Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments
Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of...
Saved in:
Published in | Biotechnology progress Vol. 33; no. 1; pp. 212 - 220 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 8756-7938 1520-6033 1520-6033 |
DOI | 10.1002/btpr.2393 |
Cover
Loading…
Abstract | Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017 |
---|---|
AbstractList | Humanized Fab′ fragments may be produced in the periplasm of
Escherichia coli
but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of
E. coli
. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the
spr
gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient
spr
strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD
600
105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of
E. coli
. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017 Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017. Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab′ yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab′ expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab′, DsbC had the most significant impact, increasing humanized Fab′ production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored “wild type” cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab′ induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab′ fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212–220, 2017 Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD sub(600) 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. copyright 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017 Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017.Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD600 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017. |
Author | Humphreys, David P. Ellis, Mark Edon, Marjory Ramage, Walter Patel, Pareshkumar Dickinson, Robert |
Author_xml | – sequence: 1 givenname: Mark surname: Ellis fullname: Ellis, Mark email: mark.ellis@ucb.com organization: UCB Pharma, 208 Bath Road – sequence: 2 givenname: Pareshkumar surname: Patel fullname: Patel, Pareshkumar organization: Lonza Biologics plc, 228 Bath Road GB‐Slough – sequence: 3 givenname: Marjory surname: Edon fullname: Edon, Marjory organization: Novasep, 5 chemin du Pilon, St Maurice de Beynost – sequence: 4 givenname: Walter surname: Ramage fullname: Ramage, Walter organization: NIBSC, Blanche Lane, South Mimms, Potters Bar – sequence: 5 givenname: Robert surname: Dickinson fullname: Dickinson, Robert organization: CSL Limited, 45 Poplar Road – sequence: 6 givenname: David P. surname: Humphreys fullname: Humphreys, David P. organization: UCB Pharma, 208 Bath Road |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27790865$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKcDC_4AssQCWGTqR2I7y9IHIFUCobK2HOd6xlUSBzuBDr8eh043FUisLF1_51z7nBN0NIQBEHpJyYYSwk6baYwbxmv-BK1oxUghCOdHaKVkJQpZc3WMTlK6JYQoItgzdMykrIkS1QqlC_gBXRh7GCYcHDZ457c7vPfQtX7Y4ssNtqHzeITox86k3lsMd2OElHwYcNqnCXrsQsTTDvAYQzvbabnJXru5N4P_BS2-Ms0b7KLZLmvSc_TUmS7Bi8O5Rt-uLm_OPxbXnz98Oj-7Lmypal7UnEHlmhpsIxxzxNK2ltSSxnBprRFESsZkYy1lpilLo4CWogRCSnB5WPI1envvm5_1fYY06d4nC11nBghz0lRJpsqcCfsPlFdCMZkzXqPXj9DbMMchfyRTQtW5EKUy9epAzU0PrR6j703c64fkM3B6D9gYUorgtPWTWaKbovGdpkQv3eqlW710mxXvHikeTP_GHtx_-g72_wb1-5svX_8ofgNLh7Qh |
CitedBy_id | crossref_primary_10_1093_femsle_fny162 crossref_primary_10_1055_s_0041_1735145 crossref_primary_10_1002_btpr_2999 crossref_primary_10_1080_07388551_2021_1967871 crossref_primary_10_1080_07388551_2024_2342969 crossref_primary_10_1016_j_cherd_2022_03_043 crossref_primary_10_2144_btn_2018_0135 crossref_primary_10_3390_fermentation8040175 crossref_primary_10_1016_j_biochi_2024_05_013 crossref_primary_10_1002_biot_202000562 crossref_primary_10_1016_j_pep_2023_106404 crossref_primary_10_1002_btpr_3290 crossref_primary_10_1016_j_bej_2021_108184 crossref_primary_10_3390_ijms21176324 crossref_primary_10_1134_S0006297923090018 crossref_primary_10_1080_10826068_2024_2394446 crossref_primary_10_1007_s00253_019_09745_8 crossref_primary_10_2174_0929867327666200219142231 crossref_primary_10_1016_j_jbiotec_2020_07_003 crossref_primary_10_3390_fermentation8040181 crossref_primary_10_21769_BioProtoc_3370 crossref_primary_10_1002_bit_27944 crossref_primary_10_1007_s10989_017_9637_x crossref_primary_10_1016_j_enzmictec_2018_04_002 crossref_primary_10_1016_j_chroma_2020_461702 crossref_primary_10_1002_biot_201800637 crossref_primary_10_3389_fbioe_2021_797334 crossref_primary_10_31857_S0320972523090014 crossref_primary_10_1016_j_tibtech_2021_10_003 |
Cites_doi | 10.1016/j.jbiotec.2008.05.002 10.1038/nbt1194-1107 10.1016/0014-5793(96)00028-2 10.1016/S0022-1759(97)00172-5 10.1016/S0092-8674(00)80743-6 10.1101/gr.4527806 10.1073/pnas.94.22.11857 10.1002/j.1460-2075.1992.tb05027.x 10.1002/bit.20014 10.1128/jb.179.21.6602-6608.1997 10.1016/j.resmic.2009.07.012 10.1002/j.1460-2075.1994.tb06471.x 10.1128/jb.179.20.6228-6237.1997 10.1111/j.1365-2958.2004.04386.x 10.1128/jb.173.15.4799-4813.1991 10.1111/mmi.12058 10.4161/mabs.19931 10.1074/jbc.274.12.7784 10.1128/JB.183.23.6794-6800.2001 10.1093/protein/gzp095 10.1016/j.pep.2006.08.009 10.1038/nbt0292-163 10.1186/gb-2003-4-2-r11 10.1093/jb/mvh022 10.1089/dna.1990.9.167 10.1128/jb.178.4.1154-1161.1996 10.1038/nmeth.1239 10.3389/fimmu.2013.00217 10.1126/science.3285470 10.1126/science.3285471 10.1016/0378-1119(85)90121-0 10.1128/jb.169.9.4379-4383.1987 10.1021/bi8010779 10.1016/0092-8674(93)90455-Y 10.1093/protein/11.7.601 10.1038/nsmb.2795 10.1146/annurev.biochem.72.121801.161459 10.1084/jem.120.5.691 10.1073/pnas.1507760112 |
ContentType | Journal Article |
Copyright | 2016 American Institute of Chemical Engineers 2016 American Institute of Chemical Engineers. 2017 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2016 American Institute of Chemical Engineers – notice: 2016 American Institute of Chemical Engineers. – notice: 2017 American Institute of Chemical Engineers |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U7 8FD C1K FR3 M7N P64 7X8 |
DOI | 10.1002/btpr.2393 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Biotechnology Research Abstracts Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-6033 |
EndPage | 220 |
ExternalDocumentID | 4314699611 27790865 10_1002_btpr_2393 BTPR2393 |
Genre | article Journal Article |
GroupedDBID | --- -~X .DC 05W 0R~ 1L6 1OB 1OC 1WB 23N 31~ 33P 3SF 3WU 4.4 52U 52V 53G 55A 5GY 5VS 66C 6J9 8-1 A00 A8Z AABXI AAESR AAEVG AAHHS AAHQN AAIHA AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABEFU ABHMW ABJNI ABQWH ABTAH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACJ ACMXC ACPOU ACPRK ACRPL ACS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADMGS ADNMO ADOZA ADXAS ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AGXLV AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BAANH BDRZF BFHJK BHBCM BLYAC BMXJE BNHUX BOGZA BRXPI C45 CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EDH EJD EMOBN F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HHY HVGLF HZ~ I-F IHE ITG ITH IX1 JG~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI ML0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NDZJH NNB O9- OIG OVD P2P P2W P4E PALCI QRW RIWAO RJQFR ROL RWI SAMSI SUPJJ SV3 TAE TEORI TN5 TUS W99 WBKPD WIH WIJ WIK WOHZO WSB WXSBR WYJ XV2 Y6R ZCA ZY4 ZZTAW ~02 ~KM ~S- AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7T7 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 M7N P64 7X8 |
ID | FETCH-LOGICAL-c4893-932e5fb9ecb6f2f0c1d971c0ba37cca6077227bcc12ab44a8e1464e004efcc143 |
IEDL.DBID | DR2 |
ISSN | 8756-7938 1520-6033 |
IngestDate | Fri Jul 11 12:27:40 EDT 2025 Fri Jul 11 00:15:36 EDT 2025 Sun Jul 13 04:03:19 EDT 2025 Thu Apr 03 07:01:51 EDT 2025 Thu Apr 24 23:05:37 EDT 2025 Tue Jul 01 02:13:33 EDT 2025 Wed Jan 22 16:23:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | DsbC Tsp fermentation Escherichia coli Fab |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2016 American Institute of Chemical Engineers. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4893-932e5fb9ecb6f2f0c1d971c0ba37cca6077227bcc12ab44a8e1464e004efcc143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 27790865 |
PQID | 1868900288 |
PQPubID | 2034897 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1872840802 proquest_miscellaneous_1835682739 proquest_journals_1868900288 pubmed_primary_27790865 crossref_citationtrail_10_1002_btpr_2393 crossref_primary_10_1002_btpr_2393 wiley_primary_10_1002_btpr_2393_BTPR2393 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January/February 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: January/February 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Biotechnology progress |
PublicationTitleAlternate | Biotechnol Prog |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1997; 179 2004; 85 1991; 173 2013; 4 2001; 183 1987; 169 2009; 160 2006; 16 1996; 380 2008; 5 1988; 240 2007; 52 2003; 72 1992; 10 1992; 11 2014; 21 2010; 23 1997; 94 2004; 135 1995; 47 2015; 112 1993; 74 2008; 47 1999; 274 1987 1994; 12 2003; 4 1964; 120 1994; 13 1999; 97 2008; 135 1997; 209 1985; 34 2012; 4 1990; 9 1996; 178 2005; 55 2012; 86 1998; 11 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_22_1 e_1_2_5_29_1 Sambrook J (e_1_2_5_27_1) 1987 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 Friedrich L (e_1_2_5_26_1) 2010; 23 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 Nickoloff JA (e_1_2_5_31_1) 1995 |
References_xml | – volume: 97 start-page: 339 year: 1999 end-page: 347 article-title: Ehrmann: A temperature‐dependent switch from chaperone to protease in a widely conserved heat shock protein publication-title: Cell – volume: 4 start-page: 217 year: 2013 article-title: Expression of Recombinant antibodies publication-title: Front Immunol. – volume: 179 start-page: 6602 year: 1997 end-page: 6608 article-title: Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin publication-title: J Bacteriol. – volume: 240 start-page: 1041 year: 1988 end-page: 1043 article-title: secretion of an active chimeric antibody fragment publication-title: Science – volume: 169 start-page: 4379 year: 1987 end-page: 4383 article-title: Characterization of the Erwinia carotovora pelB gene and its product pectate lyase publication-title: J Bacteriol. – volume: 380 start-page: 194 year: 1996 end-page: 119 article-title: Co‐expression of human protein disulphide isomerase (PDI) can increase the yield of an antibody Fab′ fragment expressed in publication-title: FEBS Lett. – volume: 4 start-page: 413 year: 2012 end-page: 415 article-title: Marketed therapeutic antibodies compendium publication-title: MAbs. – year: 1987 – volume: 178 start-page: 1154 year: 1996 end-page: 1161 article-title: Multicopy suppressors of prc mutant include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA publication-title: J Bacteriol. – volume: 72 start-page: 111 year: 2003 end-page: 135 article-title: Protein disulfide bond formation in prokaryotes publication-title: J Ann Rev Biochem. – volume: 240 start-page: 1038 year: 1988 end-page: 1041 article-title: Assembly of a functional immunoglobulin Fv fragment in publication-title: Science – volume: 55 start-page: 137 year: 2005 end-page: 149 article-title: Cell size and nucleoid organization of engineered cells with a reduced genome publication-title: Mol Microbiol. – volume: 274 start-page: 7784 year: 1999 end-page: 7792 article-title: and function of the periplasmic cysteine oxidoreductase DsbG publication-title: J Biol Chem. – volume: 85 start-page: 463 year: 2004 end-page: 474 article-title: High‐level accumulation of a recombinant antibody fragment in the periplasm of requires a triple‐mutant ( ) host strain publication-title: Biotechnol Bioeng. – volume: 160 start-page: 660 year: 2009 end-page: 666 article-title: Structure, function and regulation of the conserved serine proteases DegP and DegS of publication-title: Res Microbiol. – volume: 11 start-page: 57 year: 1992 end-page: 62 article-title: Identification and characterization of an gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme publication-title: EMBO J. – volume: 209 start-page: 193 year: 1997 end-page: 202 article-title: Formation of dimeric Fabs in : effect of hinge size and isotype, presence of interchain disulphide bond, Fab′ expression levels, tail piece sequences and growth conditions publication-title: J Immunol Methods – volume: 179 start-page: 6228 year: 1997 end-page: 6237 article-title: Methods for generating precise deletions and insertions in the genome of wild‐type : application to open reading frame characterization publication-title: J Bacteriol. – volume: 183 start-page: 6794 year: 2001 end-page: 6800 article-title: Genetic evidence for parallel pathways of chaperone activity in the periplasm of publication-title: J Bacteriol. – volume: 112 start-page: 10956 year: 2015 end-page: 10961 article-title: Regulated proteolysis of a cross‐link‐specific peptidoglycan hydrolase contributes to bacterial morphogenesis publication-title: Proc Natl Acad Sci U S A – volume: 4 start-page: R11 year: 2003 article-title: Evolutionary history, structural features and biochemical diversity of the NlpC/P60 superfamily of enzymes publication-title: Genome Biol. – volume: 135 start-page: 358 year: 2008 end-page: 365 article-title: Fedbatch design for periplasmic product retention in Escherichia coli publication-title: J Biotechnol. – volume: 12 start-page: 1107 year: 1994 end-page: 1110 article-title: Construction and characterization of a set of strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins publication-title: Biotechnology (NY) – volume: 120 start-page: 691 year: 1964 end-page: 709 article-title: Structural studies of human 7s gamma‐globulin (g immunoglobulin). Further observations of a naturally occurring protein related to the crystallizable (fast) fragment publication-title: J Exp Med. – volume: 23 start-page: 161 year: 2010 end-page: 168 article-title: Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics publication-title: peds. – volume: 5 start-page: 789 year: 2008 end-page: 795 article-title: eSGA: synthetic genetic array analysis publication-title: Nat Methods – volume: 16 start-page: 686 year: 2006 end-page: 691 article-title: Large‐scale identification of protein‐protein interaction of K‐12 publication-title: Genome Res. – volume: 47 start-page: 105 year: 1995 – volume: 21 start-page: 397 year: 2014 end-page: 404 article-title: Human immunoglobulin E flexes between acutely bent and extended conformations publication-title: Nat Struct Mol Biol. – volume: 86 start-page: 1036 year: 2012 end-page: 1051 article-title: Three redundant murein endopeptidases catalyze an essential 1 cleavage step in peptidoglycan synthesis of K12 publication-title: Mol Microbiol. – volume: 52 start-page: 194 year: 2007 end-page: 201 article-title: Optimisation of production of a domoic acid‐binding scFv antibody fragment in using molecular chaperones and functional immobilisation on a mesoporous silicate support publication-title: Protein Expr Purif. – volume: 94 start-page: 11857 year: 1997 end-page: 11862 article-title: Respiratory chain is required to maintain oxidized states of the DsbA‐DsbB disulfide bond formation system in aerobically growing cells publication-title: Pnas – volume: 173 start-page: 4799 year: 1991 end-page: 4813 article-title: Cloning, mapping, and characterization of the prc gene, which is involved in C‐terminal processing of penicillin‐binding protein 3 publication-title: J Bacteriol. – volume: 11 start-page: 601 year: 1998 end-page: 607 article-title: Improved folding of apo‐retinol‐binding protein in the periplasm of : positive influences of dsbC coexpression and of an amino acid exchange in the vitamin A binding site publication-title: Protein Eng. – volume: 13 start-page: 2013 year: 1994 end-page: 2020 article-title: The dsbC (xprA) gene encodes a periplasmic protein involved in disulfide bond formation publication-title: EMBO J. – volume: 135 start-page: 185 year: 2004 end-page: 191 article-title: Interaction of the lipoprotein NlpI with periplasmic Prc (Tsp) protease publication-title: J Biochem. – volume: 47 start-page: 9715 year: 2008 end-page: 9717 article-title: Solution NMR structure of the NlpC/P60 domain of lipoprotein Spr from : structural evidence for a novel cysteine peptidase catalytic triad publication-title: Biochemistry. – volume: 9 start-page: 167 year: 1990 end-page: 175 article-title: expression and processing of human interleukin‐1 beta fused to signal peptides publication-title: DNA Cell Biol. – volume: 34 start-page: 137 year: 1985 end-page: 145 article-title: High‐level expression of M13 gene II protein from an inducible polycistronic messenger RNA publication-title: Gene. – volume: 74 start-page: 769 year: 1993 end-page: 771 article-title: The bonds that tie: catalyzed disulfide bond formation publication-title: Cell. – volume: 10 start-page: 163 year: 1992 end-page: 167 article-title: High level expression and production of a bivalent humanized antibody fragment publication-title: Biotechnology (NY) – ident: e_1_2_5_32_1 doi: 10.1016/j.jbiotec.2008.05.002 – ident: e_1_2_5_38_1 doi: 10.1038/nbt1194-1107 – ident: e_1_2_5_35_1 doi: 10.1016/0014-5793(96)00028-2 – ident: e_1_2_5_28_1 doi: 10.1016/S0022-1759(97)00172-5 – ident: e_1_2_5_34_1 doi: 10.1016/S0092-8674(00)80743-6 – ident: e_1_2_5_18_1 doi: 10.1101/gr.4527806 – ident: e_1_2_5_22_1 doi: 10.1073/pnas.94.22.11857 – ident: e_1_2_5_23_1 doi: 10.1002/j.1460-2075.1992.tb05027.x – start-page: 105 volume-title: Methods in Molecular Biology year: 1995 ident: e_1_2_5_31_1 – ident: e_1_2_5_12_1 doi: 10.1002/bit.20014 – ident: e_1_2_5_21_1 doi: 10.1128/jb.179.21.6602-6608.1997 – ident: e_1_2_5_33_1 doi: 10.1016/j.resmic.2009.07.012 – ident: e_1_2_5_36_1 doi: 10.1002/j.1460-2075.1994.tb06471.x – ident: e_1_2_5_30_1 doi: 10.1128/jb.179.20.6228-6237.1997 – ident: e_1_2_5_41_1 doi: 10.1111/j.1365-2958.2004.04386.x – ident: e_1_2_5_13_1 doi: 10.1128/jb.173.15.4799-4813.1991 – volume-title: Molecular Cloning: A Laboratory Manual year: 1987 ident: e_1_2_5_27_1 – ident: e_1_2_5_15_1 doi: 10.1111/mmi.12058 – ident: e_1_2_5_11_1 doi: 10.4161/mabs.19931 – ident: e_1_2_5_24_1 doi: 10.1074/jbc.274.12.7784 – ident: e_1_2_5_39_1 doi: 10.1128/JB.183.23.6794-6800.2001 – volume: 23 start-page: 161 year: 2010 ident: e_1_2_5_26_1 article-title: Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics publication-title: peds. doi: 10.1093/protein/gzp095 – ident: e_1_2_5_42_1 doi: 10.1016/j.pep.2006.08.009 – ident: e_1_2_5_10_1 doi: 10.1038/nbt0292-163 – ident: e_1_2_5_14_1 doi: 10.1186/gb-2003-4-2-r11 – ident: e_1_2_5_16_1 doi: 10.1093/jb/mvh022 – ident: e_1_2_5_29_1 doi: 10.1089/dna.1990.9.167 – ident: e_1_2_5_17_1 doi: 10.1128/jb.178.4.1154-1161.1996 – ident: e_1_2_5_40_1 doi: 10.1038/nmeth.1239 – ident: e_1_2_5_3_1 doi: 10.3389/fimmu.2013.00217 – ident: e_1_2_5_6_1 doi: 10.1126/science.3285470 – ident: e_1_2_5_7_1 doi: 10.1126/science.3285471 – ident: e_1_2_5_9_1 doi: 10.1016/0378-1119(85)90121-0 – ident: e_1_2_5_8_1 doi: 10.1128/jb.169.9.4379-4383.1987 – ident: e_1_2_5_19_1 doi: 10.1021/bi8010779 – ident: e_1_2_5_20_1 doi: 10.1016/0092-8674(93)90455-Y – ident: e_1_2_5_25_1 doi: 10.1093/protein/11.7.601 – ident: e_1_2_5_4_1 doi: 10.1038/nsmb.2795 – ident: e_1_2_5_5_1 doi: 10.1146/annurev.biochem.72.121801.161459 – ident: e_1_2_5_2_1 doi: 10.1084/jem.120.5.691 – ident: e_1_2_5_37_1 doi: 10.1073/pnas.1507760112 |
SSID | ssj0008062 |
Score | 2.3299313 |
Snippet | Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase... Humanized Fab′ fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase... Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 212 |
SubjectTerms | Antibodies, Monoclonal, Humanized - biosynthesis Antibodies, Monoclonal, Humanized - chemistry Antibodies, Monoclonal, Humanized - isolation & purification DsbC E coli Escherichia coli Escherichia coli - chemistry Escherichia coli - genetics Fab Fermentation Humans Immunoglobulin Fab Fragments - biosynthesis Immunoglobulin Fab Fragments - chemistry Immunoglobulin Fab Fragments - isolation & purification Mutation Peptide Hydrolases - chemistry Peptide Hydrolases - isolation & purification Periplasm - chemistry Periplasm - genetics Protein Engineering Protein Folding Tsp |
Title | Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.2393 https://www.ncbi.nlm.nih.gov/pubmed/27790865 https://www.proquest.com/docview/1868900288 https://www.proquest.com/docview/1835682739 https://www.proquest.com/docview/1872840802 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9VAEIeH0id98FJvx9ayiqAvOU12c8UnlR6KoEhpoQ9C2NnOysE253AuUPvXO7O5tPWG-BaSSdhNZnZ_SWa_AXhJxpApfBUR5mWUos8ia1xIXDPWltZUAZn_8VN-cJx-OMlONuBNvxam5UMMH9wkMsJ4LQFucbl3BQ3F1XwxFoAXj7-SqyWC6PAKHVXGoZgoy_E8Yh8se6pQrPeGM2_ORb8IzJt6NUw4k7vwpW9qm2fybbxe4dhd_kRx_M--3IM7nRBVb1vPuQ8b1GzB7Wt4wgewvJZRpGZeWSVwY_Vdkt7YQO2PFbvRVAksec4q_HzqFF10mbWNaiHRilWxYpWp5i1bVo7wtUJtwOklnaqJxVfKL-zXsNjuIRxP9o_eH0RdkYbICbcmYv1HmceKHOZe-9glp1WRuBitKdg78pjluy7QuURbTFNbEo_NKXFskuedqXkEm82soSegMDFOJ0is4HxKiUZCF2do-Yo-jcmO4HX_uGrXEcylkMZZ3bKXdS33sZb7OIIXg-m8xXb8zminf-Z1F7nLWsoHVPImWo7g-XCYY05-pNiGZmuxMVlesvCr_mZT8MwvK5lH8Lj1p6ElWiCPZZ5xh4JX_LmJ9bujz4ey8fTfTbfhlhbtEb4T7cDmarGmZ6ycVrgbQuQHNCQX6g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Lb9QwEIdHpT0Ah1LeW1owCAku2SZ2nhIXKF0t0Fao2kq9VJHtjtEKyK62u1Lbv54Z59GWlxC3KJlEdjIT_-KMvwF4iUqhylwRoEnzIDYuCbSyPnFNaZ1rVXhk_t5-OjyMPx4lR0vwpl0LU_Mhugk3jgz_vuYA5wnprUtqqJlPZ30meN2AFa7ozfUL3h9cwqPy0JcTJUGeBuSFecsVCuVWd-r10egXiXldsfohZ3AHjtvG1pkmX_uLuenbi584jv_bmzVYbbSoeFs7z11Ywuoe3L5CKLwPp1eSisTECS2YbyzOOe-NDMROX5AnjQXzkqckxL-PrcCzJrm2EjUnWpAwFiQ0xbTGy_IRupYvDzi-wBMx0OaVcDP9xa-3ewCHg53R9jBo6jQEltE1AUlATJwp0JrUSRfa6KTIIhsarTJykDQkBS8zY20ktYljnSO9nmOk8ERHO2P1EJarSYWPQZhIWRkZJBHnYoykQWPDxGi6ootD1D143T6v0jYQc66l8a2s8cuy5PtY8n3swYvOdFqTO35ntNE-9LIJ3tOSKwgU_DGa9-B5d5jCjv-l6AonC7ZRSZqT9iv-ZpPR4M-LmXvwqHaoriWSOY95mlCHvFv8uYnlu9HnA95Y_3fTZ3BzONrbLXc_7H96ArckSxE_bbQBy_PZAjdJSM3NUx8vPwCN6BwE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Zb9QwEIdHpUgIHriPhQIGIcFLtontXOKJo6tyVVXVSn1AimzvGK2AbLTdlaB_PTPO0ZZLiLcomUSOPRP_koy_AXiCSqHKfRmhzYpIW59GRrmQuKaMKYwqAzL_w062faDfHqaHa_C8XwvT8iGGD24cGeF5zQHeTP3mCTTULpvFmAFe5-C8zihYWBHtnbCjijhUEyU9nkXkhEWPFYrl5nDq2cnoF4V5VrCGGWdyBT72bW0TTT6PV0s7dsc_YRz_82auwuVOiYoXretcgzWsr8OlU3zCG3B0KqVIzL0wgunG4jtnvZGB2BoL8qOZYFpyQzL868wJ_Nal1taipUQLksWCZKZoWrgsH6FrheKAs2OciomxT4VfmE9htd1NOJhs7b_ajroqDZFjcE1EAhBTb0t0NvPSxy6ZlnniYmtUTu6RxaTfZW6dS6SxWpsC6eGskYITPe3U6has1_Ma74CwiXIysUgSzmtMpEXr4tQauqLXMZoRPOuHq3IdwpwraXypWviyrLgfK-7HETweTJuW2_E7o41-zKsudI8qrh9Q8qtoMYJHw2EKOv6TYmqcr9hGpVlByq_8m01OUz8vZR7B7dafhpZIpjwWWUo3FLziz02sXu7v7vHG3X83fQgXdl9Pqvdvdt7dg4uSdUj4ZrQB68vFCu-TilraByFafgBOHxq8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+high+yielding+E.+coli+periplasmic+expression+system+for+the+production+of+humanized+Fab%27+fragments&rft.jtitle=Biotechnology+progress&rft.au=Ellis%2C+Mark&rft.au=Patel%2C+Pareshkumar&rft.au=Edon%2C+Marjory&rft.au=Ramage%2C+Walter&rft.date=2017-01-01&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=33&rft.issue=1&rft.spage=212&rft.epage=220&rft_id=info:doi/10.1002%2Fbtpr.2393&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon |