High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases

The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiN...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 8; no. 19
Main Authors Zhao, Wengao, Zheng, Jianming, Zou, Lianfeng, Jia, Haiping, Liu, Bin, Wang, Hui, Engelhard, Mark H., Wang, Chongmin, Xu, Wu, Yang, Yong, Zhang, Ji‐Guang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 05.07.2018
Wiley Blackwell (John Wiley & Sons)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g−1 (846 W h kg−1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g−1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte. Excellent rate capability and cycling performance in a high voltage lithium (Li) metal battery (LMB) composed of Ni‐rich layered LiNi0.76Mn0.14Co0.10O2 (NMC76) and Li metal are enabled by the formation of stable electrode/electrolyte interfaces in an optimized dual‐salt electrolyte with additive. The Li||NMC76 cell demonstrates a capacity retention above 80% after 1000 cycles at 400 mA g−1 between 2.7–4.5 V.
AbstractList The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi 0.76 Mn 0.14 Co 0.10 O 2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF 6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g −1 (846 W h kg −1 ) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g −1 ). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.
The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g−1 (846 W h kg−1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g−1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte. Excellent rate capability and cycling performance in a high voltage lithium (Li) metal battery (LMB) composed of Ni‐rich layered LiNi0.76Mn0.14Co0.10O2 (NMC76) and Li metal are enabled by the formation of stable electrode/electrolyte interfaces in an optimized dual‐salt electrolyte with additive. The Li||NMC76 cell demonstrates a capacity retention above 80% after 1000 cycles at 400 mA g−1 between 2.7–4.5 V.
The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi0.76Mn0.14Co0.10O2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g−1 (846 W h kg−1) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g−1). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.
Abstract The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant challenge to operate LMBs with high voltage cathodes under high rate conditions. In this work, an LMB using a nickel‐rich layered cathode of LiNi 0.76 Mn 0.14 Co 0.10 O 2 (NMC76) and an optimized electrolyte [0.6 m lithium bis(trifluoromethanesulfonyl)imide + 0.4 m lithium bis(oxalato)borate + 0.05 m LiPF 6 dissolved in ethylene carbonate and ethyl methyl carbonate (4:6 by weight)] demonstrates excellent stability at a high charge cutoff voltage of 4.5 V. Remarkably, these Li||NMC76 cells can deliver a high discharge capacity of >220 mA h g −1 (846 W h kg −1 ) and retain more than 80% capacity after 1000 cycles at high charge/discharge current rates of 2C/2C (1C = 200 mA g −1 ). This excellent electrochemical performance can be attributed to the greatly enhanced structural/interfacial stability of both the Ni‐rich NMC76 cathode material and the Li metal anode using the optimized electrolyte.
Author Xu, Wu
Liu, Bin
Zou, Lianfeng
Zheng, Jianming
Zhao, Wengao
Wang, Hui
Zhang, Ji‐Guang
Jia, Haiping
Engelhard, Mark H.
Wang, Chongmin
Yang, Yong
Author_xml – sequence: 1
  givenname: Wengao
  surname: Zhao
  fullname: Zhao, Wengao
  organization: Xiamen University
– sequence: 2
  givenname: Jianming
  surname: Zheng
  fullname: Zheng, Jianming
  email: jianming.zheng@pnnl.gov
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Lianfeng
  surname: Zou
  fullname: Zou, Lianfeng
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Haiping
  surname: Jia
  fullname: Jia, Haiping
  organization: Pacific Northwest National Laboratory
– sequence: 5
  givenname: Bin
  surname: Liu
  fullname: Liu, Bin
  organization: Pacific Northwest National Laboratory
– sequence: 6
  givenname: Hui
  surname: Wang
  fullname: Wang, Hui
  organization: Pacific Northwest National Laboratory
– sequence: 7
  givenname: Mark H.
  surname: Engelhard
  fullname: Engelhard, Mark H.
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Chongmin
  surname: Wang
  fullname: Wang, Chongmin
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Wu
  surname: Xu
  fullname: Xu, Wu
  organization: Pacific Northwest National Laboratory
– sequence: 10
  givenname: Yong
  surname: Yang
  fullname: Yang, Yong
  email: yyang@xmu.edu.cn
  organization: Xiamen University
– sequence: 11
  givenname: Ji‐Guang
  orcidid: 0000-0001-7343-4609
  surname: Zhang
  fullname: Zhang, Ji‐Guang
  email: jiguang.zhang@pnnl.gov
  organization: Pacific Northwest National Laboratory
BackLink https://www.osti.gov/biblio/1430586$$D View this record in Osti.gov
BookMark eNqFkMtKAzEUhoNUUGu3roOu2yaTdC7LUqot9ALetiGTOe2kjElNUqQ7H8Fn9Emc2lJBEM_m_CH_d87hv0ANYw0gdEVJhxISdSWYl05EaFo_suQEndOY8nacctI4ahadoZb3K1IXzyhh7BwVI70s8bOtglwCnq_ByaCtwXaBZ_rz_eNeqxLPpgM8kKG0BXg8NDKvoMD5Fj-EncTDClRw9Wf3oKptADw2Ady6lB78JTpdyMpD69Cb6Ol2-DgYtSfzu_GgP2krnmZJmwIDxSUnJCUqZQlki7QXZzLiMc-B9CTJc5nkDEjE8phKJqniWQZcJkVcqJw10fV-rvVBC690AFUqa0x9laCckV4a16abvWnt7OsGfBAru3GmvktEJOYRi1K-c3X2LuWs9w4WYu30i3RbQYnYJS52iYtj4jXAfwH1-u8sg5O6-hvL9tibrmD7zxLRH86mP-wXV7GX0A
CitedBy_id crossref_primary_10_1021_acs_chemmater_4c00004
crossref_primary_10_1002_advs_201902844
crossref_primary_10_1007_s40843_024_3009_4
crossref_primary_10_1016_j_jallcom_2021_160642
crossref_primary_10_1016_j_jallcom_2022_163999
crossref_primary_10_1016_j_ensm_2022_05_009
crossref_primary_10_1021_acsaem_2c02194
crossref_primary_10_1002_adfm_202215123
crossref_primary_10_1002_smtd_202100920
crossref_primary_10_1002_adfm_202213860
crossref_primary_10_1007_s10008_021_04933_x
crossref_primary_10_1016_j_isci_2020_100844
crossref_primary_10_1016_j_jpowsour_2023_233051
crossref_primary_10_1016_j_jallcom_2023_170451
crossref_primary_10_1149_2_0071906jes
crossref_primary_10_1021_acsami_0c06830
crossref_primary_10_1016_j_jpowsour_2022_231700
crossref_primary_10_1002_anie_202008144
crossref_primary_10_1002_er_7510
crossref_primary_10_1016_j_egyai_2024_100468
crossref_primary_10_1016_j_ensm_2022_05_019
crossref_primary_10_1002_smll_202401204
crossref_primary_10_1002_ente_202000204
crossref_primary_10_1149_2_0721912jes
crossref_primary_10_1002_anie_201908830
crossref_primary_10_1016_j_est_2024_111479
crossref_primary_10_1002_aenm_202100756
crossref_primary_10_1039_C9TA10287F
crossref_primary_10_1016_j_cej_2020_124709
crossref_primary_10_1021_acsami_9b13906
crossref_primary_10_1002_admi_201901749
crossref_primary_10_1002_inf2_12462
crossref_primary_10_1016_j_jmst_2021_02_023
crossref_primary_10_1021_acsnano_4c11901
crossref_primary_10_1002_aenm_202204174
crossref_primary_10_1021_acsami_1c24580
crossref_primary_10_1016_j_nanoen_2021_106665
crossref_primary_10_1002_aenm_202302845
crossref_primary_10_1002_aenm_202404193
crossref_primary_10_1016_j_jcis_2021_03_058
crossref_primary_10_1002_ange_201906494
crossref_primary_10_1002_smll_202400365
crossref_primary_10_1002_batt_202300151
crossref_primary_10_1016_j_cej_2023_145802
crossref_primary_10_1002_anie_202207043
crossref_primary_10_1016_j_jpowsour_2019_03_068
crossref_primary_10_1021_acsaem_1c00451
crossref_primary_10_1039_D0TA08540E
crossref_primary_10_1016_j_ces_2023_119088
crossref_primary_10_1016_j_isci_2022_105710
crossref_primary_10_1016_j_jpowsour_2022_231049
crossref_primary_10_1002_adfm_202109421
crossref_primary_10_1016_j_cej_2022_138359
crossref_primary_10_1007_s12274_020_3225_7
crossref_primary_10_1016_j_electacta_2021_138904
crossref_primary_10_1002_ange_202217709
crossref_primary_10_1021_acsami_3c14394
crossref_primary_10_1016_j_cej_2024_154927
crossref_primary_10_1016_j_jpowsour_2020_228745
crossref_primary_10_1002_cssc_201802304
crossref_primary_10_1021_acsami_9b04898
crossref_primary_10_1016_j_jpowsour_2019_03_073
crossref_primary_10_1021_acsami_1c12393
crossref_primary_10_1021_acsami_1c01824
crossref_primary_10_1038_s41557_019_0300_3
crossref_primary_10_1016_j_jcis_2021_07_027
crossref_primary_10_1016_j_jechem_2021_01_024
crossref_primary_10_1002_ente_202402418
crossref_primary_10_1039_D3TA07630J
crossref_primary_10_1002_smll_202206561
crossref_primary_10_1021_acsami_9b09551
crossref_primary_10_1039_D0SE00079E
crossref_primary_10_1016_j_ensm_2024_103816
crossref_primary_10_1016_j_mtener_2021_100942
crossref_primary_10_1021_acsami_1c03680
crossref_primary_10_1016_j_jpowsour_2019_227101
crossref_primary_10_1021_acs_chemmater_9b04938
crossref_primary_10_1016_j_jechem_2020_06_055
crossref_primary_10_1021_acsami_3c06586
crossref_primary_10_1021_acs_nanolett_4c01104
crossref_primary_10_1016_j_jpowsour_2022_231195
crossref_primary_10_1007_s41918_019_00058_y
crossref_primary_10_1016_j_mtener_2023_101461
crossref_primary_10_3390_batteries9110528
crossref_primary_10_1016_j_jallcom_2020_154202
crossref_primary_10_1021_acsaem_2c02305
crossref_primary_10_1016_j_ensm_2022_01_033
crossref_primary_10_3390_batteries6010008
crossref_primary_10_1016_j_ensm_2022_04_007
crossref_primary_10_1039_D0TA06375D
crossref_primary_10_1016_j_ensm_2024_103768
crossref_primary_10_1021_acsami_9b18946
crossref_primary_10_1039_D0TA10252K
crossref_primary_10_1021_acs_iecr_4c02904
crossref_primary_10_1002_adma_202301096
crossref_primary_10_1002_aenm_202301422
crossref_primary_10_1016_j_chempr_2021_02_025
crossref_primary_10_1016_j_joule_2019_02_004
crossref_primary_10_1016_j_ensm_2021_02_001
crossref_primary_10_1016_j_cej_2020_125844
crossref_primary_10_1021_acsaem_4c01891
crossref_primary_10_1021_acsnano_2c04959
crossref_primary_10_1016_j_jechem_2023_02_044
crossref_primary_10_34133_energymatadv_0007
crossref_primary_10_1016_j_cej_2020_126813
crossref_primary_10_1002_adfm_202213675
crossref_primary_10_3390_en13236363
crossref_primary_10_1016_j_jpowsour_2019_227369
crossref_primary_10_1039_C9EN01304K
crossref_primary_10_1002_batt_202400608
crossref_primary_10_1016_j_jechem_2023_05_027
crossref_primary_10_1016_j_jcis_2025_01_079
crossref_primary_10_1039_D0CC06849G
crossref_primary_10_1002_eem2_12367
crossref_primary_10_1021_acssuschemeng_0c09241
crossref_primary_10_1021_acsaem_1c01934
crossref_primary_10_1016_j_jallcom_2021_162848
crossref_primary_10_1021_acsaem_1c01811
crossref_primary_10_1021_acsnano_2c05016
crossref_primary_10_1002_slct_202103232
crossref_primary_10_1002_aenm_202000521
crossref_primary_10_1016_j_electacta_2019_135465
crossref_primary_10_1016_j_jpowsour_2018_11_015
crossref_primary_10_1088_0256_307X_38_6_068202
crossref_primary_10_1021_acs_jpcc_0c02198
crossref_primary_10_1039_D4TA05466K
crossref_primary_10_1016_j_jechem_2023_02_051
crossref_primary_10_1002_cssc_201800706
crossref_primary_10_1021_acsaem_1c03765
crossref_primary_10_1021_acsami_3c15720
crossref_primary_10_1039_D1TA03059K
crossref_primary_10_1002_adma_202402739
crossref_primary_10_1021_acsnano_2c04170
crossref_primary_10_1016_j_cej_2022_138159
crossref_primary_10_1016_j_mattod_2021_09_013
crossref_primary_10_1016_j_nanoen_2020_105107
crossref_primary_10_1039_D5EE00267B
crossref_primary_10_1016_j_ssi_2024_116560
crossref_primary_10_1021_acsami_0c08433
crossref_primary_10_1002_er_8227
crossref_primary_10_1002_anie_202304121
crossref_primary_10_1002_advs_202310094
crossref_primary_10_1002_smll_202312059
crossref_primary_10_1038_s41598_022_22018_1
crossref_primary_10_1021_acsaem_2c04186
crossref_primary_10_1016_j_memsci_2019_117194
crossref_primary_10_1038_s41560_021_00782_0
crossref_primary_10_1016_j_jpowsour_2018_11_008
crossref_primary_10_1016_j_electacta_2022_140107
crossref_primary_10_1016_j_jpowsour_2022_231752
crossref_primary_10_1021_acsanm_3c00304
crossref_primary_10_1007_s11426_021_1235_2
crossref_primary_10_1149_1945_7111_ad4820
crossref_primary_10_1002_smll_202106427
crossref_primary_10_1016_j_pecs_2025_101209
crossref_primary_10_1002_ange_202304121
crossref_primary_10_1021_acsnano_9b04365
crossref_primary_10_1021_acsenergylett_9b01703
crossref_primary_10_1016_j_apsusc_2022_152878
crossref_primary_10_1016_j_jelechem_2020_114794
crossref_primary_10_1002_admi_202200800
crossref_primary_10_1002_aenm_202001830
crossref_primary_10_1016_j_ensm_2024_103453
crossref_primary_10_1016_j_ensm_2021_10_031
crossref_primary_10_1016_j_ensm_2024_103337
crossref_primary_10_1016_j_joule_2019_05_006
crossref_primary_10_1016_j_ces_2021_117082
crossref_primary_10_1021_acsami_9b15916
crossref_primary_10_1002_cjoc_202000386
crossref_primary_10_1021_acsaem_4c00915
crossref_primary_10_1007_s11581_022_04572_w
crossref_primary_10_1002_cjoc_202000385
crossref_primary_10_1016_j_nanoen_2020_105562
crossref_primary_10_1016_j_mtener_2023_101301
crossref_primary_10_1002_adma_202400537
crossref_primary_10_1002_slct_201902013
crossref_primary_10_1021_acsami_1c02043
crossref_primary_10_1002_sus2_176
crossref_primary_10_1016_j_jcis_2024_07_182
crossref_primary_10_1002_anie_201906494
crossref_primary_10_1002_bte2_20220034
crossref_primary_10_1088_1361_6528_abd127
crossref_primary_10_1016_j_jpowsour_2020_228126
crossref_primary_10_1021_acsami_1c15920
crossref_primary_10_1016_j_nanoen_2023_109095
crossref_primary_10_1016_j_xcrp_2022_101197
crossref_primary_10_1016_j_apsusc_2019_04_020
crossref_primary_10_1021_acsaem_0c00411
crossref_primary_10_1021_acsami_4c06491
crossref_primary_10_1021_acs_langmuir_4c00961
crossref_primary_10_1002_cnma_202300049
crossref_primary_10_1016_j_jechem_2021_03_035
crossref_primary_10_1016_j_ensm_2021_09_007
crossref_primary_10_1016_j_jelechem_2019_113582
crossref_primary_10_1002_anie_202217709
crossref_primary_10_1016_j_electacta_2019_04_153
crossref_primary_10_1039_D1EE02959B
crossref_primary_10_1038_s41467_024_45373_1
crossref_primary_10_1002_smll_202300571
crossref_primary_10_1021_acsami_4c11041
crossref_primary_10_1002_ange_202008144
crossref_primary_10_1002_adfm_202004748
crossref_primary_10_1016_j_jallcom_2022_166967
crossref_primary_10_1021_acssuschemeng_1c03179
crossref_primary_10_1021_acsenergylett_1c00374
crossref_primary_10_1039_C8TA06150E
crossref_primary_10_1016_j_matt_2022_01_015
crossref_primary_10_1002_adfm_201900247
crossref_primary_10_1021_acsami_2c22562
crossref_primary_10_1016_j_ceramint_2022_10_306
crossref_primary_10_1021_acsaem_4c01228
crossref_primary_10_1002_ange_201908830
crossref_primary_10_1016_j_jmmm_2022_170107
crossref_primary_10_1149_1945_7111_abb566
crossref_primary_10_1021_acsenergylett_9b00381
crossref_primary_10_1002_aenm_202201151
crossref_primary_10_1016_j_jpowsour_2018_11_053
crossref_primary_10_1021_acsami_0c00111
crossref_primary_10_1021_acsami_9b14729
crossref_primary_10_1021_acsenergylett_8b01490
crossref_primary_10_1016_j_jelechem_2022_116286
crossref_primary_10_1002_aenm_202401514
crossref_primary_10_1021_acsami_9b17438
crossref_primary_10_1016_j_nanoen_2020_104450
crossref_primary_10_1016_j_nanoen_2022_107880
crossref_primary_10_1021_acs_chemmater_1c03051
crossref_primary_10_1016_j_jpowsour_2020_228241
crossref_primary_10_1021_acsaem_2c03336
crossref_primary_10_1021_acsami_4c23006
crossref_primary_10_1021_jacs_4c02345
crossref_primary_10_1016_j_jcis_2022_03_064
crossref_primary_10_1021_acsami_2c06264
crossref_primary_10_1021_acsenergylett_2c00232
crossref_primary_10_2139_ssrn_3346987
crossref_primary_10_1021_acsenergylett_8b01926
crossref_primary_10_1002_aenm_202200621
crossref_primary_10_1016_j_electacta_2018_12_104
crossref_primary_10_1021_acsami_9b04932
crossref_primary_10_1016_j_mtnano_2019_100057
crossref_primary_10_1021_acsnano_3c04526
crossref_primary_10_1002_adma_202401052
crossref_primary_10_1021_acsami_3c09641
crossref_primary_10_1002_batt_202400238
crossref_primary_10_1016_j_cej_2022_140846
crossref_primary_10_1021_acsnano_2c11469
crossref_primary_10_1039_D3RA02535G
crossref_primary_10_1016_j_est_2024_112184
crossref_primary_10_1002_ente_202400638
crossref_primary_10_1021_acsaem_9b02372
crossref_primary_10_1016_j_ensm_2019_08_013
crossref_primary_10_1016_j_jpowsour_2021_230961
crossref_primary_10_1016_j_ijoes_2024_100557
crossref_primary_10_1007_s43207_020_00098_x
crossref_primary_10_1002_smll_202309871
crossref_primary_10_1002_admi_202000154
crossref_primary_10_2139_ssrn_3986130
crossref_primary_10_1021_acsami_3c05539
crossref_primary_10_1021_acsaem_8b00994
crossref_primary_10_1002_aenm_202102299
crossref_primary_10_1016_j_ssi_2022_116105
crossref_primary_10_2139_ssrn_4194554
crossref_primary_10_1021_acssuschemeng_1c05936
crossref_primary_10_1039_D3NR04586B
crossref_primary_10_1007_s40820_021_00633_3
crossref_primary_10_1002_adfm_202109319
crossref_primary_10_1016_j_mtsust_2023_100326
crossref_primary_10_1016_j_jpowsour_2022_232550
crossref_primary_10_1002_adma_202416872
crossref_primary_10_1002_advs_202205918
crossref_primary_10_1002_smtd_202000551
crossref_primary_10_1016_j_mattod_2021_01_013
crossref_primary_10_1007_s40843_023_2449_8
crossref_primary_10_1002_cssc_202400823
crossref_primary_10_1016_j_apsusc_2022_154684
crossref_primary_10_1002_batt_202000041
crossref_primary_10_1002_smll_202306351
crossref_primary_10_1002_cssc_202202151
crossref_primary_10_1002_ange_202207043
crossref_primary_10_1016_j_cej_2022_134745
crossref_primary_10_1002_adfm_202303457
crossref_primary_10_1016_j_ensm_2020_08_035
crossref_primary_10_1016_j_joule_2021_06_014
crossref_primary_10_1021_acsami_9b12578
crossref_primary_10_1021_acs_energyfuels_2c00724
crossref_primary_10_1002_adfm_202010261
crossref_primary_10_1002_adfm_202312284
crossref_primary_10_1002_adma_202102964
crossref_primary_10_1016_j_jpowsour_2019_01_050
crossref_primary_10_1021_acsaem_3c02145
crossref_primary_10_1021_acs_iecr_2c02541
crossref_primary_10_1039_D3DT02957C
crossref_primary_10_1002_adfm_202103594
crossref_primary_10_1002_aenm_202000368
crossref_primary_10_1021_acsami_2c09103
crossref_primary_10_1007_s12598_022_02055_5
crossref_primary_10_1021_acsami_9b12595
crossref_primary_10_1016_j_surfin_2022_102610
crossref_primary_10_1038_s41467_020_18278_y
crossref_primary_10_1016_j_materresbull_2025_113408
crossref_primary_10_1021_acs_chemmater_1c02722
crossref_primary_10_1021_acsaem_2c03934
crossref_primary_10_1016_j_electacta_2019_06_034
crossref_primary_10_1557_s43578_023_01197_1
crossref_primary_10_1002_ange_202301241
crossref_primary_10_1016_j_nanoen_2022_108016
crossref_primary_10_1021_acsnano_1c00304
crossref_primary_10_1016_j_jpowsour_2021_230513
crossref_primary_10_1016_j_ceramint_2019_12_064
crossref_primary_10_1038_s41467_021_25611_6
crossref_primary_10_1016_j_jallcom_2020_155155
crossref_primary_10_3390_nano11102476
crossref_primary_10_3390_mi14050907
crossref_primary_10_1016_j_jpowsour_2018_09_079
crossref_primary_10_1002_aenm_202002416
crossref_primary_10_1016_j_powtec_2021_08_083
crossref_primary_10_1016_j_jpowsour_2020_227852
crossref_primary_10_1038_s41560_024_01605_8
crossref_primary_10_3390_nano14131096
crossref_primary_10_1016_j_jallcom_2022_164592
crossref_primary_10_1021_acsami_9b03403
crossref_primary_10_1016_j_ensm_2022_07_029
crossref_primary_10_1002_aenm_201901756
crossref_primary_10_1016_j_esci_2022_10_008
crossref_primary_10_1002_aenm_201900784
crossref_primary_10_1016_j_jallcom_2019_05_330
crossref_primary_10_1016_j_nanoen_2019_02_059
crossref_primary_10_1002_smll_202107357
crossref_primary_10_1016_j_joule_2019_08_004
crossref_primary_10_1021_acsaem_1c03257
crossref_primary_10_1021_acsami_9b02440
crossref_primary_10_1016_j_electacta_2023_143518
crossref_primary_10_1016_j_jechem_2021_05_049
crossref_primary_10_1016_j_jssc_2022_123040
crossref_primary_10_1021_acsami_3c15670
crossref_primary_10_1002_anie_202301241
crossref_primary_10_1016_j_jpowsour_2021_230768
crossref_primary_10_1016_j_mattod_2022_10_021
Cites_doi 10.1002/aenm.201602605
10.1002/aenm.201601284
10.1002/smtd.201700231
10.1016/j.chempr.2017.03.016
10.1038/nmat4041
10.1016/j.jpowsour.2017.05.091
10.1002/adma.201700378
10.1109/JPROC.2012.2190170
10.1016/j.electacta.2013.04.150
10.1021/acscentsci.7b00120
10.1039/c3ta13043f
10.1002/aenm.201301583
10.1038/nnano.2016.32
10.1021/ja502133j
10.1149/2.0041514jes
10.1038/ncomms7362
10.1002/adfm.201605989
10.1021/acsami.7b08802
10.1016/j.jpowsour.2016.12.012
10.1016/j.chempr.2017.10.017
10.1038/nnano.2014.152
10.1016/j.jpowsour.2016.04.017
10.1557/mrs2000.16
10.1149/2.0051514jes
10.1002/aenm.201502151
10.1021/nl404721h
10.1021/acsami.7b18933
10.1002/adma.201504117
10.1038/nenergy.2017.133
10.1038/nenergy.2016.10
10.1149/1.1837248
10.1021/ja312241y
10.1038/35104644
10.1021/cr030203g
10.1002/aenm.201502214
10.1021/acs.jpcc.5b10677
10.1038/ncomms10101
10.1038/nenergy.2017.12
10.1021/acs.nanolett.6b01556
10.1021/cr020731c
10.1149/2.0401802jes
10.1039/C6CP00757K
10.1016/j.nantod.2016.08.011
10.1039/C3EE40795K
10.1021/acs.chemmater.5b02429
10.1149/1.1785795
10.1039/C5EE03360H
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
OTOTI
DOI 10.1002/aenm.201800297
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 1430586
10_1002_aenm_201800297
AENM201800297
Genre article
GrantInformation_xml – fundername: China Scholarship Council
– fundername: Advanced Battery Materials Research (BMR) program of the U.S. Department of Energy
  funderid: DE‐AC02‐05CH11231
– fundername: Natural Science Foundation of China
  funderid: 21233004; 21621091
– fundername: Pacific Northwest National Laboratory
  funderid: DE‐AC05‐76RL01830
– fundername: Biological and Environmental Research
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
AAPBV
AEUQT
OTOTI
ID FETCH-LOGICAL-c4897-1e3ec4a40080c837e9f8569a2464be05a0bba7b3e023b61a3a1c499e4a7d6dcb3
ISSN 1614-6832
IngestDate Mon Sep 25 05:37:24 EDT 2023
Sun Jul 13 05:16:18 EDT 2025
Tue Jul 01 01:43:24 EDT 2025
Thu Apr 24 23:10:33 EDT 2025
Wed Jan 22 16:38:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4897-1e3ec4a40080c837e9f8569a2464be05a0bba7b3e023b61a3a1c499e4a7d6dcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
DE‐AC02‐05CH11231
USDOE
ORCID 0000-0001-7343-4609
0000000173434609
OpenAccessLink https://www.osti.gov/biblio/1430586
PQID 2064232846
PQPubID 886389
PageCount 9
ParticipantIDs osti_scitechconnect_1430586
proquest_journals_2064232846
crossref_primary_10_1002_aenm_201800297
crossref_citationtrail_10_1002_aenm_201800297
wiley_primary_10_1002_aenm_201800297_AENM201800297
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 5, 2018
PublicationDateYYYYMMDD 2018-07-05
PublicationDate_xml – month: 07
  year: 2018
  text: July 5, 2018
  day: 05
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced energy materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley Blackwell (John Wiley & Sons)
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley Blackwell (John Wiley & Sons)
References 2014 2014 2016 2017 2015; 14 2 16 7 27
2017 2017; 359 341
2017; 7
2012 1996 2016 2015 2015 2004; 100 143 318 162 162 104
2017; 2
2014 2016; 9 28
2014 2014 2016 2016; 13 7 1 11
2013 2015 2016 2017; 135 6 6 27
2013; 105
2004; 151
2015; 120
2001 2004; 414 104
2018 2014 2017 2018 2018 2017; 10 4 9 165 4
2014 2016 2015; 136 6 6
2016 2000; 18 25
2016; 9
2018 2017 2017 2017 2017; 2 2 3 2 29
2016; 11
e_1_2_7_3_4
e_1_2_7_4_3
e_1_2_7_5_2
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_3_3
e_1_2_7_4_2
e_1_2_7_5_1
e_1_2_7_2_3
e_1_2_7_3_2
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_3_1
e_1_2_7_5_6
e_1_2_7_5_5
e_1_2_7_6_4
e_1_2_7_7_3
e_1_2_7_8_2
e_1_2_7_9_1
e_1_2_7_4_5
e_1_2_7_5_4
e_1_2_7_6_3
e_1_2_7_7_2
e_1_2_7_8_1
e_1_2_7_3_5
e_1_2_7_4_4
e_1_2_7_5_3
e_1_2_7_6_2
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_1_2
e_1_2_7_2_1
e_1_2_7_14_2
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_10_5
e_1_2_7_14_1
e_1_2_7_10_4
e_1_2_7_13_1
e_1_2_7_10_3
e_1_2_7_11_2
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_11_1
e_1_2_7_10_1
Xu L. (e_1_2_7_10_6) 2017
References_xml – volume: 120
  start-page: 422
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 9 28
  start-page: 618 2155
  year: 2014 2016
  publication-title: Nat. Nanotechnol. Adv. Mater.
– volume: 414 104
  start-page: 359 4271
  year: 2001 2004
  publication-title: Nature Chem. Rev.
– volume: 105
  start-page: 200
  year: 2013
  publication-title: Electrochim. Acta
– volume: 135 6 6 27
  start-page: 4450 6362 1502151 1605989
  year: 2013 2015 2016 2017
  publication-title: J. Am. Chem. Soc. Nat. Commun. Adv. Energy Mater. Adv. Funct. Mater.
– volume: 100 143 318 162 162 104
  start-page: 1518 3525 170 A2406 A2424 4303
  year: 2012 1996 2016 2015 2015 2004
  publication-title: Proc. IEEE J. Electrochem. Soc. J. Power Sources J. Electrochem. Soc. J. Electrochem. Soc. Chem. Rev.
– volume: 9
  start-page: 1308
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 2 2 3 2 29
  start-page: 1700231 17133 598 525 1700378
  year: 2018 2017 2017 2017 2017
  publication-title: Small Methods Nat. Energy ACS Cent. Sci. Chem Adv. Mater.
– volume: 14 2 16 7 27
  start-page: 2345 2346 4932 1602605 6650
  year: 2014 2014 2016 2017 2015
  publication-title: Nano Lett. J. Mater. Chem. A Nano Lett. Adv. Energy Mater. Chem. Mater.
– volume: 2
  start-page: 17012
  year: 2017
  publication-title: Nat. Energy
– volume: 136 6 6
  start-page: 7395 1502214 10101
  year: 2014 2016 2015
  publication-title: J. Am. Chem. Soc. Adv. Energy Mater. Nat. Commun.
– volume: 13 7 1 11
  start-page: 961 513 16010 626
  year: 2014 2014 2016 2016
  publication-title: Nat. Mater. Energy Environ. Sci. Nat. Energy Nat. Nanotechnol.
– volume: 10 4 9 165 4
  start-page: 6407 1301583 29794 A132 174
  year: 2018 2014 2017 2018 2018 2017
  publication-title: ACS Appl. Mater. Interfaces Adv. Energy Mater. ACS Appl. Mater. Interfaces J. Electrochem. Soc. Chem Ionics
– volume: 18 25
  start-page: 9504 31
  year: 2016 2000
  publication-title: Phys. Chem. Chem. Phys. MRS Bull.
– volume: 11
  start-page: 678
  year: 2016
  publication-title: Nano Today
– volume: 7
  start-page: 1601284
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 359 341
  start-page: 391 348
  year: 2017 2017
  publication-title: J. Power Sources J. Power Sources
– volume: 151
  start-page: A1659
  year: 2004
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_7_4_4
  doi: 10.1002/aenm.201602605
– ident: e_1_2_7_18_1
  doi: 10.1002/aenm.201601284
– ident: e_1_2_7_3_1
  doi: 10.1002/smtd.201700231
– ident: e_1_2_7_3_4
  doi: 10.1016/j.chempr.2017.03.016
– ident: e_1_2_7_2_1
  doi: 10.1038/nmat4041
– ident: e_1_2_7_11_1
  doi: 10.1016/j.jpowsour.2017.05.091
– ident: e_1_2_7_3_5
  doi: 10.1002/adma.201700378
– ident: e_1_2_7_5_1
  doi: 10.1109/JPROC.2012.2190170
– ident: e_1_2_7_12_1
  doi: 10.1016/j.electacta.2013.04.150
– ident: e_1_2_7_3_3
  doi: 10.1021/acscentsci.7b00120
– ident: e_1_2_7_4_2
  doi: 10.1039/c3ta13043f
– ident: e_1_2_7_10_2
  doi: 10.1002/aenm.201301583
– ident: e_1_2_7_2_4
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_7_7_1
  doi: 10.1021/ja502133j
– ident: e_1_2_7_5_4
  doi: 10.1149/2.0041514jes
– ident: e_1_2_7_6_2
  doi: 10.1038/ncomms7362
– ident: e_1_2_7_6_4
  doi: 10.1002/adfm.201605989
– ident: e_1_2_7_10_3
  doi: 10.1021/acsami.7b08802
– ident: e_1_2_7_11_2
  doi: 10.1016/j.jpowsour.2016.12.012
– ident: e_1_2_7_10_5
  doi: 10.1016/j.chempr.2017.10.017
– ident: e_1_2_7_8_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_7_5_3
  doi: 10.1016/j.jpowsour.2016.04.017
– ident: e_1_2_7_14_2
  doi: 10.1557/mrs2000.16
– ident: e_1_2_7_5_5
  doi: 10.1149/2.0051514jes
– ident: e_1_2_7_6_3
  doi: 10.1002/aenm.201502151
– ident: e_1_2_7_4_1
  doi: 10.1021/nl404721h
– ident: e_1_2_7_10_1
  doi: 10.1021/acsami.7b18933
– ident: e_1_2_7_8_2
  doi: 10.1002/adma.201504117
– ident: e_1_2_7_3_2
  doi: 10.1038/nenergy.2017.133
– ident: e_1_2_7_2_3
  doi: 10.1038/nenergy.2016.10
– ident: e_1_2_7_5_2
  doi: 10.1149/1.1837248
– ident: e_1_2_7_6_1
  doi: 10.1021/ja312241y
– ident: e_1_2_7_1_1
  doi: 10.1038/35104644
– ident: e_1_2_7_5_6
  doi: 10.1021/cr030203g
– ident: e_1_2_7_7_2
  doi: 10.1002/aenm.201502214
– ident: e_1_2_7_15_1
  doi: 10.1021/acs.jpcc.5b10677
– ident: e_1_2_7_7_3
  doi: 10.1038/ncomms10101
– ident: e_1_2_7_9_1
  doi: 10.1038/nenergy.2017.12
– year: 2017
  ident: e_1_2_7_10_6
  publication-title: Ionics
– ident: e_1_2_7_4_3
  doi: 10.1021/acs.nanolett.6b01556
– ident: e_1_2_7_1_2
  doi: 10.1021/cr020731c
– ident: e_1_2_7_10_4
  doi: 10.1149/2.0401802jes
– ident: e_1_2_7_14_1
  doi: 10.1039/C6CP00757K
– ident: e_1_2_7_17_1
  doi: 10.1016/j.nantod.2016.08.011
– ident: e_1_2_7_2_2
  doi: 10.1039/C3EE40795K
– ident: e_1_2_7_4_5
  doi: 10.1021/acs.chemmater.5b02429
– ident: e_1_2_7_13_1
  doi: 10.1149/1.1785795
– ident: e_1_2_7_16_1
  doi: 10.1039/C5EE03360H
SSID ssj0000491033
Score 2.648721
Snippet The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a significant...
Abstract The lithium (Li) metal battery (LMB) is one of the most promising candidates for next‐generation energy storage systems. However, it is still a...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Batteries
Cathodes
Discharge
dual electrolyte
Electric potential
Electrochemical analysis
Electrode materials
Electrolytes
Electrolytic cells
Energy storage
high voltage
High voltages
Interface stability
interphases
Lithium
Nickel
Ni‐rich NMC
Storage systems
Structural stability
Title High Voltage Operation of Ni‐Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201800297
https://www.proquest.com/docview/2064232846
https://www.osti.gov/biblio/1430586
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcoG8gHJA5VWH44qXOsoFM10XBgg90i23nZJpWkWrPDduJP4G_kL-E5dlIXFTG4RKkTt0nfF_t7L997JuSNEDKQBQOPKVaigxKEngj80hNFCXHhi1jGOsF5kSXzU3Z8Fp8NBrdudkkj36nbnXkl_2NVbEO76izZf7Bs_6XYgPtoX9yihXF7Jxtrkcb4S71stPDm0wquev6XXfYqBp06P84WJtmvLmA9nrX5Ui3zRK6pU6dmZjEcXYL3yO4vbxorq1xd4Ey3dlnstBMOgMkcRNZrbtcJQ7ch2K9QnYt60wpW_4uY_NbNmfpAfW3iA6IqYdN8bIS8c6HX1z534xMBb7WssTOkIgHwEm6jmOC2mUJN3TjMXbilO4d3Uy5WQKVrCAS8XXlrM5F1L-9_m9961aGp0Bzmun_e979H9kJ0MXCM3Jt-WHz83Efo0HcK_KjN0Ohuoav66YeH2xexxWqGNY7OWx6L6_e0xOXkEXloPQ46NfB5TAZQPSEPnDqUT0mhgUQtkGgPJFqXNLv8-f2HhhBFCNEOQtRCiMobaiBEewgdOgCiDoCekdOj2cn7uWeX3_AU4-nECyACxQTTToXi0QTSksdJKkKWMAl-LHwpxURGgLRPJoGIRKDQfwYmJkVSKBk9J8OqruAFoUjjYxEU6CsUwMow5r5QaRQhey55IksYEa_7-3Jla9PrJVKW-W6bjcjb_vyVqcryxzP3tTVy5JO6KLLS6jHVoMOL8xxPRuSgM1Jun-s19k20egGJ-YiEreH-8hv5dJYt-k8v73xt--T-5oE5IMPm6hpeIcVt5GuLxV8DR6M1
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+Voltage+Operation+of+Ni%E2%80%90Rich+NMC+Cathodes+Enabled+by+Stable+Electrode%2FElectrolyte+Interphases&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Wengao&rft.au=Zheng%2C+Jianming&rft.au=Zou%2C+Lianfeng&rft.au=Jia%2C+Haiping&rft.date=2018-07-05&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=8&rft.issue=19&rft_id=info:doi/10.1002%2Faenm.201800297&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aenm_201800297
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon