Detained introns are a novel, widespread class of post-transcriptionally spliced introns

Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserve...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 29; no. 1; pp. 63 - 80
Main Authors Boutz, Paul L., Bhutkar, Arjun, Sharp, Phillip A.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.01.2015
Subjects
Online AccessGet full text
ISSN0890-9369
1549-5477
1549-5477
DOI10.1101/gad.247361.114

Cover

Loading…
Abstract Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
AbstractList Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as "detained" introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts. Boutz et al. identified thousands of these “detained” introns (DIs) in human and mouse cell lines as well as the adult mouse liver. Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs, altering transcript pools of >300 genes. Srsf4 regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as "detained" introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as "detained" introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs-including those in Mdm4, a negative regulator of p53-was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression.
Author Bhutkar, Arjun
Sharp, Phillip A.
Boutz, Paul L.
Author_xml – sequence: 1
  givenname: Paul L.
  surname: Boutz
  fullname: Boutz, Paul L.
– sequence: 2
  givenname: Arjun
  surname: Bhutkar
  fullname: Bhutkar, Arjun
– sequence: 3
  givenname: Phillip A.
  surname: Sharp
  fullname: Sharp, Phillip A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25561496$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1rFTEUxYNU7Gt161KydOE8k8nHZDaC1E8odFPBXbgvuVMjecmYzKv0vzeP1_pRKLgKl5zzu4d7TshRygkJec7ZmnPGX1-BX_dyEJq3WT4iK67k2Ck5DEdkxczIulHo8Zic1PqdMaaZ1k_Ica-U5nLUK_L1HS4QEnoa0lJyqhQKUqApX2N8RX8Gj3UuCJ66CLXSPNE516VbCqTqSpiXkBPEeEPrHIP7w3lKHk8QKz67fU_Jlw_vL88-decXHz-fvT3vnDTj0mmucKNELzYT98xoRDGBnlpMgwKUE2C88yP2kkmhcUCnQTijDR-83ztPyZsDd95ttugdtvUQ7VzCFsqNzRDsvz8pfLNX-drK3nCl94CXt4CSf-ywLnYbqsMYIWHeVcv1oIUyPfsfqRRcaj2yJn3xd6zfee4u3wTyIHAl11pwsi4ssL9mSxmi5czuC7atYHsouM2y2db3bHfkBwy_APN6qcs
CitedBy_id crossref_primary_10_1158_1541_7786_MCR_20_0339
crossref_primary_10_1016_j_molcel_2025_02_012
crossref_primary_10_1042_BCJ20230410
crossref_primary_10_1038_s41467_021_23505_1
crossref_primary_10_1038_s41586_019_1186_3
crossref_primary_10_1101_gr_185371_114
crossref_primary_10_1007_s00439_017_1791_x
crossref_primary_10_1101_gr_278659_123
crossref_primary_10_1186_s13059_015_0704_3
crossref_primary_10_3389_fbioe_2023_1244377
crossref_primary_10_1038_nsmb_3057
crossref_primary_10_1002_wrna_1840
crossref_primary_10_3390_ijms21239247
crossref_primary_10_15252_embj_2021110192
crossref_primary_10_3390_ijms23147568
crossref_primary_10_3390_biomedicines9091268
crossref_primary_10_1007_s00439_017_1809_4
crossref_primary_10_1080_15476286_2023_2293339
crossref_primary_10_1093_nar_gkaa410
crossref_primary_10_1038_ni_3830
crossref_primary_10_1371_journal_pone_0265794
crossref_primary_10_1038_s41380_020_0775_8
crossref_primary_10_1038_srep18741
crossref_primary_10_1016_j_tcb_2024_09_004
crossref_primary_10_1016_j_molcel_2022_12_014
crossref_primary_10_1093_nar_gkz1180
crossref_primary_10_1128_JVI_00342_21
crossref_primary_10_3390_ph17121660
crossref_primary_10_3389_fpls_2019_00708
crossref_primary_10_1038_s41596_021_00581_7
crossref_primary_10_1002_bies_201500117
crossref_primary_10_1146_annurev_cellbio_100617_062826
crossref_primary_10_1016_j_gene_2021_145752
crossref_primary_10_1016_j_gde_2020_11_002
crossref_primary_10_3390_ijms21062026
crossref_primary_10_1111_nph_18652
crossref_primary_10_1186_s12864_020_6541_0
crossref_primary_10_3390_cancers13246185
crossref_primary_10_3390_ijms231710157
crossref_primary_10_1146_annurev_genom_083115_022545
crossref_primary_10_1093_nar_gkz1068
crossref_primary_10_1016_j_devcel_2017_03_003
crossref_primary_10_1038_s41580_024_00739_7
crossref_primary_10_1002_wrna_1503
crossref_primary_10_1158_2159_8290_CD_19_0399
crossref_primary_10_1186_s13059_019_1880_3
crossref_primary_10_1080_10409238_2016_1230086
crossref_primary_10_1093_nar_gky225
crossref_primary_10_1093_nar_gkv194
crossref_primary_10_1016_j_pneurobio_2023_102500
crossref_primary_10_1016_j_semcdb_2015_10_018
crossref_primary_10_1038_cddis_2015_354
crossref_primary_10_1016_j_braindev_2018_03_001
crossref_primary_10_1042_EBC20200005
crossref_primary_10_1016_j_tplants_2015_08_011
crossref_primary_10_1158_1541_7786_MCR_20_0926
crossref_primary_10_1161_CIRCRESAHA_120_318577
crossref_primary_10_1016_j_exphem_2023_04_001
crossref_primary_10_1038_s41467_022_28449_8
crossref_primary_10_1080_15384101_2021_1930929
crossref_primary_10_1093_nar_gkw1043
crossref_primary_10_1002_wrna_1755
crossref_primary_10_1083_jcb_201801184
crossref_primary_10_3390_cells12202449
crossref_primary_10_1016_j_molcel_2020_12_002
crossref_primary_10_3390_ijms221910213
crossref_primary_10_1038_s41598_023_32256_6
crossref_primary_10_1124_molpharm_120_000173
crossref_primary_10_1093_glycob_cwae081
crossref_primary_10_1016_j_semcdb_2017_09_018
crossref_primary_10_7554_eLife_16797
crossref_primary_10_1007_s00439_021_02409_6
crossref_primary_10_1038_s42003_024_05779_5
crossref_primary_10_1002_wrna_1631
crossref_primary_10_1038_s41467_024_47092_z
crossref_primary_10_1186_s13059_025_03507_8
crossref_primary_10_1093_plcell_koad009
crossref_primary_10_1016_j_molcel_2016_11_029
crossref_primary_10_1186_s13059_018_1446_9
crossref_primary_10_1080_13102818_2017_1370984
crossref_primary_10_1093_nar_gkad351
crossref_primary_10_3390_cancers13205136
crossref_primary_10_1016_j_ijrobp_2024_02_024
crossref_primary_10_1038_s41594_023_01035_2
crossref_primary_10_1016_j_molcel_2023_05_027
crossref_primary_10_1038_s41467_020_15815_7
crossref_primary_10_1021_jacs_8b07328
crossref_primary_10_2139_ssrn_4058691
crossref_primary_10_1261_rna_079591_123
crossref_primary_10_1101_gr_218438_116
crossref_primary_10_1093_plcell_koac091
crossref_primary_10_1038_s41375_020_1002_y
crossref_primary_10_1016_j_molcel_2023_01_009
crossref_primary_10_1093_nar_gkad161
crossref_primary_10_1038_s41467_024_46495_2
crossref_primary_10_3389_fgene_2022_821587
crossref_primary_10_1016_j_exphem_2024_104173
crossref_primary_10_1261_rna_066951_118
crossref_primary_10_3390_ijms22105110
crossref_primary_10_1002_bies_201900044
crossref_primary_10_1083_jcb_202002129
crossref_primary_10_1111_febs_16057
crossref_primary_10_1126_sciadv_adp7727
crossref_primary_10_1186_s13059_018_1499_9
crossref_primary_10_1261_rna_078662_120
crossref_primary_10_1016_j_molcel_2019_04_034
crossref_primary_10_1016_j_molcel_2019_09_017
crossref_primary_10_1016_j_gde_2022_101940
crossref_primary_10_1261_rna_064899_117
crossref_primary_10_1016_j_gene_2018_05_095
crossref_primary_10_1186_s12864_022_08777_1
crossref_primary_10_1016_j_stem_2018_03_002
crossref_primary_10_1038_s41477_020_0688_1
crossref_primary_10_1016_j_molcel_2019_03_008
crossref_primary_10_7554_eLife_47809
crossref_primary_10_7554_eLife_64930
crossref_primary_10_1016_j_isci_2022_105543
crossref_primary_10_1093_nargab_lqad051
crossref_primary_10_1161_JAHA_121_020965
crossref_primary_10_7554_eLife_72867
crossref_primary_10_1186_s13073_017_0441_1
crossref_primary_10_1128_MCB_00123_15
crossref_primary_10_1002_advs_202203480
crossref_primary_10_1101_gr_273904_120
crossref_primary_10_1002_bies_202400248
crossref_primary_10_1080_15476286_2021_1894025
crossref_primary_10_1016_j_molcel_2021_07_019
crossref_primary_10_1021_acs_chemrev_7b00487
crossref_primary_10_1016_j_cell_2018_04_005
crossref_primary_10_1096_fj_202302375R
crossref_primary_10_1093_nar_gkv1168
crossref_primary_10_1038_s41467_021_24774_6
crossref_primary_10_1261_rna_068288_118
crossref_primary_10_1038_s41429_021_00450_1
crossref_primary_10_1038_s41467_016_0008_7
crossref_primary_10_1261_rna_079294_122
crossref_primary_10_3389_fonc_2023_1264785
crossref_primary_10_7554_eLife_29494
crossref_primary_10_7554_eLife_67077
crossref_primary_10_1093_nar_gkab647
crossref_primary_10_1126_sciadv_1700731
crossref_primary_10_1016_j_jmb_2022_167451
crossref_primary_10_1016_j_semcdb_2018_05_013
crossref_primary_10_1007_s00497_021_00411_6
crossref_primary_10_1093_nar_gkaa435
crossref_primary_10_1186_s13059_022_02789_6
crossref_primary_10_15252_embj_2023114331
crossref_primary_10_1016_j_ccell_2020_12_010
crossref_primary_10_1371_journal_pone_0168028
crossref_primary_10_1101_gr_220962_117
crossref_primary_10_1186_s12935_024_03280_x
crossref_primary_10_1073_pnas_1900107116
crossref_primary_10_1016_j_biopha_2021_111826
crossref_primary_10_1186_s12864_016_2999_1
crossref_primary_10_1016_j_chembiol_2021_07_015
crossref_primary_10_1038_s41576_024_00712_2
crossref_primary_10_1016_j_molcel_2021_12_010
crossref_primary_10_1002_bies_202300145
crossref_primary_10_1038_s41467_024_55469_3
crossref_primary_10_7554_eLife_10288
crossref_primary_10_1016_j_celrep_2018_11_046
crossref_primary_10_15252_embr_202154350
crossref_primary_10_1016_j_exphem_2024_104655
crossref_primary_10_1016_j_cellsig_2020_109883
crossref_primary_10_1093_hmg_ddac012
crossref_primary_10_1016_j_ajhg_2020_07_004
crossref_primary_10_1016_j_molcel_2020_10_022
crossref_primary_10_1016_j_tig_2016_03_002
crossref_primary_10_1101_gr_219899_116
crossref_primary_10_15252_embj_2019102729
crossref_primary_10_1038_s41467_018_04779_4
crossref_primary_10_1002_wrna_1574
crossref_primary_10_1182_blood_2016_01_692764
crossref_primary_10_2174_1574892815666200908122402
crossref_primary_10_1093_nar_gkw591
crossref_primary_10_1093_nar_gkaa263
crossref_primary_10_1038_s41576_022_00556_8
crossref_primary_10_1038_s41594_019_0313_z
crossref_primary_10_1016_j_semcdb_2017_11_001
crossref_primary_10_7554_eLife_37419
crossref_primary_10_1007_s00018_017_2503_3
crossref_primary_10_1038_nrg_2016_46
crossref_primary_10_1016_j_semcdb_2017_07_030
crossref_primary_10_1038_s41388_024_03264_1
crossref_primary_10_1128_MCB_00070_15
crossref_primary_10_1038_s41594_019_0226_x
crossref_primary_10_1016_j_ceb_2024_102438
crossref_primary_10_1038_s41594_020_0385_9
crossref_primary_10_12688_f1000research_15442_1
crossref_primary_10_1038_nsmb_3317
crossref_primary_10_1093_nar_gkw560
crossref_primary_10_3390_cancers14133148
crossref_primary_10_1080_19491034_2024_2350180
crossref_primary_10_1073_pnas_1716617115
crossref_primary_10_1074_mcp_TIR117_000056
crossref_primary_10_1093_plcell_koac309
crossref_primary_10_3389_fgene_2018_00440
crossref_primary_10_1083_jcb_202111151
crossref_primary_10_1016_j_ccell_2017_09_005
crossref_primary_10_1093_nar_gkz1237
crossref_primary_10_1093_nar_gkaa358
crossref_primary_10_1038_s41467_021_20929_7
crossref_primary_10_1016_j_devcel_2020_05_006
crossref_primary_10_1038_s41598_023_31890_4
crossref_primary_10_3389_fpls_2020_00091
crossref_primary_10_1186_s12864_020_07004_z
crossref_primary_10_1093_nar_gkx661
crossref_primary_10_1093_pcp_pcz090
crossref_primary_10_7554_eLife_19545
crossref_primary_10_1002_wrna_1476
crossref_primary_10_1002_wrna_1478
crossref_primary_10_3390_cells11244062
crossref_primary_10_7554_eLife_76927
crossref_primary_10_1016_j_jbc_2022_102224
crossref_primary_10_1016_j_molcel_2024_06_008
crossref_primary_10_1002_wrna_1470
crossref_primary_10_1016_j_tig_2017_04_004
crossref_primary_10_1002_advs_202309588
crossref_primary_10_1093_brain_awab078
crossref_primary_10_1016_j_celrep_2017_07_017
crossref_primary_10_1101_gr_250217_119
crossref_primary_10_1093_nar_gkad319
crossref_primary_10_7554_eLife_10921
crossref_primary_10_1016_j_cels_2018_09_002
crossref_primary_10_1002_1873_3468_12639
crossref_primary_10_1128_msystems_01081_20
crossref_primary_10_3390_plants10081647
crossref_primary_10_1186_s13059_017_1344_6
crossref_primary_10_3390_biology11060826
crossref_primary_10_1186_s40478_016_0289_4
crossref_primary_10_1016_j_conb_2017_05_012
crossref_primary_10_1073_pnas_1912459116
crossref_primary_10_1186_s12864_021_07478_5
crossref_primary_10_1016_j_gde_2016_04_005
crossref_primary_10_1371_journal_pgen_1005610
crossref_primary_10_1371_journal_pgen_1006824
crossref_primary_10_1016_j_drup_2020_100728
crossref_primary_10_1172_JCI82534
crossref_primary_10_1242_dev_191619
crossref_primary_10_15252_embj_2021110496
crossref_primary_10_1093_nar_gkw1140
crossref_primary_10_1002_eji_202250226
crossref_primary_10_1002_wrna_1538
crossref_primary_10_1080_15476286_2016_1227905
crossref_primary_10_1091_mbc_E16_07_0515
crossref_primary_10_1101_cshperspect_a026237
crossref_primary_10_1101_gr_232025_117
crossref_primary_10_2139_ssrn_3385139
crossref_primary_10_1038_s41598_020_72482_w
crossref_primary_10_1038_s41467_021_25892_x
crossref_primary_10_1101_cshperspect_a032227
crossref_primary_10_1261_rna_075028_120
crossref_primary_10_1021_acs_chemrev_4c00417
crossref_primary_10_1038_s41374_021_00698_z
crossref_primary_10_1093_nar_gkab115
crossref_primary_10_1016_j_tibs_2018_09_016
crossref_primary_10_3390_genes8020082
crossref_primary_10_1093_nar_gkac1225
crossref_primary_10_1002_anie_201810312
crossref_primary_10_1080_21541264_2017_1373891
crossref_primary_10_1016_j_molcel_2023_10_034
crossref_primary_10_5387_fms_2023_17
crossref_primary_10_1126_sciadv_abk0275
crossref_primary_10_1016_j_neuron_2016_11_032
crossref_primary_10_1016_j_drudis_2022_103431
crossref_primary_10_1038_s41467_021_23221_w
crossref_primary_10_1016_j_cell_2017_05_006
crossref_primary_10_1155_2018_3819719
crossref_primary_10_1038_s44318_025_00374_8
crossref_primary_10_1016_j_cell_2017_05_003
crossref_primary_10_1016_j_tins_2020_07_007
crossref_primary_10_1038_s41580_024_00706_2
crossref_primary_10_1242_dev_152199
crossref_primary_10_1186_s13059_017_1184_4
crossref_primary_10_1186_s13059_017_1339_3
crossref_primary_10_1002_ange_201810312
crossref_primary_10_3390_genes11070820
crossref_primary_10_1093_immadv_ltac009
crossref_primary_10_2139_ssrn_3204564
crossref_primary_10_1016_j_csbj_2020_02_010
crossref_primary_10_1038_s41467_020_20848_z
crossref_primary_10_1002_1873_3468_14723
crossref_primary_10_1016_j_celrep_2015_11_036
crossref_primary_10_1159_000522088
crossref_primary_10_1016_j_ccell_2017_08_018
crossref_primary_10_1261_rna_079465_122
Cites_doi 10.1038/onc.2012.38
10.1016/j.cell.2011.10.024
10.1038/nature05676
10.1016/j.jmb.2013.05.013
10.1016/j.molcel.2009.09.018
10.1038/ncomms1103
10.1038/nmeth.1528
10.1038/nature11247
10.1186/gb-2012-13-3-r17
10.1073/pnas.0704922104
10.1186/gb-2009-10-3-r25
10.1146/annurev-genet-111212-133424
10.1038/nmeth.1226
10.1016/j.cmet.2009.11.006
10.1111/j.1365-2443.2011.01548.x
10.1016/j.cell.2012.05.043
10.1038/nbt.1621
10.1073/pnas.1017700108
10.1038/363283a0
10.1101/gad.1558107
10.1002/j.1460-2075.1996.tb00357.x
10.1210/en.2008-0818
10.1093/nar/20.20.5263
10.1126/science.8091213
10.1016/S1097-2765(03)00502-1
10.1073/pnas.94.4.1148
10.1091/mbc.12.2.393
10.1261/rna.1714509
10.1038/nature02288
10.1261/rna.034090.112
10.1006/mcne.2001.1000
10.1017/S1355838200000960
10.1101/gr.157354.113
10.1016/j.molcel.2012.01.020
10.1101/gad.219899.113
10.1101/gr.177790.114
10.1093/emboj/17.21.6359
10.1186/gb-2010-11-10-r106
10.1084/jem.20061302
10.1073/pnas.1309990110
10.1523/JNEUROSCI.3253-07.2008
10.1111/j.1365-2443.2008.01163.x
10.1002/j.1460-2075.1988.tb03227.x
10.1016/j.molcel.2014.03.021
10.1186/1742-4690-8-47
10.1073/pnas.0403533101
10.1016/S0092-8674(02)01038-3
10.1016/j.molcel.2007.08.028
10.1101/gr.134445.111
10.1101/gad.8.22.2704
10.1101/gad.11.3.334
10.1016/0092-8674(86)90382-X
10.1101/gad.235770.113
10.1016/0092-8674(94)90182-1
10.1002/wrna.86
10.1089/1066527041410418
10.1016/j.cell.2013.06.052
10.1093/bioinformatics/btp120
10.1016/j.molcel.2010.11.004
10.1038/nrc3430
10.1158/0008-5472.SABCS-2082
10.1083/jcb.201107093
10.1101/gr.131847.111
10.1038/nsmb.2143
10.1006/excr.1998.4083
10.1038/369678a0
10.1002/j.1460-2075.1994.tb06906.x
10.1016/j.molcel.2006.07.022
10.1083/jcb.144.4.617
10.1007/s00412-013-0407-z
10.1016/j.cell.2005.06.015
10.1261/rna.039081.113
10.1016/0092-8674(89)90127-X
10.1101/gad.178962.111
10.1101/gad.1525507
10.1038/nbt.1861
10.1016/j.chembiol.2010.11.009
10.1038/30277
10.1128/MCB.19.10.6991
10.1093/nar/gkp542
10.1038/ncomms1998
10.1016/0092-8674(89)90602-8
10.1101/gad.188037.112
10.1016/j.celrep.2014.04.044
ContentType Journal Article
Copyright 2015 Boutz et al.; Published by Cold Spring Harbor Laboratory Press.
2015
Copyright_xml – notice: 2015 Boutz et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1101/gad.247361.114
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

Genetics Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Boutz et al
EISSN 1549-5477
EndPage 80
ExternalDocumentID PMC4281565
25561496
10_1101_gad_247361_114
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM034277
– fundername: NCI NIH HHS
  grantid: P30 CA014051
– fundername: NIGMS NIH HHS
  grantid: R01 GM34277-23
– fundername: NCI NIH HHS
  grantid: P30-CA14051
– fundername: NCI NIH HHS
  grantid: P01 CA042063
GroupedDBID ---
-DZ
-~X
.55
18M
29H
2WC
39C
4.4
53G
5RE
5VS
85S
AAYXX
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AECCQ
AENEX
AETEA
AFFNX
AFOSN
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
W8F
WH7
WOQ
X7M
XJT
XSW
YBU
YHG
YKV
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c489t-615eb5323bf1d086ee3fa6f0668e3a5c3a8dcd9e240436e7ec6a3c86817ddeb53
ISSN 0890-9369
1549-5477
IngestDate Thu Aug 21 18:17:51 EDT 2025
Fri Jul 11 02:31:07 EDT 2025
Thu Jul 10 22:01:47 EDT 2025
Thu Apr 03 06:55:12 EDT 2025
Tue Jul 01 01:12:05 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords post-transcriptional splicing
detained introns
Clk kinase
Language English
License 2015 Boutz et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c489t-615eb5323bf1d086ee3fa6f0668e3a5c3a8dcd9e240436e7ec6a3c86817ddeb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4281565
PMID 25561496
PQID 1643146690
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4281565
proquest_miscellaneous_1676358205
proquest_miscellaneous_1643146690
pubmed_primary_25561496
crossref_citationtrail_10_1101_gad_247361_114
crossref_primary_10_1101_gad_247361_114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
2015-Jan-01
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genes & development
PublicationTitleAlternate Genes Dev
PublicationYear 2015
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References Prasad (2021111619350583000_29.1.63.53) 1999; 19
2021111619350583000_29.1.63.20
2021111619350583000_29.1.63.64
2021111619350583000_29.1.63.21
2021111619350583000_29.1.63.65
2021111619350583000_29.1.63.62
2021111619350583000_29.1.63.63
2021111619350583000_29.1.63.60
2021111619350583000_29.1.63.61
2021111619350583000_29.1.63.28
Bond (2021111619350583000_29.1.63.9) 1988; 7
2021111619350583000_29.1.63.29
2021111619350583000_29.1.63.26
2021111619350583000_29.1.63.27
2021111619350583000_29.1.63.24
2021111619350583000_29.1.63.68
2021111619350583000_29.1.63.25
2021111619350583000_29.1.63.69
2021111619350583000_29.1.63.22
2021111619350583000_29.1.63.66
2021111619350583000_29.1.63.23
2021111619350583000_29.1.63.67
2021111619350583000_29.1.63.19
2021111619350583000_29.1.63.10
2021111619350583000_29.1.63.54
2021111619350583000_29.1.63.51
2021111619350583000_29.1.63.52
2021111619350583000_29.1.63.50
2021111619350583000_29.1.63.17
2021111619350583000_29.1.63.18
2021111619350583000_29.1.63.15
2021111619350583000_29.1.63.59
Cao (2021111619350583000_29.1.63.12) 1997; 3
2021111619350583000_29.1.63.13
2021111619350583000_29.1.63.57
2021111619350583000_29.1.63.14
2021111619350583000_29.1.63.58
2021111619350583000_29.1.63.11
2021111619350583000_29.1.63.55
2021111619350583000_29.1.63.2
2021111619350583000_29.1.63.3
2021111619350583000_29.1.63.1
2021111619350583000_29.1.63.6
2021111619350583000_29.1.63.7
Mermoud (2021111619350583000_29.1.63.44) 1994; 13
2021111619350583000_29.1.63.4
2021111619350583000_29.1.63.5
2021111619350583000_29.1.63.42
2021111619350583000_29.1.63.86
2021111619350583000_29.1.63.43
2021111619350583000_29.1.63.40
2021111619350583000_29.1.63.84
2021111619350583000_29.1.63.41
2021111619350583000_29.1.63.85
2021111619350583000_29.1.63.82
2021111619350583000_29.1.63.83
2021111619350583000_29.1.63.80
2021111619350583000_29.1.63.81
2021111619350583000_29.1.63.8
2021111619350583000_29.1.63.48
2021111619350583000_29.1.63.49
2021111619350583000_29.1.63.46
2021111619350583000_29.1.63.47
2021111619350583000_29.1.63.45
Roscigno (2021111619350583000_29.1.63.56) 1995; 1
2021111619350583000_29.1.63.31
2021111619350583000_29.1.63.75
2021111619350583000_29.1.63.32
2021111619350583000_29.1.63.76
2021111619350583000_29.1.63.73
2021111619350583000_29.1.63.30
2021111619350583000_29.1.63.74
2021111619350583000_29.1.63.71
2021111619350583000_29.1.63.72
Colwill (2021111619350583000_29.1.63.16) 1996; 15
2021111619350583000_29.1.63.70
2021111619350583000_29.1.63.39
2021111619350583000_29.1.63.37
2021111619350583000_29.1.63.38
2021111619350583000_29.1.63.35
2021111619350583000_29.1.63.79
2021111619350583000_29.1.63.36
2021111619350583000_29.1.63.33
2021111619350583000_29.1.63.77
2021111619350583000_29.1.63.34
2021111619350583000_29.1.63.78
21536904 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8233-8
15210956 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9666-70
20979621 - Genome Biol. 2010;11(10):R106
2421918 - Cell. 1986 Apr 25;45(2):185-93
11461155 - Mol Cell Neurosci. 2001 Jul;18(1):80-90
8287477 - Cell. 1994 Jan 14;76(1):183-92
21929696 - Genes Cells. 2011 Oct;16(10):1035-49
17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52
19854129 - Mol Cell. 2009 Oct 23;36(2):178-91
23303139 - Nat Rev Cancer. 2013 Feb;13(2):83-96
22436691 - Genome Biol. 2012;13(3):R17
9637771 - Exp Cell Res. 1998 Jun 15;241(2):300-8
21823230 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):700-17
19116344 - Endocrinology. 2009 May;150(5):2087-97
24857664 - Cell Rep. 2014 Jun 12;7(5):1362-70
17699631 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13684-9
17936706 - Mol Cell. 2007 Oct 12;28(1):79-90
2655924 - Cell. 1989 May 19;57(4):573-83
21949414 - J Cell Biol. 2011 Oct 3;195(1):27-40
9030686 - Genes Dev. 1997 Feb 1;11(3):334-44
21516085 - Nat Biotechnol. 2011 May;29(5):436-42
22156210 - Genes Dev. 2011 Dec 1;25(23):2502-12
19244129 - Cancer Res. 2009 Mar 1;69(5):2082-90
22539649 - Genome Res. 2012 Oct;22(10):2031-42
21276940 - Chem Biol. 2011 Jan 28;18(1):67-76
8208298 - Nature. 1994 Jun 23;369(6482):678-82
19656867 - RNA. 2009 Oct;15(10):1896-908
14765198 - Nature. 2004 Feb 5;427(6974):553-8
14731397 - Mol Cell. 2004 Jan 16;13(1):91-100
21682887 - Retrovirology. 2011;8:47
22056773 - Nat Struct Mol Biol. 2011 Dec;18(12):1435-40
21095587 - Mol Cell. 2010 Nov 24;40(4):571-81
12419250 - Cell. 2002 Nov 1;111(3):407-17
7585254 - RNA. 1995 Sep;1(7):692-706
18516045 - Nat Methods. 2008 Jul;5(7):621-8
22871813 - Nat Commun. 2012;3:994
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
7988565 - EMBO J. 1994 Dec 1;13(23):5679-88
24637117 - Genes Dev. 2014 Mar 15;28(6):637-51
25258385 - Genome Res. 2014 Nov;24(11):1774-86
2974799 - EMBO J. 1988 Nov;7(11):3509-18
9799243 - EMBO J. 1998 Nov 2;17(21):6359-67
21057496 - Nat Methods. 2010 Dec;7(12):1009-15
23911323 - Cell. 2013 Aug 1;154(3):583-95
9603524 - Nature. 1998 May 14;393(6681):185-7
10999598 - RNA. 2000 Sep;6(9):1197-211
22955974 - Genome Res. 2012 Sep;22(9):1616-25
8091213 - Science. 1994 Sep 23;265(5180):1866-9
9404896 - RNA. 1997 Dec;3(12):1456-67
22118462 - Cell. 2011 Nov 23;147(5):1054-65
2686839 - Cell. 1989 Dec 1;59(5):789-95
23525660 - Chromosoma. 2013 Jun;122(3):191-207
22349816 - Oncogene. 2013 Jan 3;32(1):1-14
24013503 - Genes Dev. 2013 Sep 1;27(17):1903-16
7958927 - Genes Dev. 1994 Nov 15;8(22):2704-17
23812748 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11934-9
18256266 - J Neurosci. 2008 Feb 6;28(6):1452-9
22817891 - Cell. 2012 Jul 20;150(2):279-90
17369403 - Genes Dev. 2007 Mar 15;21(6):708-18
16973434 - Mol Cell. 2006 Sep 15;23(6):819-29
24274751 - Annu Rev Genet. 2013;47:139-65
10490636 - Mol Cell Biol. 1999 Oct;19(10):6991-7000
23766421 - Genome Res. 2013 Oct;23(10):1636-50
9037021 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1148-53
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
20074525 - Cell Metab. 2010 Jan;11(1):23-34
1331983 - Nucleic Acids Res. 1992 Oct 25;20(20):5263-9
22387025 - Mol Cell. 2012 Apr 13;46(1):30-42
15285897 - J Comput Biol. 2004;11(2-3):377-94
22661231 - Genes Dev. 2012 Jun 1;26(11):1209-23
19261174 - Genome Biol. 2009;10(3):R25
20981025 - Nat Commun. 2010;1:97
8387646 - Nature. 1993 May 20;363(6426):283-6
24746700 - Mol Cell. 2014 May 8;54(3):445-59
23616639 - RNA. 2013 Jun;19(6):811-27
22955616 - Nature. 2012 Sep 6;489(7414):57-74
10037785 - J Cell Biol. 1999 Feb 22;144(4):617-29
17060476 - J Exp Med. 2006 Oct 30;203(11):2433-40
18298798 - Genes Cells. 2008 Mar;13(3):233-44
23707382 - J Mol Biol. 2013 Aug 23;425(16):2894-909
8617202 - EMBO J. 1996 Jan 15;15(2):265-75
16096058 - Cell. 2005 Aug 12;122(3):379-91
19561200 - Nucleic Acids Res. 2009 Sep;37(17):e115
11179423 - Mol Biol Cell. 2001 Feb;12(2):393-406
17361132 - Nature. 2007 Apr 19;446(7138):926-9
23097425 - RNA. 2012 Dec;18(12):2174-86
References_xml – ident: 2021111619350583000_29.1.63.1
  doi: 10.1038/onc.2012.38
– ident: 2021111619350583000_29.1.63.73
  doi: 10.1016/j.cell.2011.10.024
– ident: 2021111619350583000_29.1.63.39
  doi: 10.1038/nature05676
– ident: 2021111619350583000_29.1.63.5
  doi: 10.1016/j.jmb.2013.05.013
– ident: 2021111619350583000_29.1.63.51
  doi: 10.1016/j.molcel.2009.09.018
– ident: 2021111619350583000_29.1.63.19
  doi: 10.1038/ncomms1103
– ident: 2021111619350583000_29.1.63.35
  doi: 10.1038/nmeth.1528
– ident: 2021111619350583000_29.1.63.21
  doi: 10.1038/nature11247
– volume: 1
  start-page: 692
  year: 1995
  ident: 2021111619350583000_29.1.63.56
  article-title: SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome
  publication-title: RNA
– ident: 2021111619350583000_29.1.63.4
  doi: 10.1186/gb-2012-13-3-r17
– ident: 2021111619350583000_29.1.63.67
  doi: 10.1073/pnas.0704922104
– ident: 2021111619350583000_29.1.63.38
  doi: 10.1186/gb-2009-10-3-r25
– ident: 2021111619350583000_29.1.63.52
  doi: 10.1146/annurev-genet-111212-133424
– ident: 2021111619350583000_29.1.63.45
  doi: 10.1038/nmeth.1226
– ident: 2021111619350583000_29.1.63.55
  doi: 10.1016/j.cmet.2009.11.006
– ident: 2021111619350583000_29.1.63.66
  doi: 10.1111/j.1365-2443.2011.01548.x
– ident: 2021111619350583000_29.1.63.8
  doi: 10.1016/j.cell.2012.05.043
– ident: 2021111619350583000_29.1.63.72
  doi: 10.1038/nbt.1621
– ident: 2021111619350583000_29.1.63.15
  doi: 10.1073/pnas.1017700108
– ident: 2021111619350583000_29.1.63.69
  doi: 10.1038/363283a0
– ident: 2021111619350583000_29.1.63.10
  doi: 10.1101/gad.1558107
– volume: 15
  start-page: 265
  year: 1996
  ident: 2021111619350583000_29.1.63.16
  article-title: The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1996.tb00357.x
– ident: 2021111619350583000_29.1.63.33
  doi: 10.1210/en.2008-0818
– ident: 2021111619350583000_29.1.63.43
  doi: 10.1093/nar/20.20.5263
– ident: 2021111619350583000_29.1.63.17
  doi: 10.1126/science.8091213
– ident: 2021111619350583000_29.1.63.76
  doi: 10.1016/S1097-2765(03)00502-1
– ident: 2021111619350583000_29.1.63.65
  doi: 10.1073/pnas.94.4.1148
– ident: 2021111619350583000_29.1.63.42
  doi: 10.1091/mbc.12.2.393
– ident: 2021111619350583000_29.1.63.49
  doi: 10.1261/rna.1714509
– ident: 2021111619350583000_29.1.63.63
  doi: 10.1038/nature02288
– ident: 2021111619350583000_29.1.63.37
  doi: 10.1261/rna.034090.112
– ident: 2021111619350583000_29.1.63.28
  doi: 10.1006/mcne.2001.1000
– volume: 3
  start-page: 1456
  year: 1997
  ident: 2021111619350583000_29.1.63.12
  article-title: Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro
  publication-title: RNA
– ident: 2021111619350583000_29.1.63.25
  doi: 10.1017/S1355838200000960
– ident: 2021111619350583000_29.1.63.31
  doi: 10.1101/gr.157354.113
– ident: 2021111619350583000_29.1.63.41
  doi: 10.1016/j.molcel.2012.01.020
– ident: 2021111619350583000_29.1.63.7
  doi: 10.1101/gad.219899.113
– ident: 2021111619350583000_29.1.63.11
  doi: 10.1101/gr.177790.114
– ident: 2021111619350583000_29.1.63.80
  doi: 10.1093/emboj/17.21.6359
– ident: 2021111619350583000_29.1.63.3
  doi: 10.1186/gb-2010-11-10-r106
– ident: 2021111619350583000_29.1.63.58
  doi: 10.1084/jem.20061302
– ident: 2021111619350583000_29.1.63.27
  doi: 10.1073/pnas.1309990110
– ident: 2021111619350583000_29.1.63.81
  doi: 10.1523/JNEUROSCI.3253-07.2008
– ident: 2021111619350583000_29.1.63.84
  doi: 10.1111/j.1365-2443.2008.01163.x
– volume: 7
  start-page: 3509
  year: 1988
  ident: 2021111619350583000_29.1.63.9
  article-title: Heat shock but not other stress inducers leads to the disruption of a sub-set of snRNPs and inhibition of in vitro splicing in HeLa cells
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1988.tb03227.x
– ident: 2021111619350583000_29.1.63.57
  doi: 10.1016/j.molcel.2014.03.021
– ident: 2021111619350583000_29.1.63.77
  doi: 10.1186/1742-4690-8-47
– ident: 2021111619350583000_29.1.63.30
  doi: 10.1073/pnas.0403533101
– ident: 2021111619350583000_29.1.63.62
  doi: 10.1016/S0092-8674(02)01038-3
– ident: 2021111619350583000_29.1.63.60
  doi: 10.1016/j.molcel.2007.08.028
– ident: 2021111619350583000_29.1.63.70
  doi: 10.1101/gr.134445.111
– ident: 2021111619350583000_29.1.63.68
  doi: 10.1101/gad.8.22.2704
– ident: 2021111619350583000_29.1.63.79
  doi: 10.1101/gad.11.3.334
– ident: 2021111619350583000_29.1.63.85
  doi: 10.1016/0092-8674(86)90382-X
– ident: 2021111619350583000_29.1.63.32
  doi: 10.1101/gad.235770.113
– ident: 2021111619350583000_29.1.63.6
  doi: 10.1016/0092-8674(94)90182-1
– ident: 2021111619350583000_29.1.63.48
  doi: 10.1002/wrna.86
– ident: 2021111619350583000_29.1.63.83
  doi: 10.1089/1066527041410418
– ident: 2021111619350583000_29.1.63.78
  doi: 10.1016/j.cell.2013.06.052
– ident: 2021111619350583000_29.1.63.71
  doi: 10.1093/bioinformatics/btp120
– ident: 2021111619350583000_29.1.63.13
  doi: 10.1016/j.molcel.2010.11.004
– ident: 2021111619350583000_29.1.63.74
  doi: 10.1038/nrc3430
– ident: 2021111619350583000_29.1.63.29
  doi: 10.1158/0008-5472.SABCS-2082
– ident: 2021111619350583000_29.1.63.47
  doi: 10.1083/jcb.201107093
– ident: 2021111619350583000_29.1.63.75
  doi: 10.1101/gr.131847.111
– ident: 2021111619350583000_29.1.63.2
  doi: 10.1038/nsmb.2143
– ident: 2021111619350583000_29.1.63.20
  doi: 10.1006/excr.1998.4083
– ident: 2021111619350583000_29.1.63.26
  doi: 10.1038/369678a0
– volume: 13
  start-page: 5679
  year: 1994
  ident: 2021111619350583000_29.1.63.44
  article-title: Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1994.tb06906.x
– ident: 2021111619350583000_29.1.63.61
  doi: 10.1016/j.molcel.2006.07.022
– ident: 2021111619350583000_29.1.63.64
  doi: 10.1083/jcb.144.4.617
– ident: 2021111619350583000_29.1.63.86
  doi: 10.1007/s00412-013-0407-z
– ident: 2021111619350583000_29.1.63.18
  doi: 10.1016/j.cell.2005.06.015
– ident: 2021111619350583000_29.1.63.50
  doi: 10.1261/rna.039081.113
– ident: 2021111619350583000_29.1.63.40
  doi: 10.1016/0092-8674(89)90127-X
– ident: 2021111619350583000_29.1.63.36
  doi: 10.1101/gad.178962.111
– ident: 2021111619350583000_29.1.63.46
  doi: 10.1101/gad.1525507
– ident: 2021111619350583000_29.1.63.54
  doi: 10.1038/nbt.1861
– ident: 2021111619350583000_29.1.63.22
  doi: 10.1016/j.chembiol.2010.11.009
– ident: 2021111619350583000_29.1.63.34
  doi: 10.1038/30277
– volume: 19
  start-page: 6991
  year: 1999
  ident: 2021111619350583000_29.1.63.53
  article-title: The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.19.10.6991
– ident: 2021111619350583000_29.1.63.23
  doi: 10.1093/nar/gkp542
– ident: 2021111619350583000_29.1.63.24
  doi: 10.1038/ncomms1998
– ident: 2021111619350583000_29.1.63.14
  doi: 10.1016/0092-8674(89)90602-8
– ident: 2021111619350583000_29.1.63.82
  doi: 10.1101/gad.188037.112
– ident: 2021111619350583000_29.1.63.59
  doi: 10.1016/j.celrep.2014.04.044
– reference: 19244129 - Cancer Res. 2009 Mar 1;69(5):2082-90
– reference: 21536904 - Proc Natl Acad Sci U S A. 2011 May 17;108(20):8233-8
– reference: 24274751 - Annu Rev Genet. 2013;47:139-65
– reference: 22871813 - Nat Commun. 2012;3:994
– reference: 21682887 - Retrovirology. 2011;8:47
– reference: 24637117 - Genes Dev. 2014 Mar 15;28(6):637-51
– reference: 22817891 - Cell. 2012 Jul 20;150(2):279-90
– reference: 19116344 - Endocrinology. 2009 May;150(5):2087-97
– reference: 8208298 - Nature. 1994 Jun 23;369(6482):678-82
– reference: 8091213 - Science. 1994 Sep 23;265(5180):1866-9
– reference: 17361132 - Nature. 2007 Apr 19;446(7138):926-9
– reference: 9799243 - EMBO J. 1998 Nov 2;17(21):6359-67
– reference: 10490636 - Mol Cell Biol. 1999 Oct;19(10):6991-7000
– reference: 22955974 - Genome Res. 2012 Sep;22(9):1616-25
– reference: 11461155 - Mol Cell Neurosci. 2001 Jul;18(1):80-90
– reference: 21095587 - Mol Cell. 2010 Nov 24;40(4):571-81
– reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8
– reference: 22955616 - Nature. 2012 Sep 6;489(7414):57-74
– reference: 21929696 - Genes Cells. 2011 Oct;16(10):1035-49
– reference: 15285897 - J Comput Biol. 2004;11(2-3):377-94
– reference: 7958927 - Genes Dev. 1994 Nov 15;8(22):2704-17
– reference: 16973434 - Mol Cell. 2006 Sep 15;23(6):819-29
– reference: 8287477 - Cell. 1994 Jan 14;76(1):183-92
– reference: 25258385 - Genome Res. 2014 Nov;24(11):1774-86
– reference: 18256266 - J Neurosci. 2008 Feb 6;28(6):1452-9
– reference: 24746700 - Mol Cell. 2014 May 8;54(3):445-59
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 22436691 - Genome Biol. 2012;13(3):R17
– reference: 23707382 - J Mol Biol. 2013 Aug 23;425(16):2894-909
– reference: 9030686 - Genes Dev. 1997 Feb 1;11(3):334-44
– reference: 23097425 - RNA. 2012 Dec;18(12):2174-86
– reference: 19261174 - Genome Biol. 2009;10(3):R25
– reference: 20074525 - Cell Metab. 2010 Jan;11(1):23-34
– reference: 21823230 - Wiley Interdiscip Rev RNA. 2011 Sep-Oct;2(5):700-17
– reference: 8387646 - Nature. 1993 May 20;363(6426):283-6
– reference: 17699631 - Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13684-9
– reference: 15210956 - Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9666-70
– reference: 23911323 - Cell. 2013 Aug 1;154(3):583-95
– reference: 17060476 - J Exp Med. 2006 Oct 30;203(11):2433-40
– reference: 14765198 - Nature. 2004 Feb 5;427(6974):553-8
– reference: 23303139 - Nat Rev Cancer. 2013 Feb;13(2):83-96
– reference: 14731397 - Mol Cell. 2004 Jan 16;13(1):91-100
– reference: 23766421 - Genome Res. 2013 Oct;23(10):1636-50
– reference: 9404896 - RNA. 1997 Dec;3(12):1456-67
– reference: 17606642 - Genes Dev. 2007 Jul 1;21(13):1636-52
– reference: 21516085 - Nat Biotechnol. 2011 May;29(5):436-42
– reference: 2686839 - Cell. 1989 Dec 1;59(5):789-95
– reference: 9037021 - Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1148-53
– reference: 2421918 - Cell. 1986 Apr 25;45(2):185-93
– reference: 22349816 - Oncogene. 2013 Jan 3;32(1):1-14
– reference: 22118462 - Cell. 2011 Nov 23;147(5):1054-65
– reference: 23525660 - Chromosoma. 2013 Jun;122(3):191-207
– reference: 8617202 - EMBO J. 1996 Jan 15;15(2):265-75
– reference: 21276940 - Chem Biol. 2011 Jan 28;18(1):67-76
– reference: 22539649 - Genome Res. 2012 Oct;22(10):2031-42
– reference: 22661231 - Genes Dev. 2012 Jun 1;26(11):1209-23
– reference: 7988565 - EMBO J. 1994 Dec 1;13(23):5679-88
– reference: 18298798 - Genes Cells. 2008 Mar;13(3):233-44
– reference: 24013503 - Genes Dev. 2013 Sep 1;27(17):1903-16
– reference: 20981025 - Nat Commun. 2010;1:97
– reference: 10037785 - J Cell Biol. 1999 Feb 22;144(4):617-29
– reference: 19656867 - RNA. 2009 Oct;15(10):1896-908
– reference: 22156210 - Genes Dev. 2011 Dec 1;25(23):2502-12
– reference: 11179423 - Mol Biol Cell. 2001 Feb;12(2):393-406
– reference: 22056773 - Nat Struct Mol Biol. 2011 Dec;18(12):1435-40
– reference: 23812748 - Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11934-9
– reference: 9603524 - Nature. 1998 May 14;393(6681):185-7
– reference: 1331983 - Nucleic Acids Res. 1992 Oct 25;20(20):5263-9
– reference: 21057496 - Nat Methods. 2010 Dec;7(12):1009-15
– reference: 24857664 - Cell Rep. 2014 Jun 12;7(5):1362-70
– reference: 17936706 - Mol Cell. 2007 Oct 12;28(1):79-90
– reference: 7585254 - RNA. 1995 Sep;1(7):692-706
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 21949414 - J Cell Biol. 2011 Oct 3;195(1):27-40
– reference: 10999598 - RNA. 2000 Sep;6(9):1197-211
– reference: 22387025 - Mol Cell. 2012 Apr 13;46(1):30-42
– reference: 23616639 - RNA. 2013 Jun;19(6):811-27
– reference: 12419250 - Cell. 2002 Nov 1;111(3):407-17
– reference: 19854129 - Mol Cell. 2009 Oct 23;36(2):178-91
– reference: 2974799 - EMBO J. 1988 Nov;7(11):3509-18
– reference: 16096058 - Cell. 2005 Aug 12;122(3):379-91
– reference: 19561200 - Nucleic Acids Res. 2009 Sep;37(17):e115
– reference: 17369403 - Genes Dev. 2007 Mar 15;21(6):708-18
– reference: 9637771 - Exp Cell Res. 1998 Jun 15;241(2):300-8
– reference: 2655924 - Cell. 1989 May 19;57(4):573-83
SSID ssj0006066
Score 2.59206
Snippet Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 63
SubjectTerms Animals
DNA Damage
Embryonic Stem Cells
Gene Expression Regulation
Humans
Introns
Liver - metabolism
Mice
Phosphorylation
Protein-Serine-Threonine Kinases - metabolism
Protein-Tyrosine Kinases - metabolism
Research Paper
RNA Processing, Post-Transcriptional
RNA Splicing
RNA, Messenger - metabolism
RNA-Binding Proteins - metabolism
Title Detained introns are a novel, widespread class of post-transcriptionally spliced introns
URI https://www.ncbi.nlm.nih.gov/pubmed/25561496
https://www.proquest.com/docview/1643146690
https://www.proquest.com/docview/1676358205
https://pubmed.ncbi.nlm.nih.gov/PMC4281565
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zi9swEBbtlkJfSu-mFyoU-uA6jXzI1mPowdILCruQN6PI0m7aYIfYbtn99Z2R5SPbtGz7YoIiydjzeQ5p9A0hLwKtJVgFg1SIyo-MCH2hUu3HTKpcIOHIEgPFz1_44XH0YREvhq0Ye7qkXk7V-d5zJf8jVWgDueIp2X-QbD8pNMBvkC9cQcJwvZSM32L-J-hJJH3YYs4LpnFJryh_tHvvP1e5rjbgFuaeQi_ZpjeXVe3XaKE6fSHX6zOvwn3sYaaxz4rM1JWFSD5kGPVhfNnU512Kofdp2refNvX3Nnl7vv3W9BBEguhNt5KzXm28-XS88MDi0cKD009i5mM9wNaUOP0ZCT-OXGUWp2DdksYYSK22dKrN2d3Zfo1uKwmcyHwaREnIGZIbD7ar26-_YNL6REMb4sxYBuOzdjwew75KrgUQVWDBi49fB3J5jOVs0OGey3F8wvjXu_ff9WF-C0wu5teOHJajW-SmizTovIXNbXJFF3fI9bb26NldsujAQ53IKYCHSmrB84oO0KEWOrQ0dD90qINON889cvz-3dGbQ9-V2fBVlIraB59WL-MwCJeG5RDhah0ayQ28jFSHMlahTHP4bnWARExcJ1pxGaqUpywB2wgj75ODoiz0Q0JjKSVnqcGTLZFIglTy2CQqEcYwYbicEL97cZlyHPRYCmWd7RfUhLzs-29a9pU_9nzeySEDBYm7XrLQZVNlDHxucAe4mP2tD_IygjMcT8iDVnb9_ZCjj0WCT0iyI9W-AxK07_5TrE4tUTuE9gwCpkeXforH5MbwpT0hB_W20U_B6a2XzyxUfwF5eK4V
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detained+introns+are+a+novel%2C+widespread+class+of+post-transcriptionally+spliced+introns&rft.jtitle=Genes+%26+development&rft.au=Boutz%2C+Paul+L.&rft.au=Bhutkar%2C+Arjun&rft.au=Sharp%2C+Phillip+A.&rft.date=2015-01-01&rft.issn=0890-9369&rft.eissn=1549-5477&rft.volume=29&rft.issue=1&rft.spage=63&rft.epage=80&rft_id=info:doi/10.1101%2Fgad.247361.114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_gad_247361_114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon