Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved?
Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decade...
Saved in:
Published in | IEEE transactions on medical imaging Vol. 37; no. 11; pp. 2514 - 2525 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0062 1558-254X 1558-254X |
DOI | 10.1109/TMI.2018.2837502 |
Cover
Loading…
Abstract | Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions. |
---|---|
AbstractList | Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions. Delineation of the left ventricular cavity,myocardium, and right ventricle from cardiac magneticresonance images (multi-slice 2-D cine MRI) is a commonclinical task to establish diagnosis. The automationof the corresponding tasks has thus been the subjectof intense research over the past decades. In this paper,we introduce the “Automatic Cardiac Diagnosis Challenge”dataset (ACDC), the largest publicly available and fully annotateddataset for the purpose of cardiac MRI (CMR) assessment.The dataset contains data from 150 multi-equipmentsCMRI recordings with reference measurements and classificationfrom two medical experts. The overarching objectiveof this paper is to measure how far state-of-the-art deeplearning methods can go at assessing CMRI, i.e., segmentingthe myocardium and the two ventricles as well as classifyingpathologies. In the wake of the 2017 MICCAI-ACDCchallenge, we report results from deep learning methodsprovided by nine research groups for the segmentation taskand four groups for the classificationtask. Results show thatthe best methods faithfully reproduce the expert analysis,leading to a mean value of 0.97 correlation score for theautomatic extraction of clinical indices and an accuracy of0.96 for automatic diagnosis. These results clearly openthe door to highly accurate and fully automatic analysis ofcardiac CMRI. We also identify scenarios for which deeplearning methods are still failing. Both the dataset anddetailed results are publicly available online, while the platformwill remain open for new submissions. Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions. |
Author | Yang, Xin Engelhardt, Sandy Jang, Yeonggul Lalande, Alain Zotti, Clement Heng, Pheng-Ann Full, Peter M. Jain, Shubham Tziritas, Georgios Wolf, Ivo Gonzalez Ballester, Miguel Angel Lekadir, Karim Isgum, Ivana Cervenansky, Frederick Wolterink, Jelmer M. Isensee, Fabian Cetin, Irem Rohe, Marc-Michel Hong, Yoonmi Krishnamurthi, Ganapathy Napel, Sandy Jager, Paul Maier-Hein, Klaus H. Humbert, Olivier Grinias, Elias Jodoin, Pierre-Marc Camara, Oscar Pennec, Xavier Patravali, Jay Baumgartner, Christian F. Petersen, Steffen Kollerathu, Varghese Alex Bernard, Olivier Sermesant, Maxime Khened, Mahendra Koch, Lisa M. Sanroma, Gerard |
Author_xml | – sequence: 1 givenname: Olivier orcidid: 0000-0003-0752-9946 surname: Bernard fullname: Bernard, Olivier email: olivier.bernard@creatis.insa-lyon.fr organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Lyon, France – sequence: 2 givenname: Alain orcidid: 0000-0002-7970-366X surname: Lalande fullname: Lalande, Alain organization: Le2i Laboratory, CNRS FRE 2005, University of Burgundy, Dijon, France – sequence: 3 givenname: Clement orcidid: 0000-0002-0713-9924 surname: Zotti fullname: Zotti, Clement organization: Computer Science Department, University of Sherbrooke, Sherbrooke, Canada – sequence: 4 givenname: Frederick surname: Cervenansky fullname: Cervenansky, Frederick organization: University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, University of Lyon 1, Lyon, France – sequence: 5 givenname: Xin surname: Yang fullname: Yang, Xin organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 6 givenname: Pheng-Ann surname: Heng fullname: Heng, Pheng-Ann organization: Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong – sequence: 7 givenname: Irem surname: Cetin fullname: Cetin, Irem organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 8 givenname: Karim surname: Lekadir fullname: Lekadir, Karim organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 9 givenname: Oscar surname: Camara fullname: Camara, Oscar organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 10 givenname: Miguel Angel surname: Gonzalez Ballester fullname: Gonzalez Ballester, Miguel Angel organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 11 givenname: Gerard surname: Sanroma fullname: Sanroma, Gerard organization: Barcelona Centre for New Medical Technologies, Universitat Pompeu Fabra, Barcelona, Spain – sequence: 12 givenname: Sandy surname: Napel fullname: Napel, Sandy organization: Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 13 givenname: Steffen surname: Petersen fullname: Petersen, Steffen organization: William Harvey Research Institute, Queen Mary University of London, London, U.K – sequence: 14 givenname: Georgios orcidid: 0000-0002-1802-1825 surname: Tziritas fullname: Tziritas, Georgios organization: Department of Computer Science, University of Crete, Heraklion, Greece – sequence: 15 givenname: Elias surname: Grinias fullname: Grinias, Elias organization: Department of Computer Science, University of Crete, Heraklion, Greece – sequence: 16 givenname: Mahendra surname: Khened fullname: Khened, Mahendra organization: Department of Engineering Design, IIT Madras, Chennai, India – sequence: 17 givenname: Varghese Alex surname: Kollerathu fullname: Kollerathu, Varghese Alex organization: Department of Engineering Design, IIT Madras, Chennai, India – sequence: 18 givenname: Ganapathy surname: Krishnamurthi fullname: Krishnamurthi, Ganapathy organization: Department of Engineering Design, IIT Madras, Chennai, India – sequence: 19 givenname: Marc-Michel surname: Rohe fullname: Rohe, Marc-Michel organization: Inria-Asclepios Project, Sophia Antipolis, France – sequence: 20 givenname: Xavier surname: Pennec fullname: Pennec, Xavier organization: Inria-Asclepios Project, Sophia Antipolis, France – sequence: 21 givenname: Maxime orcidid: 0000-0002-6256-8350 surname: Sermesant fullname: Sermesant, Maxime organization: Inria-Asclepios Project, Sophia Antipolis, France – sequence: 22 givenname: Fabian surname: Isensee fullname: Isensee, Fabian organization: Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany – sequence: 23 givenname: Paul surname: Jager fullname: Jager, Paul organization: Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany – sequence: 24 givenname: Klaus H. surname: Maier-Hein fullname: Maier-Hein, Klaus H. organization: Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany – sequence: 25 givenname: Peter M. surname: Full fullname: Full, Peter M. organization: Department of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany – sequence: 26 givenname: Ivo surname: Wolf fullname: Wolf, Ivo organization: Department of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany – sequence: 27 givenname: Sandy surname: Engelhardt fullname: Engelhardt, Sandy organization: Department of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany – sequence: 28 givenname: Christian F. orcidid: 0000-0002-3629-4384 surname: Baumgartner fullname: Baumgartner, Christian F. organization: Computer Vision Laboratory, ETH Zürich, Zürich, Switzerland – sequence: 29 givenname: Lisa M. surname: Koch fullname: Koch, Lisa M. organization: Computer Vision and Geometry Group, ETH Zürich, Zürich, Switzerland – sequence: 30 givenname: Jelmer M. orcidid: 0000-0001-5505-475X surname: Wolterink fullname: Wolterink, Jelmer M. organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 31 givenname: Ivana surname: Isgum fullname: Isgum, Ivana organization: Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands – sequence: 32 givenname: Yeonggul surname: Jang fullname: Jang, Yeonggul organization: Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, South Korea – sequence: 33 givenname: Yoonmi orcidid: 0000-0003-2416-8249 surname: Hong fullname: Hong, Yoonmi organization: Integrative Cardiovascular Imaging Research Center, Yonsei University College of Medicine, Seoul, South Korea – sequence: 34 givenname: Jay surname: Patravali fullname: Patravali, Jay organization: Qure.ai company, Mumbai, India – sequence: 35 givenname: Shubham surname: Jain fullname: Jain, Shubham organization: Qure.ai company, Mumbai, India – sequence: 36 givenname: Olivier surname: Humbert fullname: Humbert, Olivier organization: TIRO-UMR E 4320 Laboratory, University of Nice, Nice, France – sequence: 37 givenname: Pierre-Marc orcidid: 0000-0002-6038-5753 surname: Jodoin fullname: Jodoin, Pierre-Marc organization: Computer Science Department, University of Sherbrooke, Sherbrooke, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29994302$$D View this record in MEDLINE/PubMed https://hal.science/hal-01803621$$DView record in HAL |
BookMark | eNp9kc-LEzEcxYOsuN3VuyBIwIsepubHZJLsRUpX3UIXxVbwFjKZpM0yk9RkprD__U5p7WEPnvIlfN738X3vClyEGCwAbzGaYozk5_X9YkoQFlMiKGeIvAATzJgoCCv_XIAJIlwUCFXkElzl_IAQLhmSr8AlkVKWFJEJ2N9au4NLq1PwYQPX1myD_zvYDF1McDb0sdO9N_D-1wLOdWq8Hueh7X2x6tNg-iGN6MpuOhv6EYwB6tDAW683IWafb-Aiw35r4c8U69Z2cBXbvW2-vAYvnW6zfXN6r8Hvb1_X87ti-eP7Yj5bFqYUsi9oZTBzlrlaSMFoTR03rBEIcU6q2sqaM2Opo1pXDHFXl9w4ynHtJKON0yW9Bp-Oe7e6VbvkO50eVdRe3c2W6vA3hodoRfAej-zHI7tL8ZBArzqfjW1bHWwcsiKoErTEvJQj-uEZ-hCHFMZLFMGEy6oi4mD-_kQNdWebs_-_9EcAHQGTYs7JujOCkToUrMaC1aFgdSp4lFTPJMYfg--T9u3_hO-OQm-tPfsIWqGSUfoEp6CwxQ |
CODEN | ITMID4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3456674 crossref_primary_10_1016_j_neunet_2024_107063 crossref_primary_10_1016_j_compbiomed_2024_108785 crossref_primary_10_1016_j_compbiomed_2024_108784 crossref_primary_10_1016_j_compmedimag_2024_102476 crossref_primary_10_1016_j_eswa_2024_125119 crossref_primary_10_1109_JBHI_2021_3064353 crossref_primary_10_1007_s11517_025_03342_w crossref_primary_10_3390_s21072375 crossref_primary_10_1002_jmri_29373 crossref_primary_10_1109_TMI_2023_3251368 crossref_primary_10_1007_s44196_022_00080_x crossref_primary_10_1088_1361_6560_acf90f crossref_primary_10_1109_TMI_2022_3203309 crossref_primary_10_1016_j_engappai_2023_106012 crossref_primary_10_1109_TMI_2021_3097665 crossref_primary_10_2139_ssrn_3990565 crossref_primary_10_1038_s41598_023_28348_y crossref_primary_10_1016_j_compbiomed_2024_108557 crossref_primary_10_3390_jimaging9040081 crossref_primary_10_1016_j_eswa_2023_120877 crossref_primary_10_3390_jcm11133910 crossref_primary_10_1148_ryai_230132 crossref_primary_10_1016_j_neunet_2025_107334 crossref_primary_10_1016_j_artmed_2022_102476 crossref_primary_10_1016_j_media_2021_102146 crossref_primary_10_1109_TMI_2022_3215798 crossref_primary_10_1109_TMI_2022_3211195 crossref_primary_10_1016_j_media_2023_102953 crossref_primary_10_3390_s24237799 crossref_primary_10_1088_1361_6560_ad4b91 crossref_primary_10_1016_j_patcog_2022_109208 crossref_primary_10_3390_e25030431 crossref_primary_10_1007_s11760_023_02528_9 crossref_primary_10_1007_s11517_023_02833_y crossref_primary_10_3390_diagnostics14242820 crossref_primary_10_1016_j_media_2022_102428 crossref_primary_10_1016_j_media_2022_102426 crossref_primary_10_3390_math8091511 crossref_primary_10_1016_j_compbiomed_2022_105715 crossref_primary_10_1016_j_media_2024_103274 crossref_primary_10_3389_fcvm_2022_1009445 crossref_primary_10_1177_01617346221099435 crossref_primary_10_1161_CIRCRESAHA_121_319969 crossref_primary_10_3390_app122312163 crossref_primary_10_1007_s13239_021_00591_2 crossref_primary_10_1007_s00330_022_08616_7 crossref_primary_10_1371_journal_pone_0300039 crossref_primary_10_3390_jimaging9030069 crossref_primary_10_1007_s00521_024_09890_w crossref_primary_10_3390_app14072986 crossref_primary_10_1016_j_cmpb_2025_108722 crossref_primary_10_1115_1_4048032 crossref_primary_10_3390_tomography8030108 crossref_primary_10_1088_1361_6560_ad9e69 crossref_primary_10_1007_s11547_024_01867_y crossref_primary_10_3889_oamjms_2021_7806 crossref_primary_10_1088_2057_1976_ab9556 crossref_primary_10_1016_j_neunet_2025_107386 crossref_primary_10_1109_TPAMI_2023_3243040 crossref_primary_10_31083_j_rcm2512447 crossref_primary_10_3390_bioengineering11030219 crossref_primary_10_1016_j_compbiomed_2024_108592 crossref_primary_10_1093_ehjdh_ztad044 crossref_primary_10_3390_s22103820 crossref_primary_10_1016_j_knosys_2021_108021 crossref_primary_10_1016_j_neucom_2020_08_030 crossref_primary_10_1016_j_media_2023_102906 crossref_primary_10_3390_bioengineering11111146 crossref_primary_10_1007_s11548_024_03221_z crossref_primary_10_1016_j_mri_2024_110244 crossref_primary_10_1155_2021_9960199 crossref_primary_10_1007_s40747_025_01796_x crossref_primary_10_1109_ACCESS_2025_3539417 crossref_primary_10_1002_mrm_30083 crossref_primary_10_1007_s11760_022_02388_9 crossref_primary_10_1002_acm2_13597 crossref_primary_10_1145_3527849 crossref_primary_10_1145_3615862 crossref_primary_10_1016_j_media_2023_102917 crossref_primary_10_1080_21681163_2022_2125697 crossref_primary_10_1016_j_xcrm_2022_100869 crossref_primary_10_1016_j_neunet_2025_107168 crossref_primary_10_3389_fcvm_2022_831080 crossref_primary_10_1016_j_media_2021_102328 crossref_primary_10_1007_s11042_023_16252_6 crossref_primary_10_1109_ACCESS_2024_3514215 crossref_primary_10_1109_JBHI_2023_3337521 crossref_primary_10_1016_j_compbiomed_2023_106908 crossref_primary_10_1016_j_compmedimag_2022_102088 crossref_primary_10_7498_aps_70_20210885 crossref_primary_10_1109_ACCESS_2023_3294569 crossref_primary_10_1109_TMI_2021_3108881 crossref_primary_10_1016_j_media_2019_101535 crossref_primary_10_1016_j_media_2019_101537 crossref_primary_10_1007_s11517_023_02920_0 crossref_primary_10_1109_JBHI_2022_3158897 crossref_primary_10_1002_mp_17761 crossref_primary_10_1007_s10278_024_01019_8 crossref_primary_10_1007_s13239_020_00494_8 crossref_primary_10_3390_app14167352 crossref_primary_10_1016_j_bspc_2025_107668 crossref_primary_10_1007_s00371_024_03486_0 crossref_primary_10_7705_biomedica_7115 crossref_primary_10_1016_j_compmedimag_2021_101942 crossref_primary_10_1016_j_media_2025_103501 crossref_primary_10_3390_electronics11172749 crossref_primary_10_1002_ima_22818 crossref_primary_10_1016_j_jcmg_2021_11_017 crossref_primary_10_1016_j_bbe_2022_09_005 crossref_primary_10_1016_j_media_2024_103222 crossref_primary_10_1109_TETCI_2022_3146965 crossref_primary_10_1137_23M161433X crossref_primary_10_1155_2019_5636423 crossref_primary_10_1186_s12968_023_00934_z crossref_primary_10_1016_j_cmpb_2023_107679 crossref_primary_10_1007_s10044_024_01384_8 crossref_primary_10_3390_bioengineering10050623 crossref_primary_10_1016_j_compmedimag_2021_101952 crossref_primary_10_1016_j_mri_2021_01_005 crossref_primary_10_1007_s11042_022_14202_2 crossref_primary_10_1166_jmihi_2021_3510 crossref_primary_10_1109_TMI_2022_3193029 crossref_primary_10_1016_j_knosys_2022_110033 crossref_primary_10_1016_j_media_2024_103450 crossref_primary_10_1080_02564602_2021_1955760 crossref_primary_10_3390_electronics11213594 crossref_primary_10_1007_s00521_024_10824_9 crossref_primary_10_1002_mp_17547 crossref_primary_10_1002_mrm_28361 crossref_primary_10_1007_s10278_025_01387_9 crossref_primary_10_1038_s41569_021_00527_2 crossref_primary_10_1016_j_hfc_2023_03_005 crossref_primary_10_1007_s10994_024_06728_3 crossref_primary_10_1007_s12350_019_01594_2 crossref_primary_10_1016_j_media_2024_103201 crossref_primary_10_1002_nbm_5230 crossref_primary_10_1016_j_patcog_2024_111216 crossref_primary_10_1016_j_pcad_2024_06_004 crossref_primary_10_1007_s11760_021_01978_3 crossref_primary_10_1016_j_jcmg_2021_10_008 crossref_primary_10_1038_s41598_022_10464_w crossref_primary_10_1002_mrm_28596 crossref_primary_10_1016_j_neucom_2024_127912 crossref_primary_10_1007_s00530_024_01498_3 crossref_primary_10_1145_3517190 crossref_primary_10_1016_j_imavis_2024_105200 crossref_primary_10_1016_j_compbiomed_2022_105799 crossref_primary_10_1109_JBHI_2024_3504829 crossref_primary_10_3390_bioengineering10111332 crossref_primary_10_3390_app12052627 crossref_primary_10_1007_s00371_024_03497_x crossref_primary_10_1038_s41598_025_88567_3 crossref_primary_10_1093_ehjdh_ztab033 crossref_primary_10_1016_j_apm_2025_115975 crossref_primary_10_1109_TCSVT_2024_3432751 crossref_primary_10_3389_fcvm_2023_1167500 crossref_primary_10_1016_j_compbiomed_2022_106439 crossref_primary_10_1016_j_bspc_2023_104631 crossref_primary_10_1007_s11517_022_02723_9 crossref_primary_10_1109_ACCESS_2024_3447528 crossref_primary_10_3390_a14070212 crossref_primary_10_1016_j_asoc_2023_110633 crossref_primary_10_1016_j_neunet_2020_03_007 crossref_primary_10_1016_j_artmed_2021_102140 crossref_primary_10_1002_ima_23095 crossref_primary_10_1038_s41597_025_04401_5 crossref_primary_10_1109_ACCESS_2023_3234241 crossref_primary_10_1109_JBHI_2024_3406786 crossref_primary_10_1088_1361_6560_acb19a crossref_primary_10_1007_s00117_022_01060_0 crossref_primary_10_1002_mp_17712 crossref_primary_10_3389_fcvm_2023_1030864 crossref_primary_10_3233_JIFS_211424 crossref_primary_10_1088_1361_6560_acca5c crossref_primary_10_1016_j_imavis_2024_105228 crossref_primary_10_1016_j_media_2019_101591 crossref_primary_10_1109_TMI_2024_3469214 crossref_primary_10_1016_j_compbiomed_2024_109050 crossref_primary_10_1007_s13042_024_02469_w crossref_primary_10_1016_j_eswa_2025_127223 crossref_primary_10_3390_a17010010 crossref_primary_10_1016_j_mri_2023_06_020 crossref_primary_10_1016_j_bspc_2024_107164 crossref_primary_10_1016_j_cpcardiol_2022_101330 crossref_primary_10_3389_fphys_2021_716597 crossref_primary_10_1016_j_compbiomed_2023_106736 crossref_primary_10_1007_s13042_024_02410_1 crossref_primary_10_1109_RBME_2018_2885714 crossref_primary_10_1016_j_compbiomed_2023_106973 crossref_primary_10_1016_j_eswa_2022_116704 crossref_primary_10_1016_j_compbiomed_2021_105041 crossref_primary_10_55452_1998_6688_2024_21_2_42_53 crossref_primary_10_1109_TMI_2023_3279110 crossref_primary_10_1109_TMI_2021_3056531 crossref_primary_10_1371_journal_pone_0234896 crossref_primary_10_1016_j_imavis_2024_105246 crossref_primary_10_1016_j_compbiomed_2023_106985 crossref_primary_10_1016_j_artmed_2021_102154 crossref_primary_10_1007_s13369_024_09131_1 crossref_primary_10_3390_s23239502 crossref_primary_10_1016_j_cmpb_2021_106059 crossref_primary_10_1002_mrm_27772 crossref_primary_10_1016_j_compbiomed_2020_103884 crossref_primary_10_1016_j_compbiomed_2023_106998 crossref_primary_10_1016_j_mri_2018_11_014 crossref_primary_10_1148_ryai_2020190064 crossref_primary_10_1016_j_compbiomed_2023_107840 crossref_primary_10_1109_TRPMS_2024_3410021 crossref_primary_10_1109_TMI_2021_3069634 crossref_primary_10_1088_1361_6560_ab4aa9 crossref_primary_10_7717_peerj_14939 crossref_primary_10_3390_jcm11102866 crossref_primary_10_1088_1361_6560_acf10f crossref_primary_10_1016_j_patcog_2024_110424 crossref_primary_10_1186_s12968_020_00683_3 crossref_primary_10_1109_TPAMI_2021_3113077 crossref_primary_10_1088_1361_6560_ad3321 crossref_primary_10_1186_s12938_024_01299_9 crossref_primary_10_1007_s11517_022_02612_1 crossref_primary_10_1016_j_patcog_2024_110426 crossref_primary_10_1016_j_compbiomed_2020_103877 crossref_primary_10_3390_app14188445 crossref_primary_10_1186_s13244_023_01401_0 crossref_primary_10_1016_j_neunet_2024_106546 crossref_primary_10_1088_1361_6560_accdb1 crossref_primary_10_1093_ehjimp_qyae094 crossref_primary_10_1007_s11227_021_03664_0 crossref_primary_10_1088_1742_6596_2327_1_012073 crossref_primary_10_1016_j_media_2020_101792 crossref_primary_10_3390_bioengineering10020225 crossref_primary_10_3788_LOP231800 crossref_primary_10_1016_j_ailsci_2023_100083 crossref_primary_10_1109_TPAMI_2024_3461321 crossref_primary_10_1007_s12194_024_00844_4 crossref_primary_10_2196_28114 crossref_primary_10_3390_s23146580 crossref_primary_10_1007_s11886_020_01402_1 crossref_primary_10_1007_s10489_023_05158_3 crossref_primary_10_1016_j_bspc_2023_105177 crossref_primary_10_1016_j_medengphy_2025_104285 crossref_primary_10_1007_s10489_024_06085_7 crossref_primary_10_1016_j_measurement_2023_113570 crossref_primary_10_32604_cmes_2022_023195 crossref_primary_10_1016_j_patrec_2021_10_025 crossref_primary_10_1142_S0129065722500435 crossref_primary_10_3389_fmed_2023_1114571 crossref_primary_10_1007_s10554_020_01935_0 crossref_primary_10_1109_TIM_2023_3332340 crossref_primary_10_3233_JIFS_219305 crossref_primary_10_1016_j_patcog_2024_110856 crossref_primary_10_1016_j_patcog_2024_110615 crossref_primary_10_3934_mbe_2023149 crossref_primary_10_1007_s12350_019_01674_3 crossref_primary_10_1007_s13369_024_09845_2 crossref_primary_10_1016_j_compbiomed_2022_106034 crossref_primary_10_1049_ipr2_12406 crossref_primary_10_1016_j_imavis_2024_105196 crossref_primary_10_3389_fninf_2022_933230 crossref_primary_10_1016_j_ymgmr_2024_101152 crossref_primary_10_1109_JBHI_2023_3318127 crossref_primary_10_1186_s12880_024_01301_9 crossref_primary_10_1002_ima_23131 crossref_primary_10_3390_s20051392 crossref_primary_10_1016_j_cviu_2021_103248 crossref_primary_10_1109_TCYB_2021_3126817 crossref_primary_10_1109_JBHI_2024_3404884 crossref_primary_10_1161_JAHA_120_016612 crossref_primary_10_1016_j_bspc_2024_106145 crossref_primary_10_1186_s12968_019_0532_9 crossref_primary_10_1016_j_asoc_2023_110128 crossref_primary_10_3389_fcvm_2023_1213290 crossref_primary_10_1007_s40747_024_01359_6 crossref_primary_10_1109_TCSVT_2023_3343632 crossref_primary_10_1038_s41598_024_57281_x crossref_primary_10_1109_TIM_2024_3497060 crossref_primary_10_1109_TMI_2024_3358955 crossref_primary_10_1016_j_inffus_2024_102256 crossref_primary_10_1016_j_bspc_2022_103960 crossref_primary_10_1007_s12181_022_00548_2 crossref_primary_10_1016_j_bspc_2024_107202 crossref_primary_10_1016_j_compeleceng_2024_109654 crossref_primary_10_1109_TMI_2024_3377248 crossref_primary_10_1016_j_jjcc_2023_04_020 crossref_primary_10_47164_ijngc_v13i3_825 crossref_primary_10_1007_s11517_024_03273_y crossref_primary_10_1038_s41467_020_20729_5 crossref_primary_10_1016_j_patcog_2020_107269 crossref_primary_10_1007_s12539_023_00581_z crossref_primary_10_1016_j_compbiomed_2022_106051 crossref_primary_10_1016_j_inffus_2024_102263 crossref_primary_10_1016_j_bspc_2024_107450 crossref_primary_10_3390_bioengineering10070791 crossref_primary_10_1016_j_bspc_2025_107510 crossref_primary_10_1016_j_neucom_2024_128417 crossref_primary_10_1148_ryai_2019180080 crossref_primary_10_1016_j_bspc_2025_107508 crossref_primary_10_1016_j_knosys_2024_111664 crossref_primary_10_1016_j_patcog_2023_109318 crossref_primary_10_3390_bioengineering10101216 crossref_primary_10_3390_diagnostics13162667 crossref_primary_10_1007_s00138_024_01643_y crossref_primary_10_1016_j_mri_2021_10_005 crossref_primary_10_1007_s11042_019_7305_1 crossref_primary_10_1016_j_eswa_2023_123052 crossref_primary_10_1109_TMI_2021_3090082 crossref_primary_10_1016_j_media_2020_101723 crossref_primary_10_1109_TPAMI_2020_3013679 crossref_primary_10_1109_TMI_2023_3325766 crossref_primary_10_1016_j_heliyon_2024_e26775 crossref_primary_10_1016_j_bspc_2020_102246 crossref_primary_10_1016_j_compmedimag_2022_102075 crossref_primary_10_1016_j_patcog_2024_110812 crossref_primary_10_1161_CIRCIMAGING_119_009214 crossref_primary_10_1109_TIM_2024_3488143 crossref_primary_10_1016_j_mlwa_2021_100078 crossref_primary_10_1016_j_heliyon_2022_e10872 crossref_primary_10_1093_ehjdh_ztae061 crossref_primary_10_1109_JBHI_2023_3317632 crossref_primary_10_1109_JBHI_2024_3492540 crossref_primary_10_3389_fendo_2024_1356055 crossref_primary_10_1016_j_array_2024_100357 crossref_primary_10_1166_jmihi_2022_3927 crossref_primary_10_1186_s12968_022_00855_3 crossref_primary_10_3390_jimaging6070065 crossref_primary_10_1016_j_bspc_2024_106984 crossref_primary_10_7759_cureus_64272 crossref_primary_10_1016_j_medengphy_2024_104162 crossref_primary_10_1016_j_cjca_2021_09_030 crossref_primary_10_1016_j_compbiomed_2023_107695 crossref_primary_10_1016_j_inffus_2024_102634 crossref_primary_10_1109_TMI_2019_2900516 crossref_primary_10_1016_j_pnmrs_2025_101561 crossref_primary_10_1016_j_media_2022_102362 crossref_primary_10_3390_electronics13204063 crossref_primary_10_1148_ryai_2020200009 crossref_primary_10_1007_s10278_025_01437_2 crossref_primary_10_1016_j_compbiomed_2024_107991 crossref_primary_10_1016_j_cmpb_2022_106714 crossref_primary_10_1016_j_bspc_2024_106711 crossref_primary_10_1109_LRA_2019_2896518 crossref_primary_10_1016_j_displa_2025_103001 crossref_primary_10_1016_j_media_2022_102393 crossref_primary_10_1117_1_JMI_9_5_052407 crossref_primary_10_3233_XST_210879 crossref_primary_10_3390_math12192996 crossref_primary_10_1109_TRPMS_2024_3382318 crossref_primary_10_1186_s12968_023_00981_6 crossref_primary_10_1007_s10278_024_01299_0 crossref_primary_10_3390_clinpract15010017 crossref_primary_10_1016_j_compmedimag_2024_102416 crossref_primary_10_1186_s12968_021_00791_8 crossref_primary_10_1016_j_media_2020_101934 crossref_primary_10_1109_TBME_2022_3232730 crossref_primary_10_1016_j_compbiomed_2024_108853 crossref_primary_10_1109_JSTSP_2024_3523233 crossref_primary_10_1109_TIM_2022_3206810 crossref_primary_10_1016_j_rec_2019_05_014 crossref_primary_10_1016_j_neunet_2020_07_011 crossref_primary_10_1007_s10554_024_03247_z crossref_primary_10_1109_JBHI_2024_3460745 crossref_primary_10_1148_ryai_2020200021 crossref_primary_10_1016_j_media_2022_102389 crossref_primary_10_1109_JBHI_2020_2986926 crossref_primary_10_1109_TMI_2019_2897112 crossref_primary_10_1016_j_jocmr_2024_101051 crossref_primary_10_1016_j_metrad_2024_100082 crossref_primary_10_1148_ryct_2019190057 crossref_primary_10_1016_j_cmpb_2024_108045 crossref_primary_10_1093_ehjimp_qyae042 crossref_primary_10_1109_ACCESS_2023_3260027 crossref_primary_10_1007_s00371_024_03756_x crossref_primary_10_1109_TNB_2023_3276867 crossref_primary_10_1088_1361_6560_acc71f crossref_primary_10_1016_j_neucom_2024_127379 crossref_primary_10_1109_TMI_2024_3484166 crossref_primary_10_1016_j_compbiomed_2023_107001 crossref_primary_10_1002_mp_16182 crossref_primary_10_1016_j_eswa_2024_125785 crossref_primary_10_3390_biomedicines10030639 crossref_primary_10_1109_TMI_2023_3264513 crossref_primary_10_1016_j_knosys_2022_109859 crossref_primary_10_1097_RTI_0000000000000459 crossref_primary_10_3390_jcm14020354 crossref_primary_10_1016_j_bspc_2023_105158 crossref_primary_10_1016_j_patrec_2025_03_005 crossref_primary_10_1016_j_asoc_2024_112255 crossref_primary_10_31083_j_rcm2204121 crossref_primary_10_1007_s00371_021_02315_y crossref_primary_10_1016_j_neucom_2025_129668 crossref_primary_10_1016_j_neucom_2024_129326 crossref_primary_10_1016_j_media_2021_102066 crossref_primary_10_1016_j_media_2022_102564 crossref_primary_10_1186_s12968_022_00899_5 crossref_primary_10_1038_s41598_020_65153_3 crossref_primary_10_1016_j_cma_2023_116351 crossref_primary_10_1016_j_media_2020_101901 crossref_primary_10_1016_j_media_2020_101907 crossref_primary_10_1007_s12170_021_00678_4 crossref_primary_10_1038_s41467_023_43771_5 crossref_primary_10_1007_s11760_024_03694_0 crossref_primary_10_1016_j_compbiomed_2023_107268 crossref_primary_10_1016_j_compbiomed_2023_107266 crossref_primary_10_1016_j_media_2022_102597 crossref_primary_10_33571_rpolitec_v18n35a6 crossref_primary_10_1148_radiol_231269 crossref_primary_10_1016_j_media_2021_102273 crossref_primary_10_1016_j_media_2021_102035 crossref_primary_10_1007_s11042_023_17246_0 crossref_primary_10_1016_j_media_2023_102889 crossref_primary_10_1109_ACCESS_2020_2991424 crossref_primary_10_1007_s10278_023_00873_2 crossref_primary_10_3934_mbe_2024073 crossref_primary_10_3389_fnins_2021_652073 crossref_primary_10_1109_ACCESS_2019_2956210 crossref_primary_10_3389_fcvm_2021_742640 crossref_primary_10_1016_j_neunet_2024_106966 crossref_primary_10_1109_TMI_2023_3237183 crossref_primary_10_3390_bdcc8090099 crossref_primary_10_1016_j_jocmr_2024_101092 crossref_primary_10_1016_j_oceaneng_2022_110578 crossref_primary_10_3389_fcvm_2021_816985 crossref_primary_10_3390_jimaging8070194 crossref_primary_10_1016_j_compbiomed_2023_107290 crossref_primary_10_1088_1361_6560_acf2e5 crossref_primary_10_1016_j_bspc_2023_104791 crossref_primary_10_1007_s10554_022_02649_1 crossref_primary_10_1080_03772063_2022_2098836 crossref_primary_10_1259_bjr_20201060 crossref_primary_10_1109_TMI_2021_3117495 crossref_primary_10_1016_j_media_2022_102530 crossref_primary_10_1016_j_media_2022_102533 crossref_primary_10_1016_j_media_2022_102532 crossref_primary_10_1055_a_1244_2775 crossref_primary_10_1109_TNNLS_2022_3141119 crossref_primary_10_1016_j_media_2022_102528 crossref_primary_10_1016_j_media_2021_102029 crossref_primary_10_1142_S0129065721500374 crossref_primary_10_1016_j_compmedimag_2024_102340 crossref_primary_10_1016_j_jcmg_2021_08_011 crossref_primary_10_1016_j_compbiomed_2024_108673 crossref_primary_10_1016_j_artmed_2024_102900 crossref_primary_10_1109_TPAMI_2021_3100536 crossref_primary_10_1002_mrm_28294 crossref_primary_10_1002_mrm_29143 crossref_primary_10_1016_j_cmpb_2023_107398 crossref_primary_10_1016_j_ejrad_2020_109158 crossref_primary_10_1016_j_cmpb_2022_107099 crossref_primary_10_1109_TMI_2021_3060497 crossref_primary_10_1109_TIM_2024_3400353 crossref_primary_10_1016_j_irbm_2024_100850 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_1007_s10462_020_09871_0 crossref_primary_10_32604_cmc_2024_056478 crossref_primary_10_1002_ima_22992 crossref_primary_10_1038_s41598_021_83955_x crossref_primary_10_1016_j_cvdhj_2021_11_007 crossref_primary_10_3233_XST_190621 crossref_primary_10_1002_mrm_30393 crossref_primary_10_1016_j_eswa_2024_125005 crossref_primary_10_3389_fcvm_2020_00105 crossref_primary_10_1016_j_media_2023_102846 crossref_primary_10_1088_1361_6560_ac0bd3 crossref_primary_10_1016_j_jcmg_2019_12_022 crossref_primary_10_1016_j_image_2021_116303 crossref_primary_10_1515_cdbme_2020_0008 crossref_primary_10_1109_TPAMI_2022_3215186 crossref_primary_10_1038_s41598_024_63022_x crossref_primary_10_1016_j_media_2024_103151 crossref_primary_10_3389_fphys_2023_1027076 crossref_primary_10_1016_j_media_2024_103150 crossref_primary_10_1007_s11517_024_03192_y crossref_primary_10_1016_j_neucom_2024_129147 crossref_primary_10_1016_j_imu_2022_100884 crossref_primary_10_3389_fvets_2023_1143986 crossref_primary_10_1016_j_artmed_2021_102078 crossref_primary_10_1109_ACCESS_2020_2974101 crossref_primary_10_3390_life12101570 crossref_primary_10_1007_s00246_024_03512_x crossref_primary_10_1109_TMI_2020_3022693 crossref_primary_10_1016_j_media_2019_04_002 crossref_primary_10_1109_TMI_2024_3398728 crossref_primary_10_1016_j_compmedimag_2023_102283 crossref_primary_10_1080_02564602_2021_1937349 crossref_primary_10_1109_TCI_2024_3402347 crossref_primary_10_1016_j_neucom_2025_129818 crossref_primary_10_1002_mp_16108 crossref_primary_10_1007_s11042_021_11155_w crossref_primary_10_1002_ima_22966 crossref_primary_10_1007_s11517_024_03039_6 crossref_primary_10_1016_j_media_2021_102223 crossref_primary_10_1016_j_rec_2020_06_036 crossref_primary_10_1088_1361_6560_ad2715 crossref_primary_10_1016_j_media_2019_101630 crossref_primary_10_1142_S2972370124500077 crossref_primary_10_2214_AJR_19_21986 crossref_primary_10_1016_j_ejmp_2021_02_024 crossref_primary_10_1016_j_media_2022_102516 crossref_primary_10_1109_TIP_2024_3483563 crossref_primary_10_1016_j_compbiomed_2024_108004 crossref_primary_10_1016_j_media_2022_102515 crossref_primary_10_1002_mp_15285 crossref_primary_10_1109_JBHI_2023_3267857 crossref_primary_10_3389_fcvm_2022_1009131 crossref_primary_10_17816_DD629866 crossref_primary_10_1016_j_bspc_2023_105663 crossref_primary_10_17816_DD640895 crossref_primary_10_1016_j_cmpb_2024_108544 crossref_primary_10_1016_j_compbiomed_2021_104472 crossref_primary_10_1007_s00371_024_03589_8 crossref_primary_10_1007_s00371_024_03543_8 crossref_primary_10_1007_s11547_020_01277_w crossref_primary_10_34133_hds_0166 crossref_primary_10_1038_s41598_022_07186_4 crossref_primary_10_1109_TBME_2023_3321431 crossref_primary_10_1016_j_media_2025_103485 crossref_primary_10_1007_s13534_021_00212_w crossref_primary_10_1016_j_bspc_2023_105890 crossref_primary_10_1007_s10489_024_06222_2 crossref_primary_10_1016_j_media_2023_102802 crossref_primary_10_1109_TPAMI_2024_3434435 crossref_primary_10_1109_TII_2024_3361021 crossref_primary_10_1016_j_media_2023_102808 crossref_primary_10_1016_j_neucom_2023_126606 crossref_primary_10_1109_JBHI_2023_3278741 crossref_primary_10_1016_j_cmpb_2025_108613 crossref_primary_10_1007_s10278_025_01397_7 crossref_primary_10_1002_ima_22947 crossref_primary_10_1109_TMI_2021_3073381 crossref_primary_10_1186_s12968_018_0471_x crossref_primary_10_1007_s10489_021_02720_9 crossref_primary_10_1016_j_compbiomed_2024_109597 crossref_primary_10_1002_mp_14377 crossref_primary_10_1002_nbm_5143 crossref_primary_10_3390_app12094151 crossref_primary_10_1016_j_compmedimag_2020_101786 crossref_primary_10_1002_ima_22938 crossref_primary_10_1016_j_media_2023_103061 crossref_primary_10_1152_ajpheart_00764_2020 crossref_primary_10_1007_s11704_024_40462_2 crossref_primary_10_3389_fcvm_2023_1118499 crossref_primary_10_1088_2057_1976_ad947b crossref_primary_10_1002_mef2_38 crossref_primary_10_1016_j_bspc_2025_107773 crossref_primary_10_1016_j_patcog_2024_111116 crossref_primary_10_32604_cmc_2022_017916 crossref_primary_10_15420_aer_2022_34 crossref_primary_10_1007_s11042_024_19009_x crossref_primary_10_1109_JBHI_2023_3266977 crossref_primary_10_1016_j_jbi_2023_104366 crossref_primary_10_1007_s10554_023_02927_6 crossref_primary_10_1016_j_knosys_2025_113005 crossref_primary_10_1080_21681163_2024_2314566 crossref_primary_10_3390_diagnostics13101783 crossref_primary_10_1016_j_eswa_2023_122772 crossref_primary_10_3390_life13020507 crossref_primary_10_1038_s41592_020_01008_z crossref_primary_10_1016_j_bspc_2025_107561 crossref_primary_10_3390_bioengineering11100958 crossref_primary_10_1016_j_bspc_2025_107568 crossref_primary_10_1038_s41598_024_70593_2 crossref_primary_10_1007_s00740_022_00474_9 crossref_primary_10_1007_s10462_024_10894_0 crossref_primary_10_1109_TIP_2025_3530787 crossref_primary_10_1007_s10489_023_04569_6 crossref_primary_10_1186_s44156_023_00024_x crossref_primary_10_1016_j_media_2022_102704 crossref_primary_10_1109_JBHI_2023_3264539 crossref_primary_10_1137_22M1516099 crossref_primary_10_1016_j_procs_2023_01_388 crossref_primary_10_1007_s40846_023_00794_z crossref_primary_10_1109_JBHI_2021_3106341 crossref_primary_10_32604_cmc_2023_035888 crossref_primary_10_1016_j_bspc_2025_107791 crossref_primary_10_1016_j_compbiomed_2024_108057 crossref_primary_10_1016_j_patcog_2024_111338 crossref_primary_10_1007_s10334_022_01017_3 crossref_primary_10_1016_j_recesp_2019_05_016 crossref_primary_10_1007_s10489_022_04118_7 crossref_primary_10_1007_s11517_021_02372_4 crossref_primary_10_3389_fcvm_2022_859310 crossref_primary_10_1016_j_bspc_2024_107062 crossref_primary_10_1038_s41592_024_02499_w crossref_primary_10_1016_j_cosrev_2024_100721 crossref_primary_10_1016_j_compmedimag_2021_101864 crossref_primary_10_1016_j_media_2024_103142 crossref_primary_10_1016_j_eswa_2023_122567 crossref_primary_10_1109_TMI_2021_3066683 crossref_primary_10_3389_fcvm_2022_804442 crossref_primary_10_1109_TPAMI_2024_3435571 crossref_primary_10_1371_journal_pdig_0000159 crossref_primary_10_1016_j_media_2024_103385 crossref_primary_10_1016_j_compmedimag_2024_102382 crossref_primary_10_1109_TMI_2023_3319973 crossref_primary_10_1109_TMI_2023_3266137 crossref_primary_10_1007_s10278_024_01191_x crossref_primary_10_1016_j_neucom_2024_127817 crossref_primary_10_1007_s40430_024_04875_1 crossref_primary_10_1016_j_tcm_2021_02_002 crossref_primary_10_1007_s11042_024_20338_0 crossref_primary_10_1016_j_irbm_2020_06_004 crossref_primary_10_1186_s12880_024_01519_7 crossref_primary_10_1038_s41598_024_69529_7 crossref_primary_10_1088_1361_6560_ad3884 crossref_primary_10_3389_frai_2024_1482141 crossref_primary_10_1109_ACCESS_2020_3026073 crossref_primary_10_3390_math12162462 crossref_primary_10_1007_s11760_025_03895_1 crossref_primary_10_1109_JBHI_2023_3346529 crossref_primary_10_1016_j_compbiomed_2024_108088 crossref_primary_10_1109_TIP_2023_3293771 crossref_primary_10_1016_j_jocs_2023_102083 crossref_primary_10_1140_epjp_s13360_024_05960_z crossref_primary_10_1109_TMI_2023_3338269 crossref_primary_10_1016_j_eswa_2023_120368 crossref_primary_10_26599_TST_2022_9010023 crossref_primary_10_1016_j_media_2023_103046 crossref_primary_10_1038_s41598_022_12378_z crossref_primary_10_3934_math_2024429 crossref_primary_10_1016_j_media_2019_06_001 crossref_primary_10_1016_j_inffus_2023_102075 crossref_primary_10_1016_j_inffus_2024_102355 crossref_primary_10_3390_bioengineering10070869 crossref_primary_10_1038_s41746_025_01434_3 crossref_primary_10_3390_math11092082 crossref_primary_10_1016_j_bspc_2024_106453 crossref_primary_10_1109_TMI_2023_3243069 crossref_primary_10_1016_j_imavis_2024_105277 crossref_primary_10_1109_TMI_2024_3364240 crossref_primary_10_1016_j_inffus_2024_102364 crossref_primary_10_1038_s41598_022_06315_3 crossref_primary_10_1016_j_bspc_2022_103870 crossref_primary_10_1016_j_cjca_2021_11_003 crossref_primary_10_1148_ryai_2020190195 crossref_primary_10_7717_peerj_cs_1146 crossref_primary_10_1016_j_knosys_2023_110378 crossref_primary_10_1016_j_compeleceng_2024_110007 crossref_primary_10_1109_TCSVT_2023_3303228 crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1016_j_bspc_2024_106674 crossref_primary_10_1161_CIRCIMAGING_119_009759 crossref_primary_10_1038_s41598_024_76234_y crossref_primary_10_1016_j_patcog_2021_108515 crossref_primary_10_1186_s40658_025_00728_5 crossref_primary_10_1016_j_engappai_2024_108059 crossref_primary_10_1109_TMI_2024_3468896 crossref_primary_10_1007_s00500_021_06568_6 crossref_primary_10_1016_j_media_2023_103000 crossref_primary_10_1049_ipr2_12503 crossref_primary_10_3390_diagnostics12020414 crossref_primary_10_1016_j_patcog_2024_110528 crossref_primary_10_1016_j_isci_2023_108608 crossref_primary_10_1088_1361_6560_abde98 crossref_primary_10_1002_mp_13699 crossref_primary_10_3390_pharmaceutics14091964 crossref_primary_10_3389_fcvm_2022_829512 crossref_primary_10_1016_j_recesp_2020_06_017 crossref_primary_10_1016_j_compmedimag_2020_101717 crossref_primary_10_1016_j_knosys_2023_110598 crossref_primary_10_1109_ACCESS_2023_3286346 crossref_primary_10_1109_JBHI_2023_3250429 crossref_primary_10_1016_j_media_2020_101891 crossref_primary_10_1016_j_bspc_2024_107341 crossref_primary_10_1109_TNNLS_2023_3332003 crossref_primary_10_1016_j_cpcardiol_2023_102129 crossref_primary_10_1016_j_bspc_2024_106019 crossref_primary_10_1016_j_cmpb_2021_106373 crossref_primary_10_3390_app11041965 crossref_primary_10_1016_j_bspc_2021_102686 crossref_primary_10_1016_j_ijrobp_2021_09_009 crossref_primary_10_1016_j_media_2024_103302 crossref_primary_10_1109_JBHI_2024_3381844 crossref_primary_10_1109_TMI_2024_3363190 crossref_primary_10_1007_s10278_024_01217_4 crossref_primary_10_1016_j_media_2020_101636 crossref_primary_10_1109_JSTSP_2020_3013351 crossref_primary_10_1016_j_cmpb_2021_106142 crossref_primary_10_1016_j_bspc_2021_102684 crossref_primary_10_1016_j_jcmg_2019_06_009 crossref_primary_10_3389_fcvm_2019_00195 crossref_primary_10_1109_TMI_2020_2964499 crossref_primary_10_1016_j_array_2025_100382 crossref_primary_10_3389_fcvm_2019_00190 crossref_primary_10_3389_fcvm_2020_00086 crossref_primary_10_3390_diagnostics12030639 crossref_primary_10_1007_s12021_022_09607_1 crossref_primary_10_1016_j_bspc_2024_106237 crossref_primary_10_1186_s12968_022_00861_5 crossref_primary_10_1109_JBHI_2024_3506829 crossref_primary_10_1002_mp_14752 crossref_primary_10_3389_fradi_2023_1175473 crossref_primary_10_3390_electronics12214411 crossref_primary_10_3390_app12063024 crossref_primary_10_1080_17434440_2020_1777855 crossref_primary_10_1016_j_cag_2024_104014 crossref_primary_10_1109_TIM_2024_3502832 crossref_primary_10_2174_1573405617666210126153920 crossref_primary_10_1016_j_eswa_2023_122024 crossref_primary_10_1016_j_eswa_2024_123666 crossref_primary_10_1109_TUFFC_2024_3462299 crossref_primary_10_1016_j_compbiomed_2025_109762 crossref_primary_10_1016_j_cmpb_2023_107615 crossref_primary_10_1016_j_bspc_2024_107339 crossref_primary_10_3389_fcvm_2022_826283 crossref_primary_10_1016_j_compbiomed_2024_108932 crossref_primary_10_1016_j_neucom_2024_127446 crossref_primary_10_1016_j_neucom_2024_128532 crossref_primary_10_1109_TMI_2019_2894322 crossref_primary_10_1145_3638044 crossref_primary_10_3390_s21103363 crossref_primary_10_1007_s12204_022_2428_3 crossref_primary_10_1016_j_compbiomed_2024_108944 crossref_primary_10_3390_diagnostics13213363 crossref_primary_10_1109_ACCESS_2019_2936945 crossref_primary_10_1109_TMI_2023_3336534 crossref_primary_10_3390_math11143245 crossref_primary_10_1016_j_imu_2024_101540 crossref_primary_10_1016_j_knosys_2024_112203 crossref_primary_10_1016_j_media_2023_102773 crossref_primary_10_1109_TRPMS_2023_3265863 crossref_primary_10_1155_2022_1368878 crossref_primary_10_1109_ACCESS_2022_3165574 crossref_primary_10_1109_JBHI_2020_3028463 crossref_primary_10_3934_mbe_2025020 crossref_primary_10_1016_j_media_2020_101832 crossref_primary_10_3390_a17040168 crossref_primary_10_1109_ACCESS_2023_3313980 crossref_primary_10_1007_s11517_023_02946_4 crossref_primary_10_3390_s23239488 crossref_primary_10_1016_j_compbiomed_2020_104200 crossref_primary_10_1093_ehjimp_qyae136 crossref_primary_10_1038_s41598_024_54164_z crossref_primary_10_1016_j_patcog_2023_109881 crossref_primary_10_1007_s10489_021_03062_2 crossref_primary_10_1038_s41598_023_46747_z crossref_primary_10_1007_s11390_021_0782_5 crossref_primary_10_1016_j_compmedimag_2022_102174 crossref_primary_10_1016_j_asoc_2024_112399 crossref_primary_10_1002_mp_13859 crossref_primary_10_1016_j_neucom_2025_129577 crossref_primary_10_1007_s11042_024_19432_0 crossref_primary_10_1631_FITEE_2200102 crossref_primary_10_1109_TMI_2024_3400840 crossref_primary_10_1038_s41746_024_01276_5 crossref_primary_10_1016_j_media_2020_101812 crossref_primary_10_1109_TMI_2020_3003240 crossref_primary_10_1016_j_compbiomed_2025_109723 crossref_primary_10_1016_j_bspc_2023_105694 crossref_primary_10_1002_mp_13853 crossref_primary_10_1016_j_compbiomed_2023_107596 crossref_primary_10_1016_j_neucom_2020_07_053 crossref_primary_10_1109_TFUZZ_2024_3364970 crossref_primary_10_3390_diagnostics11061104 crossref_primary_10_2214_AJR_19_21927 crossref_primary_10_35940_ijrte_F7480_0311623 crossref_primary_10_3389_fcvm_2021_787614 crossref_primary_10_1093_bib_bbae325 crossref_primary_10_1109_ACCESS_2022_3156894 crossref_primary_10_1016_j_bspc_2024_106658 crossref_primary_10_3390_biomedicines10092157 crossref_primary_10_1016_j_dsp_2024_104883 crossref_primary_10_1109_ACCESS_2023_3238058 crossref_primary_10_3390_jcm10050921 crossref_primary_10_1016_j_icte_2024_09_008 crossref_primary_10_1016_j_compmedimag_2022_102158 crossref_primary_10_1109_ACCESS_2023_3311134 crossref_primary_10_1080_21681163_2022_2055492 crossref_primary_10_3389_fcvm_2021_730316 crossref_primary_10_1038_s41598_025_87829_4 crossref_primary_10_1117_1_JMI_11_4_044002 crossref_primary_10_1007_s00330_023_10127_y crossref_primary_10_3389_fcvm_2020_00001 crossref_primary_10_1016_j_cmpb_2022_106889 crossref_primary_10_1016_j_media_2022_102447 crossref_primary_10_1016_j_media_2022_102688 crossref_primary_10_1016_j_cmpb_2021_106548 crossref_primary_10_1109_ACCESS_2024_3522214 crossref_primary_10_3390_life14010145 crossref_primary_10_1155_2022_5906877 crossref_primary_10_1049_el_2020_0453 crossref_primary_10_1186_s12968_019_0575_y crossref_primary_10_1155_2021_1678123 crossref_primary_10_1016_j_compmedimag_2023_102203 crossref_primary_10_1049_ipr2_12934 crossref_primary_10_1016_j_media_2022_102445 crossref_primary_10_1016_j_neucom_2025_129782 crossref_primary_10_1016_j_rcl_2024_01_002 crossref_primary_10_1049_ipr2_12936 crossref_primary_10_3390_bioengineering10020166 crossref_primary_10_1148_ryai_2021200197 crossref_primary_10_1016_j_media_2022_102682 crossref_primary_10_3390_jimaging10050118 crossref_primary_10_1049_ipr2_12950 crossref_primary_10_1016_j_bspc_2024_106633 crossref_primary_10_1016_j_compbiomed_2019_04_042 crossref_primary_10_1007_s10278_021_00529_z crossref_primary_10_1007_s11042_024_18953_y crossref_primary_10_1016_j_neucom_2024_128125 crossref_primary_10_1016_j_neucom_2024_128124 crossref_primary_10_1016_j_optlastec_2025_112422 crossref_primary_10_1109_TIP_2025_3536208 crossref_primary_10_1155_2021_6679603 crossref_primary_10_1016_j_media_2021_102156 crossref_primary_10_1016_j_patrec_2020_11_018 crossref_primary_10_3390_s23042112 crossref_primary_10_3390_ijms24065680 crossref_primary_10_1109_TMI_2021_3052972 crossref_primary_10_1007_s10334_024_01180_9 crossref_primary_10_1002_jmri_28374 crossref_primary_10_1016_j_bspc_2024_106638 crossref_primary_10_3390_electronics10172132 crossref_primary_10_3390_app12083936 crossref_primary_10_1016_j_media_2023_102762 crossref_primary_10_1186_s12938_024_01212_4 crossref_primary_10_3389_fphys_2021_745349 crossref_primary_10_1109_JBHI_2018_2865450 crossref_primary_10_1016_j_jcmg_2019_05_030 |
Cites_doi | 10.1007/s00330-003-1957-x 10.1016/j.media.2016.05.009 10.1161/CIRCULATIONAHA.108.840827 10.1016/j.media.2017.07.005 10.1016/j.media.2014.09.005 10.3109/10976649909080829 10.1145/237170.237244 10.1109/TMI.2002.804425 10.1109/TMI.2008.918327 10.1016/j.media.2014.06.001 10.1016/j.media.2011.05.009 10.1016/j.media.2013.09.001 10.1016/j.jcmg.2010.04.013 10.1186/s12968-016-0227-4 10.1016/j.media.2016.01.005 10.1016/j.cviu.2013.01.014 10.1002/jmri.23892 10.1109/ISBI.2017.7950555 10.1109/EMBC.2015.7318454 10.1109/ICCV.2015.510 10.1093/oxfordjournals.eurheartj.a060113 10.1109/TMI.2004.828354 10.1161/01.CIR.76.1.44 10.1016/j.media.2014.10.004 10.1016/j.acra.2012.02.011 10.1093/eurheartj/ehu284 10.1016/j.media.2010.12.004 10.1109/TMI.2012.2218117 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC |
DOI | 10.1109/TMI.2018.2837502 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1558-254X |
EndPage | 2525 |
ExternalDocumentID | oai_HAL_hal_01803621v1 29994302 10_1109_TMI_2018_2837502 8360453 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/14/89/31194 |
GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 1XC |
ID | FETCH-LOGICAL-c489t-36c15fe5fb89853b3f7c5d8007726be9b75ce3f3aa6507fb47cf371bf953dfa43 |
IEDL.DBID | RIE |
ISSN | 0278-0062 1558-254X |
IngestDate | Wed Aug 27 07:46:17 EDT 2025 Fri Jul 11 04:14:49 EDT 2025 Mon Jun 30 03:45:41 EDT 2025 Mon Jul 21 06:03:21 EDT 2025 Tue Jul 01 03:16:00 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Wed Aug 27 02:31:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Keywords | Deep learning Myocardium Cardiac segmentation and diagnosis Lleft and right ventricles MRI |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c489t-36c15fe5fb89853b3f7c5d8007726be9b75ce3f3aa6507fb47cf371bf953dfa43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0713-9924 0000-0002-7970-366X 0000-0002-3629-4384 0000-0002-6256-8350 0000-0002-1802-1825 0000-0003-2416-8249 0000-0001-5505-475X 0000-0003-0752-9946 0000-0002-6038-5753 0000-0002-7817-1198 0000-0002-6617-7664 |
OpenAccessLink | https://qmro.qmul.ac.uk/xmlui/bitstream/123456789/42264/1/Bernard%20et%20al_Deep%20learning%20techniques%20automatic%20MRI_2018_Accepted.pdf |
PMID | 29994302 |
PQID | 2127966284 |
PQPubID | 85460 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2127966284 crossref_primary_10_1109_TMI_2018_2837502 ieee_primary_8360453 pubmed_primary_29994302 hal_primary_oai_HAL_hal_01803621v1 proquest_miscellaneous_2068341749 crossref_citationtrail_10_1109_TMI_2018_2837502 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on medical imaging |
PublicationTitleAbbrev | TMI |
PublicationTitleAlternate | IEEE Trans Med Imaging |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
References | ref13 ref12 ref15 wolterink (ref50) 2017 ref14 ref55 ref54 zotti (ref52) 2017 ref10 elliott (ref3) 2014; 35 ref19 white (ref1) 1987; 76 havaei (ref36) 2015 tan (ref11) 2016 jang (ref45) 2017 (ref9) 2015 tziritas (ref49) 2017 ref42 lalande (ref41) 2015 long (ref17) 2014 oktay (ref34) 2016 rupprecht (ref30) 2016 tran (ref16) 2017 ref8 rohé (ref56) 2017 suinesiaputra (ref7) 2011 ref4 zhang (ref29) 2016 ref5 ref35 bogaert (ref57) 2012 ref37 ref31 patravali (ref47) 2017 ref2 yang (ref51) 2017 ref39 cetin (ref53) 2017 baumgartner (ref43) 2017 poudel (ref33) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 bai (ref58) 2017 yang (ref32) 2016 kong (ref28) 2016 ref27 marcus (ref38) 2010; 121 ronneberger (ref18) 2016 khened (ref46) 2017 radau (ref6) 2009 rohe (ref48) 2017 du bois (ref40) 1989; 5 isensee (ref44) 2017 |
References_xml | – ident: ref39 doi: 10.1007/s00330-003-1957-x – start-page: 138 year: 2016 ident: ref29 article-title: Automated quality assessment of cardiac mr images using convolutional neural networks publication-title: Proc SASHIMI-MICCAI – ident: ref31 doi: 10.1016/j.media.2016.05.009 – start-page: 246 year: 2016 ident: ref34 article-title: Regan, and D. Rueckert, "Multi-input cardiac image super-resolution using convolutional neural networks publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – start-page: 161 year: 2017 ident: ref45 article-title: Automatic segmentation of LV and RV in cardiac MRI publication-title: Proc MICCAI-STACOM – start-page: 91 year: 2017 ident: ref49 article-title: Fast fully-automatic cardiac segmentation in MRI using MRF model optimization, substructures tracking and B-spline smoothing publication-title: Proc MICCAI-STACOM – start-page: 130 year: 2017 ident: ref47 article-title: 2D-3D fully convolutional neural networks for cardiac MR segmentation publication-title: Proc STACOMMICCAI – volume: 121 start-page: 1533 year: 2010 ident: ref38 article-title: Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.108.840827 – ident: ref35 doi: 10.1016/j.media.2017.07.005 – start-page: 490 year: 2016 ident: ref11 article-title: Cardiac left ventricle segmentation using convolutional neural network regression publication-title: Proc IECBES – start-page: 234 year: 2016 ident: ref18 article-title: U-Net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – ident: ref26 doi: 10.1016/j.media.2014.09.005 – ident: ref37 doi: 10.3109/10976649909080829 – ident: ref42 doi: 10.1145/237170.237244 – ident: ref25 doi: 10.1109/TMI.2002.804425 – year: 2009 ident: ref6 article-title: Evaluation framework for algorithms segmenting short axis cardiac MRI publication-title: The MIDAS Journal - Cardiac MR Left Ventricle Segmentation Challenge – ident: ref23 doi: 10.1109/TMI.2008.918327 – start-page: 125 year: 2015 ident: ref36 article-title: Deep learning trends for focal brain pathology segmentation in MRI publication-title: Machine Learning for Health Informatics (Lecture Notes in Computer Science) – ident: ref5 doi: 10.1016/j.media.2014.06.001 – start-page: 111 year: 2017 ident: ref43 article-title: An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation publication-title: Proc MICCAI-STACOM – year: 2016 ident: ref30 publication-title: Deep active contours – year: 2017 ident: ref58 publication-title: Human-level cmr image analysis with deep fully convolutional networks – ident: ref24 doi: 10.1016/j.media.2011.05.009 – ident: ref12 doi: 10.1016/j.media.2013.09.001 – ident: ref14 doi: 10.1016/j.jcmg.2010.04.013 – ident: ref19 doi: 10.1186/s12968-016-0227-4 – start-page: 109 year: 2012 ident: ref57 publication-title: Cardiac function " in Clinical Cardiac MRI – year: 2017 ident: ref56 article-title: SVF-net: Learning deformable image registration using shape matching publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – ident: ref10 doi: 10.1016/j.media.2016.01.005 – ident: ref15 doi: 10.1016/j.cviu.2013.01.014 – ident: ref4 doi: 10.1002/jmri.23892 – start-page: 170 year: 2017 ident: ref48 article-title: Automatic multi-atlas segmentation of myocardium with SVF-net publication-title: Proc MICCAI-STACOM – ident: ref55 doi: 10.1109/ISBI.2017.7950555 – start-page: 264 year: 2016 ident: ref28 article-title: Recognizing end-diastole and end-systole frames via deep temporal regression network publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – ident: ref27 doi: 10.1109/EMBC.2015.7318454 – start-page: 3431 year: 2014 ident: ref17 article-title: Fully convolutional networks for semantic segmentation publication-title: Proc CVPR – start-page: 88 year: 2011 ident: ref7 article-title: Left ventricular segmentation challenge from cardiac MRI: A collation study publication-title: Proc STACOM – start-page: 171 year: 2015 ident: ref41 article-title: Evaluation of cardiac structure segmentation in cine magnetic resonance imaging publication-title: Multi-Modality Cardiac Imaging Processing and Analysis – ident: ref54 doi: 10.1109/ICCV.2015.510 – ident: ref2 doi: 10.1093/oxfordjournals.eurheartj.a060113 – ident: ref13 doi: 10.1109/TMI.2004.828354 – volume: 76 start-page: 44 year: 1987 ident: ref1 article-title: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction publication-title: Circulation doi: 10.1161/01.CIR.76.1.44 – year: 2016 ident: ref33 publication-title: Recurrent fully convolutional neural networks for multi-slice MRI cardiac segmentation – start-page: 521 year: 2016 ident: ref32 article-title: Deep fusion net for multi-atlas segmentation: Application to cardiac MR images publication-title: Medical Image Computing and Computer-Assisted Intervention-MICCAI – ident: ref8 doi: 10.1016/j.media.2014.10.004 – ident: ref21 doi: 10.1016/j.acra.2012.02.011 – volume: 35 start-page: 2733 year: 2014 ident: ref3 article-title: 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC) publication-title: Eur Heart J doi: 10.1093/eurheartj/ehu284 – start-page: 73 year: 2017 ident: ref52 article-title: GridNet with automatic shape prior registration for automatic MRI cardiac segmentation publication-title: Proc MICCAI-STACOM – year: 2017 ident: ref16 publication-title: A Fully Convolutional Neural Network for Cardiac Segmentation in Short-Axis MRI arXiv – year: 2015 ident: ref9 publication-title: The 2015 Kaggle Second Annual Data Science Bowl Accessed – start-page: 140 year: 2017 ident: ref46 article-title: Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest publication-title: Proc MICCAI-STACOM – start-page: 120 year: 2017 ident: ref44 article-title: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features publication-title: Proc MICCAI-STACOM – ident: ref20 doi: 10.1016/j.media.2010.12.004 – start-page: 82 year: 2017 ident: ref53 article-title: A radiomics approach to computer-aided diagnosis with cardiac cine-MRI publication-title: Proc MICCAI-STACOM – ident: ref22 doi: 10.1109/TMI.2012.2218117 – volume: 5 start-page: 303 year: 1989 ident: ref40 article-title: A formula to estimate the approximate surface area if height and weight be known publication-title: Nutrition – start-page: 101 year: 2017 ident: ref50 article-title: Automatic segmentation and disease classification using cardiac cine MR images publication-title: Proc MICCAI-STACOM – start-page: 152 year: 2017 ident: ref51 article-title: Class-balanced deep neural network for automatic ventricular structure segmentation publication-title: Proc MICCAI-STACOM |
SSID | ssj0014509 |
Score | 2.7143767 |
Snippet | Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common... Delineation of the left ventricular cavity,myocardium, and right ventricle from cardiac magneticresonance images (multi-slice 2-D cine MRI) is a commonclinical... |
SourceID | hal proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2514 |
SubjectTerms | Automation Biomedical imaging Cardiac Imaging Techniques - methods Cardiac segmentation and diagnosis Classification Correlation analysis Databases, Factual Datasets Deep Learning Diagnosis Female Go/no-go discrimination learning Heart Heart - diagnostic imaging Heart Diseases - diagnostic imaging Humans Identification methods Image Interpretation, Computer-Assisted - methods Image processing Image segmentation left and right ventricles Life Sciences Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Male Medical diagnosis MRI Myocardium State of the art Task analysis Teaching methods Ventricle |
Title | Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? |
URI | https://ieeexplore.ieee.org/document/8360453 https://www.ncbi.nlm.nih.gov/pubmed/29994302 https://www.proquest.com/docview/2127966284 https://www.proquest.com/docview/2068341749 https://hal.science/hal-01803621 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB51e0Bw4NFCCRRkEBckspuXk5gLWrVUu4ggxG6l3iI_C6IklXazB349M3kJECBuVuIkjmZsf-OZ-QbghUNQoIU2fqQQviWhlr6SdACvAydtZmwYUnJy8SFdnCfvLvjFHrwac2GstW3wmZ1Ss_Xlm1o3dFQ2o4SDhMcTmKDh1uVqjR6DhHfhHBExxgZpNLgkAzFbF0uK4cqnxPTCAypgg4sw8Y5Hv-xGk88UC9kWWfk73mz3nbM7UAwj7sJNvk6brZrq77-ROf7vL92F2z0AZfNOY-7Bnq0O4NZPtIQHcKPoHe6HsDu19pr1JKyXbD0wvm4Ygl02b7Z1S_nKik9LdtIqG7YpRtFftcS0DVrzbGUvv_UpThWTlWGnXXzfl81rttwwhKDsY1fXhq3qq501b-7D-dnb9cnC70s1-DrJxdaPUx1yZ7lTuUAAoGKXaW5yIguKUmWFyri2sYulRESYOZVk2sVZqJzgsXEyiR_AflVX9iEwhxDPmVwgUsPVhQdSxTwzWknEGhbBjgezQWSl7nnMqZzGVdnaM4EoUd4lybvs5e3By_GJ647D4x99n6MWjN2IfHsxf1_SNaI6w-0-3IUeHJIkx169ED04HpSm7FeCTUkM-mhSIgrw4Nl4G-cwOWZkZesG-wRpjmgiS4QHR52yje8eNPXRn7_5GG7S8LvsyGPYR9naJwiTtuppOz9-ALJDCn0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB61ReJ44GihGAosiBekOvG1PnhBUUuVQFwhkkp9s_YsFcWulDgP_HpmfAkQIN5W9vhYzezutzsz3wC8tggKVKa0G0iEb5GvhCsFHcArzwqTaOP7lJycn8bTs-jDOT_fgsMhF8YY0wSfmRE1G1--rlRNR2VjSjiIeLgNN3Dd536brTX4DCLeBnQExBnrxUHvlPSy8TKfURRXOiKuF-5RCRuchol5PPhlPdr-QtGQTZmVvyPOZuU5uQd5_89twMnXUb2WI_X9NzrH_-3UfbjbQVA2aW3mAWyZchfu_ERMuAs3887lvgebY2OuWUfDesGWPefriiHcZZN6XTWkryz_PGNHjblhm6IU3UVDTVvjfp4tzMW3LsmpZKLU7LiN8LtcvWWzFUMQyj61lW3YorraGP3uIZydvF8eTd2uWIOrojRbu2GsfG4NtzLNEALI0CaK65TogoJYmkwmXJnQhkIgJkysjBJlw8SXNuOhtiIKH8FOWZXmMTCLIM_qNEOshvML94QMeaKVFIg2DMIdB8a9ygrVMZlTQY2rotnReFmB-i5I30WnbwfeDE9ctywe_5B9hVYwiBH99nQyL-gakZ3hgu9vfAf2SJODVKdEBw56oym6uWBVEIc-bioRBzjwcriNo5hcM6I0VY0yXpwinkiizIH91tiGd_eW-uTP33wBt6bLfF7MZ6cfn8Jt6kqbK3kAO6hn8wxB01o-b8bKD7vFDcY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Techniques+for+Automatic+MRI+Cardiac+Multi-Structures+Segmentation+and+Diagnosis%3A+Is+the+Problem+Solved%3F&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Bernard%2C+Olivier&rft.au=Lalande%2C+Alain&rft.au=Zotti%2C+Clement&rft.au=Cervenansky%2C+Frederick&rft.date=2018-11-01&rft.pub=IEEE&rft.issn=0278-0062&rft.volume=37&rft.issue=11&rft.spage=2514&rft.epage=2525&rft_id=info:doi/10.1109%2FTMI.2018.2837502&rft_id=info%3Apmid%2F29994302&rft.externalDocID=8360453 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |