Interactions between below‐ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition
Plant–soil–microbe interactions play a central role in plant nutrient acquisition and thus ecosystem functioning and nutrient availability in agroecosystems. Adjustments in root morphology, root exudation and associations with micro‐organisms such as arbuscular mycorrhizal fungi are common for phosp...
Saved in:
Published in | Functional ecology Vol. 35; no. 7; pp. 1603 - 1619 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Wiley Subscription Services, Inc
01.07.2021
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant–soil–microbe interactions play a central role in plant nutrient acquisition and thus ecosystem functioning and nutrient availability in agroecosystems. Adjustments in root morphology, root exudation and associations with micro‐organisms such as arbuscular mycorrhizal fungi are common for phosphorus acquisition. Yet how plant below‐ground functional traits interact with microbial communities for P acquisition remains largely unknown, limiting our understanding of phosphorus availability in agroecosystems.
Interactions between below‐ground functional traits and rhizosheath soil microbial communities for P acquisition were investigated across eight herbaceous species with contrasting root traits. Root morphological and physiological traits involved in P acquisition were quantified simultaneously with PLFA (phospholipid fatty acid) and NLFA (neutral lipid fatty acid) microbial bioindicators.
Multiple correlations were observed between root morphology, root exudates and rhizosheath fungal and bacterial communities. Root exudates and in particular release of malate and malonate were strongly linked with indicators of Gram‐negative bacteria, which were correlated with changes in rhizosheath soil P concentration and plant P content.
Our results suggest that root exudation of carboxylates may play an important role in plant–soil–microbe interactions for P acquisition, underlining their likely role in shaping microbial communities. Incorporating these interactions in biogeochemical models would lead to better predicting power and understanding of P cycling and ecosystem functioning.
A free Plain Language Summary can be found within the Supporting Information of this article.
Résumé
Les interactions plante‐sol‐microbe jouent un rôle central dans l'acquisition d’éléments nutritifs par les plantes et par conséquent dans le fonctionnement des écosystèmes et la disponibilité des nutriments dans les agroécosystèmes. L’acquisition du phosphore nécessite souvent des ajustements entre morphologie et exsudations racinaires ainsi que l'association des racines avec les micro‐organismes du sol tels que les champignons mycorhiziens arbusculaires. Les mécanismes par lesquels les traits fonctionnels des plantes interagissent avec les communautés microbiennes pour l'acquisition de P restent pourtant largement méconnus, limitant ainsi notre compréhension de la disponibilité du phosphore dans les agroécosystèmes.
Les interactions entre traits fonctionnels souterrains et communautés microbiennes du sol rhizosphérique pour l'acquisition de P ont été étudiées au sein de huit espèces herbacées aux traits racinaires contrastés. De multiples traits morphologiques et physiologiques racinaires impliqués dans l'acquisition de P ont été quantifiés simultanément avec plusieurs bioindicateurs microbiens (PLFA et NLFA).
De nombreuses corrélations ont été observées entre la morphologie racinaire, les exsudats racinaires et les communautés fongiques et bactériennes du sol rhizosphérique. Les exsudats racinaires, en particulier la libération d'acide malique et malonique, étaient fortement liés aux indicateurs de bactéries Gram‐négatives, eux‐mêmes corrélés aux changements de la concentration en P du sol rhizosphérique et à la teneur en P des plantes.
Nos résultats suggèrent que l'exsudation racinaire des carboxylates joue un rôle important dans les interactions plante‐sol‐microbe pour l'acquisition de P, soulignant leur rôle probable dans la formation des communautés microbiennes. L'intégration de ces interactions dans les modèles biogéochimiques conduirait à une meilleure précision ainsi qu’à une meilleure compréhension du cycle du P et du fonctionnement des écosystèmes.
A free Plain Language Summary can be found within the Supporting Information of this article. |
---|---|
AbstractList | Plant–soil–microbe interactions play a central role in plant nutrient acquisition and thus ecosystem functioning and nutrient availability in agroecosystems. Adjustments in root morphology, root exudation and associations with micro‐organisms such as arbuscular mycorrhizal fungi are common for phosphorus acquisition. Yet how plant below‐ground functional traits interact with microbial communities for P acquisition remains largely unknown, limiting our understanding of phosphorus availability in agroecosystems.Interactions between below‐ground functional traits and rhizosheath soil microbial communities for P acquisition were investigated across eight herbaceous species with contrasting root traits. Root morphological and physiological traits involved in P acquisition were quantified simultaneously with PLFA (phospholipid fatty acid) and NLFA (neutral lipid fatty acid) microbial bioindicators.Multiple correlations were observed between root morphology, root exudates and rhizosheath fungal and bacterial communities. Root exudates and in particular release of malate and malonate were strongly linked with indicators of Gram‐negative bacteria, which were correlated with changes in rhizosheath soil P concentration and plant P content.Our results suggest that root exudation of carboxylates may play an important role in plant–soil–microbe interactions for P acquisition, underlining their likely role in shaping microbial communities. Incorporating these interactions in biogeochemical models would lead to better predicting power and understanding of P cycling and ecosystem functioning.A free Plain Language Summary can be found within the Supporting Information of this article. Plant–soil–microbe interactions play a central role in plant nutrient acquisition and thus ecosystem functioning and nutrient availability in agroecosystems. Adjustments in root morphology, root exudation and associations with micro‐organisms such as arbuscular mycorrhizal fungi are common for phosphorus acquisition. Yet how plant below‐ground functional traits interact with microbial communities for P acquisition remains largely unknown, limiting our understanding of phosphorus availability in agroecosystems. Interactions between below‐ground functional traits and rhizosheath soil microbial communities for P acquisition were investigated across eight herbaceous species with contrasting root traits. Root morphological and physiological traits involved in P acquisition were quantified simultaneously with PLFA (phospholipid fatty acid) and NLFA (neutral lipid fatty acid) microbial bioindicators. Multiple correlations were observed between root morphology, root exudates and rhizosheath fungal and bacterial communities. Root exudates and in particular release of malate and malonate were strongly linked with indicators of Gram‐negative bacteria, which were correlated with changes in rhizosheath soil P concentration and plant P content. Our results suggest that root exudation of carboxylates may play an important role in plant–soil–microbe interactions for P acquisition, underlining their likely role in shaping microbial communities. Incorporating these interactions in biogeochemical models would lead to better predicting power and understanding of P cycling and ecosystem functioning. A free Plain Language Summary can be found within the Supporting Information of this article. Résumé Les interactions plante‐sol‐microbe jouent un rôle central dans l'acquisition d’éléments nutritifs par les plantes et par conséquent dans le fonctionnement des écosystèmes et la disponibilité des nutriments dans les agroécosystèmes. L’acquisition du phosphore nécessite souvent des ajustements entre morphologie et exsudations racinaires ainsi que l'association des racines avec les micro‐organismes du sol tels que les champignons mycorhiziens arbusculaires. Les mécanismes par lesquels les traits fonctionnels des plantes interagissent avec les communautés microbiennes pour l'acquisition de P restent pourtant largement méconnus, limitant ainsi notre compréhension de la disponibilité du phosphore dans les agroécosystèmes. Les interactions entre traits fonctionnels souterrains et communautés microbiennes du sol rhizosphérique pour l'acquisition de P ont été étudiées au sein de huit espèces herbacées aux traits racinaires contrastés. De multiples traits morphologiques et physiologiques racinaires impliqués dans l'acquisition de P ont été quantifiés simultanément avec plusieurs bioindicateurs microbiens (PLFA et NLFA). De nombreuses corrélations ont été observées entre la morphologie racinaire, les exsudats racinaires et les communautés fongiques et bactériennes du sol rhizosphérique. Les exsudats racinaires, en particulier la libération d'acide malique et malonique, étaient fortement liés aux indicateurs de bactéries Gram‐négatives, eux‐mêmes corrélés aux changements de la concentration en P du sol rhizosphérique et à la teneur en P des plantes. Nos résultats suggèrent que l'exsudation racinaire des carboxylates joue un rôle important dans les interactions plante‐sol‐microbe pour l'acquisition de P, soulignant leur rôle probable dans la formation des communautés microbiennes. L'intégration de ces interactions dans les modèles biogéochimiques conduirait à une meilleure précision ainsi qu’à une meilleure compréhension du cycle du P et du fonctionnement des écosystèmes. A free Plain Language Summary can be found within the Supporting Information of this article. Plant–soil–microbe interactions play a central role in plant nutrient acquisition and thus ecosystem functioning and nutrient availability in agroecosystems. Adjustments in root morphology, root exudation and associations with micro‐organisms such as arbuscular mycorrhizal fungi are common for phosphorus acquisition. Yet how plant below‐ground functional traits interact with microbial communities for P acquisition remains largely unknown, limiting our understanding of phosphorus availability in agroecosystems. Interactions between below‐ground functional traits and rhizosheath soil microbial communities for P acquisition were investigated across eight herbaceous species with contrasting root traits. Root morphological and physiological traits involved in P acquisition were quantified simultaneously with PLFA (phospholipid fatty acid) and NLFA (neutral lipid fatty acid) microbial bioindicators. Multiple correlations were observed between root morphology, root exudates and rhizosheath fungal and bacterial communities. Root exudates and in particular release of malate and malonate were strongly linked with indicators of Gram‐negative bacteria, which were correlated with changes in rhizosheath soil P concentration and plant P content. Our results suggest that root exudation of carboxylates may play an important role in plant–soil–microbe interactions for P acquisition, underlining their likely role in shaping microbial communities. Incorporating these interactions in biogeochemical models would lead to better predicting power and understanding of P cycling and ecosystem functioning. A free Plain Language Summary can be found within the Supporting Information of this article. Les interactions plante‐sol‐microbe jouent un rôle central dans l'acquisition d’éléments nutritifs par les plantes et par conséquent dans le fonctionnement des écosystèmes et la disponibilité des nutriments dans les agroécosystèmes. L’acquisition du phosphore nécessite souvent des ajustements entre morphologie et exsudations racinaires ainsi que l'association des racines avec les micro‐organismes du sol tels que les champignons mycorhiziens arbusculaires. Les mécanismes par lesquels les traits fonctionnels des plantes interagissent avec les communautés microbiennes pour l'acquisition de P restent pourtant largement méconnus, limitant ainsi notre compréhension de la disponibilité du phosphore dans les agroécosystèmes. Les interactions entre traits fonctionnels souterrains et communautés microbiennes du sol rhizosphérique pour l'acquisition de P ont été étudiées au sein de huit espèces herbacées aux traits racinaires contrastés. De multiples traits morphologiques et physiologiques racinaires impliqués dans l'acquisition de P ont été quantifiés simultanément avec plusieurs bioindicateurs microbiens (PLFA et NLFA). De nombreuses corrélations ont été observées entre la morphologie racinaire, les exsudats racinaires et les communautés fongiques et bactériennes du sol rhizosphérique. Les exsudats racinaires, en particulier la libération d'acide malique et malonique, étaient fortement liés aux indicateurs de bactéries Gram‐négatives, eux‐mêmes corrélés aux changements de la concentration en P du sol rhizosphérique et à la teneur en P des plantes. Nos résultats suggèrent que l'exsudation racinaire des carboxylates joue un rôle important dans les interactions plante‐sol‐microbe pour l'acquisition de P, soulignant leur rôle probable dans la formation des communautés microbiennes. L'intégration de ces interactions dans les modèles biogéochimiques conduirait à une meilleure précision ainsi qu’à une meilleure compréhension du cycle du P et du fonctionnement des écosystèmes. 1. Plant-soil-microbe interactions play a central role in plant nutrient acquisitionand thus ecosystem functioning and nutrient availability in agroecosystems.Adjustments in root morphology, root exudation and associations withmicroorganisms such as arbuscular mychorrizal fungi are common forphosphorus acquisition. Yet how plant belowground functional traits interactwith microbial communities for P-acquisition remains largely unknown, limitingour understanding of phosphorus availability in agroecosystems.2. Interactions between belowground functional traits and rhizosheath soilmicrobial communities for P-acquisition were investigated across eightherbaceous species with contrasting root traits. Root morphological andphysiological traits involved in P-acquisition were quantified simultaneouslywith PLFA (phospholipid fatty acid) and NLFA (neutral lipid fatty acid)microbial bioindicators.3. Multiple correlations were observed between root morphology, root exudatesand rhizosheath fungal and bacterial communities. Root exudates and inparticular release of malate and malonate were strongly linked with indicatorsof Gram-negative bacteria, which were correlated with changes in rhizosheathsoil P concentration and plant P content.4. Our results suggest that root exudation of carboxylates may play an importantrole in plant-soil-microbe interactions for P-acquisition, underlining their likelyrole in shaping microbial communities. Incorporating these interactions inbiogeochemical models would lead to better predicting power andunderstanding of P cycling and ecosystem functioning. 1. Les interactions plante-sol-microbe jouent un rôle central dans l'acquisitiond’éléments nutritifs par les plantes et par conséquent dans le fonctionnementdes écosystèmes et la disponibilité des nutriments dans lesagroécosystèmes. L’acquisition du phosphore nécessite souvent desajustements entre morphologie et exsudations racinaires ainsi quel’association des racines avec les micro-organismes du sol tels que leschampignons mycorhiziens arbusculaires. Les mécanismes par lesquels lestraits fonctionnels des plantes interagissent avec les communautésmicrobiennes pour l'acquisition de P restent pourtant largement méconnus,limitant ainsi notre compréhension de la disponibilité du phosphore dans lesagroécosystèmes.2. Les interactions entre traits fonctionnels souterrains et communautésmicrobiennes du sol rhizosphérique pour l'acquisition de P ont été étudiées ausein de huit espèces herbacées aux traits racinaires contrastés. De multiplestraits morphologiques et physiologiques racinaires impliqués dans l'acquisitionde P ont été quantifiés simultanément avec plusieurs bioindicateursmicrobiens (PLFA et NLFA).3. De nombreuses corrélations ont été observées entre la morphologie racinaire,les exsudats racinaires et les communautés fongiques et bactériennes du solrhizosphérique. Les exsudats racinaires, en particulier la libération d’acidemalique et malonique, étaient fortement liés aux indicateurs de bactériesGram-négatives, eux-mêmes corrélés aux changements de la concentrationen P du sol rhizosphérique et à la teneur en P des plantes.4. Nos résultats suggèrent que l'exsudation racinaire des carboxylates joue unrôle important dans les interactions plante-sol-microbe pour l'acquisition de P,soulignant leur rôle probable dans la formation des communautésmicrobiennes. L'intégration de ces interactions dans les modèlesbiogéochimiques conduirait à une meilleure précision ainsi qu’à une meilleurecompréhension du cycle du P et du fonctionnement des écosystèmes. |
Author | Lambers, Hans Faucon, Michel‐Pierre Coutu, Arnaud Meglouli, Hacène Firmin, Stéphane Fontaine, Joël Honvault, Nicolas Houben, David Laruelle, Frédéric Lounès‐Hadj Sahraoui, Anissa |
Author_xml | – sequence: 1 givenname: Nicolas orcidid: 0000-0001-7855-7712 surname: Honvault fullname: Honvault, Nicolas email: nicolas.honvault@unilasalle.fr organization: VIVESCIA 2 Rue Clément Ader – sequence: 2 givenname: David surname: Houben fullname: Houben, David organization: UniLaSalle – sequence: 3 givenname: Stéphane surname: Firmin fullname: Firmin, Stéphane organization: UniLaSalle – sequence: 4 givenname: Hacène surname: Meglouli fullname: Meglouli, Hacène organization: Université de Montréal – sequence: 5 givenname: Frédéric surname: Laruelle fullname: Laruelle, Frédéric organization: SFR Condorcet FR CNRS 3417 – sequence: 6 givenname: Joël surname: Fontaine fullname: Fontaine, Joël organization: SFR Condorcet FR CNRS 3417 – sequence: 7 givenname: Anissa orcidid: 0000-0001-8478-0128 surname: Lounès‐Hadj Sahraoui fullname: Lounès‐Hadj Sahraoui, Anissa organization: SFR Condorcet FR CNRS 3417 – sequence: 8 givenname: Arnaud surname: Coutu fullname: Coutu, Arnaud organization: UniLaSalle – sequence: 9 givenname: Hans orcidid: 0000-0002-4118-2272 surname: Lambers fullname: Lambers, Hans organization: University of Western Australia – sequence: 10 givenname: Michel‐Pierre orcidid: 0000-0001-5448-7932 surname: Faucon fullname: Faucon, Michel‐Pierre email: michel-pierre.faucon@unilasalle.fr organization: UniLaSalle |
BackLink | https://hal.science/hal-03286269$$DView record in HAL |
BookMark | eNqFUU1P3DAQtSoqdaE99xqpl_YQ8GcSH9EKCtJKXOjZcpwxMcrai-2wglN_Qn9jf0kdtuLABUvWjJ_fm7HnHaMjHzwg9JXgU1LWGWGNqCln4pSwjrIPaPWKHKEVpo2sO96wT-g4pXuMsRSUrtDjtc8Qtcku-FT1kPcAvsQp7P_-_nMXw-yHKkftcqp0SePonkMaQeexsrO_09ML3JcKEF05mbDdzt5lB6myIVa7MaSy41z05mF2yS2tPqOPVk8JvvyPJ-jX5cXt-qre3Py8Xp9vasM7yWrNKdjeYiLZwG3LWgvQWd0PuCeUCiqsNEbKctMLbuyge9HZnjecaNoOkrMT9ONQd9ST2kW31fFJBe3U1flGLRhmtGvKbB5J4X4_cHcxPMyQstq6ZGCatIcwJ0WbhmBMGWaF-u0N9T7M0ZefKCp413ZNi2VhnR1YJoaUItjXFxCsFs_U4pBaHFIvnhWFeKMwLutlYIsF0_u6vZvg6b026vJifdD9A9sCrjA |
CitedBy_id | crossref_primary_10_1007_s11104_023_06294_y crossref_primary_10_1016_j_apsoil_2024_105777 crossref_primary_10_1016_j_soilbio_2022_108722 crossref_primary_10_1007_s11104_023_06126_z crossref_primary_10_1016_j_soilbio_2022_108715 crossref_primary_10_3390_soilsystems7040106 crossref_primary_10_1093_plphys_kiac418 crossref_primary_10_1016_j_soilbio_2023_109205 crossref_primary_10_1007_s11104_024_06848_8 crossref_primary_10_1007_s00425_023_04307_9 crossref_primary_10_3389_fpls_2022_1051080 crossref_primary_10_1016_j_plaphy_2024_108986 crossref_primary_10_3390_microorganisms11071847 crossref_primary_10_1007_s11104_022_05436_y crossref_primary_10_1007_s11104_023_06049_9 |
Cites_doi | 10.1128/AEM.59.11.3605‐3617.1993 10.5194/soil‐2‐487‐2016 10.1007/978-981-13-7264-3 10.4141/cjps‐2014‐026 10.1038/nature25783 10.1111/j.1365‐3040.2012.02547.x 10.1104/pp.111.175448 10.1023/A:1020663909890 10.1007/s11104‐011‐0950‐4 10.1007/s11104‐016‐3044‐5 10.1111/nph.16976 10.1111/nph.15833 10.1016/j.soilbio.2008.06.019 10.1016/j.tree.2014.10.006 10.1007/978-1-4020-8435-5 10.1146/annurev.arplant.52.1.527 10.1146/annurev‐arplant‐042110‐103846 10.3318/bioe.2017.03 10.1007/s11104‐016‐2974‐2 10.1016/j.jhazmat.2008.02.062 10.1016/S0021‐9673(03)01129‐4 10.3389/fpls.2018.00752 10.1002/9781119312994.apr0528 10.1111/1365‐2745.12977 10.3389/fpls.2019.00643 10.1007/s11104‐020‐04584‐3 10.1111/gcb.14093 10.1111/ele.12536 10.1111/j.1461‐0248.2007.01139.x 10.3390/su12062212 10.1093/aob/mcu169 10.1007/s11157‐013‐9317‐z 10.1016/j.sajb.2016.09.002 10.1101/cshperspect.a001438 10.2136/sssaj1991.03615995005500030046x 10.1038/srep44641 10.1111/j.1469‐8137.2006.01931.x 10.1007/BF00388810 10.1007/s11104‐019‐03972‐8 10.1016/j.wasman.2012.02.003 10.3389/fpls.2016.01939 10.1071/PP01093 10.1126/sciadv.aba3756 10.1007/s11104‐017‐3358‐y 10.1111/j.1472‐4669.2007.00107.x 10.1016/j.tplants.2018.04.004 10.1016/0038‐0717(69)90012‐1 10.1007/s11104‐017‐3362‐2 10.1093/jxb/erp053 10.1007/s11104‐008‐9814‐y 10.1007/s11270‐019‐4383‐7 10.1016/j.soilbio.2006.10.009 10.1038/s41598‐019‐51204‐x 10.1111/j.1365‐2745.2009.01614.x 10.1016/0167‐7012(91)90018‐L 10.1016/j.tplants.2017.09.003 10.1139/o59-099 10.1038/s41467‐018‐05122‐7 10.1038/srep13438 10.1128/AEM.02865‐08 10.5061/dryad.rv15dv47s 10.1016/j.soilbio.2006.11.023 10.1155/2019/4917256 10.1007/s11104‐018‐3810‐7 10.3389/fpls.2014.00027 10.1016/j.chemosphere.2015.11.105 10.1016/j.soilbio.2003.09.004 10.1007/BF00008338 10.1007/s11629‐018‐5311‐9 10.1016/j.soilbio.2014.09.012 10.1038/nrmicro1987 10.9735/0975‐5276.5.5.452‐457 10.1007/s11104‐017‐3511‐7 10.1111/nph.14710 10.1111/nph.15200 |
ContentType | Journal Article |
Copyright | 2021 British Ecological Society Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 British Ecological Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7QG 7SN 7SS 8FD C1K FR3 P64 RC3 7S9 L.6 1XC VOOES |
DOI | 10.1111/1365-2435.13823 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1365-2435 |
EndPage | 1619 |
ExternalDocumentID | oai_HAL_hal_03286269v1 10_1111_1365_2435_13823 FEC13823 |
Genre | article |
GrantInformation_xml | – fundername: Association Nationale de la Recherche et de la Technologie |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29H 2AX 2WC 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPVW ABTAH ABTLG ABXSQ ACAHQ ACCFJ ACCMX ACCZN ACFBH ACGFO ACGFS ACHIC ACPOU ACPRK ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ UB1 V8K VOH W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW ZCA ZY4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW AGHNM AGUYK CITATION 7QG 7SN 7SS 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c4893-a42efbf0193d4f737fee8fabd0b122525f9cc99f73b54cfdab58fb4641a27d943 |
IEDL.DBID | DR2 |
ISSN | 0269-8463 |
IngestDate | Fri May 09 12:27:43 EDT 2025 Fri Jul 11 18:26:35 EDT 2025 Fri Jul 25 03:24:12 EDT 2025 Tue Jul 01 01:15:52 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Wed Jan 22 16:28:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | PLFA phosphorus acquisition NLFA plant-soil microbe interactions |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4893-a42efbf0193d4f737fee8fabd0b122525f9cc99f73b54cfdab58fb4641a27d943 |
Notes | Charles Fox Handling Editor ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4118-2272 0000-0001-7855-7712 0000-0001-8478-0128 0000-0001-5448-7932 0000-0001-7873-5056 0000-0003-0574-3033 0000-0002-4732-1114 0000-0002-2679-3868 |
OpenAccessLink | https://hal.science/hal-03286269 |
PQID | 2548786709 |
PQPubID | 1066355 |
PageCount | 17 |
ParticipantIDs | hal_primary_oai_HAL_hal_03286269v1 proquest_miscellaneous_2661002303 proquest_journals_2548786709 crossref_primary_10_1111_1365_2435_13823 crossref_citationtrail_10_1111_1365_2435_13823 wiley_primary_10_1111_1365_2435_13823_FEC13823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Functional ecology |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2007; 39 2017; 7 2010; 98 2019; 2019 1991; 14 2017; 3 2019; 10 1991; 55 2011; 62 2003; 1011 2016; 146 2019; 16 2020; 447 2020; 12 2008; 6 2014; 29 2015; 80 2013; 5 2011; 156 2020; 6 2018; 9 2014; 5 1969; 1 2007; 173 2004; 36 2019; 434 2009; 321 2014; 13 2008; 159 2018; 219 2007; 5 1959; 37 2001; 52 2019; 8 2017; 418 2019; 9 2015; 5 2015; 18 2018; 106 2018; 424 2018; 427 2015; 95 2020; 461 2009; 60 2021; 229 2016; 409 1954 2008 2019; 223 2008; 11 2001; 28 2018; 23 2012; 35 2011; 3 2017; 410 2012; 32 2014; 114 2017; 216 2018; 24 2017; 108 1993; 59 1994; 166 2016; 7 2016; 2 2011; 349 2009; 75 2021 2020; 231 2020 2002; 246 2018; 555 2017; 117B 2018 2014 2013 2008; 40 1979; 40 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Hinsinger P. (e_1_2_9_30_1) 2018 e_1_2_9_71_1 Sanchez G. (e_1_2_9_65_1) 2013 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Fort F. (e_1_2_9_19_1) 2013 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 FAO (e_1_2_9_18_1) 2014 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Sunita G. (e_1_2_9_69_1) 2017; 3 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 More S. S. (e_1_2_9_48_1) 2019; 8 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 Olsen S. R. (e_1_2_9_52_1) 1954 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 11 start-page: 296 year: 2008 end-page: 310 article-title: The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecology Letters – volume: 173 start-page: 600 year: 2007 end-page: 610 article-title: Rhizodeposition shapes rhizosphere microbial community structure in organic soil publication-title: New Phytologist – volume: 24 start-page: 3344 year: 2018 end-page: 3356 article-title: Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems publication-title: Global Change Biology – volume: 5 start-page: 265 year: 2007 end-page: 280 article-title: Phosphorous availability influences the dissolution of apatite by soil fungi publication-title: Geobiology – volume: 349 start-page: 121 year: 2011 end-page: 156 article-title: Plant and microbial strategies to improve the phosphorus efficiency of agriculture publication-title: Plant and Soil – volume: 12 start-page: 2212 year: 2020 article-title: Fertilizer potential of struvite as affected by nitrogen form in the rhizosphere publication-title: Sustainability – volume: 434 start-page: 7 year: 2019 end-page: 45 article-title: Hidden miners – The roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems publication-title: Plant and Soil – volume: 39 start-page: 1121 year: 2007 end-page: 1129 article-title: Profiling of PLFA: Implications for nonlinear spatial gradient of PCP degradation in the vicinity of L. roots publication-title: Soil Biology and Biochemistry – volume: 2 start-page: 487 year: 2016 end-page: 498 article-title: Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel‐contaminated soil microcosms publication-title: SOIL – volume: 447 start-page: 135 year: 2020 end-page: 156 article-title: Root‐released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives publication-title: Plant and Soil – volume: 39 start-page: 900 year: 2007 end-page: 913 article-title: Measuring rates of gross and net mineralisation of organic phosphorus in soils publication-title: Soil Biology and Biochemistry – volume: 6 start-page: 763 year: 2008 end-page: 775 article-title: Arbuscular mycorrhiza: The mother of plant root endosymbioses publication-title: Nature Reviews Microbiology – start-page: 377 year: 2018 end-page: 407 – year: 2021 – volume: 321 start-page: 235 year: 2009 end-page: 257 article-title: Plant‐driven selection of microbes publication-title: Plant and Soil – volume: 29 start-page: 692 year: 2014 end-page: 699 article-title: Going underground: Root traits as drivers of ecosystem processes publication-title: Trends in Ecology & Evolution – volume: 166 start-page: 247 year: 1994 end-page: 257 article-title: Role of root derived organic acids in the mobilization of nutrients from the rhizosphere publication-title: Plant and Soil – volume: 16 start-page: 542 year: 2019 end-page: 547 article-title: Trait complementarity between fine roots of Stipa purpurea and their associated arbuscular mycorrhizal fungi along a precipitation gradient in Tibetan alpine steppe publication-title: Journal of Mountain Science – volume: 246 start-page: 167 year: 2002 end-page: 174 article-title: Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin ( L.) publication-title: Plant and Soil – volume: 7 start-page: 15 year: 2016 article-title: Major crop species show differential balance between root morphological and physiological responses to variable phosphorus supply publication-title: Frontiers in Plant Science – volume: 410 start-page: 499 year: 2017 end-page: 507 article-title: Inoculation with (Ab‐V4, Ab‐V5) increases Zea mays root carboxylate‐exudation rates, dependent on soil phosphorus supply publication-title: Plant and Soil – volume: 95 start-page: 21 year: 2015 end-page: 28 article-title: Effects of different management systems on root distribution of maize publication-title: Canadian Journal of Plant Science – year: 2014 – volume: 35 start-page: 2170 year: 2012 end-page: 2180 article-title: Carbon trading for phosphorus gain: The balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition: Carbon trading for phosphorus gain publication-title: Plant, Cell & Environment – volume: 223 start-page: 882 year: 2019 end-page: 895 article-title: Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus‐acquisition strategies of 16 crop species publication-title: New Phytologist – volume: 59 start-page: 3605 year: 1993 end-page: 3617 article-title: Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals publication-title: Applied and Environmental Microbiology – volume: 98 start-page: 384 year: 2010 end-page: 395 article-title: Influence of plant species and soil conditions on plant‐soil feedback in mixed grassland communities publication-title: Journal of Ecology – volume: 427 start-page: 5 year: 2018 end-page: 16 article-title: Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review publication-title: Plant and Soil – volume: 80 start-page: 26 year: 2015 end-page: 33 article-title: Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils publication-title: Soil Biology and Biochemistry – volume: 146 start-page: 75 year: 2016 end-page: 84 article-title: Copper and cobalt mobility in soil and accumulation in a metallophyte as influenced by experimental manipulation of soil chemical factors publication-title: Chemosphere – volume: 62 start-page: 227 year: 2011 end-page: 250 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales publication-title: Annual Review of Plant Biology – volume: 40 start-page: 51 year: 1979 end-page: 62 article-title: Determination of the sedimentary microbial biomass by extractible lipid phosphate publication-title: Oecologia – year: 2008 – volume: 229 start-page: 1492 year: 2021 end-page: 1507 article-title: Root traits explain rhizosphere fungal community composition among temperate grassland plant species publication-title: New Phytologist – volume: 231 start-page: 23 year: 2020 article-title: Contrasting response of nutrient acquisition traits in wheat grown on bisphenol A‐contaminated soils publication-title: Water, Air, and Soil Pollution – volume: 106 start-page: 2320 year: 2018 end-page: 2331 article-title: Multi‐dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes publication-title: Journal of Ecology – volume: 23 start-page: 577 year: 2018 end-page: 587 article-title: Non‐mycorrhizal plants: The exceptions that prove the rule publication-title: Trends in Plant Science – volume: 14 start-page: 151 year: 1991 end-page: 163 article-title: Microbial biomass measured as total lipid phosphate in soils of different organic content publication-title: Journal of Microbiological Methods – volume: 9 start-page: 752 year: 2018 article-title: Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? publication-title: Frontiers in Plant Science – volume: 37 start-page: 7 year: 1959 article-title: A rapid method of total lipid extraction and purification publication-title: Canadian Journal of Biochemistry and Physiology – volume: 23 start-page: 25 year: 2018 end-page: 41 article-title: Feed Your friends: Do plant exudates shape the root microbiome? publication-title: Trends in Plant Science – volume: 555 start-page: 94 year: 2018 end-page: 97 article-title: Evolutionary history resolves global organization of root functional traits publication-title: Nature – volume: 424 start-page: 539 year: 2018 end-page: 554 article-title: Differences in nutrient foraging among cultivars deliver improved P‐acquisition efficiency publication-title: Plant and Soil – volume: 9 start-page: 14878 year: 2019 article-title: Phosphorus‐acquisition strategies of canola, wheat and barley in soil amended with sewage sludges publication-title: Scientific Reports – volume: 117B start-page: 1 issue: 1 year: 2017 article-title: Plant trait‐based approaches for interrogating belowground function publication-title: Biology and Environment: Proceedings of the Royal Irish Academy – volume: 1011 start-page: 233 year: 2003 end-page: 240 article-title: An improved reversed‐phase liquid chromatographic method for the analysis of low‐molecular mass organic acids in plant root exudates publication-title: Journal of Chromatography A – volume: 75 start-page: 3611 year: 2009 end-page: 3620 article-title: Differential utilization of carbon substrates by bacteria and fungi in tundra soil publication-title: Applied and Environmental Microbiology – volume: 10 start-page: 643 year: 2019 article-title: Shifts in ectomycorrhizal fungal communities and exploration types relate to the environment and fine‐root traits across interior douglas‐fir forests of Western Canada publication-title: Frontiers in Plant Science – volume: 2019 start-page: 1 year: 2019 end-page: 7 article-title: Phosphate solubilizing microorganisms: promising approach as biofertilizers publication-title: International Journal of Agronomy – volume: 40 start-page: 2588 year: 2008 end-page: 2595 article-title: Seasonal changes in the soil microbial community in a grassland plant diversity gradient four years after establishment publication-title: Soil Biology and Biochemistry – volume: 418 start-page: 129 year: 2017 end-page: 139 article-title: Unwrapping the rhizosheath publication-title: Plant and Soil – volume: 409 start-page: 419 year: 2016 end-page: 434 article-title: Influence of root and leaf traits on the uptake of nutrients in cover crops publication-title: Plant and Soil – volume: 114 start-page: 1011 year: 2014 end-page: 1021 article-title: Contribution of above‐ and below‐ground plant traits to the structure and function of grassland soil microbial communities publication-title: Annals of Botany – volume: 461 start-page: 137 year: 2020 end-page: 150 article-title: Tradeoffs among phosphorus‐acquisition root traits of crop species for agroecological intensification publication-title: Plant and Soil – volume: 1 start-page: 301 year: 1969 end-page: 307 article-title: Use of p‐nitrophenyl phosphate for assay of soil phosphatase activity publication-title: Soil Biology and Biochemistry – year: 1954 – volume: 5 start-page: 13438 year: 2015 article-title: Organic acids from root exudates of banana help root colonization of PGPR strain NJN‐6 publication-title: Scientific Reports – volume: 60 start-page: 1729 year: 2009 end-page: 1742 article-title: Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates publication-title: Journal of Experimental Botany – volume: 13 start-page: 63 year: 2014 end-page: 77 article-title: Rhizosphere: Its structure, bacterial diversity and significance publication-title: Reviews in Environmental Science & Biotechnology – volume: 8 start-page: 449 issue: 6 year: 2019 end-page: 459 article-title: Root exudates a key factor for soil and plant. An overview publication-title: Pharma Innovation – volume: 18 start-page: 1397 year: 2015 end-page: 1405 article-title: Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest publication-title: Ecology Letters – volume: 55 start-page: 892 year: 1991 article-title: Determination of low concentrations of phosphorus in soil extracts using malachite green publication-title: Soil Science Society of America Journal – volume: 108 start-page: 393 year: 2017 end-page: 406 article-title: Origins, roles and fate of organic acids in soils: A review publication-title: South African Journal of Botany – volume: 219 start-page: 518 year: 2018 end-page: 529 article-title: The carboxylate‐releasing phosphorus‐mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply publication-title: New Phytologist – year: 2020 – volume: 32 start-page: 1061 year: 2012 end-page: 1068 article-title: Fractionation of phosphorus biowastes: Characterisation and environmental risk publication-title: Waste Management – volume: 5 start-page: 27 year: 2014 article-title: Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica publication-title: Frontiers in Plant Science – volume: 5 start-page: 452 year: 2013 end-page: 457 article-title: Use of plant growth promoting bacteria (PGDB) for promoting tomato growth and its evaluation as biological control agent publication-title: International Journal of Microbiology Research – volume: 28 start-page: 897 year: 2001 article-title: Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants publication-title: Functional Plant Biol – volume: 7 start-page: 44641 year: 2017 article-title: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass publication-title: Scientific Reports – volume: 3 start-page: 1 year: 2017 end-page: 15 article-title: Phosphorus mobilization strategies of grain legumes: An overview publication-title: Australian Journal of Agricultural Research – volume: 6 start-page: eaba3756 year: 2020 article-title: The fungal collaboration gradient dominates the root economics space in plants. Science publication-title: Advances – volume: 36 start-page: 165 year: 2004 end-page: 175 article-title: Use of C‐labelled plant materials and ergosterol, PLFA and NLFA analyses to investigate organic matter decomposition in Antarctic soil publication-title: Soil Biology and Biochemistry – volume: 216 start-page: 1140 year: 2017 end-page: 1150 article-title: Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient publication-title: New Phytologist – volume: 52 start-page: 527 year: 2001 end-page: 560 article-title: Function and mechanism of organic anion exudation from plant roots publication-title: Annual Review of Plant Physiology and Plant Molecular Biology – volume: 159 start-page: 593 year: 2008 end-page: 601 article-title: Microbial community dynamics during composting of sewage sludge and straw studied through phospholipid and neutral lipid analysis publication-title: Journal of Hazardous Materials – volume: 3 year: 2011 article-title: Auxin and plant‐microbe interactions publication-title: Cold Spring Harbor Perspectives in Biology – volume: 9 start-page: 2738 year: 2018 article-title: Root exudate metabolites drive plant‐soil feedbacks on growth and defense by shaping the rhizosphere microbiota publication-title: Nature Communications – year: 2013 – volume: 156 start-page: 989 year: 2011 end-page: 996 article-title: Soil microorganisms mediating phosphorus availability update on microbial phosphorus publication-title: Plant Physiology – volume-title: World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps year: 2014 ident: e_1_2_9_18_1 – ident: e_1_2_9_21_1 doi: 10.1128/AEM.59.11.3605‐3617.1993 – ident: e_1_2_9_45_1 doi: 10.5194/soil‐2‐487‐2016 – ident: e_1_2_9_14_1 doi: 10.1007/978-981-13-7264-3 – ident: e_1_2_9_74_1 doi: 10.4141/cjps‐2014‐026 – ident: e_1_2_9_42_1 doi: 10.1038/nature25783 – ident: e_1_2_9_63_1 doi: 10.1111/j.1365‐3040.2012.02547.x – ident: e_1_2_9_60_1 doi: 10.1104/pp.111.175448 – ident: e_1_2_9_44_1 doi: 10.1023/A:1020663909890 – ident: e_1_2_9_59_1 doi: 10.1007/s11104‐011‐0950‐4 – ident: e_1_2_9_13_1 doi: 10.1007/s11104‐016‐3044‐5 – volume-title: Estimation of available phosphorus in soils by extraction with sodium bicarbonate year: 1954 ident: e_1_2_9_52_1 – ident: e_1_2_9_70_1 doi: 10.1111/nph.16976 – ident: e_1_2_9_75_1 doi: 10.1111/nph.15833 – ident: e_1_2_9_24_1 doi: 10.1016/j.soilbio.2008.06.019 – ident: e_1_2_9_6_1 doi: 10.1016/j.tree.2014.10.006 – ident: e_1_2_9_78_1 doi: 10.1007/978-1-4020-8435-5 – ident: e_1_2_9_64_1 doi: 10.1146/annurev.arplant.52.1.527 – ident: e_1_2_9_67_1 doi: 10.1146/annurev‐arplant‐042110‐103846 – ident: e_1_2_9_5_1 doi: 10.3318/bioe.2017.03 – ident: e_1_2_9_76_1 doi: 10.1007/s11104‐016‐2974‐2 – ident: e_1_2_9_3_1 doi: 10.1016/j.jhazmat.2008.02.062 – ident: e_1_2_9_11_1 doi: 10.1016/S0021‐9673(03)01129‐4 – volume: 8 start-page: 449 issue: 6 year: 2019 ident: e_1_2_9_48_1 article-title: Root exudates a key factor for soil and plant. An overview publication-title: Pharma Innovation – ident: e_1_2_9_10_1 doi: 10.3389/fpls.2018.00752 – volume-title: Stratégies d’acquisition des ressources des plantes prairiales sous contraintes hydrique et minérale‐Rôle du système racinaire dans la réponse aux facteurs structurant les communautés year: 2013 ident: e_1_2_9_19_1 – start-page: 377 volume-title: Annual plant reviews online year: 2018 ident: e_1_2_9_30_1 doi: 10.1002/9781119312994.apr0528 – ident: e_1_2_9_82_1 doi: 10.1111/1365‐2745.12977 – ident: e_1_2_9_15_1 doi: 10.3389/fpls.2019.00643 – ident: e_1_2_9_32_1 doi: 10.1007/s11104‐020‐04584‐3 – ident: e_1_2_9_33_1 doi: 10.1111/gcb.14093 – ident: e_1_2_9_4_1 doi: 10.1111/ele.12536 – ident: e_1_2_9_72_1 doi: 10.1111/j.1461‐0248.2007.01139.x – ident: e_1_2_9_23_1 doi: 10.3390/su12062212 – ident: e_1_2_9_39_1 doi: 10.1093/aob/mcu169 – ident: e_1_2_9_57_1 doi: 10.1007/s11157‐013‐9317‐z – ident: e_1_2_9_2_1 doi: 10.1016/j.sajb.2016.09.002 – ident: e_1_2_9_68_1 doi: 10.1101/cshperspect.a001438 – ident: e_1_2_9_51_1 doi: 10.2136/sssaj1991.03615995005500030046x – ident: e_1_2_9_16_1 doi: 10.1038/srep44641 – ident: e_1_2_9_56_1 doi: 10.1111/j.1469‐8137.2006.01931.x – ident: e_1_2_9_77_1 doi: 10.1007/BF00388810 – ident: e_1_2_9_73_1 doi: 10.1007/s11104‐019‐03972‐8 – ident: e_1_2_9_22_1 doi: 10.1016/j.wasman.2012.02.003 – ident: e_1_2_9_41_1 doi: 10.3389/fpls.2016.01939 – volume: 3 start-page: 1 year: 2017 ident: e_1_2_9_69_1 article-title: Phosphorus mobilization strategies of grain legumes: An overview publication-title: Australian Journal of Agricultural Research – ident: e_1_2_9_58_1 doi: 10.1071/PP01093 – ident: e_1_2_9_7_1 doi: 10.1126/sciadv.aba3756 – ident: e_1_2_9_54_1 doi: 10.1007/s11104‐017‐3358‐y – ident: e_1_2_9_62_1 doi: 10.1111/j.1472‐4669.2007.00107.x – ident: e_1_2_9_12_1 doi: 10.1016/j.tplants.2018.04.004 – ident: e_1_2_9_71_1 doi: 10.1016/0038‐0717(69)90012‐1 – ident: e_1_2_9_46_1 doi: 10.1007/s11104‐017‐3362‐2 – ident: e_1_2_9_47_1 doi: 10.1093/jxb/erp053 – ident: e_1_2_9_28_1 doi: 10.1007/s11104‐008‐9814‐y – ident: e_1_2_9_79_1 doi: 10.1007/s11270‐019‐4383‐7 – ident: e_1_2_9_9_1 doi: 10.1016/j.soilbio.2006.10.009 – ident: e_1_2_9_49_1 doi: 10.1038/s41598‐019‐51204‐x – ident: e_1_2_9_27_1 doi: 10.1111/j.1365‐2745.2009.01614.x – ident: e_1_2_9_20_1 doi: 10.1016/0167‐7012(91)90018‐L – ident: e_1_2_9_66_1 doi: 10.1016/j.tplants.2017.09.003 – ident: e_1_2_9_8_1 doi: 10.1139/o59-099 – ident: e_1_2_9_34_1 doi: 10.1038/s41467‐018‐05122‐7 – ident: e_1_2_9_80_1 doi: 10.1038/srep13438 – ident: e_1_2_9_61_1 doi: 10.1128/AEM.02865‐08 – ident: e_1_2_9_31_1 doi: 10.5061/dryad.rv15dv47s – volume-title: PLS path modeling with R year: 2013 ident: e_1_2_9_65_1 – ident: e_1_2_9_29_1 doi: 10.1016/j.soilbio.2006.11.023 – ident: e_1_2_9_37_1 doi: 10.1155/2019/4917256 – ident: e_1_2_9_26_1 doi: 10.1007/s11104‐018‐3810‐7 – ident: e_1_2_9_35_1 doi: 10.3389/fpls.2014.00027 – ident: e_1_2_9_38_1 doi: 10.1016/j.chemosphere.2015.11.105 – ident: e_1_2_9_43_1 doi: 10.1016/j.soilbio.2003.09.004 – ident: e_1_2_9_36_1 doi: 10.1007/BF00008338 – ident: e_1_2_9_81_1 doi: 10.1007/s11629‐018‐5311‐9 – ident: e_1_2_9_50_1 doi: 10.1016/j.soilbio.2014.09.012 – ident: e_1_2_9_55_1 doi: 10.1038/nrmicro1987 – ident: e_1_2_9_17_1 doi: 10.9735/0975‐5276.5.5.452‐457 – ident: e_1_2_9_25_1 doi: 10.1007/s11104‐017‐3511‐7 – ident: e_1_2_9_40_1 doi: 10.1111/nph.14710 – ident: e_1_2_9_53_1 doi: 10.1111/nph.15200 |
SSID | ssj0009522 |
Score | 2.4613006 |
Snippet | Plant–soil–microbe interactions play a central role in plant nutrient acquisition and thus ecosystem functioning and nutrient availability in agroecosystems.... 1. Plant-soil-microbe interactions play a central role in plant nutrient acquisitionand thus ecosystem functioning and nutrient availability in... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1603 |
SubjectTerms | Agricultural ecosystems agroecosystems Arbuscular mycorrhizas Availability Bacteria Bioindicators Carboxylates Exudates Exudation Fatty acids Fungi Gram-negative bacteria herbaceous plants Indicator species Life Sciences Lipids Malate malates Microbial activity Microorganisms Morphology neutral lipid fatty acid Nutrient availability phospholipid fatty acid phospholipid fatty acids Phospholipids Phosphorus phosphorus acquisition plant–soil–microbe interactions soil Soil investigations Soils vesicular arbuscular mycorrhizae |
Title | Interactions between below‐ground traits and rhizosheath fungal and bacterial communities for phosphorus acquisition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2435.13823 https://www.proquest.com/docview/2548786709 https://www.proquest.com/docview/2661002303 https://hal.science/hal-03286269 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60IHjxXaxWieLBS4p5J8dSWoqoB7HgLWRfVCxJbZqKnvwJ_kZ_iTO7Sa0FEfEQut3dIclmdmcm-eZbQs6CiIHhEsK0nCQ0wQRIk3LpmzL0GHPQY-aY4Hx94_cH7uW9V6EJMRdG80PMX7jhzFDrNU7whOYLk1zjs8Dat5BGD_k-sQbdolt7gXZXf0ew_cgES-uU5D6I5VmS_2aXVoeIilxwORcdV2V5epuEVtesASePrWJKW-x1ic7xXze1RTZKv9Roa0XaJisi3SFreqfKFyh1WVmqd79S40CgXBvyXTJTLxd1nkRulPgv-B1lzx9v75g9knIDd6SY5kYCxQmi_XK0BUMDrCtYKlVNNX00_GM6dwUZXw1wrY3xMMvhmBQgz56KB4022yODXveu0zfLXR1MhkQ3ZuLaQlIJrqXDXRk4gRQilAnlF9SCxcX2ZMRYFEEL9VwmeUK9UFLXd63EDnjkOnVSS7NU7BPDcYW0IZz2GTQzFlIrCLknLe5EIaiZbJBW9UxjVlKe432O4ir0wfGOcbxjNd4Ncj4XGGu2j5-7noKSzHshS3e_fRVjHVIUQpwYzawGaVY6FJdrQx7bGCSGyJvXICfzZpjV-KkmSUVWQB9wm1R4COfRCvPb9cS9bkcVDv4qcEjWbQTqKAxyk9Smk0Icgac1pcdqMn0CdG8eVQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIEQv5dFWpAQwiAMXR9jr5zGKEgVIe0Ct1NvK-1IqKifEcSo49Sf0N_JLmNl1gqmEqopD5I13N7Y3Mzsz62--BXif5hINl9Z-wIrMRxNgfKFM4psslpKRx6wowfn4JJmcRZ_P4_NWLozjh9guuJFm2PmaFJwWpFta7gBaaO77xKPHduAh7ettw6qvYYt4171JCJPcR1vLGnofQvPc-oG_LNPOjHCRLaez7bpa2zN-AnJz1w5y8q1fr0Rf_rxF6Ph_j_UU9hrX1Bs4WXoGD3T5HB65zSp_YGkkm9Lh6E92HHZopodqH9Z2fdGlSlReAwHD4-X86tf1DSWQlMqjTSlWlVdgcUmAv4rMwcxDA4vGyp4WjkEav0mXvkKkrx56195iNq_ws6yxv_xeXzjA2QGcjUenw4nfbOzgS-K68Yso1EYY9C6ZikzKUqN1ZgqhPooA55cwNrmUeY41Io6kUYWIMyOiJAqKMFV5xA6hU85L_QI8FmkTYkSdSKyWMhNBmqnYBIrlGUqa6UJ_86dy2bCe03Ne8k30Q-PNaby5He8ufNh2WDjCj383fYdSsm1FRN2TwZTTOWIpxFAxXwdd6G2EiDfTQ8VDihMzos7rwtttNSo2va0pSj2vsQ16TjZCxOs4ibnrfvh4NLSFo_t2eAOPJ6fHUz79dPLlJeyGhNuxkOQedFbLWr9Cx2slXlvN-g1SCCJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xIRAv_J8obBAQD7ykWmIncR6nrVWBMSHEJN6s-J-KmNKuaTZtT3wEPiOfhDs76cokhBAPVZ3YThP3znfn_O5ngNdFqdFwWRsnrBIxmgAXK-Py2IlMa0Yes6EE5w9H-eSYv_uS9WhCyoUJ_BCrBTfSDD9fk4LPjVtT8oDPQms_JBo9tgE3eb4rSLAPPqVrvLvhRUKalzGaWtax-xCY59oFfjNMG1OCRa75nOueqzc943ug-psOiJNvw3aphvryGp_jfz3VfbjbOabRXpCkB3DD1g_hVtiq8gJLI92VtkZXuXHYoZscmkdw5lcXQ6JEE3UAMPw-mZ3__P6D0kdqE9GWFMsmqrC4ILhfQ8ZgGqF5RVPlT6vAH41HOiSvEOVrhL51NJ_OGvwsWuyvT9uvAW72GI7Ho8_7k7jb1iHWxHQTVzy1Tjn0LZnhrmCFs1a4SpldleDskmau1LossUZlXDtTqUw4xXOeVGlhSs62YLOe1fYJRIxbl2I8nWus1lqopBAmc4lhpUA5cwMY9v-p1B3nOT3niexjHxpvSeMt_XgP4M2qwzzQffy56SsUklUroume7B1KOkcchRgolmfJALZ7GZLd5NDIlKJEQcR5A3i5qka1pnc1VW1nLbZBv8nHh_g7QWD-dj9yPNr3haf_2uEF3P54MJaHb4_eP4M7KYF2PB55GzaXi9buoNe1VM-9Xv0C5AAhKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interactions+between+below%E2%80%90ground+traits+and+rhizosheath+fungal+and+bacterial+communities+for+phosphorus+acquisition&rft.jtitle=Functional+ecology&rft.au=Honvault%2C+Nicolas&rft.au=Houben%2C+David&rft.au=Firmin%2C+St%C3%A9phane&rft.au=Meglouli%2C+Hac%C3%A8ne&rft.date=2021-07-01&rft.issn=0269-8463&rft.eissn=1365-2435&rft.volume=35&rft.issue=7&rft.spage=1603&rft.epage=1619&rft_id=info:doi/10.1111%2F1365-2435.13823&rft.externalDBID=10.1111%252F1365-2435.13823&rft.externalDocID=FEC13823 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-8463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-8463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-8463&client=summon |