Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?

Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decade...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 37; no. 11; pp. 2514 - 2525
Main Authors Bernard, Olivier, Lalande, Alain, Zotti, Clement, Cervenansky, Frederick, Yang, Xin, Heng, Pheng-Ann, Cetin, Irem, Lekadir, Karim, Camara, Oscar, Gonzalez Ballester, Miguel Angel, Sanroma, Gerard, Napel, Sandy, Petersen, Steffen, Tziritas, Georgios, Grinias, Elias, Khened, Mahendra, Kollerathu, Varghese Alex, Krishnamurthi, Ganapathy, Rohe, Marc-Michel, Pennec, Xavier, Sermesant, Maxime, Isensee, Fabian, Jager, Paul, Maier-Hein, Klaus H., Full, Peter M., Wolf, Ivo, Engelhardt, Sandy, Baumgartner, Christian F., Koch, Lisa M., Wolterink, Jelmer M., Isgum, Ivana, Jang, Yeonggul, Hong, Yoonmi, Patravali, Jay, Jain, Shubham, Humbert, Olivier, Jodoin, Pierre-Marc
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2018.2837502

Cover

Loading…
Abstract Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.
AbstractList Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.
Delineation of the left ventricular cavity,myocardium, and right ventricle from cardiac magneticresonance images (multi-slice 2-D cine MRI) is a commonclinical task to establish diagnosis. The automationof the corresponding tasks has thus been the subjectof intense research over the past decades. In this paper,we introduce the “Automatic Cardiac Diagnosis Challenge”dataset (ACDC), the largest publicly available and fully annotateddataset for the purpose of cardiac MRI (CMR) assessment.The dataset contains data from 150 multi-equipmentsCMRI recordings with reference measurements and classificationfrom two medical experts. The overarching objectiveof this paper is to measure how far state-of-the-art deeplearning methods can go at assessing CMRI, i.e., segmentingthe myocardium and the two ventricles as well as classifyingpathologies. In the wake of the 2017 MICCAI-ACDCchallenge, we report results from deep learning methodsprovided by nine research groups for the segmentation taskand four groups for the classificationtask. Results show thatthe best methods faithfully reproduce the expert analysis,leading to a mean value of 0.97 correlation score for theautomatic extraction of clinical indices and an accuracy of0.96 for automatic diagnosis. These results clearly openthe door to highly accurate and fully automatic analysis ofcardiac CMRI. We also identify scenarios for which deeplearning methods are still failing. Both the dataset anddetailed results are publicly available online, while the platformwill remain open for new submissions.
Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.
Author Yang, Xin
Engelhardt, Sandy
Jang, Yeonggul
Lalande, Alain
Zotti, Clement
Heng, Pheng-Ann
Full, Peter M.
Jain, Shubham
Tziritas, Georgios
Wolf, Ivo
Gonzalez Ballester, Miguel Angel
Lekadir, Karim
Isgum, Ivana
Cervenansky, Frederick
Wolterink, Jelmer M.
Isensee, Fabian
Cetin, Irem
Rohe, Marc-Michel
Hong, Yoonmi
Krishnamurthi, Ganapathy
Napel, Sandy
Jager, Paul
Maier-Hein, Klaus H.
Humbert, Olivier
Grinias, Elias
Jodoin, Pierre-Marc
Camara, Oscar
Pennec, Xavier
Patravali, Jay
Baumgartner, Christian F.
Petersen, Steffen
Kollerathu, Varghese Alex
Bernard, Olivier
Sermesant, Maxime
Khened, Mahendra
Koch, Lisa M.
Sanroma, Gerard
Author_xml – sequence: 1
  givenname: Olivier
  orcidid: 0000-0003-0752-9946
  surname: Bernard
  fullname: Bernard, Olivier
  email: olivier.bernard@creatis.insa-lyon.fr
  organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Lyon, France
– sequence: 2
  givenname: Alain
  orcidid: 0000-0002-7970-366X
  surname: Lalande
  fullname: Lalande, Alain
  organization: Le2i Laboratory, CNRS FRE 2005, University of Burgundy, Dijon, France
– sequence: 3
  givenname: Clement
  orcidid: 0000-0002-0713-9924
  surname: Zotti
  fullname: Zotti, Clement
  organization: Computer Science Department, University of Sherbrooke, Sherbrooke, Canada
– sequence: 4
  givenname: Frederick
  surname: Cervenansky
  fullname: Cervenansky, Frederick
  organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Lyon, France
– sequence: 5
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 6
  givenname: Pheng-Ann
  surname: Heng
  fullname: Heng, Pheng-Ann
  organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
– sequence: 7
  givenname: Irem
  surname: Cetin
  fullname: Cetin, Irem
  organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 8
  givenname: Karim
  surname: Lekadir
  fullname: Lekadir, Karim
  organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 9
  givenname: Oscar
  surname: Camara
  fullname: Camara, Oscar
  organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 10
  givenname: Miguel Angel
  surname: Gonzalez Ballester
  fullname: Gonzalez Ballester, Miguel Angel
  organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 11
  givenname: Gerard
  surname: Sanroma
  fullname: Sanroma, Gerard
  organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain
– sequence: 12
  givenname: Sandy
  surname: Napel
  fullname: Napel, Sandy
  organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
– sequence: 13
  givenname: Steffen
  surname: Petersen
  fullname: Petersen, Steffen
  organization: William Harvey Research Institute, Queen Mary University of London, London, U.K
– sequence: 14
  givenname: Georgios
  orcidid: 0000-0002-1802-1825
  surname: Tziritas
  fullname: Tziritas, Georgios
  organization: Department of Computer Science, University of Crete, Heraklion, Greece
– sequence: 15
  givenname: Elias
  surname: Grinias
  fullname: Grinias, Elias
  organization: Department of Computer Science, University of Crete, Heraklion, Greece
– sequence: 16
  givenname: Mahendra
  surname: Khened
  fullname: Khened, Mahendra
  organization: Department of Engineering Design, IIT Madras, Chennai, India
– sequence: 17
  givenname: Varghese Alex
  surname: Kollerathu
  fullname: Kollerathu, Varghese Alex
  organization: Department of Engineering Design, IIT Madras, Chennai, India
– sequence: 18
  givenname: Ganapathy
  surname: Krishnamurthi
  fullname: Krishnamurthi, Ganapathy
  organization: Department of Engineering Design, IIT Madras, Chennai, India
– sequence: 19
  givenname: Marc-Michel
  surname: Rohe
  fullname: Rohe, Marc-Michel
  organization: Inria-Asclepios Project, Sophia Antipolis, France
– sequence: 20
  givenname: Xavier
  surname: Pennec
  fullname: Pennec, Xavier
  organization: Inria-Asclepios Project, Sophia Antipolis, France
– sequence: 21
  givenname: Maxime
  orcidid: 0000-0002-6256-8350
  surname: Sermesant
  fullname: Sermesant, Maxime
  organization: Inria-Asclepios Project, Sophia Antipolis, France
– sequence: 22
  givenname: Fabian
  surname: Isensee
  fullname: Isensee, Fabian
  organization: Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
– sequence: 23
  givenname: Paul
  surname: Jager
  fullname: Jager, Paul
  organization: Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
– sequence: 24
  givenname: Klaus H.
  surname: Maier-Hein
  fullname: Maier-Hein, Klaus H.
  organization: Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
– sequence: 25
  givenname: Peter M.
  surname: Full
  fullname: Full, Peter M.
  organization: Department of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany
– sequence: 26
  givenname: Ivo
  surname: Wolf
  fullname: Wolf, Ivo
  organization: Department of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany
– sequence: 27
  givenname: Sandy
  surname: Engelhardt
  fullname: Engelhardt, Sandy
  organization: Department of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany
– sequence: 28
  givenname: Christian F.
  orcidid: 0000-0002-3629-4384
  surname: Baumgartner
  fullname: Baumgartner, Christian F.
  organization: Computer Vision Laboratory, ETH Zürich, Zürich, Switzerland
– sequence: 29
  givenname: Lisa M.
  surname: Koch
  fullname: Koch, Lisa M.
  organization: Computer Vision and Geometry Group, ETH Zürich, Zürich, Switzerland
– sequence: 30
  givenname: Jelmer M.
  orcidid: 0000-0001-5505-475X
  surname: Wolterink
  fullname: Wolterink, Jelmer M.
  organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 31
  givenname: Ivana
  surname: Isgum
  fullname: Isgum, Ivana
  organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
– sequence: 32
  givenname: Yeonggul
  surname: Jang
  fullname: Jang, Yeonggul
  organization: Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, South Korea
– sequence: 33
  givenname: Yoonmi
  orcidid: 0000-0003-2416-8249
  surname: Hong
  fullname: Hong, Yoonmi
  organization: Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, South Korea
– sequence: 34
  givenname: Jay
  surname: Patravali
  fullname: Patravali, Jay
  organization: Qure.ai company, Mumbai, India
– sequence: 35
  givenname: Shubham
  surname: Jain
  fullname: Jain, Shubham
  organization: Qure.ai company, Mumbai, India
– sequence: 36
  givenname: Olivier
  surname: Humbert
  fullname: Humbert, Olivier
  organization: TIRO-UMR E 4320 Laboratory, University of Nice, Nice, France
– sequence: 37
  givenname: Pierre-Marc
  orcidid: 0000-0002-6038-5753
  surname: Jodoin
  fullname: Jodoin, Pierre-Marc
  organization: Computer Science Department, University of Sherbrooke, Sherbrooke, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29994302$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01803621$$DView record in HAL
BookMark eNp9kc-LEzEcxYOsuN3VuyBIwIsepubHZJLsRUpX3UIXxVbwFjKZpM0yk9RkprD__U5p7WEPnvIlfN738X3vClyEGCwAbzGaYozk5_X9YkoQFlMiKGeIvAATzJgoCCv_XIAJIlwUCFXkElzl_IAQLhmSr8AlkVKWFJEJ2N9au4NLq1PwYQPX1myD_zvYDF1McDb0sdO9N_D-1wLOdWq8Hueh7X2x6tNg-iGN6MpuOhv6EYwB6tDAW683IWafb-Aiw35r4c8U69Z2cBXbvW2-vAYvnW6zfXN6r8Hvb1_X87ti-eP7Yj5bFqYUsi9oZTBzlrlaSMFoTR03rBEIcU6q2sqaM2Opo1pXDHFXl9w4ynHtJKON0yW9Bp-Oe7e6VbvkO50eVdRe3c2W6vA3hodoRfAej-zHI7tL8ZBArzqfjW1bHWwcsiKoErTEvJQj-uEZ-hCHFMZLFMGEy6oi4mD-_kQNdWebs_-_9EcAHQGTYs7JujOCkToUrMaC1aFgdSp4lFTPJMYfg--T9u3_hO-OQm-tPfsIWqGSUfoEp6CwxQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3456674
crossref_primary_10_1016_j_neunet_2024_107063
crossref_primary_10_1016_j_compbiomed_2024_108785
crossref_primary_10_1016_j_compbiomed_2024_108784
crossref_primary_10_1016_j_compmedimag_2024_102476
crossref_primary_10_1016_j_eswa_2024_125119
crossref_primary_10_1109_JBHI_2021_3064353
crossref_primary_10_1007_s11517_025_03342_w
crossref_primary_10_3390_s21072375
crossref_primary_10_1002_jmri_29373
crossref_primary_10_1109_TMI_2023_3251368
crossref_primary_10_1007_s44196_022_00080_x
crossref_primary_10_1088_1361_6560_acf90f
crossref_primary_10_1109_TMI_2022_3203309
crossref_primary_10_1016_j_engappai_2023_106012
crossref_primary_10_1109_TMI_2021_3097665
crossref_primary_10_2139_ssrn_3990565
crossref_primary_10_1038_s41598_023_28348_y
crossref_primary_10_1016_j_compbiomed_2024_108557
crossref_primary_10_3390_jimaging9040081
crossref_primary_10_1016_j_eswa_2023_120877
crossref_primary_10_3390_jcm11133910
crossref_primary_10_1148_ryai_230132
crossref_primary_10_1016_j_neunet_2025_107334
crossref_primary_10_1016_j_artmed_2022_102476
crossref_primary_10_1016_j_media_2021_102146
crossref_primary_10_1109_TMI_2022_3215798
crossref_primary_10_1109_TMI_2022_3211195
crossref_primary_10_1016_j_media_2023_102953
crossref_primary_10_3390_s24237799
crossref_primary_10_1088_1361_6560_ad4b91
crossref_primary_10_1016_j_patcog_2022_109208
crossref_primary_10_3390_e25030431
crossref_primary_10_1007_s11760_023_02528_9
crossref_primary_10_1007_s11517_023_02833_y
crossref_primary_10_3390_diagnostics14242820
crossref_primary_10_1016_j_media_2022_102428
crossref_primary_10_1016_j_media_2022_102426
crossref_primary_10_3390_math8091511
crossref_primary_10_1016_j_compbiomed_2022_105715
crossref_primary_10_1016_j_media_2024_103274
crossref_primary_10_3389_fcvm_2022_1009445
crossref_primary_10_1177_01617346221099435
crossref_primary_10_1161_CIRCRESAHA_121_319969
crossref_primary_10_3390_app122312163
crossref_primary_10_1007_s13239_021_00591_2
crossref_primary_10_1007_s00330_022_08616_7
crossref_primary_10_1371_journal_pone_0300039
crossref_primary_10_3390_jimaging9030069
crossref_primary_10_1007_s00521_024_09890_w
crossref_primary_10_3390_app14072986
crossref_primary_10_1016_j_cmpb_2025_108722
crossref_primary_10_1115_1_4048032
crossref_primary_10_3390_tomography8030108
crossref_primary_10_1088_1361_6560_ad9e69
crossref_primary_10_1007_s11547_024_01867_y
crossref_primary_10_3889_oamjms_2021_7806
crossref_primary_10_1088_2057_1976_ab9556
crossref_primary_10_1016_j_neunet_2025_107386
crossref_primary_10_1109_TPAMI_2023_3243040
crossref_primary_10_31083_j_rcm2512447
crossref_primary_10_3390_bioengineering11030219
crossref_primary_10_1016_j_compbiomed_2024_108592
crossref_primary_10_1093_ehjdh_ztad044
crossref_primary_10_3390_s22103820
crossref_primary_10_1016_j_knosys_2021_108021
crossref_primary_10_1016_j_neucom_2020_08_030
crossref_primary_10_1016_j_media_2023_102906
crossref_primary_10_3390_bioengineering11111146
crossref_primary_10_1007_s11548_024_03221_z
crossref_primary_10_1016_j_mri_2024_110244
crossref_primary_10_1155_2021_9960199
crossref_primary_10_1007_s40747_025_01796_x
crossref_primary_10_1109_ACCESS_2025_3539417
crossref_primary_10_1002_mrm_30083
crossref_primary_10_1007_s11760_022_02388_9
crossref_primary_10_1002_acm2_13597
crossref_primary_10_1145_3527849
crossref_primary_10_1145_3615862
crossref_primary_10_1016_j_media_2023_102917
crossref_primary_10_1080_21681163_2022_2125697
crossref_primary_10_1016_j_xcrm_2022_100869
crossref_primary_10_1016_j_neunet_2025_107168
crossref_primary_10_3389_fcvm_2022_831080
crossref_primary_10_1016_j_media_2021_102328
crossref_primary_10_1007_s11042_023_16252_6
crossref_primary_10_1109_ACCESS_2024_3514215
crossref_primary_10_1109_JBHI_2023_3337521
crossref_primary_10_1016_j_compbiomed_2023_106908
crossref_primary_10_1016_j_compmedimag_2022_102088
crossref_primary_10_7498_aps_70_20210885
crossref_primary_10_1109_ACCESS_2023_3294569
crossref_primary_10_1109_TMI_2021_3108881
crossref_primary_10_1016_j_media_2019_101535
crossref_primary_10_1016_j_media_2019_101537
crossref_primary_10_1007_s11517_023_02920_0
crossref_primary_10_1109_JBHI_2022_3158897
crossref_primary_10_1002_mp_17761
crossref_primary_10_1007_s10278_024_01019_8
crossref_primary_10_1007_s13239_020_00494_8
crossref_primary_10_3390_app14167352
crossref_primary_10_1016_j_bspc_2025_107668
crossref_primary_10_1007_s00371_024_03486_0
crossref_primary_10_7705_biomedica_7115
crossref_primary_10_1016_j_compmedimag_2021_101942
crossref_primary_10_1016_j_media_2025_103501
crossref_primary_10_3390_electronics11172749
crossref_primary_10_1002_ima_22818
crossref_primary_10_1016_j_jcmg_2021_11_017
crossref_primary_10_1016_j_bbe_2022_09_005
crossref_primary_10_1016_j_media_2024_103222
crossref_primary_10_1109_TETCI_2022_3146965
crossref_primary_10_1137_23M161433X
crossref_primary_10_1155_2019_5636423
crossref_primary_10_1186_s12968_023_00934_z
crossref_primary_10_1016_j_cmpb_2023_107679
crossref_primary_10_1007_s10044_024_01384_8
crossref_primary_10_3390_bioengineering10050623
crossref_primary_10_1016_j_compmedimag_2021_101952
crossref_primary_10_1016_j_mri_2021_01_005
crossref_primary_10_1007_s11042_022_14202_2
crossref_primary_10_1166_jmihi_2021_3510
crossref_primary_10_1109_TMI_2022_3193029
crossref_primary_10_1016_j_knosys_2022_110033
crossref_primary_10_1016_j_media_2024_103450
crossref_primary_10_1080_02564602_2021_1955760
crossref_primary_10_3390_electronics11213594
crossref_primary_10_1007_s00521_024_10824_9
crossref_primary_10_1002_mp_17547
crossref_primary_10_1002_mrm_28361
crossref_primary_10_1007_s10278_025_01387_9
crossref_primary_10_1038_s41569_021_00527_2
crossref_primary_10_1016_j_hfc_2023_03_005
crossref_primary_10_1007_s10994_024_06728_3
crossref_primary_10_1007_s12350_019_01594_2
crossref_primary_10_1016_j_media_2024_103201
crossref_primary_10_1002_nbm_5230
crossref_primary_10_1016_j_patcog_2024_111216
crossref_primary_10_1016_j_pcad_2024_06_004
crossref_primary_10_1007_s11760_021_01978_3
crossref_primary_10_1016_j_jcmg_2021_10_008
crossref_primary_10_1038_s41598_022_10464_w
crossref_primary_10_1002_mrm_28596
crossref_primary_10_1016_j_neucom_2024_127912
crossref_primary_10_1007_s00530_024_01498_3
crossref_primary_10_1145_3517190
crossref_primary_10_1016_j_imavis_2024_105200
crossref_primary_10_1016_j_compbiomed_2022_105799
crossref_primary_10_1109_JBHI_2024_3504829
crossref_primary_10_3390_bioengineering10111332
crossref_primary_10_3390_app12052627
crossref_primary_10_1007_s00371_024_03497_x
crossref_primary_10_1038_s41598_025_88567_3
crossref_primary_10_1093_ehjdh_ztab033
crossref_primary_10_1016_j_apm_2025_115975
crossref_primary_10_1109_TCSVT_2024_3432751
crossref_primary_10_3389_fcvm_2023_1167500
crossref_primary_10_1016_j_compbiomed_2022_106439
crossref_primary_10_1016_j_bspc_2023_104631
crossref_primary_10_1007_s11517_022_02723_9
crossref_primary_10_1109_ACCESS_2024_3447528
crossref_primary_10_3390_a14070212
crossref_primary_10_1016_j_asoc_2023_110633
crossref_primary_10_1016_j_neunet_2020_03_007
crossref_primary_10_1016_j_artmed_2021_102140
crossref_primary_10_1002_ima_23095
crossref_primary_10_1038_s41597_025_04401_5
crossref_primary_10_1109_ACCESS_2023_3234241
crossref_primary_10_1109_JBHI_2024_3406786
crossref_primary_10_1088_1361_6560_acb19a
crossref_primary_10_1007_s00117_022_01060_0
crossref_primary_10_1002_mp_17712
crossref_primary_10_3389_fcvm_2023_1030864
crossref_primary_10_3233_JIFS_211424
crossref_primary_10_1088_1361_6560_acca5c
crossref_primary_10_1016_j_imavis_2024_105228
crossref_primary_10_1016_j_media_2019_101591
crossref_primary_10_1109_TMI_2024_3469214
crossref_primary_10_1016_j_compbiomed_2024_109050
crossref_primary_10_1007_s13042_024_02469_w
crossref_primary_10_1016_j_eswa_2025_127223
crossref_primary_10_3390_a17010010
crossref_primary_10_1016_j_mri_2023_06_020
crossref_primary_10_1016_j_bspc_2024_107164
crossref_primary_10_1016_j_cpcardiol_2022_101330
crossref_primary_10_3389_fphys_2021_716597
crossref_primary_10_1016_j_compbiomed_2023_106736
crossref_primary_10_1007_s13042_024_02410_1
crossref_primary_10_1109_RBME_2018_2885714
crossref_primary_10_1016_j_compbiomed_2023_106973
crossref_primary_10_1016_j_eswa_2022_116704
crossref_primary_10_1016_j_compbiomed_2021_105041
crossref_primary_10_55452_1998_6688_2024_21_2_42_53
crossref_primary_10_1109_TMI_2023_3279110
crossref_primary_10_1109_TMI_2021_3056531
crossref_primary_10_1371_journal_pone_0234896
crossref_primary_10_1016_j_imavis_2024_105246
crossref_primary_10_1016_j_compbiomed_2023_106985
crossref_primary_10_1016_j_artmed_2021_102154
crossref_primary_10_1007_s13369_024_09131_1
crossref_primary_10_3390_s23239502
crossref_primary_10_1016_j_cmpb_2021_106059
crossref_primary_10_1002_mrm_27772
crossref_primary_10_1016_j_compbiomed_2020_103884
crossref_primary_10_1016_j_compbiomed_2023_106998
crossref_primary_10_1016_j_mri_2018_11_014
crossref_primary_10_1148_ryai_2020190064
crossref_primary_10_1016_j_compbiomed_2023_107840
crossref_primary_10_1109_TRPMS_2024_3410021
crossref_primary_10_1109_TMI_2021_3069634
crossref_primary_10_1088_1361_6560_ab4aa9
crossref_primary_10_7717_peerj_14939
crossref_primary_10_3390_jcm11102866
crossref_primary_10_1088_1361_6560_acf10f
crossref_primary_10_1016_j_patcog_2024_110424
crossref_primary_10_1186_s12968_020_00683_3
crossref_primary_10_1109_TPAMI_2021_3113077
crossref_primary_10_1088_1361_6560_ad3321
crossref_primary_10_1186_s12938_024_01299_9
crossref_primary_10_1007_s11517_022_02612_1
crossref_primary_10_1016_j_patcog_2024_110426
crossref_primary_10_1016_j_compbiomed_2020_103877
crossref_primary_10_3390_app14188445
crossref_primary_10_1186_s13244_023_01401_0
crossref_primary_10_1016_j_neunet_2024_106546
crossref_primary_10_1088_1361_6560_accdb1
crossref_primary_10_1093_ehjimp_qyae094
crossref_primary_10_1007_s11227_021_03664_0
crossref_primary_10_1088_1742_6596_2327_1_012073
crossref_primary_10_1016_j_media_2020_101792
crossref_primary_10_3390_bioengineering10020225
crossref_primary_10_3788_LOP231800
crossref_primary_10_1016_j_ailsci_2023_100083
crossref_primary_10_1109_TPAMI_2024_3461321
crossref_primary_10_1007_s12194_024_00844_4
crossref_primary_10_2196_28114
crossref_primary_10_3390_s23146580
crossref_primary_10_1007_s11886_020_01402_1
crossref_primary_10_1007_s10489_023_05158_3
crossref_primary_10_1016_j_bspc_2023_105177
crossref_primary_10_1016_j_medengphy_2025_104285
crossref_primary_10_1007_s10489_024_06085_7
crossref_primary_10_1016_j_measurement_2023_113570
crossref_primary_10_32604_cmes_2022_023195
crossref_primary_10_1016_j_patrec_2021_10_025
crossref_primary_10_1142_S0129065722500435
crossref_primary_10_3389_fmed_2023_1114571
crossref_primary_10_1007_s10554_020_01935_0
crossref_primary_10_1109_TIM_2023_3332340
crossref_primary_10_3233_JIFS_219305
crossref_primary_10_1016_j_patcog_2024_110856
crossref_primary_10_1016_j_patcog_2024_110615
crossref_primary_10_3934_mbe_2023149
crossref_primary_10_1007_s12350_019_01674_3
crossref_primary_10_1007_s13369_024_09845_2
crossref_primary_10_1016_j_compbiomed_2022_106034
crossref_primary_10_1049_ipr2_12406
crossref_primary_10_1016_j_imavis_2024_105196
crossref_primary_10_3389_fninf_2022_933230
crossref_primary_10_1016_j_ymgmr_2024_101152
crossref_primary_10_1109_JBHI_2023_3318127
crossref_primary_10_1186_s12880_024_01301_9
crossref_primary_10_1002_ima_23131
crossref_primary_10_3390_s20051392
crossref_primary_10_1016_j_cviu_2021_103248
crossref_primary_10_1109_TCYB_2021_3126817
crossref_primary_10_1109_JBHI_2024_3404884
crossref_primary_10_1161_JAHA_120_016612
crossref_primary_10_1016_j_bspc_2024_106145
crossref_primary_10_1186_s12968_019_0532_9
crossref_primary_10_1016_j_asoc_2023_110128
crossref_primary_10_3389_fcvm_2023_1213290
crossref_primary_10_1007_s40747_024_01359_6
crossref_primary_10_1109_TCSVT_2023_3343632
crossref_primary_10_1038_s41598_024_57281_x
crossref_primary_10_1109_TIM_2024_3497060
crossref_primary_10_1109_TMI_2024_3358955
crossref_primary_10_1016_j_inffus_2024_102256
crossref_primary_10_1016_j_bspc_2022_103960
crossref_primary_10_1007_s12181_022_00548_2
crossref_primary_10_1016_j_bspc_2024_107202
crossref_primary_10_1016_j_compeleceng_2024_109654
crossref_primary_10_1109_TMI_2024_3377248
crossref_primary_10_1016_j_jjcc_2023_04_020
crossref_primary_10_47164_ijngc_v13i3_825
crossref_primary_10_1007_s11517_024_03273_y
crossref_primary_10_1038_s41467_020_20729_5
crossref_primary_10_1016_j_patcog_2020_107269
crossref_primary_10_1007_s12539_023_00581_z
crossref_primary_10_1016_j_compbiomed_2022_106051
crossref_primary_10_1016_j_inffus_2024_102263
crossref_primary_10_1016_j_bspc_2024_107450
crossref_primary_10_3390_bioengineering10070791
crossref_primary_10_1016_j_bspc_2025_107510
crossref_primary_10_1016_j_neucom_2024_128417
crossref_primary_10_1148_ryai_2019180080
crossref_primary_10_1016_j_bspc_2025_107508
crossref_primary_10_1016_j_knosys_2024_111664
crossref_primary_10_1016_j_patcog_2023_109318
crossref_primary_10_3390_bioengineering10101216
crossref_primary_10_3390_diagnostics13162667
crossref_primary_10_1007_s00138_024_01643_y
crossref_primary_10_1016_j_mri_2021_10_005
crossref_primary_10_1007_s11042_019_7305_1
crossref_primary_10_1016_j_eswa_2023_123052
crossref_primary_10_1109_TMI_2021_3090082
crossref_primary_10_1016_j_media_2020_101723
crossref_primary_10_1109_TPAMI_2020_3013679
crossref_primary_10_1109_TMI_2023_3325766
crossref_primary_10_1016_j_heliyon_2024_e26775
crossref_primary_10_1016_j_bspc_2020_102246
crossref_primary_10_1016_j_compmedimag_2022_102075
crossref_primary_10_1016_j_patcog_2024_110812
crossref_primary_10_1161_CIRCIMAGING_119_009214
crossref_primary_10_1109_TIM_2024_3488143
crossref_primary_10_1016_j_mlwa_2021_100078
crossref_primary_10_1016_j_heliyon_2022_e10872
crossref_primary_10_1093_ehjdh_ztae061
crossref_primary_10_1109_JBHI_2023_3317632
crossref_primary_10_1109_JBHI_2024_3492540
crossref_primary_10_3389_fendo_2024_1356055
crossref_primary_10_1016_j_array_2024_100357
crossref_primary_10_1166_jmihi_2022_3927
crossref_primary_10_1186_s12968_022_00855_3
crossref_primary_10_3390_jimaging6070065
crossref_primary_10_1016_j_bspc_2024_106984
crossref_primary_10_7759_cureus_64272
crossref_primary_10_1016_j_medengphy_2024_104162
crossref_primary_10_1016_j_cjca_2021_09_030
crossref_primary_10_1016_j_compbiomed_2023_107695
crossref_primary_10_1016_j_inffus_2024_102634
crossref_primary_10_1109_TMI_2019_2900516
crossref_primary_10_1016_j_pnmrs_2025_101561
crossref_primary_10_1016_j_media_2022_102362
crossref_primary_10_3390_electronics13204063
crossref_primary_10_1148_ryai_2020200009
crossref_primary_10_1007_s10278_025_01437_2
crossref_primary_10_1016_j_compbiomed_2024_107991
crossref_primary_10_1016_j_cmpb_2022_106714
crossref_primary_10_1016_j_bspc_2024_106711
crossref_primary_10_1109_LRA_2019_2896518
crossref_primary_10_1016_j_displa_2025_103001
crossref_primary_10_1016_j_media_2022_102393
crossref_primary_10_1117_1_JMI_9_5_052407
crossref_primary_10_3233_XST_210879
crossref_primary_10_3390_math12192996
crossref_primary_10_1109_TRPMS_2024_3382318
crossref_primary_10_1186_s12968_023_00981_6
crossref_primary_10_1007_s10278_024_01299_0
crossref_primary_10_3390_clinpract15010017
crossref_primary_10_1016_j_compmedimag_2024_102416
crossref_primary_10_1186_s12968_021_00791_8
crossref_primary_10_1016_j_media_2020_101934
crossref_primary_10_1109_TBME_2022_3232730
crossref_primary_10_1016_j_compbiomed_2024_108853
crossref_primary_10_1109_JSTSP_2024_3523233
crossref_primary_10_1109_TIM_2022_3206810
crossref_primary_10_1016_j_rec_2019_05_014
crossref_primary_10_1016_j_neunet_2020_07_011
crossref_primary_10_1007_s10554_024_03247_z
crossref_primary_10_1109_JBHI_2024_3460745
crossref_primary_10_1148_ryai_2020200021
crossref_primary_10_1016_j_media_2022_102389
crossref_primary_10_1109_JBHI_2020_2986926
crossref_primary_10_1109_TMI_2019_2897112
crossref_primary_10_1016_j_jocmr_2024_101051
crossref_primary_10_1016_j_metrad_2024_100082
crossref_primary_10_1148_ryct_2019190057
crossref_primary_10_1016_j_cmpb_2024_108045
crossref_primary_10_1093_ehjimp_qyae042
crossref_primary_10_1109_ACCESS_2023_3260027
crossref_primary_10_1007_s00371_024_03756_x
crossref_primary_10_1109_TNB_2023_3276867
crossref_primary_10_1088_1361_6560_acc71f
crossref_primary_10_1016_j_neucom_2024_127379
crossref_primary_10_1109_TMI_2024_3484166
crossref_primary_10_1016_j_compbiomed_2023_107001
crossref_primary_10_1002_mp_16182
crossref_primary_10_1016_j_eswa_2024_125785
crossref_primary_10_3390_biomedicines10030639
crossref_primary_10_1109_TMI_2023_3264513
crossref_primary_10_1016_j_knosys_2022_109859
crossref_primary_10_1097_RTI_0000000000000459
crossref_primary_10_3390_jcm14020354
crossref_primary_10_1016_j_bspc_2023_105158
crossref_primary_10_1016_j_patrec_2025_03_005
crossref_primary_10_1016_j_asoc_2024_112255
crossref_primary_10_31083_j_rcm2204121
crossref_primary_10_1007_s00371_021_02315_y
crossref_primary_10_1016_j_neucom_2025_129668
crossref_primary_10_1016_j_neucom_2024_129326
crossref_primary_10_1016_j_media_2021_102066
crossref_primary_10_1016_j_media_2022_102564
crossref_primary_10_1186_s12968_022_00899_5
crossref_primary_10_1038_s41598_020_65153_3
crossref_primary_10_1016_j_cma_2023_116351
crossref_primary_10_1016_j_media_2020_101901
crossref_primary_10_1016_j_media_2020_101907
crossref_primary_10_1007_s12170_021_00678_4
crossref_primary_10_1038_s41467_023_43771_5
crossref_primary_10_1007_s11760_024_03694_0
crossref_primary_10_1016_j_compbiomed_2023_107268
crossref_primary_10_1016_j_compbiomed_2023_107266
crossref_primary_10_1016_j_media_2022_102597
crossref_primary_10_33571_rpolitec_v18n35a6
crossref_primary_10_1148_radiol_231269
crossref_primary_10_1016_j_media_2021_102273
crossref_primary_10_1016_j_media_2021_102035
crossref_primary_10_1007_s11042_023_17246_0
crossref_primary_10_1016_j_media_2023_102889
crossref_primary_10_1109_ACCESS_2020_2991424
crossref_primary_10_1007_s10278_023_00873_2
crossref_primary_10_3934_mbe_2024073
crossref_primary_10_3389_fnins_2021_652073
crossref_primary_10_1109_ACCESS_2019_2956210
crossref_primary_10_3389_fcvm_2021_742640
crossref_primary_10_1016_j_neunet_2024_106966
crossref_primary_10_1109_TMI_2023_3237183
crossref_primary_10_3390_bdcc8090099
crossref_primary_10_1016_j_jocmr_2024_101092
crossref_primary_10_1016_j_oceaneng_2022_110578
crossref_primary_10_3389_fcvm_2021_816985
crossref_primary_10_3390_jimaging8070194
crossref_primary_10_1016_j_compbiomed_2023_107290
crossref_primary_10_1088_1361_6560_acf2e5
crossref_primary_10_1016_j_bspc_2023_104791
crossref_primary_10_1007_s10554_022_02649_1
crossref_primary_10_1080_03772063_2022_2098836
crossref_primary_10_1259_bjr_20201060
crossref_primary_10_1109_TMI_2021_3117495
crossref_primary_10_1016_j_media_2022_102530
crossref_primary_10_1016_j_media_2022_102533
crossref_primary_10_1016_j_media_2022_102532
crossref_primary_10_1055_a_1244_2775
crossref_primary_10_1109_TNNLS_2022_3141119
crossref_primary_10_1016_j_media_2022_102528
crossref_primary_10_1016_j_media_2021_102029
crossref_primary_10_1142_S0129065721500374
crossref_primary_10_1016_j_compmedimag_2024_102340
crossref_primary_10_1016_j_jcmg_2021_08_011
crossref_primary_10_1016_j_compbiomed_2024_108673
crossref_primary_10_1016_j_artmed_2024_102900
crossref_primary_10_1109_TPAMI_2021_3100536
crossref_primary_10_1002_mrm_28294
crossref_primary_10_1002_mrm_29143
crossref_primary_10_1016_j_cmpb_2023_107398
crossref_primary_10_1016_j_ejrad_2020_109158
crossref_primary_10_1016_j_cmpb_2022_107099
crossref_primary_10_1109_TMI_2021_3060497
crossref_primary_10_1109_TIM_2024_3400353
crossref_primary_10_1016_j_irbm_2024_100850
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_1007_s10462_020_09871_0
crossref_primary_10_32604_cmc_2024_056478
crossref_primary_10_1002_ima_22992
crossref_primary_10_1038_s41598_021_83955_x
crossref_primary_10_1016_j_cvdhj_2021_11_007
crossref_primary_10_3233_XST_190621
crossref_primary_10_1002_mrm_30393
crossref_primary_10_1016_j_eswa_2024_125005
crossref_primary_10_3389_fcvm_2020_00105
crossref_primary_10_1016_j_media_2023_102846
crossref_primary_10_1088_1361_6560_ac0bd3
crossref_primary_10_1016_j_jcmg_2019_12_022
crossref_primary_10_1016_j_image_2021_116303
crossref_primary_10_1515_cdbme_2020_0008
crossref_primary_10_1109_TPAMI_2022_3215186
crossref_primary_10_1038_s41598_024_63022_x
crossref_primary_10_1016_j_media_2024_103151
crossref_primary_10_3389_fphys_2023_1027076
crossref_primary_10_1016_j_media_2024_103150
crossref_primary_10_1007_s11517_024_03192_y
crossref_primary_10_1016_j_neucom_2024_129147
crossref_primary_10_1016_j_imu_2022_100884
crossref_primary_10_3389_fvets_2023_1143986
crossref_primary_10_1016_j_artmed_2021_102078
crossref_primary_10_1109_ACCESS_2020_2974101
crossref_primary_10_3390_life12101570
crossref_primary_10_1007_s00246_024_03512_x
crossref_primary_10_1109_TMI_2020_3022693
crossref_primary_10_1016_j_media_2019_04_002
crossref_primary_10_1109_TMI_2024_3398728
crossref_primary_10_1016_j_compmedimag_2023_102283
crossref_primary_10_1080_02564602_2021_1937349
crossref_primary_10_1109_TCI_2024_3402347
crossref_primary_10_1016_j_neucom_2025_129818
crossref_primary_10_1002_mp_16108
crossref_primary_10_1007_s11042_021_11155_w
crossref_primary_10_1002_ima_22966
crossref_primary_10_1007_s11517_024_03039_6
crossref_primary_10_1016_j_media_2021_102223
crossref_primary_10_1016_j_rec_2020_06_036
crossref_primary_10_1088_1361_6560_ad2715
crossref_primary_10_1016_j_media_2019_101630
crossref_primary_10_1142_S2972370124500077
crossref_primary_10_2214_AJR_19_21986
crossref_primary_10_1016_j_ejmp_2021_02_024
crossref_primary_10_1016_j_media_2022_102516
crossref_primary_10_1109_TIP_2024_3483563
crossref_primary_10_1016_j_compbiomed_2024_108004
crossref_primary_10_1016_j_media_2022_102515
crossref_primary_10_1002_mp_15285
crossref_primary_10_1109_JBHI_2023_3267857
crossref_primary_10_3389_fcvm_2022_1009131
crossref_primary_10_17816_DD629866
crossref_primary_10_1016_j_bspc_2023_105663
crossref_primary_10_17816_DD640895
crossref_primary_10_1016_j_cmpb_2024_108544
crossref_primary_10_1016_j_compbiomed_2021_104472
crossref_primary_10_1007_s00371_024_03589_8
crossref_primary_10_1007_s00371_024_03543_8
crossref_primary_10_1007_s11547_020_01277_w
crossref_primary_10_34133_hds_0166
crossref_primary_10_1038_s41598_022_07186_4
crossref_primary_10_1109_TBME_2023_3321431
crossref_primary_10_1016_j_media_2025_103485
crossref_primary_10_1007_s13534_021_00212_w
crossref_primary_10_1016_j_bspc_2023_105890
crossref_primary_10_1007_s10489_024_06222_2
crossref_primary_10_1016_j_media_2023_102802
crossref_primary_10_1109_TPAMI_2024_3434435
crossref_primary_10_1109_TII_2024_3361021
crossref_primary_10_1016_j_media_2023_102808
crossref_primary_10_1016_j_neucom_2023_126606
crossref_primary_10_1109_JBHI_2023_3278741
crossref_primary_10_1016_j_cmpb_2025_108613
crossref_primary_10_1007_s10278_025_01397_7
crossref_primary_10_1002_ima_22947
crossref_primary_10_1109_TMI_2021_3073381
crossref_primary_10_1186_s12968_018_0471_x
crossref_primary_10_1007_s10489_021_02720_9
crossref_primary_10_1016_j_compbiomed_2024_109597
crossref_primary_10_1002_mp_14377
crossref_primary_10_1002_nbm_5143
crossref_primary_10_3390_app12094151
crossref_primary_10_1016_j_compmedimag_2020_101786
crossref_primary_10_1002_ima_22938
crossref_primary_10_1016_j_media_2023_103061
crossref_primary_10_1152_ajpheart_00764_2020
crossref_primary_10_1007_s11704_024_40462_2
crossref_primary_10_3389_fcvm_2023_1118499
crossref_primary_10_1088_2057_1976_ad947b
crossref_primary_10_1002_mef2_38
crossref_primary_10_1016_j_bspc_2025_107773
crossref_primary_10_1016_j_patcog_2024_111116
crossref_primary_10_32604_cmc_2022_017916
crossref_primary_10_15420_aer_2022_34
crossref_primary_10_1007_s11042_024_19009_x
crossref_primary_10_1109_JBHI_2023_3266977
crossref_primary_10_1016_j_jbi_2023_104366
crossref_primary_10_1007_s10554_023_02927_6
crossref_primary_10_1016_j_knosys_2025_113005
crossref_primary_10_1080_21681163_2024_2314566
crossref_primary_10_3390_diagnostics13101783
crossref_primary_10_1016_j_eswa_2023_122772
crossref_primary_10_3390_life13020507
crossref_primary_10_1038_s41592_020_01008_z
crossref_primary_10_1016_j_bspc_2025_107561
crossref_primary_10_3390_bioengineering11100958
crossref_primary_10_1016_j_bspc_2025_107568
crossref_primary_10_1038_s41598_024_70593_2
crossref_primary_10_1007_s00740_022_00474_9
crossref_primary_10_1007_s10462_024_10894_0
crossref_primary_10_1109_TIP_2025_3530787
crossref_primary_10_1007_s10489_023_04569_6
crossref_primary_10_1186_s44156_023_00024_x
crossref_primary_10_1016_j_media_2022_102704
crossref_primary_10_1109_JBHI_2023_3264539
crossref_primary_10_1137_22M1516099
crossref_primary_10_1016_j_procs_2023_01_388
crossref_primary_10_1007_s40846_023_00794_z
crossref_primary_10_1109_JBHI_2021_3106341
crossref_primary_10_32604_cmc_2023_035888
crossref_primary_10_1016_j_bspc_2025_107791
crossref_primary_10_1016_j_compbiomed_2024_108057
crossref_primary_10_1016_j_patcog_2024_111338
crossref_primary_10_1007_s10334_022_01017_3
crossref_primary_10_1016_j_recesp_2019_05_016
crossref_primary_10_1007_s10489_022_04118_7
crossref_primary_10_1007_s11517_021_02372_4
crossref_primary_10_3389_fcvm_2022_859310
crossref_primary_10_1016_j_bspc_2024_107062
crossref_primary_10_1038_s41592_024_02499_w
crossref_primary_10_1016_j_cosrev_2024_100721
crossref_primary_10_1016_j_compmedimag_2021_101864
crossref_primary_10_1016_j_media_2024_103142
crossref_primary_10_1016_j_eswa_2023_122567
crossref_primary_10_1109_TMI_2021_3066683
crossref_primary_10_3389_fcvm_2022_804442
crossref_primary_10_1109_TPAMI_2024_3435571
crossref_primary_10_1371_journal_pdig_0000159
crossref_primary_10_1016_j_media_2024_103385
crossref_primary_10_1016_j_compmedimag_2024_102382
crossref_primary_10_1109_TMI_2023_3319973
crossref_primary_10_1109_TMI_2023_3266137
crossref_primary_10_1007_s10278_024_01191_x
crossref_primary_10_1016_j_neucom_2024_127817
crossref_primary_10_1007_s40430_024_04875_1
crossref_primary_10_1016_j_tcm_2021_02_002
crossref_primary_10_1007_s11042_024_20338_0
crossref_primary_10_1016_j_irbm_2020_06_004
crossref_primary_10_1186_s12880_024_01519_7
crossref_primary_10_1038_s41598_024_69529_7
crossref_primary_10_1088_1361_6560_ad3884
crossref_primary_10_3389_frai_2024_1482141
crossref_primary_10_1109_ACCESS_2020_3026073
crossref_primary_10_3390_math12162462
crossref_primary_10_1007_s11760_025_03895_1
crossref_primary_10_1109_JBHI_2023_3346529
crossref_primary_10_1016_j_compbiomed_2024_108088
crossref_primary_10_1109_TIP_2023_3293771
crossref_primary_10_1016_j_jocs_2023_102083
crossref_primary_10_1140_epjp_s13360_024_05960_z
crossref_primary_10_1109_TMI_2023_3338269
crossref_primary_10_1016_j_eswa_2023_120368
crossref_primary_10_26599_TST_2022_9010023
crossref_primary_10_1016_j_media_2023_103046
crossref_primary_10_1038_s41598_022_12378_z
crossref_primary_10_3934_math_2024429
crossref_primary_10_1016_j_media_2019_06_001
crossref_primary_10_1016_j_inffus_2023_102075
crossref_primary_10_1016_j_inffus_2024_102355
crossref_primary_10_3390_bioengineering10070869
crossref_primary_10_1038_s41746_025_01434_3
crossref_primary_10_3390_math11092082
crossref_primary_10_1016_j_bspc_2024_106453
crossref_primary_10_1109_TMI_2023_3243069
crossref_primary_10_1016_j_imavis_2024_105277
crossref_primary_10_1109_TMI_2024_3364240
crossref_primary_10_1016_j_inffus_2024_102364
crossref_primary_10_1038_s41598_022_06315_3
crossref_primary_10_1016_j_bspc_2022_103870
crossref_primary_10_1016_j_cjca_2021_11_003
crossref_primary_10_1148_ryai_2020190195
crossref_primary_10_7717_peerj_cs_1146
crossref_primary_10_1016_j_knosys_2023_110378
crossref_primary_10_1016_j_compeleceng_2024_110007
crossref_primary_10_1109_TCSVT_2023_3303228
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1016_j_bspc_2024_106674
crossref_primary_10_1161_CIRCIMAGING_119_009759
crossref_primary_10_1038_s41598_024_76234_y
crossref_primary_10_1016_j_patcog_2021_108515
crossref_primary_10_1186_s40658_025_00728_5
crossref_primary_10_1016_j_engappai_2024_108059
crossref_primary_10_1109_TMI_2024_3468896
crossref_primary_10_1007_s00500_021_06568_6
crossref_primary_10_1016_j_media_2023_103000
crossref_primary_10_1049_ipr2_12503
crossref_primary_10_3390_diagnostics12020414
crossref_primary_10_1016_j_patcog_2024_110528
crossref_primary_10_1016_j_isci_2023_108608
crossref_primary_10_1088_1361_6560_abde98
crossref_primary_10_1002_mp_13699
crossref_primary_10_3390_pharmaceutics14091964
crossref_primary_10_3389_fcvm_2022_829512
crossref_primary_10_1016_j_recesp_2020_06_017
crossref_primary_10_1016_j_compmedimag_2020_101717
crossref_primary_10_1016_j_knosys_2023_110598
crossref_primary_10_1109_ACCESS_2023_3286346
crossref_primary_10_1109_JBHI_2023_3250429
crossref_primary_10_1016_j_media_2020_101891
crossref_primary_10_1016_j_bspc_2024_107341
crossref_primary_10_1109_TNNLS_2023_3332003
crossref_primary_10_1016_j_cpcardiol_2023_102129
crossref_primary_10_1016_j_bspc_2024_106019
crossref_primary_10_1016_j_cmpb_2021_106373
crossref_primary_10_3390_app11041965
crossref_primary_10_1016_j_bspc_2021_102686
crossref_primary_10_1016_j_ijrobp_2021_09_009
crossref_primary_10_1016_j_media_2024_103302
crossref_primary_10_1109_JBHI_2024_3381844
crossref_primary_10_1109_TMI_2024_3363190
crossref_primary_10_1007_s10278_024_01217_4
crossref_primary_10_1016_j_media_2020_101636
crossref_primary_10_1109_JSTSP_2020_3013351
crossref_primary_10_1016_j_cmpb_2021_106142
crossref_primary_10_1016_j_bspc_2021_102684
crossref_primary_10_1016_j_jcmg_2019_06_009
crossref_primary_10_3389_fcvm_2019_00195
crossref_primary_10_1109_TMI_2020_2964499
crossref_primary_10_1016_j_array_2025_100382
crossref_primary_10_3389_fcvm_2019_00190
crossref_primary_10_3389_fcvm_2020_00086
crossref_primary_10_3390_diagnostics12030639
crossref_primary_10_1007_s12021_022_09607_1
crossref_primary_10_1016_j_bspc_2024_106237
crossref_primary_10_1186_s12968_022_00861_5
crossref_primary_10_1109_JBHI_2024_3506829
crossref_primary_10_1002_mp_14752
crossref_primary_10_3389_fradi_2023_1175473
crossref_primary_10_3390_electronics12214411
crossref_primary_10_3390_app12063024
crossref_primary_10_1080_17434440_2020_1777855
crossref_primary_10_1016_j_cag_2024_104014
crossref_primary_10_1109_TIM_2024_3502832
crossref_primary_10_2174_1573405617666210126153920
crossref_primary_10_1016_j_eswa_2023_122024
crossref_primary_10_1016_j_eswa_2024_123666
crossref_primary_10_1109_TUFFC_2024_3462299
crossref_primary_10_1016_j_compbiomed_2025_109762
crossref_primary_10_1016_j_cmpb_2023_107615
crossref_primary_10_1016_j_bspc_2024_107339
crossref_primary_10_3389_fcvm_2022_826283
crossref_primary_10_1016_j_compbiomed_2024_108932
crossref_primary_10_1016_j_neucom_2024_127446
crossref_primary_10_1016_j_neucom_2024_128532
crossref_primary_10_1109_TMI_2019_2894322
crossref_primary_10_1145_3638044
crossref_primary_10_3390_s21103363
crossref_primary_10_1007_s12204_022_2428_3
crossref_primary_10_1016_j_compbiomed_2024_108944
crossref_primary_10_3390_diagnostics13213363
crossref_primary_10_1109_ACCESS_2019_2936945
crossref_primary_10_1109_TMI_2023_3336534
crossref_primary_10_3390_math11143245
crossref_primary_10_1016_j_imu_2024_101540
crossref_primary_10_1016_j_knosys_2024_112203
crossref_primary_10_1016_j_media_2023_102773
crossref_primary_10_1109_TRPMS_2023_3265863
crossref_primary_10_1155_2022_1368878
crossref_primary_10_1109_ACCESS_2022_3165574
crossref_primary_10_1109_JBHI_2020_3028463
crossref_primary_10_3934_mbe_2025020
crossref_primary_10_1016_j_media_2020_101832
crossref_primary_10_3390_a17040168
crossref_primary_10_1109_ACCESS_2023_3313980
crossref_primary_10_1007_s11517_023_02946_4
crossref_primary_10_3390_s23239488
crossref_primary_10_1016_j_compbiomed_2020_104200
crossref_primary_10_1093_ehjimp_qyae136
crossref_primary_10_1038_s41598_024_54164_z
crossref_primary_10_1016_j_patcog_2023_109881
crossref_primary_10_1007_s10489_021_03062_2
crossref_primary_10_1038_s41598_023_46747_z
crossref_primary_10_1007_s11390_021_0782_5
crossref_primary_10_1016_j_compmedimag_2022_102174
crossref_primary_10_1016_j_asoc_2024_112399
crossref_primary_10_1002_mp_13859
crossref_primary_10_1016_j_neucom_2025_129577
crossref_primary_10_1007_s11042_024_19432_0
crossref_primary_10_1631_FITEE_2200102
crossref_primary_10_1109_TMI_2024_3400840
crossref_primary_10_1038_s41746_024_01276_5
crossref_primary_10_1016_j_media_2020_101812
crossref_primary_10_1109_TMI_2020_3003240
crossref_primary_10_1016_j_compbiomed_2025_109723
crossref_primary_10_1016_j_bspc_2023_105694
crossref_primary_10_1002_mp_13853
crossref_primary_10_1016_j_compbiomed_2023_107596
crossref_primary_10_1016_j_neucom_2020_07_053
crossref_primary_10_1109_TFUZZ_2024_3364970
crossref_primary_10_3390_diagnostics11061104
crossref_primary_10_2214_AJR_19_21927
crossref_primary_10_35940_ijrte_F7480_0311623
crossref_primary_10_3389_fcvm_2021_787614
crossref_primary_10_1093_bib_bbae325
crossref_primary_10_1109_ACCESS_2022_3156894
crossref_primary_10_1016_j_bspc_2024_106658
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1016_j_dsp_2024_104883
crossref_primary_10_1109_ACCESS_2023_3238058
crossref_primary_10_3390_jcm10050921
crossref_primary_10_1016_j_icte_2024_09_008
crossref_primary_10_1016_j_compmedimag_2022_102158
crossref_primary_10_1109_ACCESS_2023_3311134
crossref_primary_10_1080_21681163_2022_2055492
crossref_primary_10_3389_fcvm_2021_730316
crossref_primary_10_1038_s41598_025_87829_4
crossref_primary_10_1117_1_JMI_11_4_044002
crossref_primary_10_1007_s00330_023_10127_y
crossref_primary_10_3389_fcvm_2020_00001
crossref_primary_10_1016_j_cmpb_2022_106889
crossref_primary_10_1016_j_media_2022_102447
crossref_primary_10_1016_j_media_2022_102688
crossref_primary_10_1016_j_cmpb_2021_106548
crossref_primary_10_1109_ACCESS_2024_3522214
crossref_primary_10_3390_life14010145
crossref_primary_10_1155_2022_5906877
crossref_primary_10_1049_el_2020_0453
crossref_primary_10_1186_s12968_019_0575_y
crossref_primary_10_1155_2021_1678123
crossref_primary_10_1016_j_compmedimag_2023_102203
crossref_primary_10_1049_ipr2_12934
crossref_primary_10_1016_j_media_2022_102445
crossref_primary_10_1016_j_neucom_2025_129782
crossref_primary_10_1016_j_rcl_2024_01_002
crossref_primary_10_1049_ipr2_12936
crossref_primary_10_3390_bioengineering10020166
crossref_primary_10_1148_ryai_2021200197
crossref_primary_10_1016_j_media_2022_102682
crossref_primary_10_3390_jimaging10050118
crossref_primary_10_1049_ipr2_12950
crossref_primary_10_1016_j_bspc_2024_106633
crossref_primary_10_1016_j_compbiomed_2019_04_042
crossref_primary_10_1007_s10278_021_00529_z
crossref_primary_10_1007_s11042_024_18953_y
crossref_primary_10_1016_j_neucom_2024_128125
crossref_primary_10_1016_j_neucom_2024_128124
crossref_primary_10_1016_j_optlastec_2025_112422
crossref_primary_10_1109_TIP_2025_3536208
crossref_primary_10_1155_2021_6679603
crossref_primary_10_1016_j_media_2021_102156
crossref_primary_10_1016_j_patrec_2020_11_018
crossref_primary_10_3390_s23042112
crossref_primary_10_3390_ijms24065680
crossref_primary_10_1109_TMI_2021_3052972
crossref_primary_10_1007_s10334_024_01180_9
crossref_primary_10_1002_jmri_28374
crossref_primary_10_1016_j_bspc_2024_106638
crossref_primary_10_3390_electronics10172132
crossref_primary_10_3390_app12083936
crossref_primary_10_1016_j_media_2023_102762
crossref_primary_10_1186_s12938_024_01212_4
crossref_primary_10_3389_fphys_2021_745349
crossref_primary_10_1109_JBHI_2018_2865450
crossref_primary_10_1016_j_jcmg_2019_05_030
Cites_doi 10.1007/s00330-003-1957-x
10.1016/j.media.2016.05.009
10.1161/CIRCULATIONAHA.108.840827
10.1016/j.media.2017.07.005
10.1016/j.media.2014.09.005
10.3109/10976649909080829
10.1145/237170.237244
10.1109/TMI.2002.804425
10.1109/TMI.2008.918327
10.1016/j.media.2014.06.001
10.1016/j.media.2011.05.009
10.1016/j.media.2013.09.001
10.1016/j.jcmg.2010.04.013
10.1186/s12968-016-0227-4
10.1016/j.media.2016.01.005
10.1016/j.cviu.2013.01.014
10.1002/jmri.23892
10.1109/ISBI.2017.7950555
10.1109/EMBC.2015.7318454
10.1109/ICCV.2015.510
10.1093/oxfordjournals.eurheartj.a060113
10.1109/TMI.2004.828354
10.1161/01.CIR.76.1.44
10.1016/j.media.2014.10.004
10.1016/j.acra.2012.02.011
10.1093/eurheartj/ehu284
10.1016/j.media.2010.12.004
10.1109/TMI.2012.2218117
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
DOI 10.1109/TMI.2018.2837502
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 2525
ExternalDocumentID oai_HAL_hal_01803621v1
29994302
10_1109_TMI_2018_2837502
8360453
Genre orig-research
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/14/89/31194
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
1XC
ID FETCH-LOGICAL-c489t-36c15fe5fb89853b3f7c5d8007726be9b75ce3f3aa6507fb47cf371bf953dfa43
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Wed Aug 27 07:46:17 EDT 2025
Fri Jul 11 04:14:49 EDT 2025
Mon Jun 30 03:45:41 EDT 2025
Mon Jul 21 06:03:21 EDT 2025
Tue Jul 01 03:16:00 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Wed Aug 27 02:31:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords Deep learning
Myocardium
Cardiac segmentation and diagnosis
Lleft and right ventricles
MRI
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c489t-36c15fe5fb89853b3f7c5d8007726be9b75ce3f3aa6507fb47cf371bf953dfa43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0713-9924
0000-0002-7970-366X
0000-0002-3629-4384
0000-0002-6256-8350
0000-0002-1802-1825
0000-0003-2416-8249
0000-0001-5505-475X
0000-0003-0752-9946
0000-0002-6038-5753
0000-0002-7817-1198
0000-0002-6617-7664
OpenAccessLink https://qmro.qmul.ac.uk/xmlui/bitstream/123456789/42264/1/Bernard%20et%20al_Deep%20learning%20techniques%20automatic%20MRI_2018_Accepted.pdf
PMID 29994302
PQID 2127966284
PQPubID 85460
PageCount 12
ParticipantIDs proquest_journals_2127966284
crossref_primary_10_1109_TMI_2018_2837502
ieee_primary_8360453
pubmed_primary_29994302
hal_primary_oai_HAL_hal_01803621v1
proquest_miscellaneous_2068341749
crossref_citationtrail_10_1109_TMI_2018_2837502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref12
ref15
wolterink (ref50) 2017
ref14
ref55
ref54
zotti (ref52) 2017
ref10
elliott (ref3) 2014; 35
ref19
white (ref1) 1987; 76
havaei (ref36) 2015
tan (ref11) 2016
jang (ref45) 2017
(ref9) 2015
tziritas (ref49) 2017
ref42
lalande (ref41) 2015
long (ref17) 2014
oktay (ref34) 2016
rupprecht (ref30) 2016
tran (ref16) 2017
ref8
rohé (ref56) 2017
suinesiaputra (ref7) 2011
ref4
zhang (ref29) 2016
ref5
ref35
bogaert (ref57) 2012
ref37
ref31
patravali (ref47) 2017
ref2
yang (ref51) 2017
ref39
cetin (ref53) 2017
baumgartner (ref43) 2017
poudel (ref33) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
bai (ref58) 2017
yang (ref32) 2016
kong (ref28) 2016
ref27
marcus (ref38) 2010; 121
ronneberger (ref18) 2016
khened (ref46) 2017
radau (ref6) 2009
rohe (ref48) 2017
du bois (ref40) 1989; 5
isensee (ref44) 2017
References_xml – ident: ref39
  doi: 10.1007/s00330-003-1957-x
– start-page: 138
  year: 2016
  ident: ref29
  article-title: Automated quality assessment of cardiac mr images using convolutional neural networks
  publication-title: Proc SASHIMI-MICCAI
– ident: ref31
  doi: 10.1016/j.media.2016.05.009
– start-page: 246
  year: 2016
  ident: ref34
  article-title: Regan, and D. Rueckert, "Multi-input cardiac image super-resolution using convolutional neural networks
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– start-page: 161
  year: 2017
  ident: ref45
  article-title: Automatic segmentation of LV and RV in cardiac MRI
  publication-title: Proc MICCAI-STACOM
– start-page: 91
  year: 2017
  ident: ref49
  article-title: Fast fully-automatic cardiac segmentation in MRI using MRF model optimization, substructures tracking and B-spline smoothing
  publication-title: Proc MICCAI-STACOM
– start-page: 130
  year: 2017
  ident: ref47
  article-title: 2D-3D fully convolutional neural networks for cardiac MR segmentation
  publication-title: Proc STACOMMICCAI
– volume: 121
  start-page: 1533
  year: 2010
  ident: ref38
  article-title: Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.840827
– ident: ref35
  doi: 10.1016/j.media.2017.07.005
– start-page: 490
  year: 2016
  ident: ref11
  article-title: Cardiac left ventricle segmentation using convolutional neural network regression
  publication-title: Proc IECBES
– start-page: 234
  year: 2016
  ident: ref18
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– ident: ref26
  doi: 10.1016/j.media.2014.09.005
– ident: ref37
  doi: 10.3109/10976649909080829
– ident: ref42
  doi: 10.1145/237170.237244
– ident: ref25
  doi: 10.1109/TMI.2002.804425
– year: 2009
  ident: ref6
  article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI
  publication-title: The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge
– ident: ref23
  doi: 10.1109/TMI.2008.918327
– start-page: 125
  year: 2015
  ident: ref36
  article-title: Deep learning trends for focal brain pathology segmentation in MRI
  publication-title: Machine Learning for Health Informatics (Lecture Notes in Computer Science)
– ident: ref5
  doi: 10.1016/j.media.2014.06.001
– start-page: 111
  year: 2017
  ident: ref43
  article-title: An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation
  publication-title: Proc MICCAI-STACOM
– year: 2016
  ident: ref30
  publication-title: Deep active contours
– year: 2017
  ident: ref58
  publication-title: Human-level cmr image analysis with deep fully convolutional networks
– ident: ref24
  doi: 10.1016/j.media.2011.05.009
– ident: ref12
  doi: 10.1016/j.media.2013.09.001
– ident: ref14
  doi: 10.1016/j.jcmg.2010.04.013
– ident: ref19
  doi: 10.1186/s12968-016-0227-4
– start-page: 109
  year: 2012
  ident: ref57
  publication-title: Cardiac function " in Clinical Cardiac MRI
– year: 2017
  ident: ref56
  article-title: SVF-net: Learning deformable image registration using shape matching
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– ident: ref10
  doi: 10.1016/j.media.2016.01.005
– ident: ref15
  doi: 10.1016/j.cviu.2013.01.014
– ident: ref4
  doi: 10.1002/jmri.23892
– start-page: 170
  year: 2017
  ident: ref48
  article-title: Automatic multi-atlas segmentation of myocardium with SVF-net
  publication-title: Proc MICCAI-STACOM
– ident: ref55
  doi: 10.1109/ISBI.2017.7950555
– start-page: 264
  year: 2016
  ident: ref28
  article-title: Recognizing end-diastole and end-systole frames via deep temporal regression network
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– ident: ref27
  doi: 10.1109/EMBC.2015.7318454
– start-page: 3431
  year: 2014
  ident: ref17
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proc CVPR
– start-page: 88
  year: 2011
  ident: ref7
  article-title: Left ventricular segmentation challenge from cardiac MRI: A collation study
  publication-title: Proc STACOM
– start-page: 171
  year: 2015
  ident: ref41
  article-title: Evaluation of cardiac structure segmentation in cine magnetic resonance imaging
  publication-title: Multi-Modality Cardiac Imaging Processing and Analysis
– ident: ref54
  doi: 10.1109/ICCV.2015.510
– ident: ref2
  doi: 10.1093/oxfordjournals.eurheartj.a060113
– ident: ref13
  doi: 10.1109/TMI.2004.828354
– volume: 76
  start-page: 44
  year: 1987
  ident: ref1
  article-title: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction
  publication-title: Circulation
  doi: 10.1161/01.CIR.76.1.44
– year: 2016
  ident: ref33
  publication-title: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation
– start-page: 521
  year: 2016
  ident: ref32
  article-title: Deep fusion net for multi-atlas segmentation: Application to cardiac MR images
  publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI
– ident: ref8
  doi: 10.1016/j.media.2014.10.004
– ident: ref21
  doi: 10.1016/j.acra.2012.02.011
– volume: 35
  start-page: 2733
  year: 2014
  ident: ref3
  article-title: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehu284
– start-page: 73
  year: 2017
  ident: ref52
  article-title: GridNet with automatic shape prior registration for automatic MRI cardiac segmentation
  publication-title: Proc MICCAI-STACOM
– year: 2017
  ident: ref16
  publication-title: A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI arXiv
– year: 2015
  ident: ref9
  publication-title: The 2015 Kaggle Second Annual Data Science Bowl Accessed
– start-page: 140
  year: 2017
  ident: ref46
  article-title: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest
  publication-title: Proc MICCAI-STACOM
– start-page: 120
  year: 2017
  ident: ref44
  article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features
  publication-title: Proc MICCAI-STACOM
– ident: ref20
  doi: 10.1016/j.media.2010.12.004
– start-page: 82
  year: 2017
  ident: ref53
  article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI
  publication-title: Proc MICCAI-STACOM
– ident: ref22
  doi: 10.1109/TMI.2012.2218117
– volume: 5
  start-page: 303
  year: 1989
  ident: ref40
  article-title: A formula to estimate the approximate surface area if height and weight be known
  publication-title: Nutrition
– start-page: 101
  year: 2017
  ident: ref50
  article-title: Automatic segmentation and disease classification using cardiac cine MR images
  publication-title: Proc MICCAI-STACOM
– start-page: 152
  year: 2017
  ident: ref51
  article-title: Class-balanced deep neural network for automatic ventricular structure segmentation
  publication-title: Proc MICCAI-STACOM
SSID ssj0014509
Score 2.7143767
Snippet Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common...
Delineation of the left ventricular cavity,myocardium, and right ventricle from cardiac magneticresonance images (multi-slice 2-D cine MRI) is a commonclinical...
SourceID hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2514
SubjectTerms Automation
Biomedical imaging
Cardiac Imaging Techniques - methods
Cardiac segmentation and diagnosis
Classification
Correlation analysis
Databases, Factual
Datasets
Deep Learning
Diagnosis
Female
Go/no-go discrimination learning
Heart
Heart - diagnostic imaging
Heart Diseases - diagnostic imaging
Humans
Identification methods
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
left and right ventricles
Life Sciences
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Male
Medical diagnosis
MRI
Myocardium
State of the art
Task analysis
Teaching methods
Ventricle
Title Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
URI https://ieeexplore.ieee.org/document/8360453
https://www.ncbi.nlm.nih.gov/pubmed/29994302
https://www.proquest.com/docview/2127966284
https://www.proquest.com/docview/2068341749
https://hal.science/hal-01803621
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51e0Bw4NFCCRRkEBckspuXk5gLWrVUu4ggxG6l3iI_C6IklXazB349M3kJECBuVuIkjmZsf-OZ-QbghUNQoIU2fqQQviWhlr6SdACvAydtZmwYUnJy8SFdnCfvLvjFHrwac2GstW3wmZ1Ss_Xlm1o3dFQ2o4SDhMcTmKDh1uVqjR6DhHfhHBExxgZpNLgkAzFbF0uK4cqnxPTCAypgg4sw8Y5Hv-xGk88UC9kWWfk73mz3nbM7UAwj7sJNvk6brZrq77-ROf7vL92F2z0AZfNOY-7Bnq0O4NZPtIQHcKPoHe6HsDu19pr1JKyXbD0wvm4Ygl02b7Z1S_nKik9LdtIqG7YpRtFftcS0DVrzbGUvv_UpThWTlWGnXXzfl81rttwwhKDsY1fXhq3qq501b-7D-dnb9cnC70s1-DrJxdaPUx1yZ7lTuUAAoGKXaW5yIguKUmWFyri2sYulRESYOZVk2sVZqJzgsXEyiR_AflVX9iEwhxDPmVwgUsPVhQdSxTwzWknEGhbBjgezQWSl7nnMqZzGVdnaM4EoUd4lybvs5e3By_GJ647D4x99n6MWjN2IfHsxf1_SNaI6w-0-3IUeHJIkx169ED04HpSm7FeCTUkM-mhSIgrw4Nl4G-cwOWZkZesG-wRpjmgiS4QHR52yje8eNPXRn7_5GG7S8LvsyGPYR9naJwiTtuppOz9-ALJDCn0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB61ReJ44GihGAosiBekOvG1PnhBUUuVQFwhkkp9s_YsFcWulDgP_HpmfAkQIN5W9vhYzezutzsz3wC8tggKVKa0G0iEb5GvhCsFHcArzwqTaOP7lJycn8bTs-jDOT_fgsMhF8YY0wSfmRE1G1--rlRNR2VjSjiIeLgNN3Dd536brTX4DCLeBnQExBnrxUHvlPSy8TKfURRXOiKuF-5RCRuchol5PPhlPdr-QtGQTZmVvyPOZuU5uQd5_89twMnXUb2WI_X9NzrH_-3UfbjbQVA2aW3mAWyZchfu_ERMuAs3887lvgebY2OuWUfDesGWPefriiHcZZN6XTWkryz_PGNHjblhm6IU3UVDTVvjfp4tzMW3LsmpZKLU7LiN8LtcvWWzFUMQyj61lW3YorraGP3uIZydvF8eTd2uWIOrojRbu2GsfG4NtzLNEALI0CaK65TogoJYmkwmXJnQhkIgJkysjBJlw8SXNuOhtiIKH8FOWZXmMTCLIM_qNEOshvML94QMeaKVFIg2DMIdB8a9ygrVMZlTQY2rotnReFmB-i5I30WnbwfeDE9ctywe_5B9hVYwiBH99nQyL-gakZ3hgu9vfAf2SJODVKdEBw56oym6uWBVEIc-bioRBzjwcriNo5hcM6I0VY0yXpwinkiizIH91tiGd_eW-uTP33wBt6bLfF7MZ6cfn8Jt6kqbK3kAO6hn8wxB01o-b8bKD7vFDcY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Techniques+for+Automatic+MRI+Cardiac+Multi-Structures+Segmentation+and+Diagnosis%3A+Is+the+Problem+Solved%3F&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Bernard%2C+Olivier&rft.au=Lalande%2C+Alain&rft.au=Zotti%2C+Clement&rft.au=Cervenansky%2C+Frederick&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=37&rft.issue=11&rft.spage=2514&rft.epage=2525&rft_id=info:doi/10.1109%2FTMI.2018.2837502&rft_id=info%3Apmid%2F29994302&rft.externalDocID=8360453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon