Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments

Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology progress Vol. 33; no. 1; pp. 212 - 220
Main Authors Ellis, Mark, Patel, Pareshkumar, Edon, Marjory, Ramage, Walter, Dickinson, Robert, Humphreys, David P.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.01.2017
Subjects
Online AccessGet full text
ISSN8756-7938
1520-6033
1520-6033
DOI10.1002/btpr.2393

Cover

Loading…
Abstract Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017
AbstractList Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli . These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD 600 105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of E. coli . In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017
Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017.
Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017
Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD sub(600) 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. copyright 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017
Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017.Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017.
Author Humphreys, David P.
Ellis, Mark
Edon, Marjory
Ramage, Walter
Patel, Pareshkumar
Dickinson, Robert
Author_xml – sequence: 1
  givenname: Mark
  surname: Ellis
  fullname: Ellis, Mark
  email: mark.ellis@ucb.com
  organization: UCB Pharma, 208 Bath Road
– sequence: 2
  givenname: Pareshkumar
  surname: Patel
  fullname: Patel, Pareshkumar
  organization: Lonza Biologics plc, 228 Bath Road GB‐Slough
– sequence: 3
  givenname: Marjory
  surname: Edon
  fullname: Edon, Marjory
  organization: Novasep, 5 chemin du Pilon, St Maurice de Beynost
– sequence: 4
  givenname: Walter
  surname: Ramage
  fullname: Ramage, Walter
  organization: NIBSC, Blanche Lane, South Mimms, Potters Bar
– sequence: 5
  givenname: Robert
  surname: Dickinson
  fullname: Dickinson, Robert
  organization: CSL Limited, 45 Poplar Road
– sequence: 6
  givenname: David P.
  surname: Humphreys
  fullname: Humphreys, David P.
  organization: UCB Pharma, 208 Bath Road
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27790865$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKcDC_4AssQCWGTqR2I7y9IHIFUCobK2HOd6xlUSBzuBDr8eh043FUisLF1_51z7nBN0NIQBEHpJyYYSwk6baYwbxmv-BK1oxUghCOdHaKVkJQpZc3WMTlK6JYQoItgzdMykrIkS1QqlC_gBXRh7GCYcHDZ457c7vPfQtX7Y4ssNtqHzeITox86k3lsMd2OElHwYcNqnCXrsQsTTDvAYQzvbabnJXru5N4P_BS2-Ms0b7KLZLmvSc_TUmS7Bi8O5Rt-uLm_OPxbXnz98Oj-7Lmypal7UnEHlmhpsIxxzxNK2ltSSxnBprRFESsZkYy1lpilLo4CWogRCSnB5WPI1envvm5_1fYY06d4nC11nBghz0lRJpsqcCfsPlFdCMZkzXqPXj9DbMMchfyRTQtW5EKUy9epAzU0PrR6j703c64fkM3B6D9gYUorgtPWTWaKbovGdpkQv3eqlW710mxXvHikeTP_GHtx_-g72_wb1-5svX_8ofgNLh7Qh
CitedBy_id crossref_primary_10_1093_femsle_fny162
crossref_primary_10_1055_s_0041_1735145
crossref_primary_10_1002_btpr_2999
crossref_primary_10_1080_07388551_2021_1967871
crossref_primary_10_1080_07388551_2024_2342969
crossref_primary_10_1016_j_cherd_2022_03_043
crossref_primary_10_2144_btn_2018_0135
crossref_primary_10_3390_fermentation8040175
crossref_primary_10_1016_j_biochi_2024_05_013
crossref_primary_10_1002_biot_202000562
crossref_primary_10_1016_j_pep_2023_106404
crossref_primary_10_1002_btpr_3290
crossref_primary_10_1016_j_bej_2021_108184
crossref_primary_10_3390_ijms21176324
crossref_primary_10_1134_S0006297923090018
crossref_primary_10_1080_10826068_2024_2394446
crossref_primary_10_1007_s00253_019_09745_8
crossref_primary_10_2174_0929867327666200219142231
crossref_primary_10_1016_j_jbiotec_2020_07_003
crossref_primary_10_3390_fermentation8040181
crossref_primary_10_21769_BioProtoc_3370
crossref_primary_10_1002_bit_27944
crossref_primary_10_1007_s10989_017_9637_x
crossref_primary_10_1016_j_enzmictec_2018_04_002
crossref_primary_10_1016_j_chroma_2020_461702
crossref_primary_10_1002_biot_201800637
crossref_primary_10_3389_fbioe_2021_797334
crossref_primary_10_31857_S0320972523090014
crossref_primary_10_1016_j_tibtech_2021_10_003
Cites_doi 10.1016/j.jbiotec.2008.05.002
10.1038/nbt1194-1107
10.1016/0014-5793(96)00028-2
10.1016/S0022-1759(97)00172-5
10.1016/S0092-8674(00)80743-6
10.1101/gr.4527806
10.1073/pnas.94.22.11857
10.1002/j.1460-2075.1992.tb05027.x
10.1002/bit.20014
10.1128/jb.179.21.6602-6608.1997
10.1016/j.resmic.2009.07.012
10.1002/j.1460-2075.1994.tb06471.x
10.1128/jb.179.20.6228-6237.1997
10.1111/j.1365-2958.2004.04386.x
10.1128/jb.173.15.4799-4813.1991
10.1111/mmi.12058
10.4161/mabs.19931
10.1074/jbc.274.12.7784
10.1128/JB.183.23.6794-6800.2001
10.1093/protein/gzp095
10.1016/j.pep.2006.08.009
10.1038/nbt0292-163
10.1186/gb-2003-4-2-r11
10.1093/jb/mvh022
10.1089/dna.1990.9.167
10.1128/jb.178.4.1154-1161.1996
10.1038/nmeth.1239
10.3389/fimmu.2013.00217
10.1126/science.3285470
10.1126/science.3285471
10.1016/0378-1119(85)90121-0
10.1128/jb.169.9.4379-4383.1987
10.1021/bi8010779
10.1016/0092-8674(93)90455-Y
10.1093/protein/11.7.601
10.1038/nsmb.2795
10.1146/annurev.biochem.72.121801.161459
10.1084/jem.120.5.691
10.1073/pnas.1507760112
ContentType Journal Article
Copyright 2016 American Institute of Chemical Engineers
2016 American Institute of Chemical Engineers.
2017 American Institute of Chemical Engineers
Copyright_xml – notice: 2016 American Institute of Chemical Engineers
– notice: 2016 American Institute of Chemical Engineers.
– notice: 2017 American Institute of Chemical Engineers
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7U7
8FD
C1K
FR3
M7N
P64
7X8
DOI 10.1002/btpr.2393
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Biotechnology Research Abstracts
Engineering Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6033
EndPage 220
ExternalDocumentID 4314699611
27790865
10_1002_btpr_2393
BTPR2393
Genre article
Journal Article
GroupedDBID ---
-~X
.DC
05W
0R~
1L6
1OB
1OC
1WB
23N
31~
33P
3SF
3WU
4.4
52U
52V
53G
55A
5GY
5VS
66C
6J9
8-1
A00
A8Z
AABXI
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABEFU
ABHMW
ABJNI
ABQWH
ABTAH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACJ
ACMXC
ACPOU
ACPRK
ACRPL
ACS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AGXLV
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAANH
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BNHUX
BOGZA
BRXPI
C45
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EDH
EJD
EMOBN
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IHE
ITG
ITH
IX1
JG~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NDZJH
NNB
O9-
OIG
OVD
P2P
P2W
P4E
PALCI
QRW
RIWAO
RJQFR
ROL
RWI
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WSB
WXSBR
WYJ
XV2
Y6R
ZCA
ZY4
ZZTAW
~02
~KM
~S-
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7T7
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
M7N
P64
7X8
ID FETCH-LOGICAL-c4893-932e5fb9ecb6f2f0c1d971c0ba37cca6077227bcc12ab44a8e1464e004efcc143
IEDL.DBID DR2
ISSN 8756-7938
1520-6033
IngestDate Fri Jul 11 12:27:40 EDT 2025
Fri Jul 11 00:15:36 EDT 2025
Sun Jul 13 04:03:19 EDT 2025
Thu Apr 03 07:01:51 EDT 2025
Thu Apr 24 23:05:37 EDT 2025
Tue Jul 01 02:13:33 EDT 2025
Wed Jan 22 16:23:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords DsbC
Tsp
fermentation
Escherichia coli
Fab
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2016 American Institute of Chemical Engineers.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4893-932e5fb9ecb6f2f0c1d971c0ba37cca6077227bcc12ab44a8e1464e004efcc143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 27790865
PQID 1868900288
PQPubID 2034897
PageCount 9
ParticipantIDs proquest_miscellaneous_1872840802
proquest_miscellaneous_1835682739
proquest_journals_1868900288
pubmed_primary_27790865
crossref_citationtrail_10_1002_btpr_2393
crossref_primary_10_1002_btpr_2393
wiley_primary_10_1002_btpr_2393_BTPR2393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January/February 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January/February 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Biotechnology progress
PublicationTitleAlternate Biotechnol Prog
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1997; 179
2004; 85
1991; 173
2013; 4
2001; 183
1987; 169
2009; 160
2006; 16
1996; 380
2008; 5
1988; 240
2007; 52
2003; 72
1992; 10
1992; 11
2014; 21
2010; 23
1997; 94
2004; 135
1995; 47
2015; 112
1993; 74
2008; 47
1999; 274
1987
1994; 12
2003; 4
1964; 120
1994; 13
1999; 97
2008; 135
1997; 209
1985; 34
2012; 4
1990; 9
1996; 178
2005; 55
2012; 86
1998; 11
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
Sambrook J (e_1_2_5_27_1) 1987
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
Friedrich L (e_1_2_5_26_1) 2010; 23
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
Nickoloff JA (e_1_2_5_31_1) 1995
References_xml – volume: 97
  start-page: 339
  year: 1999
  end-page: 347
  article-title: Ehrmann: A temperature‐dependent switch from chaperone to protease in a widely conserved heat shock protein
  publication-title: Cell
– volume: 4
  start-page: 217
  year: 2013
  article-title: Expression of Recombinant antibodies
  publication-title: Front Immunol.
– volume: 179
  start-page: 6602
  year: 1997
  end-page: 6608
  article-title: Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin
  publication-title: J Bacteriol.
– volume: 240
  start-page: 1041
  year: 1988
  end-page: 1043
  article-title: secretion of an active chimeric antibody fragment
  publication-title: Science
– volume: 169
  start-page: 4379
  year: 1987
  end-page: 4383
  article-title: Characterization of the Erwinia carotovora pelB gene and its product pectate lyase
  publication-title: J Bacteriol.
– volume: 380
  start-page: 194
  year: 1996
  end-page: 119
  article-title: Co‐expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab′ fragment expressed in
  publication-title: FEBS Lett.
– volume: 4
  start-page: 413
  year: 2012
  end-page: 415
  article-title: Marketed therapeutic antibodies compendium
  publication-title: MAbs.
– year: 1987
– volume: 178
  start-page: 1154
  year: 1996
  end-page: 1161
  article-title: Multicopy suppressors of prc mutant include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA
  publication-title: J Bacteriol.
– volume: 72
  start-page: 111
  year: 2003
  end-page: 135
  article-title: Protein disulfide bond formation in prokaryotes
  publication-title: J Ann Rev Biochem.
– volume: 240
  start-page: 1038
  year: 1988
  end-page: 1041
  article-title: Assembly of a functional immunoglobulin Fv fragment in
  publication-title: Science
– volume: 55
  start-page: 137
  year: 2005
  end-page: 149
  article-title: Cell size and nucleoid organization of engineered cells with a reduced genome
  publication-title: Mol Microbiol.
– volume: 274
  start-page: 7784
  year: 1999
  end-page: 7792
  article-title: and function of the periplasmic cysteine oxidoreductase DsbG
  publication-title: J Biol Chem.
– volume: 85
  start-page: 463
  year: 2004
  end-page: 474
  article-title: High‐level accumulation of a recombinant antibody fragment in the periplasm of requires a triple‐mutant ( ) host strain
  publication-title: Biotechnol Bioeng.
– volume: 160
  start-page: 660
  year: 2009
  end-page: 666
  article-title: Structure, function and regulation of the conserved serine proteases DegP and DegS of
  publication-title: Res Microbiol.
– volume: 11
  start-page: 57
  year: 1992
  end-page: 62
  article-title: Identification and characterization of an gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme
  publication-title: EMBO J.
– volume: 209
  start-page: 193
  year: 1997
  end-page: 202
  article-title: Formation of dimeric Fabs in : effect of hinge size and isotype, presence of interchain disulphide bond, Fab′ expression levels, tail piece sequences and growth conditions
  publication-title: J Immunol Methods
– volume: 179
  start-page: 6228
  year: 1997
  end-page: 6237
  article-title: Methods for generating precise deletions and insertions in the genome of wild‐type : application to open reading frame characterization
  publication-title: J Bacteriol.
– volume: 183
  start-page: 6794
  year: 2001
  end-page: 6800
  article-title: Genetic evidence for parallel pathways of chaperone activity in the periplasm of
  publication-title: J Bacteriol.
– volume: 112
  start-page: 10956
  year: 2015
  end-page: 10961
  article-title: Regulated proteolysis of a cross‐link‐specific peptidoglycan hydrolase contributes to bacterial morphogenesis
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: R11
  year: 2003
  article-title: Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes
  publication-title: Genome Biol.
– volume: 135
  start-page: 358
  year: 2008
  end-page: 365
  article-title: Fedbatch design for periplasmic product retention in Escherichia coli
  publication-title: J Biotechnol.
– volume: 12
  start-page: 1107
  year: 1994
  end-page: 1110
  article-title: Construction and characterization of a set of strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins
  publication-title: Biotechnology (NY)
– volume: 120
  start-page: 691
  year: 1964
  end-page: 709
  article-title: Structural studies of human 7s gamma‐globulin (g immunoglobulin). Further observations of a naturally occurring protein related to the crystallizable (fast) fragment
  publication-title: J Exp Med.
– volume: 23
  start-page: 161
  year: 2010
  end-page: 168
  article-title: Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics
  publication-title: peds.
– volume: 5
  start-page: 789
  year: 2008
  end-page: 795
  article-title: eSGA: synthetic genetic array analysis
  publication-title: Nat Methods
– volume: 16
  start-page: 686
  year: 2006
  end-page: 691
  article-title: Large‐scale identification of protein‐protein interaction of K‐12
  publication-title: Genome Res.
– volume: 47
  start-page: 105
  year: 1995
– volume: 21
  start-page: 397
  year: 2014
  end-page: 404
  article-title: Human immunoglobulin E flexes between acutely bent and extended conformations
  publication-title: Nat Struct Mol Biol.
– volume: 86
  start-page: 1036
  year: 2012
  end-page: 1051
  article-title: Three redundant murein endopeptidases catalyze an essential 1 cleavage step in peptidoglycan synthesis of K12
  publication-title: Mol Microbiol.
– volume: 52
  start-page: 194
  year: 2007
  end-page: 201
  article-title: Optimisation of production of a domoic acid‐binding scFv antibody fragment in using molecular chaperones and functional immobilisation on a mesoporous silicate support
  publication-title: Protein Expr Purif.
– volume: 94
  start-page: 11857
  year: 1997
  end-page: 11862
  article-title: Respiratory chain is required to maintain oxidized states of the DsbA‐DsbB disulfide bond formation system in aerobically growing cells
  publication-title: Pnas
– volume: 173
  start-page: 4799
  year: 1991
  end-page: 4813
  article-title: Cloning, mapping, and characterization of the prc gene, which is involved in C‐terminal processing of penicillin‐binding protein 3
  publication-title: J Bacteriol.
– volume: 11
  start-page: 601
  year: 1998
  end-page: 607
  article-title: Improved folding of apo‐retinol‐binding protein in the periplasm of : positive influences of dsbC coexpression and of an amino acid exchange in the vitamin A binding site
  publication-title: Protein Eng.
– volume: 13
  start-page: 2013
  year: 1994
  end-page: 2020
  article-title: The dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation
  publication-title: EMBO J.
– volume: 135
  start-page: 185
  year: 2004
  end-page: 191
  article-title: Interaction of the lipoprotein NlpI with periplasmic Prc (Tsp) protease
  publication-title: J Biochem.
– volume: 47
  start-page: 9715
  year: 2008
  end-page: 9717
  article-title: Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from : structural evidence for a novel cysteine peptidase catalytic triad
  publication-title: Biochemistry.
– volume: 9
  start-page: 167
  year: 1990
  end-page: 175
  article-title: expression and processing of human interleukin‐1 beta fused to signal peptides
  publication-title: DNA Cell Biol.
– volume: 34
  start-page: 137
  year: 1985
  end-page: 145
  article-title: High‐level expression of M13 gene II protein from an inducible polycistronic messenger RNA
  publication-title: Gene.
– volume: 74
  start-page: 769
  year: 1993
  end-page: 771
  article-title: The bonds that tie: catalyzed disulfide bond formation
  publication-title: Cell.
– volume: 10
  start-page: 163
  year: 1992
  end-page: 167
  article-title: High level expression and production of a bivalent humanized antibody fragment
  publication-title: Biotechnology (NY)
– ident: e_1_2_5_32_1
  doi: 10.1016/j.jbiotec.2008.05.002
– ident: e_1_2_5_38_1
  doi: 10.1038/nbt1194-1107
– ident: e_1_2_5_35_1
  doi: 10.1016/0014-5793(96)00028-2
– ident: e_1_2_5_28_1
  doi: 10.1016/S0022-1759(97)00172-5
– ident: e_1_2_5_34_1
  doi: 10.1016/S0092-8674(00)80743-6
– ident: e_1_2_5_18_1
  doi: 10.1101/gr.4527806
– ident: e_1_2_5_22_1
  doi: 10.1073/pnas.94.22.11857
– ident: e_1_2_5_23_1
  doi: 10.1002/j.1460-2075.1992.tb05027.x
– start-page: 105
  volume-title: Methods in Molecular Biology
  year: 1995
  ident: e_1_2_5_31_1
– ident: e_1_2_5_12_1
  doi: 10.1002/bit.20014
– ident: e_1_2_5_21_1
  doi: 10.1128/jb.179.21.6602-6608.1997
– ident: e_1_2_5_33_1
  doi: 10.1016/j.resmic.2009.07.012
– ident: e_1_2_5_36_1
  doi: 10.1002/j.1460-2075.1994.tb06471.x
– ident: e_1_2_5_30_1
  doi: 10.1128/jb.179.20.6228-6237.1997
– ident: e_1_2_5_41_1
  doi: 10.1111/j.1365-2958.2004.04386.x
– ident: e_1_2_5_13_1
  doi: 10.1128/jb.173.15.4799-4813.1991
– volume-title: Molecular Cloning: A Laboratory Manual
  year: 1987
  ident: e_1_2_5_27_1
– ident: e_1_2_5_15_1
  doi: 10.1111/mmi.12058
– ident: e_1_2_5_11_1
  doi: 10.4161/mabs.19931
– ident: e_1_2_5_24_1
  doi: 10.1074/jbc.274.12.7784
– ident: e_1_2_5_39_1
  doi: 10.1128/JB.183.23.6794-6800.2001
– volume: 23
  start-page: 161
  year: 2010
  ident: e_1_2_5_26_1
  article-title: Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics
  publication-title: peds.
  doi: 10.1093/protein/gzp095
– ident: e_1_2_5_42_1
  doi: 10.1016/j.pep.2006.08.009
– ident: e_1_2_5_10_1
  doi: 10.1038/nbt0292-163
– ident: e_1_2_5_14_1
  doi: 10.1186/gb-2003-4-2-r11
– ident: e_1_2_5_16_1
  doi: 10.1093/jb/mvh022
– ident: e_1_2_5_29_1
  doi: 10.1089/dna.1990.9.167
– ident: e_1_2_5_17_1
  doi: 10.1128/jb.178.4.1154-1161.1996
– ident: e_1_2_5_40_1
  doi: 10.1038/nmeth.1239
– ident: e_1_2_5_3_1
  doi: 10.3389/fimmu.2013.00217
– ident: e_1_2_5_6_1
  doi: 10.1126/science.3285470
– ident: e_1_2_5_7_1
  doi: 10.1126/science.3285471
– ident: e_1_2_5_9_1
  doi: 10.1016/0378-1119(85)90121-0
– ident: e_1_2_5_8_1
  doi: 10.1128/jb.169.9.4379-4383.1987
– ident: e_1_2_5_19_1
  doi: 10.1021/bi8010779
– ident: e_1_2_5_20_1
  doi: 10.1016/0092-8674(93)90455-Y
– ident: e_1_2_5_25_1
  doi: 10.1093/protein/11.7.601
– ident: e_1_2_5_4_1
  doi: 10.1038/nsmb.2795
– ident: e_1_2_5_5_1
  doi: 10.1146/annurev.biochem.72.121801.161459
– ident: e_1_2_5_2_1
  doi: 10.1084/jem.120.5.691
– ident: e_1_2_5_37_1
  doi: 10.1073/pnas.1507760112
SSID ssj0008062
Score 2.3299313
Snippet Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase...
Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase...
Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 212
SubjectTerms Antibodies, Monoclonal, Humanized - biosynthesis
Antibodies, Monoclonal, Humanized - chemistry
Antibodies, Monoclonal, Humanized - isolation & purification
DsbC
E coli
Escherichia coli
Escherichia coli - chemistry
Escherichia coli - genetics
Fab
Fermentation
Humans
Immunoglobulin Fab Fragments - biosynthesis
Immunoglobulin Fab Fragments - chemistry
Immunoglobulin Fab Fragments - isolation & purification
Mutation
Peptide Hydrolases - chemistry
Peptide Hydrolases - isolation & purification
Periplasm - chemistry
Periplasm - genetics
Protein Engineering
Protein Folding
Tsp
Title Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.2393
https://www.ncbi.nlm.nih.gov/pubmed/27790865
https://www.proquest.com/docview/1868900288
https://www.proquest.com/docview/1835682739
https://www.proquest.com/docview/1872840802
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9VAEIeH0id98FJvx9ayiqAvOU12c8UnlR6KoEhpoQ9C2NnOysE253AuUPvXO7O5tPWG-BaSSdhNZnZ_SWa_AXhJxpApfBUR5mWUos8ia1xIXDPWltZUAZn_8VN-cJx-OMlONuBNvxam5UMMH9wkMsJ4LQFucbl3BQ3F1XwxFoAXj7-SqyWC6PAKHVXGoZgoy_E8Yh8se6pQrPeGM2_ORb8IzJt6NUw4k7vwpW9qm2fybbxe4dhd_kRx_M--3IM7nRBVb1vPuQ8b1GzB7Wt4wgewvJZRpGZeWSVwY_Vdkt7YQO2PFbvRVAksec4q_HzqFF10mbWNaiHRilWxYpWp5i1bVo7wtUJtwOklnaqJxVfKL-zXsNjuIRxP9o_eH0RdkYbICbcmYv1HmceKHOZe-9glp1WRuBitKdg78pjluy7QuURbTFNbEo_NKXFskuedqXkEm82soSegMDFOJ0is4HxKiUZCF2do-Yo-jcmO4HX_uGrXEcylkMZZ3bKXdS33sZb7OIIXg-m8xXb8zminf-Z1F7nLWsoHVPImWo7g-XCYY05-pNiGZmuxMVlesvCr_mZT8MwvK5lH8Lj1p6ElWiCPZZ5xh4JX_LmJ9bujz4ey8fTfTbfhlhbtEb4T7cDmarGmZ6ycVrgbQuQHNCQX6g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpT0Ah1LeW1owCAku2SZ2nhIXKF0t0Fao2kq9VJHtjtEKyK62u1Lbv54Z59GWlxC3KJlEdjIT_-KMvwF4iUqhylwRoEnzIDYuCbSyPnFNaZ1rVXhk_t5-OjyMPx4lR0vwpl0LU_Mhugk3jgz_vuYA5wnprUtqqJlPZ30meN2AFa7ozfUL3h9cwqPy0JcTJUGeBuSFecsVCuVWd-r10egXiXldsfohZ3AHjtvG1pkmX_uLuenbi584jv_bmzVYbbSoeFs7z11Ywuoe3L5CKLwPp1eSisTECS2YbyzOOe-NDMROX5AnjQXzkqckxL-PrcCzJrm2EjUnWpAwFiQ0xbTGy_IRupYvDzi-wBMx0OaVcDP9xa-3ewCHg53R9jBo6jQEltE1AUlATJwp0JrUSRfa6KTIIhsarTJykDQkBS8zY20ktYljnSO9nmOk8ERHO2P1EJarSYWPQZhIWRkZJBHnYoykQWPDxGi6ootD1D143T6v0jYQc66l8a2s8cuy5PtY8n3swYvOdFqTO35ntNE-9LIJ3tOSKwgU_DGa9-B5d5jCjv-l6AonC7ZRSZqT9iv-ZpPR4M-LmXvwqHaoriWSOY95mlCHvFv8uYnlu9HnA95Y_3fTZ3BzONrbLXc_7H96ArckSxE_bbQBy_PZAjdJSM3NUx8vPwCN6BwE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Zb9QwEIdHpUgIHriPhQIGIcFLtontXOKJo6tyVVXVSn1AimzvGK2AbLTdlaB_PTPO0ZZLiLcomUSOPRP_koy_AXiCSqHKfRmhzYpIW59GRrmQuKaMKYwqAzL_w062faDfHqaHa_C8XwvT8iGGD24cGeF5zQHeTP3mCTTULpvFmAFe5-C8zihYWBHtnbCjijhUEyU9nkXkhEWPFYrl5nDq2cnoF4V5VrCGGWdyBT72bW0TTT6PV0s7dsc_YRz_82auwuVOiYoXretcgzWsr8OlU3zCG3B0KqVIzL0wgunG4jtnvZGB2BoL8qOZYFpyQzL868wJ_Nal1taipUQLksWCZKZoWrgsH6FrheKAs2OciomxT4VfmE9htd1NOJhs7b_ajroqDZFjcE1EAhBTb0t0NvPSxy6ZlnniYmtUTu6RxaTfZW6dS6SxWpsC6eGskYITPe3U6has1_Ma74CwiXIysUgSzmtMpEXr4tQauqLXMZoRPOuHq3IdwpwraXypWviyrLgfK-7HETweTJuW2_E7o41-zKsudI8qrh9Q8qtoMYJHw2EKOv6TYmqcr9hGpVlByq_8m01OUz8vZR7B7dafhpZIpjwWWUo3FLziz02sXu7v7vHG3X83fQgXdl9Pqvdvdt7dg4uSdUj4ZrQB68vFCu-TilraByFafgBOHxq8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+high+yielding+E.+coli+periplasmic+expression+system+for+the+production+of+humanized+Fab%27+fragments&rft.jtitle=Biotechnology+progress&rft.au=Ellis%2C+Mark&rft.au=Patel%2C+Pareshkumar&rft.au=Edon%2C+Marjory&rft.au=Ramage%2C+Walter&rft.date=2017-01-01&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=33&rft.issue=1&rft.spage=212&rft.epage=220&rft_id=info:doi/10.1002%2Fbtpr.2393&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon