High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction

Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conduc...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 42; no. 10; pp. 12156 - 12160
Main Authors Hu, Zhongli, Liu, Hongdong, Ruan, Haibo, Hu, Rong, Su, Yongyao, Zhang, Lei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conductivity of LLZO were investigated. The phase composition of the products was confirmed to be cubic LLZO via XRD. The morphology and chemical composition of calcined powders were investigated with SEM, EDS, and TEM. The Li-ion conductivity was measured by AC impedance. The results indicated the optimum sintering temperature range is 800–950°C, the appropriate molar ratio of LiOH·H2O, La(OH)3, ZrO2 and Al2O3 is 7.7:3:2:(0.2–0.4), and the Li-ion conductivity of LLZO sintered at 900°C with 0.3mol of Al-doped was 2.11×10−4Scm−1 at 25°C.
AbstractList Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was prepared via conventional solid-state reaction. The effects of sintering temperature and Al doping content on the structure and Li-ion conductivity of LLZO were investigated. The phase composition of the products was confirmed to be cubic LLZO via XRD. The morphology and chemical composition of calcined powders were investigated with SEM, EDS, and TEM. The Li-ion conductivity was measured by AC impedance. The results indicated the optimum sintering temperature range is 800–950°C, the appropriate molar ratio of LiOH·H2O, La(OH)3, ZrO2 and Al2O3 is 7.7:3:2:(0.2–0.4), and the Li-ion conductivity of LLZO sintered at 900°C with 0.3mol of Al-doped was 2.11×10−4Scm−1 at 25°C.
Author Su, Yongyao
Hu, Zhongli
Ruan, Haibo
Hu, Rong
Liu, Hongdong
Zhang, Lei
Author_xml – sequence: 1
  givenname: Zhongli
  surname: Hu
  fullname: Hu, Zhongli
  organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
– sequence: 2
  givenname: Hongdong
  surname: Liu
  fullname: Liu, Hongdong
  email: lhd0415@126.com
  organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
– sequence: 3
  givenname: Haibo
  surname: Ruan
  fullname: Ruan, Haibo
  organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
– sequence: 4
  givenname: Rong
  surname: Hu
  fullname: Hu, Rong
  organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
– sequence: 5
  givenname: Yongyao
  surname: Su
  fullname: Su, Yongyao
  organization: Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
– sequence: 6
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: leizhang0215@126.com
  organization: College of Life Science, Chongqing Normal University, Chongqing 401331, PR China
BookMark eNqFkEFLAzEQhYNUsK3-Bdk_sGuSzW6y4MFS1AoLvdiLl5BNpjZluylJLNRfb0r14qWnYXjzPd68CRoNbgCE7gkuCCb1w7bQ4NXODrGgaS8wKwhrrtCYCF7mZVPVIzTGlNNcCEZv0CSELU6HDcNjtFrYz03W2ty6IdNuMF862oONx8yts1mfG7cHk3TeqvLD0yWhWTgOcQPBfiehO2bB9dbkIaoImQeVcDfcouu16gPc_c4pWr08v88Xebt8fZvP2lwz0cScY1FRXVa1KbsUxwhBy04ogKphAtecm4pVtWaY1xp3UDaaG6LAUI41rigpp-jx7Ku9C8HDWmqbgqQE0SvbS4LlqSK5lX8VyVNFEjOZKkp4_Q_fe7tT_ngZfDqDkJ47WPAyaAuDBmM96CiNs5csfgAfcoaR
CitedBy_id crossref_primary_10_3390_ijms241612905
crossref_primary_10_1016_j_nanoen_2018_04_076
crossref_primary_10_1021_acsami_0c14056
crossref_primary_10_1088_2053_1591_ab2799
crossref_primary_10_1021_acsami_8b17217
crossref_primary_10_1039_D0TA07347D
crossref_primary_10_1039_D3TA02627B
crossref_primary_10_1080_17436753_2023_2167680
crossref_primary_10_1007_s10008_023_05522_w
crossref_primary_10_1016_j_jpowsour_2024_234061
crossref_primary_10_1016_j_ceramint_2021_04_295
crossref_primary_10_1038_s43246_024_00550_z
crossref_primary_10_1007_s11581_022_04761_7
crossref_primary_10_1016_j_ceramint_2019_04_236
crossref_primary_10_1038_s41467_022_35287_1
crossref_primary_10_1016_j_jallcom_2023_171666
crossref_primary_10_1016_j_ssi_2017_08_016
crossref_primary_10_1016_j_jmat_2018_09_004
crossref_primary_10_1016_j_ceramint_2018_09_133
crossref_primary_10_61435_ijred_2024_60351
crossref_primary_10_1007_s10854_019_01131_4
crossref_primary_10_1016_j_jechem_2019_01_013
crossref_primary_10_1142_S1793604718500297
crossref_primary_10_1016_j_ceramint_2017_10_072
crossref_primary_10_1016_j_ceramint_2024_08_267
crossref_primary_10_1016_j_jpowsour_2020_228803
crossref_primary_10_1016_j_ssi_2017_12_034
crossref_primary_10_1039_C9TA03263K
crossref_primary_10_1007_s40242_020_9110_9
crossref_primary_10_1016_j_mtsust_2023_100614
crossref_primary_10_1039_D0CC04437G
crossref_primary_10_3390_ma13030560
crossref_primary_10_1016_j_ceramint_2019_04_052
crossref_primary_10_1016_j_ceramint_2022_06_232
crossref_primary_10_1016_j_electacta_2018_03_101
crossref_primary_10_1021_acs_chemmater_2c00379
crossref_primary_10_1021_acsami_2c15980
crossref_primary_10_1149_1945_7111_ac6c1c
crossref_primary_10_1002_er_5562
crossref_primary_10_1039_D4TA01487A
crossref_primary_10_1007_s10854_021_05353_3
crossref_primary_10_1016_j_ceramint_2018_02_118
crossref_primary_10_1021_acsaem_4c02708
crossref_primary_10_1007_s43207_024_00470_1
crossref_primary_10_1039_D4TA07630C
crossref_primary_10_1002_ente_202100211
crossref_primary_10_1016_j_actamat_2019_06_033
crossref_primary_10_1016_j_ssi_2018_01_036
crossref_primary_10_1016_j_ceramint_2019_10_290
crossref_primary_10_1016_j_jallcom_2021_160620
crossref_primary_10_1016_j_matchemphys_2022_126762
crossref_primary_10_1111_ijac_14218
crossref_primary_10_1021_acs_energyfuels_3c01821
crossref_primary_10_1016_j_ceramint_2022_11_230
crossref_primary_10_1088_2053_1591_ac672e
crossref_primary_10_1021_acs_jpcc_7b04004
crossref_primary_10_1021_acsenergylett_4c00800
crossref_primary_10_1016_j_ssi_2023_116446
crossref_primary_10_1007_s11581_021_03919_z
crossref_primary_10_1021_acsami_9b20812
crossref_primary_10_1039_D2TA00545J
crossref_primary_10_1007_s10853_023_09090_2
crossref_primary_10_1016_j_jpowsour_2021_230551
crossref_primary_10_1016_j_jpowsour_2024_234831
crossref_primary_10_1016_j_jallcom_2022_168380
crossref_primary_10_1016_j_electacta_2020_136965
crossref_primary_10_1016_j_ensm_2022_04_026
crossref_primary_10_1021_acsaem_8b00976
crossref_primary_10_1021_acs_nanolett_1c00315
crossref_primary_10_14710_jksa_24_3_77_84
crossref_primary_10_1039_D4TA04862H
crossref_primary_10_1007_s40145_021_0489_7
crossref_primary_10_1016_j_ceramint_2018_04_172
crossref_primary_10_1021_acs_chemmater_3c03097
crossref_primary_10_1016_j_ceramint_2023_06_153
crossref_primary_10_20964_2017_12_70
crossref_primary_10_1016_j_ensm_2021_04_016
crossref_primary_10_1557_s43579_022_00162_z
crossref_primary_10_1007_s00339_021_05128_x
crossref_primary_10_1111_jace_18994
crossref_primary_10_1007_s10853_021_06514_9
crossref_primary_10_1007_s12613_020_2239_1
crossref_primary_10_1016_j_matchemphys_2025_130596
crossref_primary_10_1007_s10854_019_02804_w
crossref_primary_10_1016_j_ceramint_2020_09_047
Cites_doi 10.1016/j.electacta.2012.11.059
10.1016/j.jeurceramsoc.2014.09.007
10.1021/am4060194
10.1016/j.jpowsour.2012.01.131
10.1007/s10853-012-6300-y
10.1016/j.ceramint.2013.09.009
10.1021/am900643t
10.1021/cm5008069
10.1039/c3ta11338h
10.1016/j.ssi.2010.04.017
10.1039/c1dt10516g
10.1021/ic500803h
10.1002/anie.200701144
10.1039/c2cc35089k
10.1016/j.ssi.2013.04.016
10.1016/j.elecom.2011.08.014
10.1016/j.jpowsour.2010.11.089
10.1016/j.jpowsour.2008.10.056
10.1002/adfm.200400044
10.1021/cg3012348
10.1016/j.jpowsour.2014.12.066
10.1021/acs.inorgchem.5b00184
10.1021/am503731h
10.1016/j.ssi.2013.12.006
10.1016/j.elecom.2012.04.032
10.1016/j.jpowsour.2011.04.047
10.1039/C3TA13999A
ContentType Journal Article
Copyright 2016 Elsevier Ltd and Techna Group S.r.l.
Copyright_xml – notice: 2016 Elsevier Ltd and Techna Group S.r.l.
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2016.04.149
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3956
EndPage 12160
ExternalDocumentID 10_1016_j_ceramint_2016_04_149
S0272884216305569
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SMS
SPC
SPCBC
SSM
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RNS
SEW
SSH
WUQ
XPP
ID FETCH-LOGICAL-c489t-70852c356d3b694d8823b8aee59480677d5456c4076c0be39c7d1aed270c05213
IEDL.DBID .~1
ISSN 0272-8842
IngestDate Tue Jul 01 04:26:29 EDT 2025
Thu Apr 24 22:50:51 EDT 2025
Fri Feb 23 02:29:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Al-doped content
Li-ion conductivity
Sintering temperature
Li7La3Zr2O12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-70852c356d3b694d8823b8aee59480677d5456c4076c0be39c7d1aed270c05213
PageCount 5
ParticipantIDs crossref_citationtrail_10_1016_j_ceramint_2016_04_149
crossref_primary_10_1016_j_ceramint_2016_04_149
elsevier_sciencedirect_doi_10_1016_j_ceramint_2016_04_149
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Ceramics international
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Okumura, Yokoo, Fukutsuka, Uchimoto, Saito, Amezawa (bib7) 2009; 189
Tong, Thangadurai, Wachsman (bib23) 2015; 54
Zeier, Zhou, Lopez-Bermudez, Page, Melot (bib5) 2014; 6
Murugan, Thangadurai, Weppner (bib10) 2007; 46
Murugan, Ramakumar, Janani (bib11) 2011; 13
Ramzy, Thangadurai (bib1) 2010; 2
Dhivya, Murugan (bib4) 2014; 6
Cheng, Park, Hou, Zorba, Chen, Richardson, Cabana, Russo, Doeff (bib16) 2014; 2
Hubaud, Schroeder, Key, Ingram, Dogan, Vaughey (bib19) 2013; 1
Dumon, Huang, Shen, Nan (bib26) 2013; 243
Bernuy-Lopez, Manalastas, Lopez del Amo, Aguadero, Aguesse, Kilner (bib12) 2014; 26
Mizuno, Wagata, Onodera, Yubuta, Shishido, Oishi, Teshima (bib3) 2013; 13
Han, Zhu, Li, Yu, Wang, Wu, Xie, Vogel, Izumi, Momma, Kawamura, Huang, Goodenough, Zhao (bib21) 2012; 48
Jee, Lee, Ahn, Kim, Choi, Yoon, Nam, Kim, Yoon (bib8) 2010; 181
Kotobuki, Kanamura, Sato, Yoshida (bib24) 2011; 196
Arbi, Paris, Sanz (bib6) 2011; 40
Huang, Dumon, Nan (bib13) 2012; 21
Takano, Tadanaga, Hayashi, Tatsumisago (bib20) 2014; 255
Rettenwander, Geiger, Tribus, Tropper, Amthauer (bib14) 2014; 53
Wolfenstine, Sakamoto, Allen (bib22) 2012; 47
Ren, Deng, Chen, Shen, Lin, Nan (bib25) 2015; 35
Ohta, Kobayashi, Asaoka (bib27) 2011; 196
Thangadurai, Weppner (bib9) 2005; 15
Kotobuki, Koishi (bib2) 2014; 40
Rosenkiewitz, Schuhmacher, Bockmeyer, Deubener (bib15) 2015; 278
Allen, Wolfenstine, Rangasamy, Sakamoto (bib18) 2012; 206
Jin, McGinn (bib17) 2013; 89
Takano (10.1016/j.ceramint.2016.04.149_bib20) 2014; 255
Han (10.1016/j.ceramint.2016.04.149_bib21) 2012; 48
Kotobuki (10.1016/j.ceramint.2016.04.149_bib2) 2014; 40
Hubaud (10.1016/j.ceramint.2016.04.149_bib19) 2013; 1
Dumon (10.1016/j.ceramint.2016.04.149_bib26) 2013; 243
Okumura (10.1016/j.ceramint.2016.04.149_bib7) 2009; 189
Dhivya (10.1016/j.ceramint.2016.04.149_bib4) 2014; 6
Mizuno (10.1016/j.ceramint.2016.04.149_bib3) 2013; 13
Kotobuki (10.1016/j.ceramint.2016.04.149_bib24) 2011; 196
Huang (10.1016/j.ceramint.2016.04.149_bib13) 2012; 21
Zeier (10.1016/j.ceramint.2016.04.149_bib5) 2014; 6
Arbi (10.1016/j.ceramint.2016.04.149_bib6) 2011; 40
Thangadurai (10.1016/j.ceramint.2016.04.149_bib9) 2005; 15
Ren (10.1016/j.ceramint.2016.04.149_bib25) 2015; 35
Jin (10.1016/j.ceramint.2016.04.149_bib17) 2013; 89
Rettenwander (10.1016/j.ceramint.2016.04.149_bib14) 2014; 53
Bernuy-Lopez (10.1016/j.ceramint.2016.04.149_bib12) 2014; 26
Rosenkiewitz (10.1016/j.ceramint.2016.04.149_bib15) 2015; 278
Wolfenstine (10.1016/j.ceramint.2016.04.149_bib22) 2012; 47
Tong (10.1016/j.ceramint.2016.04.149_bib23) 2015; 54
Ramzy (10.1016/j.ceramint.2016.04.149_bib1) 2010; 2
Jee (10.1016/j.ceramint.2016.04.149_bib8) 2010; 181
Cheng (10.1016/j.ceramint.2016.04.149_bib16) 2014; 2
Ohta (10.1016/j.ceramint.2016.04.149_bib27) 2011; 196
Murugan (10.1016/j.ceramint.2016.04.149_bib11) 2011; 13
Allen (10.1016/j.ceramint.2016.04.149_bib18) 2012; 206
Murugan (10.1016/j.ceramint.2016.04.149_bib10) 2007; 46
References_xml – volume: 21
  start-page: 62
  year: 2012
  end-page: 64
  ident: bib13
  article-title: Effect of Si, In and Ge doping on high ionic conductivity of Li
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 10900
  year: 2014
  end-page: 10907
  ident: bib5
  article-title: Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li
  publication-title: ACS Appl. Mater. Interfaces
– volume: 196
  start-page: 3342
  year: 2011
  end-page: 3345
  ident: bib27
  article-title: High lithium ionic conductivity in the garnet-type oxide Li
  publication-title: J. Power Sources
– volume: 26
  start-page: 3610
  year: 2014
  end-page: 3617
  ident: bib12
  article-title: Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics
  publication-title: Chem. Mater.
– volume: 54
  start-page: 3600
  year: 2015
  end-page: 3607
  ident: bib23
  article-title: Highly conductive Li garnets by a multielement doping strategy
  publication-title: Inorg. Chem.
– volume: 35
  start-page: 561
  year: 2015
  end-page: 572
  ident: bib25
  article-title: Effects of Li source on microstructure and ionic conductivity of Al-contained Li
  publication-title: J. Eur. Ceram. Soc.
– volume: 2
  start-page: 172
  year: 2014
  end-page: 181
  ident: bib16
  article-title: Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li
  publication-title: J. Mater. Chem. A
– volume: 196
  start-page: 7750
  year: 2011
  end-page: 7754
  ident: bib24
  article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al
  publication-title: J. Power Sources
– volume: 2
  start-page: 385
  year: 2010
  end-page: 390
  ident: bib1
  article-title: Tailor-made development of fast Li ion conducting garnet-like solid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 206
  start-page: 315
  year: 2012
  end-page: 319
  ident: bib18
  article-title: Effect of substitution (Ta, Al, Ga) on the conductivity of Li
  publication-title: J. Power Sources
– volume: 243
  start-page: 36
  year: 2013
  end-page: 41
  ident: bib26
  article-title: High Li ion conductivity in strontium doped Li
  publication-title: Solid State Ion.
– volume: 46
  start-page: 7778
  year: 2007
  end-page: 7781
  ident: bib10
  article-title: Fast lithium ion conduction in garnet-type Li
  publication-title: Angew. Chem. Int. Ed.
– volume: 89
  start-page: 407
  year: 2013
  end-page: 412
  ident: bib17
  article-title: Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li
  publication-title: Electrochim. Acta
– volume: 47
  start-page: 4428
  year: 2012
  end-page: 4431
  ident: bib22
  article-title: Electron microscopy characterization of hot-pressed Al substituted Li
  publication-title: J. Mater. Sci.
– volume: 1
  start-page: 8813
  year: 2013
  end-page: 8818
  ident: bib19
  article-title: Low temperature stabilization of cubic (Li
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 17606
  year: 2014
  end-page: 17615
  ident: bib4
  article-title: Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 10195
  year: 2011
  end-page: 10202
  ident: bib6
  article-title: Li mobility in nasicon-type materials LiM
  publication-title: Dalton Trans.
– volume: 189
  start-page: 536
  year: 2009
  end-page: 538
  ident: bib7
  article-title: Improvement of Li-ion conductivity in A-site disordering lithium-lanthanum-titanate perovskite oxides by adding LiF in synthesis
  publication-title: J. Power Sources
– volume: 15
  start-page: 107
  year: 2005
  end-page: 112
  ident: bib9
  article-title: Li
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 9840
  year: 2012
  end-page: 9842
  ident: bib21
  article-title: Experimental visualization of lithium conduction pathways in garnet-type Li
  publication-title: Chem. Commun.
– volume: 13
  start-page: 479
  year: 2013
  end-page: 484
  ident: bib3
  article-title: Environmentally friendly flux growth of high-quality, idiomorphic Li
  publication-title: Cryst. Growth Des.
– volume: 255
  start-page: 104
  year: 2014
  end-page: 107
  ident: bib20
  article-title: Low temperature synthesis of Al-doped Li
  publication-title: Solid State Ion.
– volume: 181
  start-page: 902
  year: 2010
  end-page: 906
  ident: bib8
  article-title: Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries
  publication-title: Solid State Ion.
– volume: 278
  start-page: 104
  year: 2015
  end-page: 108
  ident: bib15
  article-title: Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li
  publication-title: J. Power Sources
– volume: 53
  start-page: 6264
  year: 2014
  end-page: 6269
  ident: bib14
  article-title: A synthesis and crystal chemical study of the fast ion conductor Li
  publication-title: Inorg. Chem.
– volume: 40
  start-page: 5043
  year: 2014
  end-page: 5047
  ident: bib2
  article-title: Preparation of Li
  publication-title: Ceram. Int.
– volume: 13
  start-page: 1373
  year: 2011
  end-page: 1375
  ident: bib11
  article-title: High conductive yttrium doped Li
  publication-title: Electrochem. Commun.
– volume: 89
  start-page: 407
  year: 2013
  ident: 10.1016/j.ceramint.2016.04.149_bib17
  article-title: Bulk solid state rechargeable lithium ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.11.059
– volume: 35
  start-page: 561
  year: 2015
  ident: 10.1016/j.ceramint.2016.04.149_bib25
  article-title: Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.09.007
– volume: 6
  start-page: 10900
  year: 2014
  ident: 10.1016/j.ceramint.2016.04.149_bib5
  article-title: Dependence of the Li-ion conductivity and activation energies on the crystal structure and ionic radii in Li6MLa2Ta2O12
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4060194
– volume: 206
  start-page: 315
  year: 2012
  ident: 10.1016/j.ceramint.2016.04.149_bib18
  article-title: Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.01.131
– volume: 47
  start-page: 4428
  year: 2012
  ident: 10.1016/j.ceramint.2016.04.149_bib22
  article-title: Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-012-6300-y
– volume: 40
  start-page: 5043
  year: 2014
  ident: 10.1016/j.ceramint.2016.04.149_bib2
  article-title: Preparation of Li7La3Zr2O12 solid electrolyte via a sol-gel method
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2013.09.009
– volume: 2
  start-page: 385
  year: 2010
  ident: 10.1016/j.ceramint.2016.04.149_bib1
  article-title: Tailor-made development of fast Li ion conducting garnet-like solid electrolytes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900643t
– volume: 26
  start-page: 3610
  year: 2014
  ident: 10.1016/j.ceramint.2016.04.149_bib12
  article-title: Atmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics
  publication-title: Chem. Mater.
  doi: 10.1021/cm5008069
– volume: 1
  start-page: 8813
  year: 2013
  ident: 10.1016/j.ceramint.2016.04.149_bib19
  article-title: Low temperature stabilization of cubic (Li7−xAlx/3) La3Zr2O12: role of aluminum during formation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta11338h
– volume: 181
  start-page: 902
  year: 2010
  ident: 10.1016/j.ceramint.2016.04.149_bib8
  article-title: Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2010.04.017
– volume: 40
  start-page: 10195
  year: 2011
  ident: 10.1016/j.ceramint.2016.04.149_bib6
  article-title: Li mobility in nasicon-type materials LiM2(PO4)(3), M=Ge, Ti, Sn, Zr and Hf, followed by Li-7 NMR spectroscopy
  publication-title: Dalton Trans.
  doi: 10.1039/c1dt10516g
– volume: 53
  start-page: 6264
  year: 2014
  ident: 10.1016/j.ceramint.2016.04.149_bib14
  article-title: A synthesis and crystal chemical study of the fast ion conductor Li7−3xGaxLa3Zr2O12 with x=0.08 to 0.84
  publication-title: Inorg. Chem.
  doi: 10.1021/ic500803h
– volume: 46
  start-page: 7778
  year: 2007
  ident: 10.1016/j.ceramint.2016.04.149_bib10
  article-title: Fast lithium ion conduction in garnet-type Li7La3Zr2O12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200701144
– volume: 48
  start-page: 9840
  year: 2012
  ident: 10.1016/j.ceramint.2016.04.149_bib21
  article-title: Experimental visualization of lithium conduction pathways in garnet-type Li7La3Zr2O12
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc35089k
– volume: 243
  start-page: 36
  year: 2013
  ident: 10.1016/j.ceramint.2016.04.149_bib26
  article-title: High Li ion conductivity in strontium doped Li7La3Zr2O12 garnet
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2013.04.016
– volume: 13
  start-page: 1373
  year: 2011
  ident: 10.1016/j.ceramint.2016.04.149_bib11
  article-title: High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.08.014
– volume: 196
  start-page: 3342
  year: 2011
  ident: 10.1016/j.ceramint.2016.04.149_bib27
  article-title: High lithium ionic conductivity in the garnet-type oxide Li7−X La−3(Zr2−X, Nb−X)O−12 (X=0–2)
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.11.089
– volume: 189
  start-page: 536
  year: 2009
  ident: 10.1016/j.ceramint.2016.04.149_bib7
  article-title: Improvement of Li-ion conductivity in A-site disordering lithium-lanthanum-titanate perovskite oxides by adding LiF in synthesis
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.10.056
– volume: 15
  start-page: 107
  year: 2005
  ident: 10.1016/j.ceramint.2016.04.149_bib9
  article-title: Li(6)ALa(2)Ta(2)O(12) (A=Sr, Ba): novel garnet-like oxides for fast lithium ion conduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200400044
– volume: 13
  start-page: 479
  year: 2013
  ident: 10.1016/j.ceramint.2016.04.149_bib3
  article-title: Environmentally friendly flux growth of high-quality, idiomorphic Li5La3Nb2O12 crystals
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg3012348
– volume: 278
  start-page: 104
  year: 2015
  ident: 10.1016/j.ceramint.2016.04.149_bib15
  article-title: Nitrogen-free sol-gel synthesis of Al-substituted cubic garnet Li7La3Zr2O12 (LLZO)
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2014.12.066
– volume: 54
  start-page: 3600
  year: 2015
  ident: 10.1016/j.ceramint.2016.04.149_bib23
  article-title: Highly conductive Li garnets by a multielement doping strategy
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.5b00184
– volume: 6
  start-page: 17606
  year: 2014
  ident: 10.1016/j.ceramint.2016.04.149_bib4
  article-title: Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am503731h
– volume: 255
  start-page: 104
  year: 2014
  ident: 10.1016/j.ceramint.2016.04.149_bib20
  article-title: Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process
  publication-title: Solid State Ion.
  doi: 10.1016/j.ssi.2013.12.006
– volume: 21
  start-page: 62
  year: 2012
  ident: 10.1016/j.ceramint.2016.04.149_bib13
  article-title: Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2012.04.032
– volume: 196
  start-page: 7750
  year: 2011
  ident: 10.1016/j.ceramint.2016.04.149_bib24
  article-title: Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2011.04.047
– volume: 2
  start-page: 172
  year: 2014
  ident: 10.1016/j.ceramint.2016.04.149_bib16
  article-title: Effect of microstructure and surface impurity segregation on the electrical and electrochemical properties of dense Al-substituted Li7La3Zr2O12
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA13999A
SSID ssj0016940
Score 2.4427092
Snippet Li7La3Zr2O12 (LLZO) has cubic garnet type structure and is a promising solid electrolyte for next-generation Li-ion batteries. In this work, Al-doped LLZO was...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 12156
SubjectTerms Al-doped content
Li-ion conductivity
Li7La3Zr2O12
Sintering temperature
Title High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction
URI https://dx.doi.org/10.1016/j.ceramint.2016.04.149
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF7EXtpD6ZPah-yh1zVmd83jKFKxrdhDK0gvYXezgYiNovZgD_3tnclDLBQ89BJINgPJMJn9JnzzDSH3Qci1J1zFZNCBA5eaaaUTpqTECHF5onKC7MgbjOXTpDOpkV7VC4O0yjL3Fzk9z9blFaf0prNIU-cVCioeBJIDokBFGGzik9LHKG99b2kerhfK4j-LD18-3L3TJTxtGbtUH2mGnErXQ8lTFzU1_9qgdjad_gk5LtEi7RYPdEpqNjsjRzsagudkjEwNOkwZOJhCcYv6rflACDpPaHfG4vnCxrDuD5V4X_IXl9PVJgPYt0q_YEFvKERfGrO8s4gChMwbHS7IuP_w1huwclYCMzII18wH6MSN6Hix0PDKMQBnoQNlLcqxoEpcjFDJQPnmmba2IjR-7Cobc79tsH9XXJJ6Ns_sFaFCoUKq8FA6TAZKaUiKie8LjmJxNkwapFM5KDKlkDjOs5hFFWNsGlWOjdCxUVtChRE2iLO1WxRSGnstwsr_0a-giCDf77G9_oftDTnEs4Lnd0vq6-WnvQPssdbNPLia5KD7-DwY_QAXEddV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMcHbQ_qQXzi2z14Xdvsbl7HUixVaz1oQbyE3WQDEU1LrYf66Z3Jo1QQevCSQ5aBZJhM_pPM_BbgKgiF8aSjuQpcPAhluNEm5VopihBHpLpokB16_ZG6e3Ff1qBbz8JQW2WV-8ucXmTr6kyr8mZrkmWtJyyoRBAogYqCiDDhOjSJTuU2oNm5ve8PFz8TvFCVn1p8fPjRYGlQ-O06tlP9keXUVul4RD11CKv51ztq6b3T24HtSjCyTnlNu7Bm8z3YWsII7sOImjXYIOPoY4b1LSFciz0h2DhlnXeejCc2wXV_oOXrVDw6gn3Oc1R-n9k3Lpg5wwDMEl4MFzFUkcWswwGMejfP3T6vtkvgsQrCGfdRPYlYul4iDd5ygtpZmkBbS0QWAsUlpJZirOC8uG2sDGM_cbRNhN-OaYRXHkIjH-f2CJjUBEmVHtHDVKC1wbyY-r4UxIuzYXoMbu2gKK5Y4rSlxXtUN429RbVjI3Js1FZYZITH0FrYTUqaxkqLsPZ_9CsuIkz5K2xP_mF7CRv954dBNLgd3p_CJq2UbX9n0JhNv-w5SpGZuahC7QeIZdoG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Li-ion+conductivity+of+Al-doped+Li7La3Zr2O12+synthesized+by+solid-state+reaction&rft.jtitle=Ceramics+international&rft.au=Hu%2C+Zhongli&rft.au=Liu%2C+Hongdong&rft.au=Ruan%2C+Haibo&rft.au=Hu%2C+Rong&rft.date=2016-08-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=42&rft.issue=10&rft.spage=12156&rft.epage=12160&rft_id=info:doi/10.1016%2Fj.ceramint.2016.04.149&rft.externalDocID=S0272884216305569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon