Detained introns are a novel, widespread class of post-transcriptionally spliced introns
Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserve...
Saved in:
Published in | Genes & development Vol. 29; no. 1; pp. 63 - 80 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-9369 1549-5477 1549-5477 |
DOI | 10.1101/gad.247361.114 |
Cover
Loading…
Abstract | Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. |
---|---|
AbstractList | Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as "detained" introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts. Boutz et al. identified thousands of these “detained” introns (DIs) in human and mouse cell lines as well as the adult mouse liver. Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs, altering transcript pools of >300 genes. Srsf4 regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as "detained" introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as "detained" introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. |
Author | Bhutkar, Arjun Sharp, Phillip A. Boutz, Paul L. |
Author_xml | – sequence: 1 givenname: Paul L. surname: Boutz fullname: Boutz, Paul L. – sequence: 2 givenname: Arjun surname: Bhutkar fullname: Bhutkar, Arjun – sequence: 3 givenname: Phillip A. surname: Sharp fullname: Sharp, Phillip A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25561496$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1rFTEUxYNU7Gt161KydOE8k8nHZDaC1E8odFPBXbgvuVMjecmYzKv0vzeP1_pRKLgKl5zzu4d7TshRygkJec7ZmnPGX1-BX_dyEJq3WT4iK67k2Ck5DEdkxczIulHo8Zic1PqdMaaZ1k_Ica-U5nLUK_L1HS4QEnoa0lJyqhQKUqApX2N8RX8Gj3UuCJ66CLXSPNE516VbCqTqSpiXkBPEeEPrHIP7w3lKHk8QKz67fU_Jlw_vL88-decXHz-fvT3vnDTj0mmucKNELzYT98xoRDGBnlpMgwKUE2C88yP2kkmhcUCnQTijDR-83ztPyZsDd95ttugdtvUQ7VzCFsqNzRDsvz8pfLNX-drK3nCl94CXt4CSf-ywLnYbqsMYIWHeVcv1oIUyPfsfqRRcaj2yJn3xd6zfee4u3wTyIHAl11pwsi4ssL9mSxmi5czuC7atYHsouM2y2db3bHfkBwy_APN6qcs |
CitedBy_id | crossref_primary_10_1158_1541_7786_MCR_20_0339 crossref_primary_10_1016_j_molcel_2025_02_012 crossref_primary_10_1042_BCJ20230410 crossref_primary_10_1038_s41467_021_23505_1 crossref_primary_10_1038_s41586_019_1186_3 crossref_primary_10_1101_gr_185371_114 crossref_primary_10_1007_s00439_017_1791_x crossref_primary_10_1101_gr_278659_123 crossref_primary_10_1186_s13059_015_0704_3 crossref_primary_10_3389_fbioe_2023_1244377 crossref_primary_10_1038_nsmb_3057 crossref_primary_10_1002_wrna_1840 crossref_primary_10_3390_ijms21239247 crossref_primary_10_15252_embj_2021110192 crossref_primary_10_3390_ijms23147568 crossref_primary_10_3390_biomedicines9091268 crossref_primary_10_1007_s00439_017_1809_4 crossref_primary_10_1080_15476286_2023_2293339 crossref_primary_10_1093_nar_gkaa410 crossref_primary_10_1038_ni_3830 crossref_primary_10_1371_journal_pone_0265794 crossref_primary_10_1038_s41380_020_0775_8 crossref_primary_10_1038_srep18741 crossref_primary_10_1016_j_tcb_2024_09_004 crossref_primary_10_1016_j_molcel_2022_12_014 crossref_primary_10_1093_nar_gkz1180 crossref_primary_10_1128_JVI_00342_21 crossref_primary_10_3390_ph17121660 crossref_primary_10_3389_fpls_2019_00708 crossref_primary_10_1038_s41596_021_00581_7 crossref_primary_10_1002_bies_201500117 crossref_primary_10_1146_annurev_cellbio_100617_062826 crossref_primary_10_1016_j_gene_2021_145752 crossref_primary_10_1016_j_gde_2020_11_002 crossref_primary_10_3390_ijms21062026 crossref_primary_10_1111_nph_18652 crossref_primary_10_1186_s12864_020_6541_0 crossref_primary_10_3390_cancers13246185 crossref_primary_10_3390_ijms231710157 crossref_primary_10_1146_annurev_genom_083115_022545 crossref_primary_10_1093_nar_gkz1068 crossref_primary_10_1016_j_devcel_2017_03_003 crossref_primary_10_1038_s41580_024_00739_7 crossref_primary_10_1002_wrna_1503 crossref_primary_10_1158_2159_8290_CD_19_0399 crossref_primary_10_1186_s13059_019_1880_3 crossref_primary_10_1080_10409238_2016_1230086 crossref_primary_10_1093_nar_gky225 crossref_primary_10_1093_nar_gkv194 crossref_primary_10_1016_j_pneurobio_2023_102500 crossref_primary_10_1016_j_semcdb_2015_10_018 crossref_primary_10_1038_cddis_2015_354 crossref_primary_10_1016_j_braindev_2018_03_001 crossref_primary_10_1042_EBC20200005 crossref_primary_10_1016_j_tplants_2015_08_011 crossref_primary_10_1158_1541_7786_MCR_20_0926 crossref_primary_10_1161_CIRCRESAHA_120_318577 crossref_primary_10_1016_j_exphem_2023_04_001 crossref_primary_10_1038_s41467_022_28449_8 crossref_primary_10_1080_15384101_2021_1930929 crossref_primary_10_1093_nar_gkw1043 crossref_primary_10_1002_wrna_1755 crossref_primary_10_1083_jcb_201801184 crossref_primary_10_3390_cells12202449 crossref_primary_10_1016_j_molcel_2020_12_002 crossref_primary_10_3390_ijms221910213 crossref_primary_10_1038_s41598_023_32256_6 crossref_primary_10_1124_molpharm_120_000173 crossref_primary_10_1093_glycob_cwae081 crossref_primary_10_1016_j_semcdb_2017_09_018 crossref_primary_10_7554_eLife_16797 crossref_primary_10_1007_s00439_021_02409_6 crossref_primary_10_1038_s42003_024_05779_5 crossref_primary_10_1002_wrna_1631 crossref_primary_10_1038_s41467_024_47092_z crossref_primary_10_1186_s13059_025_03507_8 crossref_primary_10_1093_plcell_koad009 crossref_primary_10_1016_j_molcel_2016_11_029 crossref_primary_10_1186_s13059_018_1446_9 crossref_primary_10_1080_13102818_2017_1370984 crossref_primary_10_1093_nar_gkad351 crossref_primary_10_3390_cancers13205136 crossref_primary_10_1016_j_ijrobp_2024_02_024 crossref_primary_10_1038_s41594_023_01035_2 crossref_primary_10_1016_j_molcel_2023_05_027 crossref_primary_10_1038_s41467_020_15815_7 crossref_primary_10_1021_jacs_8b07328 crossref_primary_10_2139_ssrn_4058691 crossref_primary_10_1261_rna_079591_123 crossref_primary_10_1101_gr_218438_116 crossref_primary_10_1093_plcell_koac091 crossref_primary_10_1038_s41375_020_1002_y crossref_primary_10_1016_j_molcel_2023_01_009 crossref_primary_10_1093_nar_gkad161 crossref_primary_10_1038_s41467_024_46495_2 crossref_primary_10_3389_fgene_2022_821587 crossref_primary_10_1016_j_exphem_2024_104173 crossref_primary_10_1261_rna_066951_118 crossref_primary_10_3390_ijms22105110 crossref_primary_10_1002_bies_201900044 crossref_primary_10_1083_jcb_202002129 crossref_primary_10_1111_febs_16057 crossref_primary_10_1126_sciadv_adp7727 crossref_primary_10_1186_s13059_018_1499_9 crossref_primary_10_1261_rna_078662_120 crossref_primary_10_1016_j_molcel_2019_04_034 crossref_primary_10_1016_j_molcel_2019_09_017 crossref_primary_10_1016_j_gde_2022_101940 crossref_primary_10_1261_rna_064899_117 crossref_primary_10_1016_j_gene_2018_05_095 crossref_primary_10_1186_s12864_022_08777_1 crossref_primary_10_1016_j_stem_2018_03_002 crossref_primary_10_1038_s41477_020_0688_1 crossref_primary_10_1016_j_molcel_2019_03_008 crossref_primary_10_7554_eLife_47809 crossref_primary_10_7554_eLife_64930 crossref_primary_10_1016_j_isci_2022_105543 crossref_primary_10_1093_nargab_lqad051 crossref_primary_10_1161_JAHA_121_020965 crossref_primary_10_7554_eLife_72867 crossref_primary_10_1186_s13073_017_0441_1 crossref_primary_10_1128_MCB_00123_15 crossref_primary_10_1002_advs_202203480 crossref_primary_10_1101_gr_273904_120 crossref_primary_10_1002_bies_202400248 crossref_primary_10_1080_15476286_2021_1894025 crossref_primary_10_1016_j_molcel_2021_07_019 crossref_primary_10_1021_acs_chemrev_7b00487 crossref_primary_10_1016_j_cell_2018_04_005 crossref_primary_10_1096_fj_202302375R crossref_primary_10_1093_nar_gkv1168 crossref_primary_10_1038_s41467_021_24774_6 crossref_primary_10_1261_rna_068288_118 crossref_primary_10_1038_s41429_021_00450_1 crossref_primary_10_1038_s41467_016_0008_7 crossref_primary_10_1261_rna_079294_122 crossref_primary_10_3389_fonc_2023_1264785 crossref_primary_10_7554_eLife_29494 crossref_primary_10_7554_eLife_67077 crossref_primary_10_1093_nar_gkab647 crossref_primary_10_1126_sciadv_1700731 crossref_primary_10_1016_j_jmb_2022_167451 crossref_primary_10_1016_j_semcdb_2018_05_013 crossref_primary_10_1007_s00497_021_00411_6 crossref_primary_10_1093_nar_gkaa435 crossref_primary_10_1186_s13059_022_02789_6 crossref_primary_10_15252_embj_2023114331 crossref_primary_10_1016_j_ccell_2020_12_010 crossref_primary_10_1371_journal_pone_0168028 crossref_primary_10_1101_gr_220962_117 crossref_primary_10_1186_s12935_024_03280_x crossref_primary_10_1073_pnas_1900107116 crossref_primary_10_1016_j_biopha_2021_111826 crossref_primary_10_1186_s12864_016_2999_1 crossref_primary_10_1016_j_chembiol_2021_07_015 crossref_primary_10_1038_s41576_024_00712_2 crossref_primary_10_1016_j_molcel_2021_12_010 crossref_primary_10_1002_bies_202300145 crossref_primary_10_1038_s41467_024_55469_3 crossref_primary_10_7554_eLife_10288 crossref_primary_10_1016_j_celrep_2018_11_046 crossref_primary_10_15252_embr_202154350 crossref_primary_10_1016_j_exphem_2024_104655 crossref_primary_10_1016_j_cellsig_2020_109883 crossref_primary_10_1093_hmg_ddac012 crossref_primary_10_1016_j_ajhg_2020_07_004 crossref_primary_10_1016_j_molcel_2020_10_022 crossref_primary_10_1016_j_tig_2016_03_002 crossref_primary_10_1101_gr_219899_116 crossref_primary_10_15252_embj_2019102729 crossref_primary_10_1038_s41467_018_04779_4 crossref_primary_10_1002_wrna_1574 crossref_primary_10_1182_blood_2016_01_692764 crossref_primary_10_2174_1574892815666200908122402 crossref_primary_10_1093_nar_gkw591 crossref_primary_10_1093_nar_gkaa263 crossref_primary_10_1038_s41576_022_00556_8 crossref_primary_10_1038_s41594_019_0313_z crossref_primary_10_1016_j_semcdb_2017_11_001 crossref_primary_10_7554_eLife_37419 crossref_primary_10_1007_s00018_017_2503_3 crossref_primary_10_1038_nrg_2016_46 crossref_primary_10_1016_j_semcdb_2017_07_030 crossref_primary_10_1038_s41388_024_03264_1 crossref_primary_10_1128_MCB_00070_15 crossref_primary_10_1038_s41594_019_0226_x crossref_primary_10_1016_j_ceb_2024_102438 crossref_primary_10_1038_s41594_020_0385_9 crossref_primary_10_12688_f1000research_15442_1 crossref_primary_10_1038_nsmb_3317 crossref_primary_10_1093_nar_gkw560 crossref_primary_10_3390_cancers14133148 crossref_primary_10_1080_19491034_2024_2350180 crossref_primary_10_1073_pnas_1716617115 crossref_primary_10_1074_mcp_TIR117_000056 crossref_primary_10_1093_plcell_koac309 crossref_primary_10_3389_fgene_2018_00440 crossref_primary_10_1083_jcb_202111151 crossref_primary_10_1016_j_ccell_2017_09_005 crossref_primary_10_1093_nar_gkz1237 crossref_primary_10_1093_nar_gkaa358 crossref_primary_10_1038_s41467_021_20929_7 crossref_primary_10_1016_j_devcel_2020_05_006 crossref_primary_10_1038_s41598_023_31890_4 crossref_primary_10_3389_fpls_2020_00091 crossref_primary_10_1186_s12864_020_07004_z crossref_primary_10_1093_nar_gkx661 crossref_primary_10_1093_pcp_pcz090 crossref_primary_10_7554_eLife_19545 crossref_primary_10_1002_wrna_1476 crossref_primary_10_1002_wrna_1478 crossref_primary_10_3390_cells11244062 crossref_primary_10_7554_eLife_76927 crossref_primary_10_1016_j_jbc_2022_102224 crossref_primary_10_1016_j_molcel_2024_06_008 crossref_primary_10_1002_wrna_1470 crossref_primary_10_1016_j_tig_2017_04_004 crossref_primary_10_1002_advs_202309588 crossref_primary_10_1093_brain_awab078 crossref_primary_10_1016_j_celrep_2017_07_017 crossref_primary_10_1101_gr_250217_119 crossref_primary_10_1093_nar_gkad319 crossref_primary_10_7554_eLife_10921 crossref_primary_10_1016_j_cels_2018_09_002 crossref_primary_10_1002_1873_3468_12639 crossref_primary_10_1128_msystems_01081_20 crossref_primary_10_3390_plants10081647 crossref_primary_10_1186_s13059_017_1344_6 crossref_primary_10_3390_biology11060826 crossref_primary_10_1186_s40478_016_0289_4 crossref_primary_10_1016_j_conb_2017_05_012 crossref_primary_10_1073_pnas_1912459116 crossref_primary_10_1186_s12864_021_07478_5 crossref_primary_10_1016_j_gde_2016_04_005 crossref_primary_10_1371_journal_pgen_1005610 crossref_primary_10_1371_journal_pgen_1006824 crossref_primary_10_1016_j_drup_2020_100728 crossref_primary_10_1172_JCI82534 crossref_primary_10_1242_dev_191619 crossref_primary_10_15252_embj_2021110496 crossref_primary_10_1093_nar_gkw1140 crossref_primary_10_1002_eji_202250226 crossref_primary_10_1002_wrna_1538 crossref_primary_10_1080_15476286_2016_1227905 crossref_primary_10_1091_mbc_E16_07_0515 crossref_primary_10_1101_cshperspect_a026237 crossref_primary_10_1101_gr_232025_117 crossref_primary_10_2139_ssrn_3385139 crossref_primary_10_1038_s41598_020_72482_w crossref_primary_10_1038_s41467_021_25892_x crossref_primary_10_1101_cshperspect_a032227 crossref_primary_10_1261_rna_075028_120 crossref_primary_10_1021_acs_chemrev_4c00417 crossref_primary_10_1038_s41374_021_00698_z crossref_primary_10_1093_nar_gkab115 crossref_primary_10_1016_j_tibs_2018_09_016 crossref_primary_10_3390_genes8020082 crossref_primary_10_1093_nar_gkac1225 crossref_primary_10_1002_anie_201810312 crossref_primary_10_1080_21541264_2017_1373891 crossref_primary_10_1016_j_molcel_2023_10_034 crossref_primary_10_5387_fms_2023_17 crossref_primary_10_1126_sciadv_abk0275 crossref_primary_10_1016_j_neuron_2016_11_032 crossref_primary_10_1016_j_drudis_2022_103431 crossref_primary_10_1038_s41467_021_23221_w crossref_primary_10_1016_j_cell_2017_05_006 crossref_primary_10_1155_2018_3819719 crossref_primary_10_1038_s44318_025_00374_8 crossref_primary_10_1016_j_cell_2017_05_003 crossref_primary_10_1016_j_tins_2020_07_007 crossref_primary_10_1038_s41580_024_00706_2 crossref_primary_10_1242_dev_152199 crossref_primary_10_1186_s13059_017_1184_4 crossref_primary_10_1186_s13059_017_1339_3 crossref_primary_10_1002_ange_201810312 crossref_primary_10_3390_genes11070820 crossref_primary_10_1093_immadv_ltac009 crossref_primary_10_2139_ssrn_3204564 crossref_primary_10_1016_j_csbj_2020_02_010 crossref_primary_10_1038_s41467_020_20848_z crossref_primary_10_1002_1873_3468_14723 crossref_primary_10_1016_j_celrep_2015_11_036 crossref_primary_10_1159_000522088 crossref_primary_10_1016_j_ccell_2017_08_018 crossref_primary_10_1261_rna_079465_122 |
Cites_doi | 10.1038/onc.2012.38 10.1016/j.cell.2011.10.024 10.1038/nature05676 10.1016/j.jmb.2013.05.013 10.1016/j.molcel.2009.09.018 10.1038/ncomms1103 10.1038/nmeth.1528 10.1038/nature11247 10.1186/gb-2012-13-3-r17 10.1073/pnas.0704922104 10.1186/gb-2009-10-3-r25 10.1146/annurev-genet-111212-133424 10.1038/nmeth.1226 10.1016/j.cmet.2009.11.006 10.1111/j.1365-2443.2011.01548.x 10.1016/j.cell.2012.05.043 10.1038/nbt.1621 10.1073/pnas.1017700108 10.1038/363283a0 10.1101/gad.1558107 10.1002/j.1460-2075.1996.tb00357.x 10.1210/en.2008-0818 10.1093/nar/20.20.5263 10.1126/science.8091213 10.1016/S1097-2765(03)00502-1 10.1073/pnas.94.4.1148 10.1091/mbc.12.2.393 10.1261/rna.1714509 10.1038/nature02288 10.1261/rna.034090.112 10.1006/mcne.2001.1000 10.1017/S1355838200000960 10.1101/gr.157354.113 10.1016/j.molcel.2012.01.020 10.1101/gad.219899.113 10.1101/gr.177790.114 10.1093/emboj/17.21.6359 10.1186/gb-2010-11-10-r106 10.1084/jem.20061302 10.1073/pnas.1309990110 10.1523/JNEUROSCI.3253-07.2008 10.1111/j.1365-2443.2008.01163.x 10.1002/j.1460-2075.1988.tb03227.x 10.1016/j.molcel.2014.03.021 10.1186/1742-4690-8-47 10.1073/pnas.0403533101 10.1016/S0092-8674(02)01038-3 10.1016/j.molcel.2007.08.028 10.1101/gr.134445.111 10.1101/gad.8.22.2704 10.1101/gad.11.3.334 10.1016/0092-8674(86)90382-X 10.1101/gad.235770.113 10.1016/0092-8674(94)90182-1 10.1002/wrna.86 10.1089/1066527041410418 10.1016/j.cell.2013.06.052 10.1093/bioinformatics/btp120 10.1016/j.molcel.2010.11.004 10.1038/nrc3430 10.1158/0008-5472.SABCS-2082 10.1083/jcb.201107093 10.1101/gr.131847.111 10.1038/nsmb.2143 10.1006/excr.1998.4083 10.1038/369678a0 10.1002/j.1460-2075.1994.tb06906.x 10.1016/j.molcel.2006.07.022 10.1083/jcb.144.4.617 10.1007/s00412-013-0407-z 10.1016/j.cell.2005.06.015 10.1261/rna.039081.113 10.1016/0092-8674(89)90127-X 10.1101/gad.178962.111 10.1101/gad.1525507 10.1038/nbt.1861 10.1016/j.chembiol.2010.11.009 10.1038/30277 10.1128/MCB.19.10.6991 10.1093/nar/gkp542 10.1038/ncomms1998 10.1016/0092-8674(89)90602-8 10.1101/gad.188037.112 10.1016/j.celrep.2014.04.044 |
ContentType | Journal Article |
Copyright | 2015 Boutz et al.; Published by Cold Spring Harbor Laboratory Press. 2015 |
Copyright_xml | – notice: 2015 Boutz et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1101/gad.247361.114 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Boutz et al |
EISSN | 1549-5477 |
EndPage | 80 |
ExternalDocumentID | PMC4281565 25561496 10_1101_gad_247361_114 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM034277 – fundername: NCI NIH HHS grantid: P30 CA014051 – fundername: NIGMS NIH HHS grantid: R01 GM34277-23 – fundername: NCI NIH HHS grantid: P30-CA14051 – fundername: NCI NIH HHS grantid: P01 CA042063 |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XJT XSW YBU YHG YKV YSK CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c489t-615eb5323bf1d086ee3fa6f0668e3a5c3a8dcd9e240436e7ec6a3c86817ddeb53 |
ISSN | 0890-9369 1549-5477 |
IngestDate | Thu Aug 21 18:17:51 EDT 2025 Fri Jul 11 02:31:07 EDT 2025 Thu Jul 10 22:01:47 EDT 2025 Thu Apr 03 06:55:12 EDT 2025 Tue Jul 01 01:12:05 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | post-transcriptional splicing detained introns Clk kinase |
Language | English |
License | 2015 Boutz et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c489t-615eb5323bf1d086ee3fa6f0668e3a5c3a8dcd9e240436e7ec6a3c86817ddeb53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4281565 |
PMID | 25561496 |
PQID | 1643146690 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281565 proquest_miscellaneous_1676358205 proquest_miscellaneous_1643146690 pubmed_primary_25561496 crossref_citationtrail_10_1101_gad_247361_114 crossref_primary_10_1101_gad_247361_114 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 2015-Jan-01 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2015 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | Prasad (2021111619350583000_29.1.63.53) 1999; 19 2021111619350583000_29.1.63.20 2021111619350583000_29.1.63.64 2021111619350583000_29.1.63.21 2021111619350583000_29.1.63.65 2021111619350583000_29.1.63.62 2021111619350583000_29.1.63.63 2021111619350583000_29.1.63.60 2021111619350583000_29.1.63.61 2021111619350583000_29.1.63.28 Bond (2021111619350583000_29.1.63.9) 1988; 7 2021111619350583000_29.1.63.29 2021111619350583000_29.1.63.26 2021111619350583000_29.1.63.27 2021111619350583000_29.1.63.24 2021111619350583000_29.1.63.68 2021111619350583000_29.1.63.25 2021111619350583000_29.1.63.69 2021111619350583000_29.1.63.22 2021111619350583000_29.1.63.66 2021111619350583000_29.1.63.23 2021111619350583000_29.1.63.67 2021111619350583000_29.1.63.19 2021111619350583000_29.1.63.10 2021111619350583000_29.1.63.54 2021111619350583000_29.1.63.51 2021111619350583000_29.1.63.52 2021111619350583000_29.1.63.50 2021111619350583000_29.1.63.17 2021111619350583000_29.1.63.18 2021111619350583000_29.1.63.15 2021111619350583000_29.1.63.59 Cao (2021111619350583000_29.1.63.12) 1997; 3 2021111619350583000_29.1.63.13 2021111619350583000_29.1.63.57 2021111619350583000_29.1.63.14 2021111619350583000_29.1.63.58 2021111619350583000_29.1.63.11 2021111619350583000_29.1.63.55 2021111619350583000_29.1.63.2 2021111619350583000_29.1.63.3 2021111619350583000_29.1.63.1 2021111619350583000_29.1.63.6 2021111619350583000_29.1.63.7 Mermoud (2021111619350583000_29.1.63.44) 1994; 13 2021111619350583000_29.1.63.4 2021111619350583000_29.1.63.5 2021111619350583000_29.1.63.42 2021111619350583000_29.1.63.86 2021111619350583000_29.1.63.43 2021111619350583000_29.1.63.40 2021111619350583000_29.1.63.84 2021111619350583000_29.1.63.41 2021111619350583000_29.1.63.85 2021111619350583000_29.1.63.82 2021111619350583000_29.1.63.83 2021111619350583000_29.1.63.80 2021111619350583000_29.1.63.81 2021111619350583000_29.1.63.8 2021111619350583000_29.1.63.48 2021111619350583000_29.1.63.49 2021111619350583000_29.1.63.46 2021111619350583000_29.1.63.47 2021111619350583000_29.1.63.45 Roscigno (2021111619350583000_29.1.63.56) 1995; 1 2021111619350583000_29.1.63.31 2021111619350583000_29.1.63.75 2021111619350583000_29.1.63.32 2021111619350583000_29.1.63.76 2021111619350583000_29.1.63.73 2021111619350583000_29.1.63.30 2021111619350583000_29.1.63.74 2021111619350583000_29.1.63.71 2021111619350583000_29.1.63.72 Colwill (2021111619350583000_29.1.63.16) 1996; 15 2021111619350583000_29.1.63.70 2021111619350583000_29.1.63.39 2021111619350583000_29.1.63.37 2021111619350583000_29.1.63.38 2021111619350583000_29.1.63.35 2021111619350583000_29.1.63.79 2021111619350583000_29.1.63.36 2021111619350583000_29.1.63.33 2021111619350583000_29.1.63.77 2021111619350583000_29.1.63.34 2021111619350583000_29.1.63.78 21536904 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8233-8 15210956 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9666-70 20979621 - Genome Biol. 2010;11(10):R106 2421918 - Cell. 1986 Apr 25;45(2):185-93 11461155 - Mol Cell Neurosci. 2001 Jul;18(1):80-90 8287477 - Cell. 1994 Jan 14;76(1):183-92 21929696 - Genes Cells. 2011 Oct;16(10):1035-49 17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52 19854129 - Mol Cell. 2009 Oct 23;36(2):178-91 23303139 - Nat Rev Cancer. 2013 Feb;13(2):83-96 22436691 - Genome Biol. 2012;13(3):R17 9637771 - Exp Cell Res. 1998 Jun 15;241(2):300-8 21823230 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):700-17 19116344 - Endocrinology. 2009 May;150(5):2087-97 24857664 - Cell Rep. 2014 Jun 12;7(5):1362-70 17699631 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13684-9 17936706 - Mol Cell. 2007 Oct 12;28(1):79-90 2655924 - Cell. 1989 May 19;57(4):573-83 21949414 - J Cell Biol. 2011 Oct 3;195(1):27-40 9030686 - Genes Dev. 1997 Feb 1;11(3):334-44 21516085 - Nat Biotechnol. 2011 May;29(5):436-42 22156210 - Genes Dev. 2011 Dec 1;25(23):2502-12 19244129 - Cancer Res. 2009 Mar 1;69(5):2082-90 22539649 - Genome Res. 2012 Oct;22(10):2031-42 21276940 - Chem Biol. 2011 Jan 28;18(1):67-76 8208298 - Nature. 1994 Jun 23;369(6482):678-82 19656867 - RNA. 2009 Oct;15(10):1896-908 14765198 - Nature. 2004 Feb 5;427(6974):553-8 14731397 - Mol Cell. 2004 Jan 16;13(1):91-100 21682887 - Retrovirology. 2011;8:47 22056773 - Nat Struct Mol Biol. 2011 Dec;18(12):1435-40 21095587 - Mol Cell. 2010 Nov 24;40(4):571-81 12419250 - Cell. 2002 Nov 1;111(3):407-17 7585254 - RNA. 1995 Sep;1(7):692-706 18516045 - Nat Methods. 2008 Jul;5(7):621-8 22871813 - Nat Commun. 2012;3:994 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 7988565 - EMBO J. 1994 Dec 1;13(23):5679-88 24637117 - Genes Dev. 2014 Mar 15;28(6):637-51 25258385 - Genome Res. 2014 Nov;24(11):1774-86 2974799 - EMBO J. 1988 Nov;7(11):3509-18 9799243 - EMBO J. 1998 Nov 2;17(21):6359-67 21057496 - Nat Methods. 2010 Dec;7(12):1009-15 23911323 - Cell. 2013 Aug 1;154(3):583-95 9603524 - Nature. 1998 May 14;393(6681):185-7 10999598 - RNA. 2000 Sep;6(9):1197-211 22955974 - Genome Res. 2012 Sep;22(9):1616-25 8091213 - Science. 1994 Sep 23;265(5180):1866-9 9404896 - RNA. 1997 Dec;3(12):1456-67 22118462 - Cell. 2011 Nov 23;147(5):1054-65 2686839 - Cell. 1989 Dec 1;59(5):789-95 23525660 - Chromosoma. 2013 Jun;122(3):191-207 22349816 - Oncogene. 2013 Jan 3;32(1):1-14 24013503 - Genes Dev. 2013 Sep 1;27(17):1903-16 7958927 - Genes Dev. 1994 Nov 15;8(22):2704-17 23812748 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11934-9 18256266 - J Neurosci. 2008 Feb 6;28(6):1452-9 22817891 - Cell. 2012 Jul 20;150(2):279-90 17369403 - Genes Dev. 2007 Mar 15;21(6):708-18 16973434 - Mol Cell. 2006 Sep 15;23(6):819-29 24274751 - Annu Rev Genet. 2013;47:139-65 10490636 - Mol Cell Biol. 1999 Oct;19(10):6991-7000 23766421 - Genome Res. 2013 Oct;23(10):1636-50 9037021 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1148-53 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 20074525 - Cell Metab. 2010 Jan;11(1):23-34 1331983 - Nucleic Acids Res. 1992 Oct 25;20(20):5263-9 22387025 - Mol Cell. 2012 Apr 13;46(1):30-42 15285897 - J Comput Biol. 2004;11(2-3):377-94 22661231 - Genes Dev. 2012 Jun 1;26(11):1209-23 19261174 - Genome Biol. 2009;10(3):R25 20981025 - Nat Commun. 2010;1:97 8387646 - Nature. 1993 May 20;363(6426):283-6 24746700 - Mol Cell. 2014 May 8;54(3):445-59 23616639 - RNA. 2013 Jun;19(6):811-27 22955616 - Nature. 2012 Sep 6;489(7414):57-74 10037785 - J Cell Biol. 1999 Feb 22;144(4):617-29 17060476 - J Exp Med. 2006 Oct 30;203(11):2433-40 18298798 - Genes Cells. 2008 Mar;13(3):233-44 23707382 - J Mol Biol. 2013 Aug 23;425(16):2894-909 8617202 - EMBO J. 1996 Jan 15;15(2):265-75 16096058 - Cell. 2005 Aug 12;122(3):379-91 19561200 - Nucleic Acids Res. 2009 Sep;37(17):e115 11179423 - Mol Biol Cell. 2001 Feb;12(2):393-406 17361132 - Nature. 2007 Apr 19;446(7138):926-9 23097425 - RNA. 2012 Dec;18(12):2174-86 |
References_xml | – ident: 2021111619350583000_29.1.63.1 doi: 10.1038/onc.2012.38 – ident: 2021111619350583000_29.1.63.73 doi: 10.1016/j.cell.2011.10.024 – ident: 2021111619350583000_29.1.63.39 doi: 10.1038/nature05676 – ident: 2021111619350583000_29.1.63.5 doi: 10.1016/j.jmb.2013.05.013 – ident: 2021111619350583000_29.1.63.51 doi: 10.1016/j.molcel.2009.09.018 – ident: 2021111619350583000_29.1.63.19 doi: 10.1038/ncomms1103 – ident: 2021111619350583000_29.1.63.35 doi: 10.1038/nmeth.1528 – ident: 2021111619350583000_29.1.63.21 doi: 10.1038/nature11247 – volume: 1 start-page: 692 year: 1995 ident: 2021111619350583000_29.1.63.56 article-title: SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome publication-title: RNA – ident: 2021111619350583000_29.1.63.4 doi: 10.1186/gb-2012-13-3-r17 – ident: 2021111619350583000_29.1.63.67 doi: 10.1073/pnas.0704922104 – ident: 2021111619350583000_29.1.63.38 doi: 10.1186/gb-2009-10-3-r25 – ident: 2021111619350583000_29.1.63.52 doi: 10.1146/annurev-genet-111212-133424 – ident: 2021111619350583000_29.1.63.45 doi: 10.1038/nmeth.1226 – ident: 2021111619350583000_29.1.63.55 doi: 10.1016/j.cmet.2009.11.006 – ident: 2021111619350583000_29.1.63.66 doi: 10.1111/j.1365-2443.2011.01548.x – ident: 2021111619350583000_29.1.63.8 doi: 10.1016/j.cell.2012.05.043 – ident: 2021111619350583000_29.1.63.72 doi: 10.1038/nbt.1621 – ident: 2021111619350583000_29.1.63.15 doi: 10.1073/pnas.1017700108 – ident: 2021111619350583000_29.1.63.69 doi: 10.1038/363283a0 – ident: 2021111619350583000_29.1.63.10 doi: 10.1101/gad.1558107 – volume: 15 start-page: 265 year: 1996 ident: 2021111619350583000_29.1.63.16 article-title: The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution publication-title: EMBO J doi: 10.1002/j.1460-2075.1996.tb00357.x – ident: 2021111619350583000_29.1.63.33 doi: 10.1210/en.2008-0818 – ident: 2021111619350583000_29.1.63.43 doi: 10.1093/nar/20.20.5263 – ident: 2021111619350583000_29.1.63.17 doi: 10.1126/science.8091213 – ident: 2021111619350583000_29.1.63.76 doi: 10.1016/S1097-2765(03)00502-1 – ident: 2021111619350583000_29.1.63.65 doi: 10.1073/pnas.94.4.1148 – ident: 2021111619350583000_29.1.63.42 doi: 10.1091/mbc.12.2.393 – ident: 2021111619350583000_29.1.63.49 doi: 10.1261/rna.1714509 – ident: 2021111619350583000_29.1.63.63 doi: 10.1038/nature02288 – ident: 2021111619350583000_29.1.63.37 doi: 10.1261/rna.034090.112 – ident: 2021111619350583000_29.1.63.28 doi: 10.1006/mcne.2001.1000 – volume: 3 start-page: 1456 year: 1997 ident: 2021111619350583000_29.1.63.12 article-title: Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro publication-title: RNA – ident: 2021111619350583000_29.1.63.25 doi: 10.1017/S1355838200000960 – ident: 2021111619350583000_29.1.63.31 doi: 10.1101/gr.157354.113 – ident: 2021111619350583000_29.1.63.41 doi: 10.1016/j.molcel.2012.01.020 – ident: 2021111619350583000_29.1.63.7 doi: 10.1101/gad.219899.113 – ident: 2021111619350583000_29.1.63.11 doi: 10.1101/gr.177790.114 – ident: 2021111619350583000_29.1.63.80 doi: 10.1093/emboj/17.21.6359 – ident: 2021111619350583000_29.1.63.3 doi: 10.1186/gb-2010-11-10-r106 – ident: 2021111619350583000_29.1.63.58 doi: 10.1084/jem.20061302 – ident: 2021111619350583000_29.1.63.27 doi: 10.1073/pnas.1309990110 – ident: 2021111619350583000_29.1.63.81 doi: 10.1523/JNEUROSCI.3253-07.2008 – ident: 2021111619350583000_29.1.63.84 doi: 10.1111/j.1365-2443.2008.01163.x – volume: 7 start-page: 3509 year: 1988 ident: 2021111619350583000_29.1.63.9 article-title: Heat shock but not other stress inducers leads to the disruption of a sub-set of snRNPs and inhibition of in vitro splicing in HeLa cells publication-title: EMBO J doi: 10.1002/j.1460-2075.1988.tb03227.x – ident: 2021111619350583000_29.1.63.57 doi: 10.1016/j.molcel.2014.03.021 – ident: 2021111619350583000_29.1.63.77 doi: 10.1186/1742-4690-8-47 – ident: 2021111619350583000_29.1.63.30 doi: 10.1073/pnas.0403533101 – ident: 2021111619350583000_29.1.63.62 doi: 10.1016/S0092-8674(02)01038-3 – ident: 2021111619350583000_29.1.63.60 doi: 10.1016/j.molcel.2007.08.028 – ident: 2021111619350583000_29.1.63.70 doi: 10.1101/gr.134445.111 – ident: 2021111619350583000_29.1.63.68 doi: 10.1101/gad.8.22.2704 – ident: 2021111619350583000_29.1.63.79 doi: 10.1101/gad.11.3.334 – ident: 2021111619350583000_29.1.63.85 doi: 10.1016/0092-8674(86)90382-X – ident: 2021111619350583000_29.1.63.32 doi: 10.1101/gad.235770.113 – ident: 2021111619350583000_29.1.63.6 doi: 10.1016/0092-8674(94)90182-1 – ident: 2021111619350583000_29.1.63.48 doi: 10.1002/wrna.86 – ident: 2021111619350583000_29.1.63.83 doi: 10.1089/1066527041410418 – ident: 2021111619350583000_29.1.63.78 doi: 10.1016/j.cell.2013.06.052 – ident: 2021111619350583000_29.1.63.71 doi: 10.1093/bioinformatics/btp120 – ident: 2021111619350583000_29.1.63.13 doi: 10.1016/j.molcel.2010.11.004 – ident: 2021111619350583000_29.1.63.74 doi: 10.1038/nrc3430 – ident: 2021111619350583000_29.1.63.29 doi: 10.1158/0008-5472.SABCS-2082 – ident: 2021111619350583000_29.1.63.47 doi: 10.1083/jcb.201107093 – ident: 2021111619350583000_29.1.63.75 doi: 10.1101/gr.131847.111 – ident: 2021111619350583000_29.1.63.2 doi: 10.1038/nsmb.2143 – ident: 2021111619350583000_29.1.63.20 doi: 10.1006/excr.1998.4083 – ident: 2021111619350583000_29.1.63.26 doi: 10.1038/369678a0 – volume: 13 start-page: 5679 year: 1994 ident: 2021111619350583000_29.1.63.44 article-title: Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism publication-title: EMBO J doi: 10.1002/j.1460-2075.1994.tb06906.x – ident: 2021111619350583000_29.1.63.61 doi: 10.1016/j.molcel.2006.07.022 – ident: 2021111619350583000_29.1.63.64 doi: 10.1083/jcb.144.4.617 – ident: 2021111619350583000_29.1.63.86 doi: 10.1007/s00412-013-0407-z – ident: 2021111619350583000_29.1.63.18 doi: 10.1016/j.cell.2005.06.015 – ident: 2021111619350583000_29.1.63.50 doi: 10.1261/rna.039081.113 – ident: 2021111619350583000_29.1.63.40 doi: 10.1016/0092-8674(89)90127-X – ident: 2021111619350583000_29.1.63.36 doi: 10.1101/gad.178962.111 – ident: 2021111619350583000_29.1.63.46 doi: 10.1101/gad.1525507 – ident: 2021111619350583000_29.1.63.54 doi: 10.1038/nbt.1861 – ident: 2021111619350583000_29.1.63.22 doi: 10.1016/j.chembiol.2010.11.009 – ident: 2021111619350583000_29.1.63.34 doi: 10.1038/30277 – volume: 19 start-page: 6991 year: 1999 ident: 2021111619350583000_29.1.63.53 article-title: The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing publication-title: Mol Cell Biol doi: 10.1128/MCB.19.10.6991 – ident: 2021111619350583000_29.1.63.23 doi: 10.1093/nar/gkp542 – ident: 2021111619350583000_29.1.63.24 doi: 10.1038/ncomms1998 – ident: 2021111619350583000_29.1.63.14 doi: 10.1016/0092-8674(89)90602-8 – ident: 2021111619350583000_29.1.63.82 doi: 10.1101/gad.188037.112 – ident: 2021111619350583000_29.1.63.59 doi: 10.1016/j.celrep.2014.04.044 – reference: 19244129 - Cancer Res. 2009 Mar 1;69(5):2082-90 – reference: 21536904 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8233-8 – reference: 24274751 - Annu Rev Genet. 2013;47:139-65 – reference: 22871813 - Nat Commun. 2012;3:994 – reference: 21682887 - Retrovirology. 2011;8:47 – reference: 24637117 - Genes Dev. 2014 Mar 15;28(6):637-51 – reference: 22817891 - Cell. 2012 Jul 20;150(2):279-90 – reference: 19116344 - Endocrinology. 2009 May;150(5):2087-97 – reference: 8208298 - Nature. 1994 Jun 23;369(6482):678-82 – reference: 8091213 - Science. 1994 Sep 23;265(5180):1866-9 – reference: 17361132 - Nature. 2007 Apr 19;446(7138):926-9 – reference: 9799243 - EMBO J. 1998 Nov 2;17(21):6359-67 – reference: 10490636 - Mol Cell Biol. 1999 Oct;19(10):6991-7000 – reference: 22955974 - Genome Res. 2012 Sep;22(9):1616-25 – reference: 11461155 - Mol Cell Neurosci. 2001 Jul;18(1):80-90 – reference: 21095587 - Mol Cell. 2010 Nov 24;40(4):571-81 – reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8 – reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74 – reference: 21929696 - Genes Cells. 2011 Oct;16(10):1035-49 – reference: 15285897 - J Comput Biol. 2004;11(2-3):377-94 – reference: 7958927 - Genes Dev. 1994 Nov 15;8(22):2704-17 – reference: 16973434 - Mol Cell. 2006 Sep 15;23(6):819-29 – reference: 8287477 - Cell. 1994 Jan 14;76(1):183-92 – reference: 25258385 - Genome Res. 2014 Nov;24(11):1774-86 – reference: 18256266 - J Neurosci. 2008 Feb 6;28(6):1452-9 – reference: 24746700 - Mol Cell. 2014 May 8;54(3):445-59 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 22436691 - Genome Biol. 2012;13(3):R17 – reference: 23707382 - J Mol Biol. 2013 Aug 23;425(16):2894-909 – reference: 9030686 - Genes Dev. 1997 Feb 1;11(3):334-44 – reference: 23097425 - RNA. 2012 Dec;18(12):2174-86 – reference: 19261174 - Genome Biol. 2009;10(3):R25 – reference: 20074525 - Cell Metab. 2010 Jan;11(1):23-34 – reference: 21823230 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):700-17 – reference: 8387646 - Nature. 1993 May 20;363(6426):283-6 – reference: 17699631 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13684-9 – reference: 15210956 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9666-70 – reference: 23911323 - Cell. 2013 Aug 1;154(3):583-95 – reference: 17060476 - J Exp Med. 2006 Oct 30;203(11):2433-40 – reference: 14765198 - Nature. 2004 Feb 5;427(6974):553-8 – reference: 23303139 - Nat Rev Cancer. 2013 Feb;13(2):83-96 – reference: 14731397 - Mol Cell. 2004 Jan 16;13(1):91-100 – reference: 23766421 - Genome Res. 2013 Oct;23(10):1636-50 – reference: 9404896 - RNA. 1997 Dec;3(12):1456-67 – reference: 17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52 – reference: 21516085 - Nat Biotechnol. 2011 May;29(5):436-42 – reference: 2686839 - Cell. 1989 Dec 1;59(5):789-95 – reference: 9037021 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1148-53 – reference: 2421918 - Cell. 1986 Apr 25;45(2):185-93 – reference: 22349816 - Oncogene. 2013 Jan 3;32(1):1-14 – reference: 22118462 - Cell. 2011 Nov 23;147(5):1054-65 – reference: 23525660 - Chromosoma. 2013 Jun;122(3):191-207 – reference: 8617202 - EMBO J. 1996 Jan 15;15(2):265-75 – reference: 21276940 - Chem Biol. 2011 Jan 28;18(1):67-76 – reference: 22539649 - Genome Res. 2012 Oct;22(10):2031-42 – reference: 22661231 - Genes Dev. 2012 Jun 1;26(11):1209-23 – reference: 7988565 - EMBO J. 1994 Dec 1;13(23):5679-88 – reference: 18298798 - Genes Cells. 2008 Mar;13(3):233-44 – reference: 24013503 - Genes Dev. 2013 Sep 1;27(17):1903-16 – reference: 20981025 - Nat Commun. 2010;1:97 – reference: 10037785 - J Cell Biol. 1999 Feb 22;144(4):617-29 – reference: 19656867 - RNA. 2009 Oct;15(10):1896-908 – reference: 22156210 - Genes Dev. 2011 Dec 1;25(23):2502-12 – reference: 11179423 - Mol Biol Cell. 2001 Feb;12(2):393-406 – reference: 22056773 - Nat Struct Mol Biol. 2011 Dec;18(12):1435-40 – reference: 23812748 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11934-9 – reference: 9603524 - Nature. 1998 May 14;393(6681):185-7 – reference: 1331983 - Nucleic Acids Res. 1992 Oct 25;20(20):5263-9 – reference: 21057496 - Nat Methods. 2010 Dec;7(12):1009-15 – reference: 24857664 - Cell Rep. 2014 Jun 12;7(5):1362-70 – reference: 17936706 - Mol Cell. 2007 Oct 12;28(1):79-90 – reference: 7585254 - RNA. 1995 Sep;1(7):692-706 – reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 21949414 - J Cell Biol. 2011 Oct 3;195(1):27-40 – reference: 10999598 - RNA. 2000 Sep;6(9):1197-211 – reference: 22387025 - Mol Cell. 2012 Apr 13;46(1):30-42 – reference: 23616639 - RNA. 2013 Jun;19(6):811-27 – reference: 12419250 - Cell. 2002 Nov 1;111(3):407-17 – reference: 19854129 - Mol Cell. 2009 Oct 23;36(2):178-91 – reference: 2974799 - EMBO J. 1988 Nov;7(11):3509-18 – reference: 16096058 - Cell. 2005 Aug 12;122(3):379-91 – reference: 19561200 - Nucleic Acids Res. 2009 Sep;37(17):e115 – reference: 17369403 - Genes Dev. 2007 Mar 15;21(6):708-18 – reference: 9637771 - Exp Cell Res. 1998 Jun 15;241(2):300-8 – reference: 2655924 - Cell. 1989 May 19;57(4):573-83 |
SSID | ssj0006066 |
Score | 2.59206 |
Snippet | Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 63 |
SubjectTerms | Animals DNA Damage Embryonic Stem Cells Gene Expression Regulation Humans Introns Liver - metabolism Mice Phosphorylation Protein-Serine-Threonine Kinases - metabolism Protein-Tyrosine Kinases - metabolism Research Paper RNA Processing, Post-Transcriptional RNA Splicing RNA, Messenger - metabolism RNA-Binding Proteins - metabolism |
Title | Detained introns are a novel, widespread class of post-transcriptionally spliced introns |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25561496 https://www.proquest.com/docview/1643146690 https://www.proquest.com/docview/1676358205 https://pubmed.ncbi.nlm.nih.gov/PMC4281565 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBbtlkJfSu-mFyoU-uA6jXzI1mPowdILCruQN6PI0m7aYIfYbtn99Z2R5SPbtGz7YoIiydjzeQ5p9A0hLwKtJVgFg1SIyo-MCH2hUu3HTKpcIOHIEgPFz1_44XH0YREvhq0Ye7qkXk7V-d5zJf8jVWgDueIp2X-QbD8pNMBvkC9cQcJwvZSM32L-J-hJJH3YYs4LpnFJryh_tHvvP1e5rjbgFuaeQi_ZpjeXVe3XaKE6fSHX6zOvwn3sYaaxz4rM1JWFSD5kGPVhfNnU512Kofdp2refNvX3Nnl7vv3W9BBEguhNt5KzXm28-XS88MDi0cKD009i5mM9wNaUOP0ZCT-OXGUWp2DdksYYSK22dKrN2d3Zfo1uKwmcyHwaREnIGZIbD7ar26-_YNL6REMb4sxYBuOzdjwew75KrgUQVWDBi49fB3J5jOVs0OGey3F8wvjXu_ff9WF-C0wu5teOHJajW-SmizTovIXNbXJFF3fI9bb26NldsujAQ53IKYCHSmrB84oO0KEWOrQ0dD90qINON889cvz-3dGbQ9-V2fBVlIraB59WL-MwCJeG5RDhah0ayQ28jFSHMlahTHP4bnWARExcJ1pxGaqUpywB2wgj75ODoiz0Q0JjKSVnqcGTLZFIglTy2CQqEcYwYbicEL97cZlyHPRYCmWd7RfUhLzs-29a9pU_9nzeySEDBYm7XrLQZVNlDHxucAe4mP2tD_IygjMcT8iDVnb9_ZCjj0WCT0iyI9W-AxK07_5TrE4tUTuE9gwCpkeXforH5MbwpT0hB_W20U_B6a2XzyxUfwF5eK4V |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detained+introns+are+a+novel%2C+widespread+class+of+post-transcriptionally+spliced+introns&rft.jtitle=Genes+%26+development&rft.au=Boutz%2C+Paul+L.&rft.au=Bhutkar%2C+Arjun&rft.au=Sharp%2C+Phillip+A.&rft.date=2015-01-01&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=29&rft.issue=1&rft.spage=63&rft.epage=80&rft_id=info:doi/10.1101%2Fgad.247361.114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gad_247361_114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |