ident: bib8 article-title: Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries publication-title: Solid State Ion. – volume: 278 start-page: 104 year: 2015 end-page: 108 ident: bib15 article-title: Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li publication-title: J. Power Sources – volume: 53 start-page: 6264 year: 2014 end-page: 6269 ident: bib14 article-title: A synthesis and crystal chemical study of the fast ion conductor Li publication-title: Inorg. Chem. – volume: 40 start-page: 5043 year: 2014 end-page: 5047 ident: bib2 article-title: Preparation of Li publication-title: Ceram. Int. – volume: 13 start-page: 1373 year: 2011 end-page: 1375 ident: bib11 article-title: High conductive yttrium doped Li publication-title: Electrochem. Commun. – volume: 89 start-page: 407 year: 2013 ident: 10.1016/j.ceramint.2016.04.149_bib17 article-title: Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.11.059 – volume: 35 start-page: 561 year: 2015 ident: 10.1016/j.ceramint.2016.04.149_bib25 article-title: Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.09.007 – volume: 6 start-page: 10900 year: 2014 ident: 10.1016/j.ceramint.2016.04.149_bib5 article-title: Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4060194 – volume: 206 start-page: 315 year: 2012 ident: 10.1016/j.ceramint.2016.04.149_bib18 article-title: Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.01.131 – volume: 47 start-page: 4428 year: 2012 ident: 10.1016/j.ceramint.2016.04.149_bib22 article-title: Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12 publication-title: J. Mater. Sci. doi: 10.1007/s10853-012-6300-y – volume: 40 start-page: 5043 year: 2014 ident: 10.1016/j.ceramint.2016.04.149_bib2 article-title: Preparation of Li7La3Zr2O12 solid electrolyte via a sol-gel method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2013.09.009 – volume: 2 start-page: 385 year: 2010 ident: 10.1016/j.ceramint.2016.04.149_bib1 article-title: Tailor-made development of fast Li ion conducting garnet-like solid electrolytes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900643t – volume: 26 start-page: 3610 year: 2014 ident: 10.1016/j.ceramint.2016.04.149_bib12 article-title: Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics publication-title: Chem. Mater. doi: 10.1021/cm5008069 – volume: 1 start-page: 8813 year: 2013 ident: 10.1016/j.ceramint.2016.04.149_bib19 article-title: Low temperature stabilization of cubic (Li7−xAlx/3) La3Zr2O12: role of aluminum during formation publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11338h – volume: 181 start-page: 902 year: 2010 ident: 10.1016/j.ceramint.2016.04.149_bib8 article-title: Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries publication-title: Solid State Ion. doi: 10.1016/j.ssi.2010.04.017 – volume: 40 start-page: 10195 year: 2011 ident: 10.1016/j.ceramint.2016.04.149_bib6 article-title: Li mobility in nasicon-type materials LiM2(PO4)(3), M=Ge, Ti, Sn, Zr and Hf, followed by Li-7 NMR spectroscopy publication-title: Dalton Trans. doi: 10.1039/c1dt10516g – volume: 53 start-page: 6264 year: 2014 ident: 10.1016/j.ceramint.2016.04.149_bib14 article-title: A synthesis and crystal chemical study of the fast ion conductor Li7−3xGaxLa3Zr2O12 with x=0.08 to 0.84 publication-title: Inorg. Chem. doi: 10.1021/ic500803h – volume: 46 start-page: 7778 year: 2007 ident: 10.1016/j.ceramint.2016.04.149_bib10 article-title: Fast lithium ion conduction in garnet-type Li7La3Zr2O12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200701144 – volume: 48 start-page: 9840 year: 2012 ident: 10.1016/j.ceramint.2016.04.149_bib21 article-title: Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12 publication-title: Chem. Commun. doi: 10.1039/c2cc35089k – volume: 243 start-page: 36 year: 2013 ident: 10.1016/j.ceramint.2016.04.149_bib26 article-title: High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet publication-title: Solid State Ion. doi: 10.1016/j.ssi.2013.04.016 – volume: 13 start-page: 1373 year: 2011 ident: 10.1016/j.ceramint.2016.04.149_bib11 article-title: High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.08.014 – volume: 196 start-page: 3342 year: 2011 ident: 10.1016/j.ceramint.2016.04.149_bib27 article-title: High lithium ionic conductivity in the garnet-type oxide Li7−X La−3(Zr2−X, Nb−X)O−12 (X=0–2) publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.11.089 – volume: 189 start-page: 536 year: 2009 ident: 10.1016/j.ceramint.2016.04.149_bib7 article-title: Improvement of Li-ion conductivity in A-site disordering lithium-lanthanum-titanate perovskite oxides by adding LiF in synthesis publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.10.056 – volume: 15 start-page: 107 year: 2005 ident: 10.1016/j.ceramint.2016.04.149_bib9 article-title: Li(6)ALa(2)Ta(2)O(12) (A=Sr, Ba): novel garnet-like oxides for fast lithium ion conduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200400044 – volume: 13 start-page: 479 year: 2013 ident: 10.1016/j.ceramint.2016.04.149_bib3 article-title: Environmentally friendly flux growth of high-quality, idiomorphic Li5La3Nb2O12 crystals publication-title: Cryst. Growth Des. doi: 10.1021/cg3012348 – volume: 278 start-page: 104 year: 2015 ident: 10.1016/j.ceramint.2016.04.149_bib15 article-title: Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO) publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2014.12.066 – volume: 54 start-page: 3600 year: 2015 ident: 10.1016/j.ceramint.2016.04.149_bib23 article-title: Highly conductive Li garnets by a multielement doping strategy publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.5b00184 – volume: 6 start-page: 17606 year: 2014 ident: 10.1016/j.ceramint.2016.04.149_bib4 article-title: Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am503731h – volume: 255 start-page: 104 year: 2014 ident: 10.1016/j.ceramint.2016.04.149_bib20 article-title: Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process publication-title: Solid State Ion. doi: 10.1016/j.ssi.2013.12.006 – volume: 21 start-page: 62 year: 2012 ident: 10.1016/j.ceramint.2016.04.149_bib13 article-title: Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.04.032 – volume: 196 start-page: 7750 year: 2011 ident: 10.1016/j.ceramint.2016.04.149_bib24 article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2011.04.047 – volume: 2 start-page: 172 year: 2014 ident: 10.1016/j.ceramint.2016.04.149_bib16 article-title: Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA13999A |
SSID | ssj0016940 |
Score | 2.4427092 |
Snippet | Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 12156 |
SubjectTerms | Al-doped content Li-ion conductivity Li7La3Zr2O12 Sintering temperature |
Title | High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction |
URI | https://dx.doi.org/10.1016/j.ceramint.2016.04.149 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpD6ZPah-yh1zVmd83jKFKxrdhDK0gvYXezgYiNovZgD_3tnclDLBQ89BJINgPJMJn9JnzzDSH3Qci1J1zFZNCBA5eaaaUTpqTECHF5onKC7MgbjOXTpDOpkV7VC4O0yjL3Fzk9z9blFaf0prNIU-cVCioeBJIDokBFGGzik9LHKG99b2kerhfK4j-LD18-3L3TJTxtGbtUH2mGnErXQ8lTFzU1_9qgdjad_gk5LtEi7RYPdEpqNjsjRzsagudkjEwNOkwZOJhCcYv6rflACDpPaHfG4vnCxrDuD5V4X_IXl9PVJgPYt0q_YEFvKERfGrO8s4gChMwbHS7IuP_w1huwclYCMzII18wH6MSN6Hix0PDKMQBnoQNlLcqxoEpcjFDJQPnmmba2IjR-7Cobc79tsH9XXJJ6Ns_sFaFCoUKq8FA6TAZKaUiKie8LjmJxNkwapFM5KDKlkDjOs5hFFWNsGlWOjdCxUVtChRE2iLO1WxRSGnstwsr_0a-giCDf77G9_oftDTnEs4Lnd0vq6-WnvQPssdbNPLia5KD7-DwY_QAXEddV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHbQ_qQXzi2z14Xdvsbl7HUixVaz1oQbyE3WQDEU1LrYf66Z3Jo1QQevCSQ5aBZJhM_pPM_BbgKgiF8aSjuQpcPAhluNEm5VopihBHpLpokB16_ZG6e3Ff1qBbz8JQW2WV-8ucXmTr6kyr8mZrkmWtJyyoRBAogYqCiDDhOjSJTuU2oNm5ve8PFz8TvFCVn1p8fPjRYGlQ-O06tlP9keXUVul4RD11CKv51ztq6b3T24HtSjCyTnlNu7Bm8z3YWsII7sOImjXYIOPoY4b1LSFciz0h2DhlnXeejCc2wXV_oOXrVDw6gn3Oc1R-n9k3Lpg5wwDMEl4MFzFUkcWswwGMejfP3T6vtkvgsQrCGfdRPYlYul4iDd5ygtpZmkBbS0QWAsUlpJZirOC8uG2sDGM_cbRNhN-OaYRXHkIjH-f2CJjUBEmVHtHDVKC1wbyY-r4UxIuzYXoMbu2gKK5Y4rSlxXtUN429RbVjI3Js1FZYZITH0FrYTUqaxkqLsPZ_9CsuIkz5K2xP_mF7CRv954dBNLgd3p_CJq2UbX9n0JhNv-w5SpGZuahC7QeIZdoG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Li-ion+conductivity+of+Al-doped+Li7La3Zr2O12+synthesized+by+solid-state+reaction&rft.jtitle=Ceramics+international&rft.au=Hu%2C+Zhongli&rft.au=Liu%2C+Hongdong&rft.au=Ruan%2C+Haibo&rft.au=Hu%2C+Rong&rft.date=2016-08-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=42&rft.issue=10&rft.spage=12156&rft.epage=12160&rft_id=info:doi/10.1016%2Fj.ceramint.2016.04.149&rft.externalDocID=S0272884216305569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |