High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases
The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiN...
Saved in:
Published in | Advanced energy materials Vol. 8; no. 19 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.07.2018
Wiley Blackwell (John Wiley & Sons) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g−1 (846 W h kg−1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g−1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.
Excellent rate capability and cycling performance in a high voltage lithium (Li) metal battery (LMB) composed of Ni‐rich layered LiNi0.76Mn0.14Co0.10O2 (NMC76) and Li metal are enabled by the formation of stable electrode/electrolyte interfaces in an optimized dual‐salt electrolyte with additive. The Li||NMC76 cell demonstrates a capacity retention above 80% after 1000 cycles at 400 mA g−1 between 2.7–4.5 V. |
---|---|
AbstractList | The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi
0.76
Mn
0.14
Co
0.10
O
2
(NMC76) and an optimized electrolyte [0.6
m
lithium bis(trifluoromethanesulfonyl)imide + 0.4
m
lithium bis(oxalato)borate + 0.05
m
LiPF
6
dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g
−1
(846 W h kg
−1
) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g
−1
). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte. The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g−1 (846 W h kg−1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g−1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte. Excellent rate capability and cycling performance in a high voltage lithium (Li) metal battery (LMB) composed of Ni‐rich layered LiNi0.76Mn0.14Co0.10O2 (NMC76) and Li metal are enabled by the formation of stable electrode/electrolyte interfaces in an optimized dual‐salt electrolyte with additive. The Li||NMC76 cell demonstrates a capacity retention above 80% after 1000 cycles at 400 mA g−1 between 2.7–4.5 V. The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g−1 (846 W h kg−1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g−1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte. Abstract The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi 0.76 Mn 0.14 Co 0.10 O 2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF 6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g −1 (846 W h kg −1 ) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g −1 ). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte. |
Author | Xu, Wu Liu, Bin Zou, Lianfeng Zheng, Jianming Zhao, Wengao Wang, Hui Zhang, Ji‐Guang Jia, Haiping Engelhard, Mark H. Wang, Chongmin Yang, Yong |
Author_xml | – sequence: 1 givenname: Wengao surname: Zhao fullname: Zhao, Wengao organization: Xiamen University – sequence: 2 givenname: Jianming surname: Zheng fullname: Zheng, Jianming email: jianming.zheng@pnnl.gov organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Lianfeng surname: Zou fullname: Zou, Lianfeng organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Haiping surname: Jia fullname: Jia, Haiping organization: Pacific Northwest National Laboratory – sequence: 5 givenname: Bin surname: Liu fullname: Liu, Bin organization: Pacific Northwest National Laboratory – sequence: 6 givenname: Hui surname: Wang fullname: Wang, Hui organization: Pacific Northwest National Laboratory – sequence: 7 givenname: Mark H. surname: Engelhard fullname: Engelhard, Mark H. organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Chongmin surname: Wang fullname: Wang, Chongmin organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Wu surname: Xu fullname: Xu, Wu organization: Pacific Northwest National Laboratory – sequence: 10 givenname: Yong surname: Yang fullname: Yang, Yong email: yyang@xmu.edu.cn organization: Xiamen University – sequence: 11 givenname: Ji‐Guang orcidid: 0000-0001-7343-4609 surname: Zhang fullname: Zhang, Ji‐Guang email: jiguang.zhang@pnnl.gov organization: Pacific Northwest National Laboratory |
BackLink | https://www.osti.gov/biblio/1430586$$D View this record in Osti.gov |
BookMark | eNqFkMtKAzEUhoNUUGu3roOu2yaTdC7LUqot9ALetiGTOe2kjElNUqQ7H8Fn9Emc2lJBEM_m_CH_d87hv0ANYw0gdEVJhxISdSWYl05EaFo_suQEndOY8nacctI4ahadoZb3K1IXzyhh7BwVI70s8bOtglwCnq_ByaCtwXaBZ_rz_eNeqxLPpgM8kKG0BXg8NDKvoMD5Fj-EncTDClRw9Wf3oKptADw2Ady6lB78JTpdyMpD69Cb6Ol2-DgYtSfzu_GgP2krnmZJmwIDxSUnJCUqZQlki7QXZzLiMc-B9CTJc5nkDEjE8phKJqniWQZcJkVcqJw10fV-rvVBC690AFUqa0x9laCckV4a16abvWnt7OsGfBAru3GmvktEJOYRi1K-c3X2LuWs9w4WYu30i3RbQYnYJS52iYtj4jXAfwH1-u8sg5O6-hvL9tibrmD7zxLRH86mP-wXV7GX0A |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_4c00004 crossref_primary_10_1002_advs_201902844 crossref_primary_10_1007_s40843_024_3009_4 crossref_primary_10_1016_j_jallcom_2021_160642 crossref_primary_10_1016_j_jallcom_2022_163999 crossref_primary_10_1016_j_ensm_2022_05_009 crossref_primary_10_1021_acsaem_2c02194 crossref_primary_10_1002_adfm_202215123 crossref_primary_10_1002_smtd_202100920 crossref_primary_10_1002_adfm_202213860 crossref_primary_10_1007_s10008_021_04933_x crossref_primary_10_1016_j_isci_2020_100844 crossref_primary_10_1016_j_jpowsour_2023_233051 crossref_primary_10_1016_j_jallcom_2023_170451 crossref_primary_10_1149_2_0071906jes crossref_primary_10_1021_acsami_0c06830 crossref_primary_10_1016_j_jpowsour_2022_231700 crossref_primary_10_1002_anie_202008144 crossref_primary_10_1002_er_7510 crossref_primary_10_1016_j_egyai_2024_100468 crossref_primary_10_1016_j_ensm_2022_05_019 crossref_primary_10_1002_smll_202401204 crossref_primary_10_1002_ente_202000204 crossref_primary_10_1149_2_0721912jes crossref_primary_10_1002_anie_201908830 crossref_primary_10_1016_j_est_2024_111479 crossref_primary_10_1002_aenm_202100756 crossref_primary_10_1039_C9TA10287F crossref_primary_10_1016_j_cej_2020_124709 crossref_primary_10_1021_acsami_9b13906 crossref_primary_10_1002_admi_201901749 crossref_primary_10_1002_inf2_12462 crossref_primary_10_1016_j_jmst_2021_02_023 crossref_primary_10_1021_acsnano_4c11901 crossref_primary_10_1002_aenm_202204174 crossref_primary_10_1021_acsami_1c24580 crossref_primary_10_1016_j_nanoen_2021_106665 crossref_primary_10_1002_aenm_202302845 crossref_primary_10_1002_aenm_202404193 crossref_primary_10_1016_j_jcis_2021_03_058 crossref_primary_10_1002_ange_201906494 crossref_primary_10_1002_smll_202400365 crossref_primary_10_1002_batt_202300151 crossref_primary_10_1016_j_cej_2023_145802 crossref_primary_10_1002_anie_202207043 crossref_primary_10_1016_j_jpowsour_2019_03_068 crossref_primary_10_1021_acsaem_1c00451 crossref_primary_10_1039_D0TA08540E crossref_primary_10_1016_j_ces_2023_119088 crossref_primary_10_1016_j_isci_2022_105710 crossref_primary_10_1016_j_jpowsour_2022_231049 crossref_primary_10_1002_adfm_202109421 crossref_primary_10_1016_j_cej_2022_138359 crossref_primary_10_1007_s12274_020_3225_7 crossref_primary_10_1016_j_electacta_2021_138904 crossref_primary_10_1002_ange_202217709 crossref_primary_10_1021_acsami_3c14394 crossref_primary_10_1016_j_cej_2024_154927 crossref_primary_10_1016_j_jpowsour_2020_228745 crossref_primary_10_1002_cssc_201802304 crossref_primary_10_1021_acsami_9b04898 crossref_primary_10_1016_j_jpowsour_2019_03_073 crossref_primary_10_1021_acsami_1c12393 crossref_primary_10_1021_acsami_1c01824 crossref_primary_10_1038_s41557_019_0300_3 crossref_primary_10_1016_j_jcis_2021_07_027 crossref_primary_10_1016_j_jechem_2021_01_024 crossref_primary_10_1002_ente_202402418 crossref_primary_10_1039_D3TA07630J crossref_primary_10_1002_smll_202206561 crossref_primary_10_1021_acsami_9b09551 crossref_primary_10_1039_D0SE00079E crossref_primary_10_1016_j_ensm_2024_103816 crossref_primary_10_1016_j_mtener_2021_100942 crossref_primary_10_1021_acsami_1c03680 crossref_primary_10_1016_j_jpowsour_2019_227101 crossref_primary_10_1021_acs_chemmater_9b04938 crossref_primary_10_1016_j_jechem_2020_06_055 crossref_primary_10_1021_acsami_3c06586 crossref_primary_10_1021_acs_nanolett_4c01104 crossref_primary_10_1016_j_jpowsour_2022_231195 crossref_primary_10_1007_s41918_019_00058_y crossref_primary_10_1016_j_mtener_2023_101461 crossref_primary_10_3390_batteries9110528 crossref_primary_10_1016_j_jallcom_2020_154202 crossref_primary_10_1021_acsaem_2c02305 crossref_primary_10_1016_j_ensm_2022_01_033 crossref_primary_10_3390_batteries6010008 crossref_primary_10_1016_j_ensm_2022_04_007 crossref_primary_10_1039_D0TA06375D crossref_primary_10_1016_j_ensm_2024_103768 crossref_primary_10_1021_acsami_9b18946 crossref_primary_10_1039_D0TA10252K crossref_primary_10_1021_acs_iecr_4c02904 crossref_primary_10_1002_adma_202301096 crossref_primary_10_1002_aenm_202301422 crossref_primary_10_1016_j_chempr_2021_02_025 crossref_primary_10_1016_j_joule_2019_02_004 crossref_primary_10_1016_j_ensm_2021_02_001 crossref_primary_10_1016_j_cej_2020_125844 crossref_primary_10_1021_acsaem_4c01891 crossref_primary_10_1021_acsnano_2c04959 crossref_primary_10_1016_j_jechem_2023_02_044 crossref_primary_10_34133_energymatadv_0007 crossref_primary_10_1016_j_cej_2020_126813 crossref_primary_10_1002_adfm_202213675 crossref_primary_10_3390_en13236363 crossref_primary_10_1016_j_jpowsour_2019_227369 crossref_primary_10_1039_C9EN01304K crossref_primary_10_1002_batt_202400608 crossref_primary_10_1016_j_jechem_2023_05_027 crossref_primary_10_1016_j_jcis_2025_01_079 crossref_primary_10_1039_D0CC06849G crossref_primary_10_1002_eem2_12367 crossref_primary_10_1021_acssuschemeng_0c09241 crossref_primary_10_1021_acsaem_1c01934 crossref_primary_10_1016_j_jallcom_2021_162848 crossref_primary_10_1021_acsaem_1c01811 crossref_primary_10_1021_acsnano_2c05016 crossref_primary_10_1002_slct_202103232 crossref_primary_10_1002_aenm_202000521 crossref_primary_10_1016_j_electacta_2019_135465 crossref_primary_10_1016_j_jpowsour_2018_11_015 crossref_primary_10_1088_0256_307X_38_6_068202 crossref_primary_10_1021_acs_jpcc_0c02198 crossref_primary_10_1039_D4TA05466K crossref_primary_10_1016_j_jechem_2023_02_051 crossref_primary_10_1002_cssc_201800706 crossref_primary_10_1021_acsaem_1c03765 crossref_primary_10_1021_acsami_3c15720 crossref_primary_10_1039_D1TA03059K crossref_primary_10_1002_adma_202402739 crossref_primary_10_1021_acsnano_2c04170 crossref_primary_10_1016_j_cej_2022_138159 crossref_primary_10_1016_j_mattod_2021_09_013 crossref_primary_10_1016_j_nanoen_2020_105107 crossref_primary_10_1039_D5EE00267B crossref_primary_10_1016_j_ssi_2024_116560 crossref_primary_10_1021_acsami_0c08433 crossref_primary_10_1002_er_8227 crossref_primary_10_1002_anie_202304121 crossref_primary_10_1002_advs_202310094 crossref_primary_10_1002_smll_202312059 crossref_primary_10_1038_s41598_022_22018_1 crossref_primary_10_1021_acsaem_2c04186 crossref_primary_10_1016_j_memsci_2019_117194 crossref_primary_10_1038_s41560_021_00782_0 crossref_primary_10_1016_j_jpowsour_2018_11_008 crossref_primary_10_1016_j_electacta_2022_140107 crossref_primary_10_1016_j_jpowsour_2022_231752 crossref_primary_10_1021_acsanm_3c00304 crossref_primary_10_1007_s11426_021_1235_2 crossref_primary_10_1149_1945_7111_ad4820 crossref_primary_10_1002_smll_202106427 crossref_primary_10_1016_j_pecs_2025_101209 crossref_primary_10_1002_ange_202304121 crossref_primary_10_1021_acsnano_9b04365 crossref_primary_10_1021_acsenergylett_9b01703 crossref_primary_10_1016_j_apsusc_2022_152878 crossref_primary_10_1016_j_jelechem_2020_114794 crossref_primary_10_1002_admi_202200800 crossref_primary_10_1002_aenm_202001830 crossref_primary_10_1016_j_ensm_2024_103453 crossref_primary_10_1016_j_ensm_2021_10_031 crossref_primary_10_1016_j_ensm_2024_103337 crossref_primary_10_1016_j_joule_2019_05_006 crossref_primary_10_1016_j_ces_2021_117082 crossref_primary_10_1021_acsami_9b15916 crossref_primary_10_1002_cjoc_202000386 crossref_primary_10_1021_acsaem_4c00915 crossref_primary_10_1007_s11581_022_04572_w crossref_primary_10_1002_cjoc_202000385 crossref_primary_10_1016_j_nanoen_2020_105562 crossref_primary_10_1016_j_mtener_2023_101301 crossref_primary_10_1002_adma_202400537 crossref_primary_10_1002_slct_201902013 crossref_primary_10_1021_acsami_1c02043 crossref_primary_10_1002_sus2_176 crossref_primary_10_1016_j_jcis_2024_07_182 crossref_primary_10_1002_anie_201906494 crossref_primary_10_1002_bte2_20220034 crossref_primary_10_1088_1361_6528_abd127 crossref_primary_10_1016_j_jpowsour_2020_228126 crossref_primary_10_1021_acsami_1c15920 crossref_primary_10_1016_j_nanoen_2023_109095 crossref_primary_10_1016_j_xcrp_2022_101197 crossref_primary_10_1016_j_apsusc_2019_04_020 crossref_primary_10_1021_acsaem_0c00411 crossref_primary_10_1021_acsami_4c06491 crossref_primary_10_1021_acs_langmuir_4c00961 crossref_primary_10_1002_cnma_202300049 crossref_primary_10_1016_j_jechem_2021_03_035 crossref_primary_10_1016_j_ensm_2021_09_007 crossref_primary_10_1016_j_jelechem_2019_113582 crossref_primary_10_1002_anie_202217709 crossref_primary_10_1016_j_electacta_2019_04_153 crossref_primary_10_1039_D1EE02959B crossref_primary_10_1038_s41467_024_45373_1 crossref_primary_10_1002_smll_202300571 crossref_primary_10_1021_acsami_4c11041 crossref_primary_10_1002_ange_202008144 crossref_primary_10_1002_adfm_202004748 crossref_primary_10_1016_j_jallcom_2022_166967 crossref_primary_10_1021_acssuschemeng_1c03179 crossref_primary_10_1021_acsenergylett_1c00374 crossref_primary_10_1039_C8TA06150E crossref_primary_10_1016_j_matt_2022_01_015 crossref_primary_10_1002_adfm_201900247 crossref_primary_10_1021_acsami_2c22562 crossref_primary_10_1016_j_ceramint_2022_10_306 crossref_primary_10_1021_acsaem_4c01228 crossref_primary_10_1002_ange_201908830 crossref_primary_10_1016_j_jmmm_2022_170107 crossref_primary_10_1149_1945_7111_abb566 crossref_primary_10_1021_acsenergylett_9b00381 crossref_primary_10_1002_aenm_202201151 crossref_primary_10_1016_j_jpowsour_2018_11_053 crossref_primary_10_1021_acsami_0c00111 crossref_primary_10_1021_acsami_9b14729 crossref_primary_10_1021_acsenergylett_8b01490 crossref_primary_10_1016_j_jelechem_2022_116286 crossref_primary_10_1002_aenm_202401514 crossref_primary_10_1021_acsami_9b17438 crossref_primary_10_1016_j_nanoen_2020_104450 crossref_primary_10_1016_j_nanoen_2022_107880 crossref_primary_10_1021_acs_chemmater_1c03051 crossref_primary_10_1016_j_jpowsour_2020_228241 crossref_primary_10_1021_acsaem_2c03336 crossref_primary_10_1021_acsami_4c23006 crossref_primary_10_1021_jacs_4c02345 crossref_primary_10_1016_j_jcis_2022_03_064 crossref_primary_10_1021_acsami_2c06264 crossref_primary_10_1021_acsenergylett_2c00232 crossref_primary_10_2139_ssrn_3346987 crossref_primary_10_1021_acsenergylett_8b01926 crossref_primary_10_1002_aenm_202200621 crossref_primary_10_1016_j_electacta_2018_12_104 crossref_primary_10_1021_acsami_9b04932 crossref_primary_10_1016_j_mtnano_2019_100057 crossref_primary_10_1021_acsnano_3c04526 crossref_primary_10_1002_adma_202401052 crossref_primary_10_1021_acsami_3c09641 crossref_primary_10_1002_batt_202400238 crossref_primary_10_1016_j_cej_2022_140846 crossref_primary_10_1021_acsnano_2c11469 crossref_primary_10_1039_D3RA02535G crossref_primary_10_1016_j_est_2024_112184 crossref_primary_10_1002_ente_202400638 crossref_primary_10_1021_acsaem_9b02372 crossref_primary_10_1016_j_ensm_2019_08_013 crossref_primary_10_1016_j_jpowsour_2021_230961 crossref_primary_10_1016_j_ijoes_2024_100557 crossref_primary_10_1007_s43207_020_00098_x crossref_primary_10_1002_smll_202309871 crossref_primary_10_1002_admi_202000154 crossref_primary_10_2139_ssrn_3986130 crossref_primary_10_1021_acsami_3c05539 crossref_primary_10_1021_acsaem_8b00994 crossref_primary_10_1002_aenm_202102299 crossref_primary_10_1016_j_ssi_2022_116105 crossref_primary_10_2139_ssrn_4194554 crossref_primary_10_1021_acssuschemeng_1c05936 crossref_primary_10_1039_D3NR04586B crossref_primary_10_1007_s40820_021_00633_3 crossref_primary_10_1002_adfm_202109319 crossref_primary_10_1016_j_mtsust_2023_100326 crossref_primary_10_1016_j_jpowsour_2022_232550 crossref_primary_10_1002_adma_202416872 crossref_primary_10_1002_advs_202205918 crossref_primary_10_1002_smtd_202000551 crossref_primary_10_1016_j_mattod_2021_01_013 crossref_primary_10_1007_s40843_023_2449_8 crossref_primary_10_1002_cssc_202400823 crossref_primary_10_1016_j_apsusc_2022_154684 crossref_primary_10_1002_batt_202000041 crossref_primary_10_1002_smll_202306351 crossref_primary_10_1002_cssc_202202151 crossref_primary_10_1002_ange_202207043 crossref_primary_10_1016_j_cej_2022_134745 crossref_primary_10_1002_adfm_202303457 crossref_primary_10_1016_j_ensm_2020_08_035 crossref_primary_10_1016_j_joule_2021_06_014 crossref_primary_10_1021_acsami_9b12578 crossref_primary_10_1021_acs_energyfuels_2c00724 crossref_primary_10_1002_adfm_202010261 crossref_primary_10_1002_adfm_202312284 crossref_primary_10_1002_adma_202102964 crossref_primary_10_1016_j_jpowsour_2019_01_050 crossref_primary_10_1021_acsaem_3c02145 crossref_primary_10_1021_acs_iecr_2c02541 crossref_primary_10_1039_D3DT02957C crossref_primary_10_1002_adfm_202103594 crossref_primary_10_1002_aenm_202000368 crossref_primary_10_1021_acsami_2c09103 crossref_primary_10_1007_s12598_022_02055_5 crossref_primary_10_1021_acsami_9b12595 crossref_primary_10_1016_j_surfin_2022_102610 crossref_primary_10_1038_s41467_020_18278_y crossref_primary_10_1016_j_materresbull_2025_113408 crossref_primary_10_1021_acs_chemmater_1c02722 crossref_primary_10_1021_acsaem_2c03934 crossref_primary_10_1016_j_electacta_2019_06_034 crossref_primary_10_1557_s43578_023_01197_1 crossref_primary_10_1002_ange_202301241 crossref_primary_10_1016_j_nanoen_2022_108016 crossref_primary_10_1021_acsnano_1c00304 crossref_primary_10_1016_j_jpowsour_2021_230513 crossref_primary_10_1016_j_ceramint_2019_12_064 crossref_primary_10_1038_s41467_021_25611_6 crossref_primary_10_1016_j_jallcom_2020_155155 crossref_primary_10_3390_nano11102476 crossref_primary_10_3390_mi14050907 crossref_primary_10_1016_j_jpowsour_2018_09_079 crossref_primary_10_1002_aenm_202002416 crossref_primary_10_1016_j_powtec_2021_08_083 crossref_primary_10_1016_j_jpowsour_2020_227852 crossref_primary_10_1038_s41560_024_01605_8 crossref_primary_10_3390_nano14131096 crossref_primary_10_1016_j_jallcom_2022_164592 crossref_primary_10_1021_acsami_9b03403 crossref_primary_10_1016_j_ensm_2022_07_029 crossref_primary_10_1002_aenm_201901756 crossref_primary_10_1016_j_esci_2022_10_008 crossref_primary_10_1002_aenm_201900784 crossref_primary_10_1016_j_jallcom_2019_05_330 crossref_primary_10_1016_j_nanoen_2019_02_059 crossref_primary_10_1002_smll_202107357 crossref_primary_10_1016_j_joule_2019_08_004 crossref_primary_10_1021_acsaem_1c03257 crossref_primary_10_1021_acsami_9b02440 crossref_primary_10_1016_j_electacta_2023_143518 crossref_primary_10_1016_j_jechem_2021_05_049 crossref_primary_10_1016_j_jssc_2022_123040 crossref_primary_10_1021_acsami_3c15670 crossref_primary_10_1002_anie_202301241 crossref_primary_10_1016_j_jpowsour_2021_230768 crossref_primary_10_1016_j_mattod_2022_10_021 |
Cites_doi | 10.1002/aenm.201602605 10.1002/aenm.201601284 10.1002/smtd.201700231 10.1016/j.chempr.2017.03.016 10.1038/nmat4041 10.1016/j.jpowsour.2017.05.091 10.1002/adma.201700378 10.1109/JPROC.2012.2190170 10.1016/j.electacta.2013.04.150 10.1021/acscentsci.7b00120 10.1039/c3ta13043f 10.1002/aenm.201301583 10.1038/nnano.2016.32 10.1021/ja502133j 10.1149/2.0041514jes 10.1038/ncomms7362 10.1002/adfm.201605989 10.1021/acsami.7b08802 10.1016/j.jpowsour.2016.12.012 10.1016/j.chempr.2017.10.017 10.1038/nnano.2014.152 10.1016/j.jpowsour.2016.04.017 10.1557/mrs2000.16 10.1149/2.0051514jes 10.1002/aenm.201502151 10.1021/nl404721h 10.1021/acsami.7b18933 10.1002/adma.201504117 10.1038/nenergy.2017.133 10.1038/nenergy.2016.10 10.1149/1.1837248 10.1021/ja312241y 10.1038/35104644 10.1021/cr030203g 10.1002/aenm.201502214 10.1021/acs.jpcc.5b10677 10.1038/ncomms10101 10.1038/nenergy.2017.12 10.1021/acs.nanolett.6b01556 10.1021/cr020731c 10.1149/2.0401802jes 10.1039/C6CP00757K 10.1016/j.nantod.2016.08.011 10.1039/C3EE40795K 10.1021/acs.chemmater.5b02429 10.1149/1.1785795 10.1039/C5EE03360H |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M OTOTI |
DOI | 10.1002/aenm.201800297 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 1430586 10_1002_aenm_201800297 AENM201800297 |
Genre | article |
GrantInformation_xml | – fundername: China Scholarship Council – fundername: Advanced Battery Materials Research (BMR) program of the U.S. Department of Energy funderid: DE‐AC02‐05CH11231 – fundername: Natural Science Foundation of China funderid: 21233004; 21621091 – fundername: Pacific Northwest National Laboratory funderid: DE‐AC05‐76RL01830 – fundername: Biological and Environmental Research |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M AAPBV AEUQT OTOTI |
ID | FETCH-LOGICAL-c4897-1e3ec4a40080c837e9f8569a2464be05a0bba7b3e023b61a3a1c499e4a7d6dcb3 |
ISSN | 1614-6832 |
IngestDate | Mon Sep 25 05:37:24 EDT 2023 Sun Jul 13 05:16:18 EDT 2025 Tue Jul 01 01:43:24 EDT 2025 Thu Apr 24 23:10:33 EDT 2025 Wed Jan 22 16:38:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4897-1e3ec4a40080c837e9f8569a2464be05a0bba7b3e023b61a3a1c499e4a7d6dcb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 DE‐AC02‐05CH11231 USDOE |
ORCID | 0000-0001-7343-4609 0000000173434609 |
OpenAccessLink | https://www.osti.gov/biblio/1430586 |
PQID | 2064232846 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1430586 proquest_journals_2064232846 crossref_primary_10_1002_aenm_201800297 crossref_citationtrail_10_1002_aenm_201800297 wiley_primary_10_1002_aenm_201800297_AENM201800297 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 5, 2018 |
PublicationDateYYYYMMDD | 2018-07-05 |
PublicationDate_xml | – month: 07 year: 2018 text: July 5, 2018 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced energy materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley Blackwell (John Wiley & Sons) |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley Blackwell (John Wiley & Sons) |
References | 2014 2014 2016 2017 2015; 14 2 16 7 27 2017 2017; 359 341 2017; 7 2012 1996 2016 2015 2015 2004; 100 143 318 162 162 104 2017; 2 2014 2016; 9 28 2014 2014 2016 2016; 13 7 1 11 2013 2015 2016 2017; 135 6 6 27 2013; 105 2004; 151 2015; 120 2001 2004; 414 104 2018 2014 2017 2018 2018 2017; 10 4 9 165 4 2014 2016 2015; 136 6 6 2016 2000; 18 25 2016; 9 2018 2017 2017 2017 2017; 2 2 3 2 29 2016; 11 e_1_2_7_3_4 e_1_2_7_4_3 e_1_2_7_5_2 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_3_3 e_1_2_7_4_2 e_1_2_7_5_1 e_1_2_7_2_3 e_1_2_7_3_2 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_3_1 e_1_2_7_5_6 e_1_2_7_5_5 e_1_2_7_6_4 e_1_2_7_7_3 e_1_2_7_8_2 e_1_2_7_9_1 e_1_2_7_4_5 e_1_2_7_5_4 e_1_2_7_6_3 e_1_2_7_7_2 e_1_2_7_8_1 e_1_2_7_3_5 e_1_2_7_4_4 e_1_2_7_5_3 e_1_2_7_6_2 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_1_2 e_1_2_7_2_1 e_1_2_7_14_2 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_10_5 e_1_2_7_14_1 e_1_2_7_10_4 e_1_2_7_13_1 e_1_2_7_10_3 e_1_2_7_11_2 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_11_1 e_1_2_7_10_1 Xu L. (e_1_2_7_10_6) 2017 |
References_xml | – volume: 120 start-page: 422 year: 2015 publication-title: J. Phys. Chem. C – volume: 9 28 start-page: 618 2155 year: 2014 2016 publication-title: Nat. Nanotechnol. Adv. Mater. – volume: 414 104 start-page: 359 4271 year: 2001 2004 publication-title: Nature Chem. Rev. – volume: 105 start-page: 200 year: 2013 publication-title: Electrochim. Acta – volume: 135 6 6 27 start-page: 4450 6362 1502151 1605989 year: 2013 2015 2016 2017 publication-title: J. Am. Chem. Soc. Nat. Commun. Adv. Energy Mater. Adv. Funct. Mater. – volume: 100 143 318 162 162 104 start-page: 1518 3525 170 A2406 A2424 4303 year: 2012 1996 2016 2015 2015 2004 publication-title: Proc. IEEE J. Electrochem. Soc. J. Power Sources J. Electrochem. Soc. J. Electrochem. Soc. Chem. Rev. – volume: 9 start-page: 1308 year: 2016 publication-title: Energy Environ. Sci. – volume: 2 2 3 2 29 start-page: 1700231 17133 598 525 1700378 year: 2018 2017 2017 2017 2017 publication-title: Small Methods Nat. Energy ACS Cent. Sci. Chem Adv. Mater. – volume: 14 2 16 7 27 start-page: 2345 2346 4932 1602605 6650 year: 2014 2014 2016 2017 2015 publication-title: Nano Lett. J. Mater. Chem. A Nano Lett. Adv. Energy Mater. Chem. Mater. – volume: 2 start-page: 17012 year: 2017 publication-title: Nat. Energy – volume: 136 6 6 start-page: 7395 1502214 10101 year: 2014 2016 2015 publication-title: J. Am. Chem. Soc. Adv. Energy Mater. Nat. Commun. – volume: 13 7 1 11 start-page: 961 513 16010 626 year: 2014 2014 2016 2016 publication-title: Nat. Mater. Energy Environ. Sci. Nat. Energy Nat. Nanotechnol. – volume: 10 4 9 165 4 start-page: 6407 1301583 29794 A132 174 year: 2018 2014 2017 2018 2018 2017 publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater. ACS Appl. Mater. Interfaces J. Electrochem. Soc. Chem Ionics – volume: 18 25 start-page: 9504 31 year: 2016 2000 publication-title: Phys. Chem. Chem. Phys. MRS Bull. – volume: 11 start-page: 678 year: 2016 publication-title: Nano Today – volume: 7 start-page: 1601284 year: 2017 publication-title: Adv. Energy Mater. – volume: 359 341 start-page: 391 348 year: 2017 2017 publication-title: J. Power Sources J. Power Sources – volume: 151 start-page: A1659 year: 2004 publication-title: J. Electrochem. Soc. – ident: e_1_2_7_4_4 doi: 10.1002/aenm.201602605 – ident: e_1_2_7_18_1 doi: 10.1002/aenm.201601284 – ident: e_1_2_7_3_1 doi: 10.1002/smtd.201700231 – ident: e_1_2_7_3_4 doi: 10.1016/j.chempr.2017.03.016 – ident: e_1_2_7_2_1 doi: 10.1038/nmat4041 – ident: e_1_2_7_11_1 doi: 10.1016/j.jpowsour.2017.05.091 – ident: e_1_2_7_3_5 doi: 10.1002/adma.201700378 – ident: e_1_2_7_5_1 doi: 10.1109/JPROC.2012.2190170 – ident: e_1_2_7_12_1 doi: 10.1016/j.electacta.2013.04.150 – ident: e_1_2_7_3_3 doi: 10.1021/acscentsci.7b00120 – ident: e_1_2_7_4_2 doi: 10.1039/c3ta13043f – ident: e_1_2_7_10_2 doi: 10.1002/aenm.201301583 – ident: e_1_2_7_2_4 doi: 10.1038/nnano.2016.32 – ident: e_1_2_7_7_1 doi: 10.1021/ja502133j – ident: e_1_2_7_5_4 doi: 10.1149/2.0041514jes – ident: e_1_2_7_6_2 doi: 10.1038/ncomms7362 – ident: e_1_2_7_6_4 doi: 10.1002/adfm.201605989 – ident: e_1_2_7_10_3 doi: 10.1021/acsami.7b08802 – ident: e_1_2_7_11_2 doi: 10.1016/j.jpowsour.2016.12.012 – ident: e_1_2_7_10_5 doi: 10.1016/j.chempr.2017.10.017 – ident: e_1_2_7_8_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_7_5_3 doi: 10.1016/j.jpowsour.2016.04.017 – ident: e_1_2_7_14_2 doi: 10.1557/mrs2000.16 – ident: e_1_2_7_5_5 doi: 10.1149/2.0051514jes – ident: e_1_2_7_6_3 doi: 10.1002/aenm.201502151 – ident: e_1_2_7_4_1 doi: 10.1021/nl404721h – ident: e_1_2_7_10_1 doi: 10.1021/acsami.7b18933 – ident: e_1_2_7_8_2 doi: 10.1002/adma.201504117 – ident: e_1_2_7_3_2 doi: 10.1038/nenergy.2017.133 – ident: e_1_2_7_2_3 doi: 10.1038/nenergy.2016.10 – ident: e_1_2_7_5_2 doi: 10.1149/1.1837248 – ident: e_1_2_7_6_1 doi: 10.1021/ja312241y – ident: e_1_2_7_1_1 doi: 10.1038/35104644 – ident: e_1_2_7_5_6 doi: 10.1021/cr030203g – ident: e_1_2_7_7_2 doi: 10.1002/aenm.201502214 – ident: e_1_2_7_15_1 doi: 10.1021/acs.jpcc.5b10677 – ident: e_1_2_7_7_3 doi: 10.1038/ncomms10101 – ident: e_1_2_7_9_1 doi: 10.1038/nenergy.2017.12 – year: 2017 ident: e_1_2_7_10_6 publication-title: Ionics – ident: e_1_2_7_4_3 doi: 10.1021/acs.nanolett.6b01556 – ident: e_1_2_7_1_2 doi: 10.1021/cr020731c – ident: e_1_2_7_10_4 doi: 10.1149/2.0401802jes – ident: e_1_2_7_14_1 doi: 10.1039/C6CP00757K – ident: e_1_2_7_17_1 doi: 10.1016/j.nantod.2016.08.011 – ident: e_1_2_7_2_2 doi: 10.1039/C3EE40795K – ident: e_1_2_7_4_5 doi: 10.1021/acs.chemmater.5b02429 – ident: e_1_2_7_13_1 doi: 10.1149/1.1785795 – ident: e_1_2_7_16_1 doi: 10.1039/C5EE03360H |
SSID | ssj0000491033 |
Score | 2.648721 |
Snippet | The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant... Abstract The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a... |
SourceID | osti proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Batteries Cathodes Discharge dual electrolyte Electric potential Electrochemical analysis Electrode materials Electrolytes Electrolytic cells Energy storage high voltage High voltages Interface stability interphases Lithium Nickel Ni‐rich NMC Storage systems Structural stability |
Title | High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201800297 https://www.proquest.com/docview/2064232846 https://www.osti.gov/biblio/1430586 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcoG8gHJA5VWH44qXOsoFM10XBgg90i23nZJpWkWrPDduJP4G_kL-E5dlIXFTG4RKkTt0nfF_t7L997JuSNEDKQBQOPKVaigxKEngj80hNFCXHhi1jGOsF5kSXzU3Z8Fp8NBrdudkkj36nbnXkl_2NVbEO76izZf7Bs_6XYgPtoX9yihXF7Jxtrkcb4S71stPDm0wquev6XXfYqBp06P84WJtmvLmA9nrX5Ui3zRK6pU6dmZjEcXYL3yO4vbxorq1xd4Ey3dlnstBMOgMkcRNZrbtcJQ7ch2K9QnYt60wpW_4uY_NbNmfpAfW3iA6IqYdN8bIS8c6HX1z534xMBb7WssTOkIgHwEm6jmOC2mUJN3TjMXbilO4d3Uy5WQKVrCAS8XXlrM5F1L-9_m9961aGp0Bzmun_e979H9kJ0MXCM3Jt-WHz83Efo0HcK_KjN0Ohuoav66YeH2xexxWqGNY7OWx6L6_e0xOXkEXloPQ46NfB5TAZQPSEPnDqUT0mhgUQtkGgPJFqXNLv8-f2HhhBFCNEOQtRCiMobaiBEewgdOgCiDoCekdOj2cn7uWeX3_AU4-nECyACxQTTToXi0QTSksdJKkKWMAl-LHwpxURGgLRPJoGIRKDQfwYmJkVSKBk9J8OqruAFoUjjYxEU6CsUwMow5r5QaRQhey55IksYEa_7-3Jla9PrJVKW-W6bjcjb_vyVqcryxzP3tTVy5JO6KLLS6jHVoMOL8xxPRuSgM1Jun-s19k20egGJ-YiEreH-8hv5dJYt-k8v73xt--T-5oE5IMPm6hpeIcVt5GuLxV8DR6M1 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Voltage+Operation+of+Ni%E2%80%90Rich+NMC+Cathodes+Enabled+by+Stable+Electrode%2FElectrolyte+Interphases&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Wengao&rft.au=Zheng%2C+Jianming&rft.au=Zou%2C+Lianfeng&rft.au=Jia%2C+Haiping&rft.date=2018-07-05&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.201800297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201800297 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |