Kernel weighted least square approach for imputing missing values of metabolomics data
Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 11108 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.05.2021
Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at
https://github.com/NishithPaul/tWLSA
. |
---|---|
AbstractList | Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at
https://github.com/NishithPaul/tWLSA
. Abstract Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA . Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA .Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA . |
ArticleNumber | 11108 |
Author | Kumar, Nishith Hoque, Md. Aminul Sugimoto, Masahiro |
Author_xml | – sequence: 1 givenname: Nishith surname: Kumar fullname: Kumar, Nishith email: nk.bru09@gmail.com organization: Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University – sequence: 2 givenname: Md. Aminul surname: Hoque fullname: Hoque, Md. Aminul organization: Department of Statistics, University of Rajshahi – sequence: 3 givenname: Masahiro surname: Sugimoto fullname: Sugimoto, Masahiro organization: Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Institute for Advanced Biosciences, Keio University |
BookMark | eNp9kc1u1TAQhSNUREvpC7DKkk2o_xNvkFAFtKISG2BrjZ1Jrq-S-NZ2inh7fJsiURb1ZizPnE_jc15XJ0tYsKreUvKeEt5dJkGl7hrCaKOJkqIhL6ozRoRsGGfs5J_7aXWR0p6UI5kWVL-qTrkoTUXFWfXzK8YFp_oX-nGXsa8nhJTrdLdCxBoOhxjA7eohxNrPhzX7Zaxnn9Kx3sO0YqrDUM-YwYYpzN6luocMb6qXA0wJLx7refXj86fvV9fN7bcvN1cfbxsnOp0bZS3psQdNXQcWekQ5cEqc7YUrPyO2VahRcXC0rEy0Rc5aaVvNlSDDIPl5dbNx-wB7c4h-hvjbBPDm4SHE0UDM3k1otGKyE86pjjmhBVgB1EnStZa3Sg6qsD5srMNqZ-wdLjnC9AT6tLP4nRnDvelKEprxAnj3CIjhrjiTTXHK4TTBgmFNhkkuFKWSt2W020ZdDClFHIzzGbIPR7KfDCXmmLLZUjbFC_OQsiFFyv6T_t3wWRHfRKkMLyNGsw9rXEo0z6n-AMTRu_8 |
CitedBy_id | crossref_primary_10_1007_s10439_022_03070_4 crossref_primary_10_1093_nargab_lqae071 crossref_primary_10_1007_s42081_023_00205_2 crossref_primary_10_25046_aj060419 crossref_primary_10_1016_j_compbiomed_2021_104911 |
Cites_doi | 10.1007/s11306-008-0123-5 10.1038/nprot.2011.319 10.1186/s12859-019-3250-2 10.1007/s11135-008-9196-5 10.1186/1471-2105-5-114 10.1007/s11306-016-1030-9 10.1093/bioinformatics/btr597 10.1002/elps.201500352 10.1093/bioinformatics/bti708 10.1093/aje/kwu143 10.1007/978-981-15-3172-9_72 10.2174/1574893612666171121154655 10.1007/s11306-012-0399-3 10.1007/s11306-011-0366-4 10.1007/s11306-018-1420-2 10.1093/bioinformatics/bth268 10.3390/metabo4020433 10.3390/metabo10120486 10.1007/s11306-010-0232-9 10.1093/bioinformatics/17.6.520 10.1186/1471-2105-11-571 10.1007/978-1-4939-3106-4_14 10.1038/s41598-017-19120-0 10.1002/prp2.67 10.1038/sdata.2014.12 10.1093/biostatistics/kxl005 10.1371/journal.pcbi.1005973 10.1155/2017/2437608 10.1002/pmic.200700975 10.1096/fj.11-198093 10.1186/1752-0509-7-107 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 |
Copyright_xml | – notice: The Author(s) 2021 |
DBID | C6C AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1038/s41598-021-90654-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_962584cc682c494ab4a1c5087b3765f6 PMC8159923 10_1038_s41598_021_90654_0 |
GrantInformation_xml | – fundername: JSPS KAKENHI grantid: 20H05743 – fundername: ; grantid: 20H05743 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c489t-6bb0deda91c8abadee5f310cbd4c0210b76e9e63ac134009be3275b793640ff53 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:24:21 EDT 2025 Thu Aug 21 18:36:18 EDT 2025 Fri Jul 11 14:12:40 EDT 2025 Tue Jul 01 03:48:30 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Fri Feb 21 02:39:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-6bb0deda91c8abadee5f310cbd4c0210b76e9e63ac134009be3275b793640ff53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-90654-0 |
PMID | 34045614 |
PQID | 2534611537 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_962584cc682c494ab4a1c5087b3765f6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159923 proquest_miscellaneous_2534611537 crossref_citationtrail_10_1038_s41598_021_90654_0 crossref_primary_10_1038_s41598_021_90654_0 springer_journals_10_1038_s41598_021_90654_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-27 |
PublicationDateYYYYMMDD | 2021-05-27 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Portfolio |
References | Wei (CR2) 2018; 8 Stekhoven, Bühlmann (CR20) 2012; 28 Gromski (CR1) 2014; 4 Xia, Wishart (CR15) 2011; 6 Ilin, Raiko (CR16) 2010; 11 Jansen, Hoefsloot, Boelens, van der Greef, Smilde (CR17) 2004; 20 Lin (CR18) 2010; 44 Krug (CR10) 2012; 26 Troyanskaya (CR13) 2001; 17 Steuer, Morgenthal, Weckwerth, Selbig, Weckwerth (CR4) 2007 Faquih (CR25) 2020; 10 CR19 Kirwan, Weber, Broadhurst, Viant (CR9) 2014; 1 Kumar, Hoque, Shahjaman, Islam, Mollah (CR34) 2017; 2017 CR33 Armitage, Godzien, Alonso-Herranz, Lopez-Gonzalvez, Barbas (CR6) 2015; 36 Navarrete (CR7) 2014; 2 Nyamundanda, Brennan, Gormley (CR14) 2010; 11 Do (CR22) 2018; 14 Qiu (CR8) 2008; 4 Scheel (CR27) 2005; 21 Tzoulaki, Ebbels, Valdes, Elliott, Ioannidis (CR30) 2014; 180 Eisner (CR32) 2011; 7 Pedreschi (CR26) 2008; 8 Tibshirani, Hastie (CR31) 2007; 8 Di Guida (CR5) 2016; 12 Blanchet, Smolinska, Jung (CR29) 2016 Madhu, Bharadwaj, Vardhan, Chandrika, Saini, Singh, Beg, Sahambi (CR12) 2020 Shah, Brock, Gaskins (CR23) 2019; 20 Hrydziuszko, Viant (CR3) 2012; 8 Sun, Weckwerth (CR11) 2012; 8 Kotze (CR35) 2013; 7 Wei (CR21) 2018; 14 Kumar, Hoque, Shahjaman, Islam, Mollah (CR24) 2019; 14 de Brevern, Hazout, Malpertuy (CR28) 2004; 5 G Nyamundanda (90654_CR14) 2010; 11 R Di Guida (90654_CR5) 2016; 12 G Madhu (90654_CR12) 2020 R Eisner (90654_CR32) 2011; 7 PS Gromski (90654_CR1) 2014; 4 Y Qiu (90654_CR8) 2008; 4 R Wei (90654_CR21) 2018; 14 TH Lin (90654_CR18) 2010; 44 R Pedreschi (90654_CR26) 2008; 8 KT Do (90654_CR22) 2018; 14 AG de Brevern (90654_CR28) 2004; 5 R Steuer (90654_CR4) 2007 T Faquih (90654_CR25) 2020; 10 N Kumar (90654_CR34) 2017; 2017 L Blanchet (90654_CR29) 2016 X Sun (90654_CR11) 2012; 8 R Tibshirani (90654_CR31) 2007; 8 EG Armitage (90654_CR6) 2015; 36 DJ Stekhoven (90654_CR20) 2012; 28 I Scheel (90654_CR27) 2005; 21 I Tzoulaki (90654_CR30) 2014; 180 A Navarrete (90654_CR7) 2014; 2 S Krug (90654_CR10) 2012; 26 A Ilin (90654_CR16) 2010; 11 J Xia (90654_CR15) 2011; 6 JJ Jansen (90654_CR17) 2004; 20 O Hrydziuszko (90654_CR3) 2012; 8 JA Kirwan (90654_CR9) 2014; 1 O Troyanskaya (90654_CR13) 2001; 17 90654_CR19 HL Kotze (90654_CR35) 2013; 7 R Wei (90654_CR2) 2018; 8 J Shah (90654_CR23) 2019; 20 N Kumar (90654_CR24) 2019; 14 90654_CR33 |
References_xml | – volume: 4 start-page: 337 year: 2008 end-page: 346 ident: CR8 article-title: Multivariate classification analysis of metabolomic data for candidate biomarker discovery in type 2 diabetes mellitus publication-title: Metabolomics doi: 10.1007/s11306-008-0123-5 – volume: 6 start-page: 743 year: 2011 end-page: 760 ident: CR15 article-title: Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.319 – volume: 20 start-page: 673 year: 2019 ident: CR23 article-title: BayesMetab: treatment of missing values in metabolomic studies using a Bayesian modeling approach publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3250-2 – volume: 11 start-page: 1957 year: 2010 end-page: 2000 ident: CR16 article-title: Practical approaches to principal component analysis in the presence of missing values publication-title: J. Mach. Learn. Res. – volume: 44 start-page: 277 year: 2010 end-page: 287 ident: CR18 article-title: A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data publication-title: Qual. Quant. doi: 10.1007/s11135-008-9196-5 – volume: 5 start-page: 114 year: 2004 ident: CR28 article-title: Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering publication-title: BMC Bioinform. doi: 10.1186/1471-2105-5-114 – volume: 12 start-page: 93 year: 2016 ident: CR5 article-title: Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling publication-title: Metabolomics doi: 10.1007/s11306-016-1030-9 – ident: CR33 – volume: 28 start-page: 112 year: 2012 end-page: 118 ident: CR20 article-title: MissForest—non-parametric missing value imputation for mixed-type data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – volume: 36 start-page: 3050 year: 2015 end-page: 3060 ident: CR6 article-title: Missing value imputation strategies for metabolomics data publication-title: Electrophoresis doi: 10.1002/elps.201500352 – volume: 21 start-page: 4272 year: 2005 end-page: 4279 ident: CR27 article-title: The influence of missing values imputation on detection of differentially expressed genes from microarray data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti708 – volume: 180 start-page: 129 year: 2014 end-page: 139 ident: CR30 article-title: Design and analysis of metabolomics studies in epidemiologic research: a primer on-omic technologies publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwu143 – start-page: 773 year: 2020 end-page: 781 ident: CR12 article-title: A normalized mean algorithm for imputation of missing data values in medical databases publication-title: Innovations in Electronics and Communication Engineering doi: 10.1007/978-981-15-3172-9_72 – ident: CR19 – volume: 14 start-page: 43 year: 2019 end-page: 52 ident: CR24 article-title: A new approach of outlier-robust missing value imputation for metabolomics data analysis publication-title: Curr. Bioinform. doi: 10.2174/1574893612666171121154655 – volume: 8 start-page: 81 year: 2012 end-page: 93 ident: CR11 article-title: COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data publication-title: Metabolomics doi: 10.1007/s11306-012-0399-3 – volume: 8 start-page: 161 year: 2012 end-page: 174 ident: CR3 article-title: Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline publication-title: Metabolomics doi: 10.1007/s11306-011-0366-4 – volume: 14 start-page: 128 year: 2018 ident: CR22 article-title: Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies publication-title: Metabolomics doi: 10.1007/s11306-018-1420-2 – volume: 20 start-page: 2438 year: 2004 end-page: 2446 ident: CR17 article-title: Analysis of longitudinal metabolomics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth268 – volume: 4 start-page: 433 year: 2014 end-page: 452 ident: CR1 article-title: Influence of missing values substitutes on multivariate analysis of metabolomics data publication-title: Metabolites doi: 10.3390/metabo4020433 – volume: 10 start-page: 486 year: 2020 ident: CR25 article-title: A workflow for missing values imputation of untargeted metabolomics data publication-title: Metabolites doi: 10.3390/metabo10120486 – volume: 7 start-page: 25 year: 2011 end-page: 34 ident: CR32 article-title: Learning to predict cancer-associated skeletal muscle wasting from H-NMR profiles of urinary metabolites publication-title: Metabolomics doi: 10.1007/s11306-010-0232-9 – volume: 17 start-page: 520 year: 2001 end-page: 525 ident: CR13 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/17.6.520 – volume: 11 start-page: 571 year: 2010 ident: CR14 article-title: Probabilistic principal component analysis for metabolomic data publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-571 – start-page: 105 year: 2007 end-page: 126 ident: CR4 article-title: A gentle guide to the analysis of metabolomic data publication-title: Metabolomics—Methods and Protocols – start-page: 209 year: 2016 end-page: 223 ident: CR29 article-title: Data fusion in metabolomics and proteomics for biomarker discovery publication-title: Statistical Analysis in Proteomics doi: 10.1007/978-1-4939-3106-4_14 – volume: 8 start-page: 663 year: 2018 ident: CR2 article-title: Missing value imputation approach for mass spectrometry-based metabolomics data publication-title: Sci. Rep. doi: 10.1038/s41598-017-19120-0 – volume: 2 start-page: e00067 year: 2014 ident: CR7 article-title: Metabolomic evaluation of Mitomycin C and rapamycin in a personalized treatment of pancreatic cancer publication-title: Pharmacol. Res. Perspect. doi: 10.1002/prp2.67 – volume: 1 start-page: 140012 year: 2014 ident: CR9 article-title: Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control publication-title: Sci. Data doi: 10.1038/sdata.2014.12 – volume: 8 start-page: 2 year: 2007 end-page: 8 ident: CR31 article-title: Outlier sums for differential gene expression analysis publication-title: Biostatistics doi: 10.1093/biostatistics/kxl005 – volume: 14 start-page: e1005973 year: 2018 ident: CR21 article-title: GSimp: a Gibbs sampler based left-censored missing value imputation approach for metabolomics studies publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005973 – volume: 2017 start-page: 2437608 year: 2017 ident: CR34 article-title: Metabolomic biomarker identification in presence of outliers and missing values publication-title: Biomed. Res. Int. doi: 10.1155/2017/2437608 – volume: 8 start-page: 1371 year: 2008 end-page: 1383 ident: CR26 article-title: Treatment of missing values for multivariate statistical analysis of gel-based proteomics data publication-title: Proteomics doi: 10.1002/pmic.200700975 – volume: 26 start-page: 2607 year: 2012 end-page: 2619 ident: CR10 article-title: The dynamic range of the human metabolome revealed by challenges publication-title: FASEB J. doi: 10.1096/fj.11-198093 – volume: 7 start-page: 107 year: 2013 ident: CR35 article-title: A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-107 – volume: 14 start-page: 128 year: 2018 ident: 90654_CR22 publication-title: Metabolomics doi: 10.1007/s11306-018-1420-2 – start-page: 105 volume-title: Metabolomics—Methods and Protocols year: 2007 ident: 90654_CR4 – volume: 5 start-page: 114 year: 2004 ident: 90654_CR28 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-5-114 – volume: 2017 start-page: 2437608 year: 2017 ident: 90654_CR34 publication-title: Biomed. Res. Int. doi: 10.1155/2017/2437608 – volume: 4 start-page: 337 year: 2008 ident: 90654_CR8 publication-title: Metabolomics doi: 10.1007/s11306-008-0123-5 – ident: 90654_CR33 – volume: 36 start-page: 3050 year: 2015 ident: 90654_CR6 publication-title: Electrophoresis doi: 10.1002/elps.201500352 – volume: 6 start-page: 743 year: 2011 ident: 90654_CR15 publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.319 – volume: 17 start-page: 520 year: 2001 ident: 90654_CR13 publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/17.6.520 – volume: 8 start-page: 2 year: 2007 ident: 90654_CR31 publication-title: Biostatistics doi: 10.1093/biostatistics/kxl005 – volume: 8 start-page: 81 year: 2012 ident: 90654_CR11 publication-title: Metabolomics doi: 10.1007/s11306-012-0399-3 – volume: 14 start-page: 43 year: 2019 ident: 90654_CR24 publication-title: Curr. Bioinform. doi: 10.2174/1574893612666171121154655 – volume: 21 start-page: 4272 year: 2005 ident: 90654_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti708 – volume: 8 start-page: 663 year: 2018 ident: 90654_CR2 publication-title: Sci. Rep. doi: 10.1038/s41598-017-19120-0 – volume: 20 start-page: 2438 year: 2004 ident: 90654_CR17 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth268 – volume: 4 start-page: 433 year: 2014 ident: 90654_CR1 publication-title: Metabolites doi: 10.3390/metabo4020433 – volume: 11 start-page: 1957 year: 2010 ident: 90654_CR16 publication-title: J. Mach. Learn. Res. – ident: 90654_CR19 – start-page: 773 volume-title: Innovations in Electronics and Communication Engineering year: 2020 ident: 90654_CR12 doi: 10.1007/978-981-15-3172-9_72 – volume: 7 start-page: 25 year: 2011 ident: 90654_CR32 publication-title: Metabolomics doi: 10.1007/s11306-010-0232-9 – volume: 1 start-page: 140012 year: 2014 ident: 90654_CR9 publication-title: Sci. Data doi: 10.1038/sdata.2014.12 – volume: 10 start-page: 486 year: 2020 ident: 90654_CR25 publication-title: Metabolites doi: 10.3390/metabo10120486 – volume: 44 start-page: 277 year: 2010 ident: 90654_CR18 publication-title: Qual. Quant. doi: 10.1007/s11135-008-9196-5 – volume: 180 start-page: 129 year: 2014 ident: 90654_CR30 publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwu143 – volume: 7 start-page: 107 year: 2013 ident: 90654_CR35 publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-7-107 – volume: 26 start-page: 2607 year: 2012 ident: 90654_CR10 publication-title: FASEB J. doi: 10.1096/fj.11-198093 – volume: 11 start-page: 571 year: 2010 ident: 90654_CR14 publication-title: BMC Bioinform. doi: 10.1186/1471-2105-11-571 – volume: 8 start-page: 161 year: 2012 ident: 90654_CR3 publication-title: Metabolomics doi: 10.1007/s11306-011-0366-4 – volume: 14 start-page: e1005973 year: 2018 ident: 90654_CR21 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005973 – volume: 8 start-page: 1371 year: 2008 ident: 90654_CR26 publication-title: Proteomics doi: 10.1002/pmic.200700975 – volume: 12 start-page: 93 year: 2016 ident: 90654_CR5 publication-title: Metabolomics doi: 10.1007/s11306-016-1030-9 – volume: 28 start-page: 112 year: 2012 ident: 90654_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 – volume: 2 start-page: e00067 year: 2014 ident: 90654_CR7 publication-title: Pharmacol. Res. Perspect. doi: 10.1002/prp2.67 – start-page: 209 volume-title: Statistical Analysis in Proteomics year: 2016 ident: 90654_CR29 doi: 10.1007/978-1-4939-3106-4_14 – volume: 20 start-page: 673 year: 2019 ident: 90654_CR23 publication-title: BMC Bioinform. doi: 10.1186/s12859-019-3250-2 |
SSID | ssj0000529419 |
Score | 2.4117873 |
Snippet | Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a... Abstract Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a... |
SourceID | doaj pubmedcentral proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 11108 |
SubjectTerms | 631/114 639/705 Humanities and Social Sciences multidisciplinary Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8UwEA4iCF7EFetGBG9abJu0TY4qiih6UvEWknSKwrNP7RPx3zuT9on1oBevXUgyC_MlmfmGsb2SSMtBetybKB3LGrLYAdSx9cIpiRFLKapGvrouzm_lxX1-_63VF-WEdfTAneAONQJ0Jb0vVOalltZJm3pEFaVD18jrQLaNMe_bZqpj9c60THVfJZMIddhipKJqspCRUOQyTgaRKBD2D1DmzxzJHxelIf6cLbKFHjjyo27CS2wGmmU217WS_Fhhd5fw2sCIv4ejTqj4iJry8PYFTQD4lDmcI0Tlj9THAcfgqGI6KeBE-A0tH9f8CSZoFCOqVG45JY-ustuz05uT87jvmRB7qfQkLpxLKqisTr2yzlYAeY0IzrtKetreubIADYWwPhXovtqByMrcoZcWMqnrXKyx2WbcwDrjFtJae0_91RUqDXDnAUS2U-pUaesgYulUfsb3hOLU12JkwsW2UKaTucFxTZC5SSK2__XPc0en8evXx6SWry-JCjs8QAMxvYGYvwwkYrtTpRqUK92H2AbGb63JciELRMSijFg50PZgxOGb5vEhkHArnCyC44gdTO3C9N7f_rKijf9Y0Sabz8iOE6om3GKzk9c32EZoNHE7wQs-ARpDCaM priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLemTUi8oPElypeCxBtUtE2aJo8HYpoOwQsM7S1KUhcm3XpwvWniv8fOtSd1QpN4bROltZ3Yju2fAV43DFqOKpJvYmyuOqzygNjlPspgFGksY7ga-fMXfXqmluf1-QFUUy1MStpPkJbpmJ6yw94NpGi4GCwlFOha5eSmHzFUO8n20WKx_Lrc36xw7EqVdqyQKaT5x-SZFkpg_TML82Z-5I0gadI9J8dwbzQaxWL3mffhAPsHcGfXRvLPQ_j-CTc9rsR1uubEVqy4IY8YfhP7UUyo4YLMU3HBPRxoDUHs5VsCwWDfOIh1Jy5xSwKx4irlQXDi6CM4O_n47cNpPvZLyKMydpvrEIoWW2_LaHzwLWLdkfUWQ6siu3ah0WhRSx9LSVvXBpRVUwfaoVoVXVfLx3DYr3t8AsJj2dkYube6IYYheR3IQDuNLY31ATMoJ_q5OIKJc0-LlUtBbWncjuaO1nWJ5q7I4M1-zq8dlMato98zW_YjGQY7PVhvfrhRLJwl782oGLWporLKB-XLSCZnE-jcrDudwauJqY7oyrEQ3-P6anBVLZUma1g2GTQzbs9WnL_pL34mAG5DH0uGcQZvJ7lw484fbvmjp_83_BncrVhiC64ZfA6H280VviADaBtejhL_F2VWATw priority: 102 providerName: Springer Nature |
Title | Kernel weighted least square approach for imputing missing values of metabolomics data |
URI | https://link.springer.com/article/10.1038/s41598-021-90654-0 https://www.proquest.com/docview/2534611537 https://pubmed.ncbi.nlm.nih.gov/PMC8159923 https://doaj.org/article/962584cc682c494ab4a1c5087b3765f6 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5qi9IX8YppdRnBN43mMpnLg8h2aSkrLaKu7NuQmZzUQszazRbtv_ecXAoppQ8-BXJhkjNncr4zM-f7GHujiLQchMfcRJtQlJCEDqAMc586LTBiaU3VyCen8ngh5stsucUGuaPegM2tqR3pSS3W1fu_F1efcMB_7ErG9YcGgxAVirWbDWQmQkzhdzAyKVI0OOnhfsf1nRgRm7525vZHd9mDVBDOicUoVLWM_iMYenMT5Y2V1DZAHT1iD3tkyaedKzxmW1A_Yfc7rcmrp-zHZ1jXUPE_7VwoFLwi1R7eXKCPAB-oxTliWH5OQg_YBkcfoKkETozg0PBVyX_BBr2molLmhtPu0mdscXT4fXYc9qIKoRfabELpXFRAkZvY69zlBUBWIsTzrhCe8j-nJBiQae5jtENkHKSJyhwOYymisszS52y7XtXwgvEc4tJ4TwLsGnsVMDUBYuNRJtYmdxCweLCf9T3jOAlfVLZd-U617cxvsV3bmt9GAXt7_czvjm_jzrsPqFuu7ySu7PbEan1m-6FnDaZ4WngvdeKFEbkTeewRlyqHP9eslAF7PXSqRbvSgklew-qysUmWComQOVUBU6PeHrU4vlKf_2xZujW-LKLngL0b_MIO3n3HF-39d0P7bDchP46oxvAl296sL-EVAqaNm7B7aqkmbGc6nX-b4_Hg8PTLVzw7k7NJOwkxacfJP1IrGHI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrRBcUHmJ8DQSN4jIw3HsY7uiWujj1KLeLNuZ0EpLFjZbIf49M95kpVSoEtfElpOZsf2NPfMNwPuaSctRBvJNtElli0XqEdvUhdJrSTuW1pyNfHqm5hfy62V1uQPFmAsTg_YjpWVcpsfosE89bTScDBYDClQlU3LT9whrK7bkmZptz1X45krmZsiPyUr9j66TPShS9U_w5e3oyFtXpHHnOdqHhwNkFAebj3wEO9g9hnubIpJ_nsC3Y1x1uBC_4yEnNmLB5XhE_4uUj2LkDBcETsU1V3CgMQQpl88IBFN9Yy-WrfiBazKHBeco94LDRp_CxdHn89k8HaolpEFqs06V91mDjTN50M67BrFqCbsF38jAjp2vFRpUpQt5SRPXeCyLuvI0P5XM2rYqn8Fut-zwOQiHeWtC4MrqmtSF5HMg0-zUJtfGeUwgH-Vnw0AlzhUtFjZeaZfabmRuaVwbZW6zBD5s-_zcEGnc2fqQ1bJtySTY8cFy9d0ORmEN-W5ahqB0EaSRzkuXBwKctadVs2pVAu9GpVqSK9-EuA6XN70tqlIqwsJlnUA90fZkxOmb7voq0m9r-liCxQl8HO3CDvO-v-OPXvxf87dwf35-emJPvpwdv4QHBVtvxtmDr2B3vbrB1wSF1v5NtP2_W3UC0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUBcEE-xPI3EDQJ5OI59XB6rsoUKCYp6s2xnApWWbNlshfj3zHiTlVKhSlwTJ05mxp7P9sw3AM8rJi1HGWhtok0iG8wTj9gkLhReS_JYWnM28qcjdXAsFyflyR6oIRcmBu1HSss4TQ_RYa87cjScDBYDClQpk_TVWd1cgX3C25mcwP5stviy2O2u8PmVzEyfJZMW-h8vGHmiSNg_QpkXYyQvHJRG_zO_CTd64Chm20-9BXvY3oar21KSf-7At0Nct7gUv-NWJ9ZiyUV5RPeLTADFwBwuCKKKU67jQH0IUjHvFAgm_MZOrBrxEzdkFEvOVO4EB4_eheP5-69vD5K-ZkISpDabRHmf1lg7kwXtvKsRy4YQXPC1DLy885VCg6pwISto-BqPRV6VnkapkmnTlMU9mLSrFu-DcJg1JgSur65JaUgrD2Syncpk2jiPU8gG-dnQE4pzXYuljQfbhbZbmVvq10aZ23QKL3bPnG3pNC5t_YbVsmvJVNjxwmr93famYQ2t4LQMQek8SCOdly4LBDsrT3Nn2agpPBuUakmufB7iWlyddzYvC6kIERfVFKqRtkc9ju-0pz8iCbemjyVwPIWXg13YfvR3l_zRg_9r_hSufX43tx8_HB0-hOs5G2_KKYSPYLJZn-NjwkMb_6Q3_r9RaAU0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+weighted+least+square+approach+for+imputing+missing+values+of+metabolomics+data&rft.jtitle=Scientific+reports&rft.au=Kumar%2C+Nishith&rft.au=Hoque%2C+Md.+Aminul&rft.au=Sugimoto%2C+Masahiro&rft.date=2021-05-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft_id=info:doi/10.1038%2Fs41598-021-90654-0&rft_id=info%3Apmid%2F34045614&rft.externalDocID=PMC8159923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |