Kernel weighted least square approach for imputing missing values of metabolomics data

Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 11108 - 12
Main Authors Kumar, Nishith, Hoque, Md. Aminul, Sugimoto, Masahiro
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.05.2021
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA .
AbstractList Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA .
Abstract Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA .
Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA .Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA .
ArticleNumber 11108
Author Kumar, Nishith
Hoque, Md. Aminul
Sugimoto, Masahiro
Author_xml – sequence: 1
  givenname: Nishith
  surname: Kumar
  fullname: Kumar, Nishith
  email: nk.bru09@gmail.com
  organization: Department of Statistics, Bangabandhu Sheikh Mujibur Rahman Science and Technology University
– sequence: 2
  givenname: Md. Aminul
  surname: Hoque
  fullname: Hoque, Md. Aminul
  organization: Department of Statistics, University of Rajshahi
– sequence: 3
  givenname: Masahiro
  surname: Sugimoto
  fullname: Sugimoto, Masahiro
  organization: Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Institute for Advanced Biosciences, Keio University
BookMark eNp9kc1u1TAQhSNUREvpC7DKkk2o_xNvkFAFtKISG2BrjZ1Jrq-S-NZ2inh7fJsiURb1ZizPnE_jc15XJ0tYsKreUvKeEt5dJkGl7hrCaKOJkqIhL6ozRoRsGGfs5J_7aXWR0p6UI5kWVL-qTrkoTUXFWfXzK8YFp_oX-nGXsa8nhJTrdLdCxBoOhxjA7eohxNrPhzX7Zaxnn9Kx3sO0YqrDUM-YwYYpzN6luocMb6qXA0wJLx7refXj86fvV9fN7bcvN1cfbxsnOp0bZS3psQdNXQcWekQ5cEqc7YUrPyO2VahRcXC0rEy0Rc5aaVvNlSDDIPl5dbNx-wB7c4h-hvjbBPDm4SHE0UDM3k1otGKyE86pjjmhBVgB1EnStZa3Sg6qsD5srMNqZ-wdLjnC9AT6tLP4nRnDvelKEprxAnj3CIjhrjiTTXHK4TTBgmFNhkkuFKWSt2W020ZdDClFHIzzGbIPR7KfDCXmmLLZUjbFC_OQsiFFyv6T_t3wWRHfRKkMLyNGsw9rXEo0z6n-AMTRu_8
CitedBy_id crossref_primary_10_1007_s10439_022_03070_4
crossref_primary_10_1093_nargab_lqae071
crossref_primary_10_1007_s42081_023_00205_2
crossref_primary_10_25046_aj060419
crossref_primary_10_1016_j_compbiomed_2021_104911
Cites_doi 10.1007/s11306-008-0123-5
10.1038/nprot.2011.319
10.1186/s12859-019-3250-2
10.1007/s11135-008-9196-5
10.1186/1471-2105-5-114
10.1007/s11306-016-1030-9
10.1093/bioinformatics/btr597
10.1002/elps.201500352
10.1093/bioinformatics/bti708
10.1093/aje/kwu143
10.1007/978-981-15-3172-9_72
10.2174/1574893612666171121154655
10.1007/s11306-012-0399-3
10.1007/s11306-011-0366-4
10.1007/s11306-018-1420-2
10.1093/bioinformatics/bth268
10.3390/metabo4020433
10.3390/metabo10120486
10.1007/s11306-010-0232-9
10.1093/bioinformatics/17.6.520
10.1186/1471-2105-11-571
10.1007/978-1-4939-3106-4_14
10.1038/s41598-017-19120-0
10.1002/prp2.67
10.1038/sdata.2014.12
10.1093/biostatistics/kxl005
10.1371/journal.pcbi.1005973
10.1155/2017/2437608
10.1002/pmic.200700975
10.1096/fj.11-198093
10.1186/1752-0509-7-107
ContentType Journal Article
Copyright The Author(s) 2021
Copyright_xml – notice: The Author(s) 2021
DBID C6C
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1038/s41598-021-90654-0
DatabaseName Springer Nature OA Free Journals
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_962584cc682c494ab4a1c5087b3765f6
PMC8159923
10_1038_s41598_021_90654_0
GrantInformation_xml – fundername: JSPS KAKENHI
  grantid: 20H05743
– fundername: ;
  grantid: 20H05743
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
7X8
PPXIY
PQGLB
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c489t-6bb0deda91c8abadee5f310cbd4c0210b76e9e63ac134009be3275b793640ff53
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:24:21 EDT 2025
Thu Aug 21 18:36:18 EDT 2025
Fri Jul 11 14:12:40 EDT 2025
Tue Jul 01 03:48:30 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Fri Feb 21 02:39:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-6bb0deda91c8abadee5f310cbd4c0210b76e9e63ac134009be3275b793640ff53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-90654-0
PMID 34045614
PQID 2534611537
PQPubID 23479
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_962584cc682c494ab4a1c5087b3765f6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8159923
proquest_miscellaneous_2534611537
crossref_citationtrail_10_1038_s41598_021_90654_0
crossref_primary_10_1038_s41598_021_90654_0
springer_journals_10_1038_s41598_021_90654_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-27
PublicationDateYYYYMMDD 2021-05-27
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Portfolio
References Wei (CR2) 2018; 8
Stekhoven, Bühlmann (CR20) 2012; 28
Gromski (CR1) 2014; 4
Xia, Wishart (CR15) 2011; 6
Ilin, Raiko (CR16) 2010; 11
Jansen, Hoefsloot, Boelens, van der Greef, Smilde (CR17) 2004; 20
Lin (CR18) 2010; 44
Krug (CR10) 2012; 26
Troyanskaya (CR13) 2001; 17
Steuer, Morgenthal, Weckwerth, Selbig, Weckwerth (CR4) 2007
Faquih (CR25) 2020; 10
CR19
Kirwan, Weber, Broadhurst, Viant (CR9) 2014; 1
Kumar, Hoque, Shahjaman, Islam, Mollah (CR34) 2017; 2017
CR33
Armitage, Godzien, Alonso-Herranz, Lopez-Gonzalvez, Barbas (CR6) 2015; 36
Navarrete (CR7) 2014; 2
Nyamundanda, Brennan, Gormley (CR14) 2010; 11
Do (CR22) 2018; 14
Qiu (CR8) 2008; 4
Scheel (CR27) 2005; 21
Tzoulaki, Ebbels, Valdes, Elliott, Ioannidis (CR30) 2014; 180
Eisner (CR32) 2011; 7
Pedreschi (CR26) 2008; 8
Tibshirani, Hastie (CR31) 2007; 8
Di Guida (CR5) 2016; 12
Blanchet, Smolinska, Jung (CR29) 2016
Madhu, Bharadwaj, Vardhan, Chandrika, Saini, Singh, Beg, Sahambi (CR12) 2020
Shah, Brock, Gaskins (CR23) 2019; 20
Hrydziuszko, Viant (CR3) 2012; 8
Sun, Weckwerth (CR11) 2012; 8
Kotze (CR35) 2013; 7
Wei (CR21) 2018; 14
Kumar, Hoque, Shahjaman, Islam, Mollah (CR24) 2019; 14
de Brevern, Hazout, Malpertuy (CR28) 2004; 5
G Nyamundanda (90654_CR14) 2010; 11
R Di Guida (90654_CR5) 2016; 12
G Madhu (90654_CR12) 2020
R Eisner (90654_CR32) 2011; 7
PS Gromski (90654_CR1) 2014; 4
Y Qiu (90654_CR8) 2008; 4
R Wei (90654_CR21) 2018; 14
TH Lin (90654_CR18) 2010; 44
R Pedreschi (90654_CR26) 2008; 8
KT Do (90654_CR22) 2018; 14
AG de Brevern (90654_CR28) 2004; 5
R Steuer (90654_CR4) 2007
T Faquih (90654_CR25) 2020; 10
N Kumar (90654_CR34) 2017; 2017
L Blanchet (90654_CR29) 2016
X Sun (90654_CR11) 2012; 8
R Tibshirani (90654_CR31) 2007; 8
EG Armitage (90654_CR6) 2015; 36
DJ Stekhoven (90654_CR20) 2012; 28
I Scheel (90654_CR27) 2005; 21
I Tzoulaki (90654_CR30) 2014; 180
A Navarrete (90654_CR7) 2014; 2
S Krug (90654_CR10) 2012; 26
A Ilin (90654_CR16) 2010; 11
J Xia (90654_CR15) 2011; 6
JJ Jansen (90654_CR17) 2004; 20
O Hrydziuszko (90654_CR3) 2012; 8
JA Kirwan (90654_CR9) 2014; 1
O Troyanskaya (90654_CR13) 2001; 17
90654_CR19
HL Kotze (90654_CR35) 2013; 7
R Wei (90654_CR2) 2018; 8
J Shah (90654_CR23) 2019; 20
N Kumar (90654_CR24) 2019; 14
90654_CR33
References_xml – volume: 4
  start-page: 337
  year: 2008
  end-page: 346
  ident: CR8
  article-title: Multivariate classification analysis of metabolomic data for candidate biomarker discovery in type 2 diabetes mellitus
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0123-5
– volume: 6
  start-page: 743
  year: 2011
  end-page: 760
  ident: CR15
  article-title: Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.319
– volume: 20
  start-page: 673
  year: 2019
  ident: CR23
  article-title: BayesMetab: treatment of missing values in metabolomic studies using a Bayesian modeling approach
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-3250-2
– volume: 11
  start-page: 1957
  year: 2010
  end-page: 2000
  ident: CR16
  article-title: Practical approaches to principal component analysis in the presence of missing values
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 277
  year: 2010
  end-page: 287
  ident: CR18
  article-title: A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-008-9196-5
– volume: 5
  start-page: 114
  year: 2004
  ident: CR28
  article-title: Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-5-114
– volume: 12
  start-page: 93
  year: 2016
  ident: CR5
  article-title: Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling
  publication-title: Metabolomics
  doi: 10.1007/s11306-016-1030-9
– ident: CR33
– volume: 28
  start-page: 112
  year: 2012
  end-page: 118
  ident: CR20
  article-title: MissForest—non-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 36
  start-page: 3050
  year: 2015
  end-page: 3060
  ident: CR6
  article-title: Missing value imputation strategies for metabolomics data
  publication-title: Electrophoresis
  doi: 10.1002/elps.201500352
– volume: 21
  start-page: 4272
  year: 2005
  end-page: 4279
  ident: CR27
  article-title: The influence of missing values imputation on detection of differentially expressed genes from microarray data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti708
– volume: 180
  start-page: 129
  year: 2014
  end-page: 139
  ident: CR30
  article-title: Design and analysis of metabolomics studies in epidemiologic research: a primer on-omic technologies
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwu143
– start-page: 773
  year: 2020
  end-page: 781
  ident: CR12
  article-title: A normalized mean algorithm for imputation of missing data values in medical databases
  publication-title: Innovations in Electronics and Communication Engineering
  doi: 10.1007/978-981-15-3172-9_72
– ident: CR19
– volume: 14
  start-page: 43
  year: 2019
  end-page: 52
  ident: CR24
  article-title: A new approach of outlier-robust missing value imputation for metabolomics data analysis
  publication-title: Curr. Bioinform.
  doi: 10.2174/1574893612666171121154655
– volume: 8
  start-page: 81
  year: 2012
  end-page: 93
  ident: CR11
  article-title: COVAIN: a toolbox for uni- and multivariate statistics, time-series and correlation network analysis and inverse estimation of the differential Jacobian from metabolomics covariance data
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0399-3
– volume: 8
  start-page: 161
  year: 2012
  end-page: 174
  ident: CR3
  article-title: Missing values in mass spectrometry based metabolomics: an undervalued step in the data processing pipeline
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0366-4
– volume: 14
  start-page: 128
  year: 2018
  ident: CR22
  article-title: Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1420-2
– volume: 20
  start-page: 2438
  year: 2004
  end-page: 2446
  ident: CR17
  article-title: Analysis of longitudinal metabolomics data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth268
– volume: 4
  start-page: 433
  year: 2014
  end-page: 452
  ident: CR1
  article-title: Influence of missing values substitutes on multivariate analysis of metabolomics data
  publication-title: Metabolites
  doi: 10.3390/metabo4020433
– volume: 10
  start-page: 486
  year: 2020
  ident: CR25
  article-title: A workflow for missing values imputation of untargeted metabolomics data
  publication-title: Metabolites
  doi: 10.3390/metabo10120486
– volume: 7
  start-page: 25
  year: 2011
  end-page: 34
  ident: CR32
  article-title: Learning to predict cancer-associated skeletal muscle wasting from H-NMR profiles of urinary metabolites
  publication-title: Metabolomics
  doi: 10.1007/s11306-010-0232-9
– volume: 17
  start-page: 520
  year: 2001
  end-page: 525
  ident: CR13
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/17.6.520
– volume: 11
  start-page: 571
  year: 2010
  ident: CR14
  article-title: Probabilistic principal component analysis for metabolomic data
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-571
– start-page: 105
  year: 2007
  end-page: 126
  ident: CR4
  article-title: A gentle guide to the analysis of metabolomic data
  publication-title: Metabolomics—Methods and Protocols
– start-page: 209
  year: 2016
  end-page: 223
  ident: CR29
  article-title: Data fusion in metabolomics and proteomics for biomarker discovery
  publication-title: Statistical Analysis in Proteomics
  doi: 10.1007/978-1-4939-3106-4_14
– volume: 8
  start-page: 663
  year: 2018
  ident: CR2
  article-title: Missing value imputation approach for mass spectrometry-based metabolomics data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-19120-0
– volume: 2
  start-page: e00067
  year: 2014
  ident: CR7
  article-title: Metabolomic evaluation of Mitomycin C and rapamycin in a personalized treatment of pancreatic cancer
  publication-title: Pharmacol. Res. Perspect.
  doi: 10.1002/prp2.67
– volume: 1
  start-page: 140012
  year: 2014
  ident: CR9
  article-title: Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.12
– volume: 8
  start-page: 2
  year: 2007
  end-page: 8
  ident: CR31
  article-title: Outlier sums for differential gene expression analysis
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl005
– volume: 14
  start-page: e1005973
  year: 2018
  ident: CR21
  article-title: GSimp: a Gibbs sampler based left-censored missing value imputation approach for metabolomics studies
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005973
– volume: 2017
  start-page: 2437608
  year: 2017
  ident: CR34
  article-title: Metabolomic biomarker identification in presence of outliers and missing values
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2017/2437608
– volume: 8
  start-page: 1371
  year: 2008
  end-page: 1383
  ident: CR26
  article-title: Treatment of missing values for multivariate statistical analysis of gel-based proteomics data
  publication-title: Proteomics
  doi: 10.1002/pmic.200700975
– volume: 26
  start-page: 2607
  year: 2012
  end-page: 2619
  ident: CR10
  article-title: The dynamic range of the human metabolome revealed by challenges
  publication-title: FASEB J.
  doi: 10.1096/fj.11-198093
– volume: 7
  start-page: 107
  year: 2013
  ident: CR35
  article-title: A novel untargeted metabolomics correlation-based network analysis incorporating human metabolic reconstructions
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-7-107
– volume: 14
  start-page: 128
  year: 2018
  ident: 90654_CR22
  publication-title: Metabolomics
  doi: 10.1007/s11306-018-1420-2
– start-page: 105
  volume-title: Metabolomics—Methods and Protocols
  year: 2007
  ident: 90654_CR4
– volume: 5
  start-page: 114
  year: 2004
  ident: 90654_CR28
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-5-114
– volume: 2017
  start-page: 2437608
  year: 2017
  ident: 90654_CR34
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2017/2437608
– volume: 4
  start-page: 337
  year: 2008
  ident: 90654_CR8
  publication-title: Metabolomics
  doi: 10.1007/s11306-008-0123-5
– ident: 90654_CR33
– volume: 36
  start-page: 3050
  year: 2015
  ident: 90654_CR6
  publication-title: Electrophoresis
  doi: 10.1002/elps.201500352
– volume: 6
  start-page: 743
  year: 2011
  ident: 90654_CR15
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.319
– volume: 17
  start-page: 520
  year: 2001
  ident: 90654_CR13
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/17.6.520
– volume: 8
  start-page: 2
  year: 2007
  ident: 90654_CR31
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxl005
– volume: 8
  start-page: 81
  year: 2012
  ident: 90654_CR11
  publication-title: Metabolomics
  doi: 10.1007/s11306-012-0399-3
– volume: 14
  start-page: 43
  year: 2019
  ident: 90654_CR24
  publication-title: Curr. Bioinform.
  doi: 10.2174/1574893612666171121154655
– volume: 21
  start-page: 4272
  year: 2005
  ident: 90654_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti708
– volume: 8
  start-page: 663
  year: 2018
  ident: 90654_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-19120-0
– volume: 20
  start-page: 2438
  year: 2004
  ident: 90654_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth268
– volume: 4
  start-page: 433
  year: 2014
  ident: 90654_CR1
  publication-title: Metabolites
  doi: 10.3390/metabo4020433
– volume: 11
  start-page: 1957
  year: 2010
  ident: 90654_CR16
  publication-title: J. Mach. Learn. Res.
– ident: 90654_CR19
– start-page: 773
  volume-title: Innovations in Electronics and Communication Engineering
  year: 2020
  ident: 90654_CR12
  doi: 10.1007/978-981-15-3172-9_72
– volume: 7
  start-page: 25
  year: 2011
  ident: 90654_CR32
  publication-title: Metabolomics
  doi: 10.1007/s11306-010-0232-9
– volume: 1
  start-page: 140012
  year: 2014
  ident: 90654_CR9
  publication-title: Sci. Data
  doi: 10.1038/sdata.2014.12
– volume: 10
  start-page: 486
  year: 2020
  ident: 90654_CR25
  publication-title: Metabolites
  doi: 10.3390/metabo10120486
– volume: 44
  start-page: 277
  year: 2010
  ident: 90654_CR18
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-008-9196-5
– volume: 180
  start-page: 129
  year: 2014
  ident: 90654_CR30
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwu143
– volume: 7
  start-page: 107
  year: 2013
  ident: 90654_CR35
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-7-107
– volume: 26
  start-page: 2607
  year: 2012
  ident: 90654_CR10
  publication-title: FASEB J.
  doi: 10.1096/fj.11-198093
– volume: 11
  start-page: 571
  year: 2010
  ident: 90654_CR14
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-11-571
– volume: 8
  start-page: 161
  year: 2012
  ident: 90654_CR3
  publication-title: Metabolomics
  doi: 10.1007/s11306-011-0366-4
– volume: 14
  start-page: e1005973
  year: 2018
  ident: 90654_CR21
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005973
– volume: 8
  start-page: 1371
  year: 2008
  ident: 90654_CR26
  publication-title: Proteomics
  doi: 10.1002/pmic.200700975
– volume: 12
  start-page: 93
  year: 2016
  ident: 90654_CR5
  publication-title: Metabolomics
  doi: 10.1007/s11306-016-1030-9
– volume: 28
  start-page: 112
  year: 2012
  ident: 90654_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
– volume: 2
  start-page: e00067
  year: 2014
  ident: 90654_CR7
  publication-title: Pharmacol. Res. Perspect.
  doi: 10.1002/prp2.67
– start-page: 209
  volume-title: Statistical Analysis in Proteomics
  year: 2016
  ident: 90654_CR29
  doi: 10.1007/978-1-4939-3106-4_14
– volume: 20
  start-page: 673
  year: 2019
  ident: 90654_CR23
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-3250-2
SSID ssj0000529419
Score 2.4117873
Snippet Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a...
Abstract Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a...
SourceID doaj
pubmedcentral
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11108
SubjectTerms 631/114
639/705
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8UwEA4iCF7EFetGBG9abJu0TY4qiih6UvEWknSKwrNP7RPx3zuT9on1oBevXUgyC_MlmfmGsb2SSMtBetybKB3LGrLYAdSx9cIpiRFLKapGvrouzm_lxX1-_63VF-WEdfTAneAONQJ0Jb0vVOalltZJm3pEFaVD18jrQLaNMe_bZqpj9c60THVfJZMIddhipKJqspCRUOQyTgaRKBD2D1DmzxzJHxelIf6cLbKFHjjyo27CS2wGmmU217WS_Fhhd5fw2sCIv4ejTqj4iJry8PYFTQD4lDmcI0Tlj9THAcfgqGI6KeBE-A0tH9f8CSZoFCOqVG45JY-ustuz05uT87jvmRB7qfQkLpxLKqisTr2yzlYAeY0IzrtKetreubIADYWwPhXovtqByMrcoZcWMqnrXKyx2WbcwDrjFtJae0_91RUqDXDnAUS2U-pUaesgYulUfsb3hOLU12JkwsW2UKaTucFxTZC5SSK2__XPc0en8evXx6SWry-JCjs8QAMxvYGYvwwkYrtTpRqUK92H2AbGb63JciELRMSijFg50PZgxOGb5vEhkHArnCyC44gdTO3C9N7f_rKijf9Y0Sabz8iOE6om3GKzk9c32EZoNHE7wQs-ARpDCaM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLemTUi8oPElypeCxBtUtE2aJo8HYpoOwQsM7S1KUhcm3XpwvWniv8fOtSd1QpN4bROltZ3Yju2fAV43DFqOKpJvYmyuOqzygNjlPspgFGksY7ga-fMXfXqmluf1-QFUUy1MStpPkJbpmJ6yw94NpGi4GCwlFOha5eSmHzFUO8n20WKx_Lrc36xw7EqVdqyQKaT5x-SZFkpg_TML82Z-5I0gadI9J8dwbzQaxWL3mffhAPsHcGfXRvLPQ_j-CTc9rsR1uubEVqy4IY8YfhP7UUyo4YLMU3HBPRxoDUHs5VsCwWDfOIh1Jy5xSwKx4irlQXDi6CM4O_n47cNpPvZLyKMydpvrEIoWW2_LaHzwLWLdkfUWQ6siu3ah0WhRSx9LSVvXBpRVUwfaoVoVXVfLx3DYr3t8AsJj2dkYube6IYYheR3IQDuNLY31ATMoJ_q5OIKJc0-LlUtBbWncjuaO1nWJ5q7I4M1-zq8dlMato98zW_YjGQY7PVhvfrhRLJwl782oGLWporLKB-XLSCZnE-jcrDudwauJqY7oyrEQ3-P6anBVLZUma1g2GTQzbs9WnL_pL34mAG5DH0uGcQZvJ7lw484fbvmjp_83_BncrVhiC64ZfA6H280VviADaBtejhL_F2VWATw
  priority: 102
  providerName: Springer Nature
Title Kernel weighted least square approach for imputing missing values of metabolomics data
URI https://link.springer.com/article/10.1038/s41598-021-90654-0
https://www.proquest.com/docview/2534611537
https://pubmed.ncbi.nlm.nih.gov/PMC8159923
https://doaj.org/article/962584cc682c494ab4a1c5087b3765f6
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5qi9IX8YppdRnBN43mMpnLg8h2aSkrLaKu7NuQmZzUQszazRbtv_ecXAoppQ8-BXJhkjNncr4zM-f7GHujiLQchMfcRJtQlJCEDqAMc586LTBiaU3VyCen8ngh5stsucUGuaPegM2tqR3pSS3W1fu_F1efcMB_7ErG9YcGgxAVirWbDWQmQkzhdzAyKVI0OOnhfsf1nRgRm7525vZHd9mDVBDOicUoVLWM_iMYenMT5Y2V1DZAHT1iD3tkyaedKzxmW1A_Yfc7rcmrp-zHZ1jXUPE_7VwoFLwi1R7eXKCPAB-oxTliWH5OQg_YBkcfoKkETozg0PBVyX_BBr2molLmhtPu0mdscXT4fXYc9qIKoRfabELpXFRAkZvY69zlBUBWIsTzrhCe8j-nJBiQae5jtENkHKSJyhwOYymisszS52y7XtXwgvEc4tJ4TwLsGnsVMDUBYuNRJtYmdxCweLCf9T3jOAlfVLZd-U617cxvsV3bmt9GAXt7_czvjm_jzrsPqFuu7ySu7PbEan1m-6FnDaZ4WngvdeKFEbkTeewRlyqHP9eslAF7PXSqRbvSgklew-qysUmWComQOVUBU6PeHrU4vlKf_2xZujW-LKLngL0b_MIO3n3HF-39d0P7bDchP46oxvAl296sL-EVAqaNm7B7aqkmbGc6nX-b4_Hg8PTLVzw7k7NJOwkxacfJP1IrGHI
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrRBcUHmJ8DQSN4jIw3HsY7uiWujj1KLeLNuZ0EpLFjZbIf49M95kpVSoEtfElpOZsf2NPfMNwPuaSctRBvJNtElli0XqEdvUhdJrSTuW1pyNfHqm5hfy62V1uQPFmAsTg_YjpWVcpsfosE89bTScDBYDClQlU3LT9whrK7bkmZptz1X45krmZsiPyUr9j66TPShS9U_w5e3oyFtXpHHnOdqHhwNkFAebj3wEO9g9hnubIpJ_nsC3Y1x1uBC_4yEnNmLB5XhE_4uUj2LkDBcETsU1V3CgMQQpl88IBFN9Yy-WrfiBazKHBeco94LDRp_CxdHn89k8HaolpEFqs06V91mDjTN50M67BrFqCbsF38jAjp2vFRpUpQt5SRPXeCyLuvI0P5XM2rYqn8Fut-zwOQiHeWtC4MrqmtSF5HMg0-zUJtfGeUwgH-Vnw0AlzhUtFjZeaZfabmRuaVwbZW6zBD5s-_zcEGnc2fqQ1bJtySTY8cFy9d0ORmEN-W5ahqB0EaSRzkuXBwKctadVs2pVAu9GpVqSK9-EuA6XN70tqlIqwsJlnUA90fZkxOmb7voq0m9r-liCxQl8HO3CDvO-v-OPXvxf87dwf35-emJPvpwdv4QHBVtvxtmDr2B3vbrB1wSF1v5NtP2_W3UC0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrUBcEE-xPI3EDQJ5OI59XB6rsoUKCYp6s2xnApWWbNlshfj3zHiTlVKhSlwTJ05mxp7P9sw3AM8rJi1HGWhtok0iG8wTj9gkLhReS_JYWnM28qcjdXAsFyflyR6oIRcmBu1HSss4TQ_RYa87cjScDBYDClQpk_TVWd1cgX3C25mcwP5stviy2O2u8PmVzEyfJZMW-h8vGHmiSNg_QpkXYyQvHJRG_zO_CTd64Chm20-9BXvY3oar21KSf-7At0Nct7gUv-NWJ9ZiyUV5RPeLTADFwBwuCKKKU67jQH0IUjHvFAgm_MZOrBrxEzdkFEvOVO4EB4_eheP5-69vD5K-ZkISpDabRHmf1lg7kwXtvKsRy4YQXPC1DLy885VCg6pwISto-BqPRV6VnkapkmnTlMU9mLSrFu-DcJg1JgSur65JaUgrD2Syncpk2jiPU8gG-dnQE4pzXYuljQfbhbZbmVvq10aZ23QKL3bPnG3pNC5t_YbVsmvJVNjxwmr93famYQ2t4LQMQek8SCOdly4LBDsrT3Nn2agpPBuUakmufB7iWlyddzYvC6kIERfVFKqRtkc9ju-0pz8iCbemjyVwPIWXg13YfvR3l_zRg_9r_hSufX43tx8_HB0-hOs5G2_KKYSPYLJZn-NjwkMb_6Q3_r9RaAU0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kernel+weighted+least+square+approach+for+imputing+missing+values+of+metabolomics+data&rft.jtitle=Scientific+reports&rft.au=Kumar%2C+Nishith&rft.au=Hoque%2C+Md.+Aminul&rft.au=Sugimoto%2C+Masahiro&rft.date=2021-05-27&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft_id=info:doi/10.1038%2Fs41598-021-90654-0&rft_id=info%3Apmid%2F34045614&rft.externalDocID=PMC8159923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon