Projections of the medial orbital and ventral orbital cortex in the rat
The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and...
Saved in:
Published in | Journal of comparative neurology (1911) Vol. 519; no. 18; pp. 3766 - 3801 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.12.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro‐Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal‐directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766–3801, 2011. © 2011 Wiley‐Liss, Inc. |
---|---|
AbstractList | The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766-3801, 2011. © 2011 Wiley-Liss, Inc. [PUBLICATION ABSTRACT] Abstract The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro‐Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal‐directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766–3801, 2011. © 2011 Wiley‐Liss, Inc. The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766-3801, 2011. ? 2011 Wiley-Liss, Inc. The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro‐Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal‐directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766–3801, 2011. © 2011 Wiley‐Liss, Inc. |
Author | Hoover, Walter B. Vertes, Robert P. |
Author_xml | – sequence: 1 givenname: Walter B. surname: Hoover fullname: Hoover, Walter B. organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431 – sequence: 2 givenname: Robert P. surname: Vertes fullname: Vertes, Robert P. email: vertes@ccs.fau.edu organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21800317$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1L9DAUhYMoOn4s3j8gBRfqonqTNE2y1FFHRfwAxWVI0xQ7dhJNOn78e6OjIi_o6sLNcw655yyjeeedRegfhh0MQHaNszuEcErn0ACDLHMpSjyPBukN51KWfAktxzgGACmpWERLBAsAivkAjS6DH1vTt97FzDdZf2ezia1b3WU-VG2fpnZ19mRdH37sjA-9fcla9yEIul9FC43uol37nCvo5ujwenicn12MToZ7Z7kphKQ5x7Ux1hSsqaDBQDXTvLKCWa4LwQSHQgsiWF2VhWgaUxfpkxQ04YxhIBToCtqc-T4E_zi1sVeTNhrbddpZP41KSIlpOpQmcutPEgPmsiSEvJtu_IeO_TS4dIfCrGAAuChZorZnlAk-xmAb9RDaiQ6vyUq996BSD-qjh8SufzpOqxTnN_kVfAJ2Z8Bz29nX353U8PzwyzKfKdqYov9W6HCvSk45U7fnIzXcPzgdHdxSdUXfADgSn6g |
CitedBy_id | crossref_primary_10_1007_s12144_023_04475_7 crossref_primary_10_1016_j_addicn_2022_100031 crossref_primary_10_3389_fnbeh_2022_981041 crossref_primary_10_1002_cne_23064 crossref_primary_10_1016_j_neulet_2014_04_050 crossref_primary_10_1016_j_bbr_2015_04_018 crossref_primary_10_1016_j_pbb_2017_05_009 crossref_primary_10_1093_cercor_bhx293 crossref_primary_10_1016_j_neuron_2015_10_044 crossref_primary_10_7554_eLife_49511 crossref_primary_10_1002_cne_25525 crossref_primary_10_1016_j_neuron_2012_09_039 crossref_primary_10_3389_fnsys_2017_00046 crossref_primary_10_1007_s00213_022_06265_8 crossref_primary_10_1016_j_ejphar_2015_04_002 crossref_primary_10_1016_j_neuropharm_2018_10_013 crossref_primary_10_1016_j_pharep_2017_12_010 crossref_primary_10_1016_j_brainres_2024_149044 crossref_primary_10_1016_j_biopsych_2012_08_009 crossref_primary_10_1134_S0022093024010289 crossref_primary_10_1016_j_nlm_2020_107170 crossref_primary_10_1371_journal_pcbi_1010410 crossref_primary_10_1038_s41593_019_0408_1 crossref_primary_10_1016_j_bbr_2021_113412 crossref_primary_10_1073_pnas_1200782109 crossref_primary_10_1038_s41598_024_58648_w crossref_primary_10_1152_physrev_00028_2020 crossref_primary_10_1016_j_celrep_2022_111334 crossref_primary_10_1002_cne_23592 crossref_primary_10_1093_cercor_bhac182 crossref_primary_10_1002_cne_25256 crossref_primary_10_1016_j_nlm_2017_01_006 crossref_primary_10_1523_JNEUROSCI_1678_17_2017 crossref_primary_10_3389_fnsys_2014_00177 crossref_primary_10_3389_fnbeh_2016_00250 crossref_primary_10_1002_cne_25419 crossref_primary_10_1002_cne_24729 crossref_primary_10_3389_fnbeh_2021_655029 crossref_primary_10_1371_journal_pone_0094657 crossref_primary_10_1016_j_nbd_2016_02_021 crossref_primary_10_1111_ejn_14150 crossref_primary_10_1038_npp_2017_139 crossref_primary_10_1016_j_tins_2021_11_007 crossref_primary_10_1080_21622965_2015_1005486 crossref_primary_10_1016_j_neubiorev_2015_01_014 crossref_primary_10_1016_j_neuropharm_2022_109041 crossref_primary_10_1016_j_ejphar_2017_09_048 crossref_primary_10_1093_ijnp_pyac062 crossref_primary_10_1002_cne_24373 crossref_primary_10_1016_j_pneurobio_2019_02_001 crossref_primary_10_3389_fnana_2015_00133 crossref_primary_10_1002_cne_23442 crossref_primary_10_1007_s00429_017_1585_x crossref_primary_10_1016_j_isci_2024_109205 crossref_primary_10_3389_fnsys_2015_00080 crossref_primary_10_1186_s40035_021_00241_6 crossref_primary_10_1007_s12565_022_00669_4 crossref_primary_10_1016_j_brainres_2014_11_028 crossref_primary_10_1016_j_neuroscience_2012_07_040 crossref_primary_10_1016_j_nlm_2015_11_008 crossref_primary_10_1038_s41398_020_0837_3 crossref_primary_10_1007_s12264_024_01229_8 crossref_primary_10_1523_JNEUROSCI_4253_15_2016 crossref_primary_10_1038_s41386_022_01273_w crossref_primary_10_3389_fnana_2023_1131167 crossref_primary_10_1007_s00429_016_1290_1 crossref_primary_10_1016_j_jchemneu_2019_01_002 crossref_primary_10_1038_s41583_019_0180_y crossref_primary_10_1016_j_neuron_2016_04_043 crossref_primary_10_3389_fnsys_2016_00099 crossref_primary_10_1016_j_neures_2014_11_009 crossref_primary_10_1016_j_nlm_2020_107369 crossref_primary_10_1002_cne_24424 crossref_primary_10_1093_cercor_bhs297 crossref_primary_10_1002_hipo_22831 crossref_primary_10_1111_ejn_13521 crossref_primary_10_1111_ejn_14215 crossref_primary_10_1523_ENEURO_0017_21_2021 crossref_primary_10_1002_cne_24306 crossref_primary_10_1093_cercor_bhu112 crossref_primary_10_1016_j_pnpbp_2024_111032 crossref_primary_10_1002_jnr_24567 crossref_primary_10_1016_j_cub_2016_12_052 crossref_primary_10_1016_j_bbr_2017_02_032 crossref_primary_10_1093_texcom_tgaa086 crossref_primary_10_1038_s41597_023_02527_y crossref_primary_10_1002_hipo_22701 crossref_primary_10_1016_j_neubiorev_2019_11_009 crossref_primary_10_1016_j_neuroscience_2012_08_067 crossref_primary_10_1016_j_conb_2012_04_001 crossref_primary_10_1007_s12264_020_00616_1 crossref_primary_10_1093_cercor_bhad212 crossref_primary_10_1523_JNEUROSCI_2098_13_2014 crossref_primary_10_1002_jnr_23960 crossref_primary_10_1152_jn_00127_2022 crossref_primary_10_1016_j_nlm_2018_09_008 crossref_primary_10_1016_j_cub_2017_01_010 crossref_primary_10_1111_ejn_14068 crossref_primary_10_1093_cercor_bhx132 crossref_primary_10_1016_j_bbr_2022_114146 crossref_primary_10_1523_JNEUROSCI_2278_12_2012 crossref_primary_10_1523_JNEUROSCI_3366_15_2016 crossref_primary_10_1016_j_neuron_2012_12_002 crossref_primary_10_1038_npp_2015_92 crossref_primary_10_1016_j_neuroscience_2020_05_041 crossref_primary_10_1038_s41593_019_0429_9 crossref_primary_10_1016_j_neuroscience_2015_05_029 crossref_primary_10_1016_j_pbb_2013_08_007 crossref_primary_10_1523_JNEUROSCI_0796_16_2016 crossref_primary_10_3389_fnsys_2019_00038 crossref_primary_10_1016_j_neubiorev_2023_105475 crossref_primary_10_1523_JNEUROSCI_3860_16_2017 crossref_primary_10_7554_eLife_80926 crossref_primary_10_1093_cercor_bhy173 crossref_primary_10_1002_jnr_23578 crossref_primary_10_1016_j_neuron_2014_05_046 crossref_primary_10_1093_cercor_bhz144 crossref_primary_10_1523_JNEUROSCI_3328_15_2016 crossref_primary_10_1016_j_jneumeth_2014_07_021 crossref_primary_10_1038_nature13186 crossref_primary_10_1038_npp_2013_83 crossref_primary_10_1038_npp_2015_20 crossref_primary_10_1111_jnp_12154 crossref_primary_10_1016_j_bbr_2017_07_032 crossref_primary_10_1111_adb_12442 crossref_primary_10_1016_j_neuropharm_2023_109463 crossref_primary_10_1016_j_neures_2018_08_017 crossref_primary_10_1016_j_pneurobio_2022_102399 crossref_primary_10_1016_j_pnpbp_2018_01_010 crossref_primary_10_1016_j_neuroscience_2019_01_066 crossref_primary_10_1016_j_bbr_2012_10_021 crossref_primary_10_1016_j_nlm_2012_12_004 crossref_primary_10_1038_s41593_023_01409_1 crossref_primary_10_1523_ENEURO_0238_21_2023 crossref_primary_10_1007_s11682_019_00190_9 crossref_primary_10_1134_S0362119721050029 crossref_primary_10_3389_fnbeh_2022_964644 crossref_primary_10_1523_JNEUROSCI_2097_21_2022 crossref_primary_10_7554_eLife_16088 crossref_primary_10_1038_ncomms3264 crossref_primary_10_1016_j_nlm_2023_107800 crossref_primary_10_1038_s41386_020_00931_1 crossref_primary_10_1016_j_bpsgos_2023_11_004 crossref_primary_10_1093_texcom_tgaa039 crossref_primary_10_1016_j_biopsych_2016_05_012 crossref_primary_10_1016_j_conb_2023_102803 crossref_primary_10_1007_s00429_016_1304_z crossref_primary_10_1007_s00429_015_1081_0 crossref_primary_10_1093_oons_kvad005 crossref_primary_10_1038_s41380_019_0422_4 crossref_primary_10_1093_cercor_bhab231 crossref_primary_10_1016_j_neuroscience_2021_02_017 crossref_primary_10_7554_eLife_57268 crossref_primary_10_1111_ejn_12751 crossref_primary_10_1093_cercor_bht189 crossref_primary_10_3389_fnsys_2015_00171 crossref_primary_10_1016_j_neuropharm_2020_108007 crossref_primary_10_1016_j_isci_2023_107718 crossref_primary_10_1007_s00429_013_0630_7 crossref_primary_10_1007_s11064_014_1440_x crossref_primary_10_1016_j_nlm_2013_11_003 crossref_primary_10_1016_j_bbr_2024_115066 crossref_primary_10_1073_pnas_2003181117 crossref_primary_10_1016_j_neuroscience_2021_07_028 crossref_primary_10_1038_npp_2016_284 crossref_primary_10_1016_j_neuint_2016_08_007 |
Cites_doi | 10.1016/S0278-2626(03)00278-1 10.1016/j.nlm.2008.08.010 10.1523/JNEUROSCI.23-25-08771.2003 10.1002/cne.20668 10.1002/cne.902100207 10.1007/BF00227280 10.1016/j.brainresbull.2006.12.002 10.1002/(SICI)1098-2396(19991215)34:4<245::AID-SYN1>3.0.CO;2-D 10.1007/s00429-007-0150-4 10.1111/j.1460-9568.2009.06992.x 10.1002/cne.901770405 10.1016/0006-8993(86)90867-X 10.1002/cne.902900205 10.1111/j.1460-9568.1991.tb00850.x 10.1002/cne.901870108 10.1002/cne.10978 10.1523/JNEUROSCI.1556-07.2007 10.1016/0304-3940(86)90054-6 10.1016/S0079-6123(08)62677-1 10.1523/JNEUROSCI.20-10-03864.2000 10.1037/0735-7044.117.5.1054 10.1002/cne.902530302 10.1016/j.brainres.2004.12.049 10.1002/cne.902940210 10.1007/978-1-4615-3302-3_22 10.1002/cne.21135 10.1016/S0165-0173(97)00007-6 10.1016/0306-4522(83)90049-0 10.1002/cne.903520407 10.1016/S0165-0173(02)00181-9 10.1016/0166-4328(94)90010-8 10.1002/cne.20342 10.1523/JNEUROSCI.0012-07.2007 10.1016/S0306-4522(98)00157-2 10.1016/0306-4522(95)00417-3 10.1002/cne.1105 10.1523/JNEUROSCI.1921-05.2005 10.1007/978-3-7643-8561-3_3 10.1016/S0306-4522(97)00268-6 10.1093/cercor/10.3.206 10.1002/cne.903380209 10.1046/j.1460-9568.2002.02189.x 10.1073/pnas.0806669105 10.1007/BF00227299 10.1523/JNEUROSCI.20-11-04320.2000 10.1016/j.nlm.2004.10.003 10.1016/S0006-8993(99)01779-5 10.1016/j.neuron.2009.03.005 10.1007/s00429-007-0164-y 10.1002/cne.10083 10.1002/cne.903080210 10.1002/cne.902890103 10.1002/cne.902790207 10.1002/cne.903210314 10.1016/0306-4522(82)91133-2 10.1016/0006-8993(69)90003-1 10.1523/JNEUROSCI.2820-08.2008 10.1002/cne.10868 10.1007/978-1-4615-1749-8 10.1016/0306-4522(91)90151-D 10.1196/annals.1401.037 10.1002/cne.10976 10.1523/JNEUROSCI.21-10-03674.2001 10.1523/JNEUROSCI.3432-05.2005 10.1037/0735-7044.113.1.32 10.1002/cne.902960202 10.1016/j.pneurobio.2009.10.002 10.1016/0006-8993(91)91677-S 10.1016/S0891-0618(99)00009-5 10.1016/0306-4522(88)90339-9 10.1038/nrn2753 10.1196/annals.1401.033 10.1007/s00429-008-0180-6 10.1016/j.neubiorev.2004.09.006 10.1196/annals.1401.001 10.1016/j.neulet.2007.12.024 10.1002/cne.21523 10.1098/rstb.1998.0336 10.1016/S0301-0082(98)00003-3 10.1002/(SICI)1096-9861(19960122)364:4<637::AID-CNE3>3.0.CO;2-4 10.1002/1096-9861(20000710)422:4<556::AID-CNE6>3.0.CO;2-U 10.1016/j.bbr.2003.09.019 10.1002/cne.20738 10.1016/0361-9230(86)90237-6 10.1007/s00213-007-0917-6 10.1016/j.brainresbull.2008.11.012 10.1002/cne.903200202 10.1002/syn.10279 10.1016/S0006-8993(02)03841-6 10.1073/pnas.92.9.3898 10.1016/0304-3940(84)90030-2 10.1016/0306-4522(82)90157-9 10.1002/cne.903240109 10.1523/JNEUROSCI.0319-08.2008 10.1002/cne.903030405 10.1016/j.neuron.2010.03.033 10.1016/0306-4522(90)90194-9 10.1016/S0079-6123(08)62675-8 10.1002/cne.902060105 10.1016/j.conb.2010.01.009 10.1016/0361-9230(90)90088-H 10.1016/j.nlm.2010.01.005 10.1016/0006-8993(90)91570-7 10.3758/BF03330596 10.1002/cne.901710204 10.1016/j.neuroscience.2006.06.027 10.1016/j.conb.2009.02.005 10.1016/j.neuron.2005.07.018 10.1016/j.bbr.2003.09.023 10.1523/JNEUROSCI.5443-06.2007 10.1002/cne.903230204 10.1111/j.1460-9568.2009.06679.x 10.1007/BF02738406 10.1002/cne.903160305 10.1002/1098-1063(2000)10:4<438::AID-HIPO10>3.0.CO;2-3 10.1002/cne.1303 10.1016/0306-4522(95)00455-6 10.1196/annals.1401.008 10.1002/cne.21679 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley‐Liss, Inc. Copyright © 2011 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2011 Wiley‐Liss, Inc. – notice: Copyright © 2011 Wiley-Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/cne.22733 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 3801 |
ExternalDocumentID | 3372456491 10_1002_cne_22733 21800317 CNE22733 ark_67375_WNG_CBDJGDW3_Q |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Science Foundation funderid: IOS 0820639 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XV2 YQT ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4893-71dccec45fb0f103a5a7be85e7a4858704a8285db648ffcd431730a2755102303 |
IEDL.DBID | DR2 |
ISSN | 0021-9967 1096-9861 |
IngestDate | Sat Aug 17 01:45:29 EDT 2024 Fri Aug 16 05:14:48 EDT 2024 Thu Oct 10 20:01:11 EDT 2024 Fri Aug 23 03:41:19 EDT 2024 Sat Sep 28 07:48:40 EDT 2024 Sat Aug 24 00:57:55 EDT 2024 Wed Oct 30 09:49:36 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | Copyright © 2011 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4893-71dccec45fb0f103a5a7be85e7a4858704a8285db648ffcd431730a2755102303 |
Notes | istex:5822767301FB238B74CAA5E87627E9BAF2792CD0 ArticleID:CNE22733 National Science Foundation - No. IOS 0820639 ark:/67375/WNG-CBDJGDW3-Q ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 21800317 |
PQID | 1545001465 |
PQPubID | 1006438 |
PageCount | 36 |
ParticipantIDs | proquest_miscellaneous_899130003 proquest_miscellaneous_1017962220 proquest_journals_1545001465 crossref_primary_10_1002_cne_22733 pubmed_primary_21800317 wiley_primary_10_1002_cne_22733_CNE22733 istex_primary_ark_67375_WNG_CBDJGDW3_Q |
PublicationCentury | 2000 |
PublicationDate | 15 December 2011 |
PublicationDateYYYYMMDD | 2011-12-15 |
PublicationDate_xml | – month: 12 year: 2011 text: 15 December 2011 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States – name: New York |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J. Comp. Neurol |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley Subscription Services, Inc |
References | Berendse HW, Groenewegen HJ. 1991. Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42: 73-102. Furuyashiki T, Holland PC, Gallagher M. 2008. Rat orbitofrontal cortex separately encodes response and outcome information during performance of goal-directed behavior. J Neurosci 28: 5127-5138. Llinas R, Ribary U, Contreras D, Pedroarena C. 1998. The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353: 1841-1849. Corbit LH, Balleine BW. 2003. The role of prelimbic cortex in instrumental conditioning. Behav Brain Res 146: 145-157. Chudasama Y, Robbins TW. 2003. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23: 8771-8780. Craig AD Jr, Wiegand SJ, Price JL. 1982. The thalamo-cortical projection of the nucleus submedius in the cat. J Comp Neurol 206: 28-48. Takagishi M, Chiba T. 1991. Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res 566: 26-39. Berendse HW, Galis-de Graaf Y, Groenewegen HJ. 1992. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316: 314-347. van der Plasse G, La Fors SS, Meerkerk DT, Joosten RN, Uylings HB, Feenstra MG. 2007. Medial prefrontal serotonin in the rat is involved in goal-directed behaviour when affect guides decision making. Psychopharmacology 195: 435-449. Behzadi G, Kalen P, Parvopassu F, Wiklund L. 1990. Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective D-[3H]aspartate labelling of possible excitatory amino acid inputs. Neuroscience 37: 77-100. Takahashi YK, Roesch MR, Stalnaker TA, Haney RZ, Calu DJ, Taylor AR, Burke KA, Schoenbaum G. 2009. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62: 269-280. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH. 1998. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82: 443-468. Shibata H, Naito J. 2008. Organization of anterior cingulate and frontal cortical projections to the retrosplenial cortex in the rat. J Comp Neurol 506: 30-45. Wouterlood FG. 1991. Innervation of entorhinal principal cells by neurons of the nucleus reuniens thalami. Anterograde PHA-L tracing combined with retrograde fluorescent tracing and intracellular injection with lucifer yellow in the rat. Eur J Neurosci 3: 641-647. Geisler S, Zahm DS. 2005. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490: 270-294. Schilman EA, Uylings HB, Galis-de Graaf Y, Joel D, Groenewegen HJ. 2008. The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci Lett 432: 40-45. Kim J, Ragozzino ME. 2005. The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiol Learn Mem 83: 125-133. Ongur D, Price JL. 2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10: 206-219. Brog JS, Salyapongse A, Deutch AY, Zahm DS. 1993. The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported Fluoro-Gold. J Comp Neurol 338: 255-278. Neafsey EJ, Hurley-Gius KM, Arvanitis D. 1986. The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus. Brain Res 377: 561-570. Schoenbaum G, Roesch M. 2005. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47: 633-636. Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. 2000. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 422: 556-578. Marchand JE, Hagino N. 1983. Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience 9: 95-106. Schoenbaum G, Saddoris MP, Stalnaker TA. 2007. Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies. Ann N Y Acad Sci 1121: 320-335. Sesack SR, Deutch AY, Roth RH, Bunney BS. 1989. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213-242. Cassell MD, Chittick CA, Siegel MA, Wright DJ. 1989. Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices. J Comp Neurol 279: 235-248. Goto M, Swanson LW, Canteras NS. 2001. Connections of the nucleus incertus. J Comp Neurol 438: 86-122. Krettek JE, Price JL. 1977. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171: 157-191. Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ. 2006. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499: 768-796. McKenna JT, Vertes RP. 2004. Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480: 115-142. Vertes RP, Hoover WB. 2008. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508: 212-237. Jasmin L, Burkey AR, Granato A, Ohara PT. 2004. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468: 425-440. Carr DB, Sesack SR. 2000. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20: 3864-3873. Vertes RP. 2004. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51: 32-58. Reep RL, Winans SS. 1982. Afferent connections of dorsal and ventral agranular insular cortex in the hamster Mesocricetus auratus. Neuroscience 7: 1265-1288. Goncalves L, Nogueira MI, Shammah-Lagnado SJ, Metzger M. 2009. Prefrontal afferents to the dorsal raphe nucleus in the rat. Brain Res Bull 78: 240-247. Marcinkiewicz M, Morcos R, Chretien M. 1989. CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-Gold complex in the rat. J Comp Neurol 289: 11-35. Dolleman-Van Der Weel MJ, Witter MP. 1996. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364: 637-650. Reep RL, Corwin JV. 2009. Posterior parietal cortex as part of a neural network for directed attention in rats. Neurobiol Learn Mem 91: 104-113. Hoover WB, Vertes RP. 2007. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212: 149-179. Tang JS, Qu CL, Huo FQ. 2009. The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway. Prog Neurobiol 89: 383-389. Ray JP, Price JL. 1992. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323: 167-197. Swanson LW. 2004. Brain maps: structure of the rat brain. San Diego: Academic Press. Cassell MD, Wright DJ. 1986. Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17: 321-333. Uylings HB, van Eden CG. 1990. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85: 31-62. Homayoun H, Moghaddam B. 2009. Differential representation of Pavlovian-instrumental transfer by prefrontal cortex subregions and striatum. Eur J Neurosci 29: 1461-1476. McAlonan K, Brown VJ. 2003. Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146: 97-103. Reep RL, Cheatwood JL, Corwin JV. 2003. The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467: 271-292. Conde F, Maire-Lepoivre E, Audinat E, Crepel F. 1995. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352: 567-593. Sesack SR, Pickel VM. 1992. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320: 145-160. Hajos M, Richards CD, Szekely AD, Sharp T. 1998. An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87: 95-108. McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog Neurobiol 55: 257-332. Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C. 2007. Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71: 601-609. Ostlund SB, Balleine BW. 2007a. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J Neurosci 27: 4819-4825. Laroche S, Davis S, Jay TM. 2000. Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 10: 438-446. Reep RL, Chandler HC, King V, Corwin JV. 1994. Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100: 67-84. Leonard CM. 1969. The prefrontal cortex of the rat. I. Cortical projection of t 2002; 16 2009; 89 2004; 28 2008; 508 2008; 506 1996; 71 1983; 9 2008; 105 2007; 71 1998; 82 1994; 61 1998; 87 1999; 841 2007; 212 2010; 20 2009; 10 2003; 963 2009; 91 2000; 10 2008; 28 1985 2009; 19 1990; 296 1990; 294 2009; 62 1990; 522 1990; 37 2007; 1121 1982; 206 1984; 44 1997; 24 1969; 12 1986; 17 1996; 364 2005; 83 1991 2001; 21 2009; 78 2004; 55 2001; 432 2004; 51 1990; 24 1999; 34 1988; 24 1999; 113 1996; 111 2001; 438 2003; 467 1991; 566 2003; 23 1977; 171 2005; 490 1979; 187 2005; 492 1986; 377 2003; 117 1986; 253 1989; 279 2007a; 27 1992; 320 1992; 321 2004; 480 1992; 323 1992; 324 1978; 177 1998; 353 2005; 1036 2006; 499 2005; 25 1990; 85 2010; 66 1994; 100 1993; 338 1991; 42 1999; 16 1982; 210 1982; 7 1992; 316 2008; 432 1991; 303 1991; 308 1998; 55 2007; 27 1998; 26 2002; 39 1991; 3 2004; 468 1995; 92 2000; 20 2008 2004 1995; 352 2009; 29 2005; 47 2009; 30 1986; 63 2000; 422 1989; 289 2007; 195 2002; 442 2007b; 1121 2006; 142 2008; 213 1989; 290 2008; 212 2003; 146 2010; 93 e_1_2_5_27_1 e_1_2_5_120_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_101_1 e_1_2_5_65_1 e_1_2_5_88_1 e_1_2_5_105_1 e_1_2_5_69_1 e_1_2_5_109_1 Corwin JV (e_1_2_5_24_1) 1998; 26 e_1_2_5_80_1 e_1_2_5_61_1 e_1_2_5_84_1 e_1_2_5_42_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_113_1 e_1_2_5_7_1 e_1_2_5_76_1 e_1_2_5_99_1 e_1_2_5_117_1 e_1_2_5_3_1 e_1_2_5_19_1 e_1_2_5_91_1 e_1_2_5_72_1 e_1_2_5_95_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_45_1 e_1_2_5_100_1 e_1_2_5_22_1 e_1_2_5_87_1 e_1_2_5_104_1 e_1_2_5_68_1 e_1_2_5_108_1 e_1_2_5_60_1 e_1_2_5_83_1 e_1_2_5_64_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_56_1 e_1_2_5_33_1 e_1_2_5_112_1 e_1_2_5_4_1 e_1_2_5_98_1 e_1_2_5_79_1 e_1_2_5_116_1 e_1_2_5_18_1 e_1_2_5_90_1 e_1_2_5_71_1 e_1_2_5_94_1 e_1_2_5_75_1 e_1_2_5_52_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_107_1 e_1_2_5_67_1 e_1_2_5_29_1 e_1_2_5_82_1 e_1_2_5_63_1 e_1_2_5_86_1 e_1_2_5_40_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_111_1 e_1_2_5_5_1 e_1_2_5_78_1 e_1_2_5_115_1 e_1_2_5_119_1 e_1_2_5_70_1 e_1_2_5_93_1 e_1_2_5_74_1 e_1_2_5_97_1 e_1_2_5_51_1 e_1_2_5_121_1 e_1_2_5_28_1 e_1_2_5_47_1 e_1_2_5_102_1 e_1_2_5_43_1 e_1_2_5_106_1 e_1_2_5_66_1 e_1_2_5_89_1 e_1_2_5_81_1 e_1_2_5_62_1 e_1_2_5_85_1 e_1_2_5_20_1 e_1_2_5_39_1 e_1_2_5_110_1 e_1_2_5_16_1 e_1_2_5_58_1 e_1_2_5_35_1 e_1_2_5_114_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_54_1 e_1_2_5_77_1 e_1_2_5_118_1 e_1_2_5_2_1 e_1_2_5_92_1 e_1_2_5_73_1 e_1_2_5_96_1 e_1_2_5_31_1 e_1_2_5_50_1 Swanson LW (e_1_2_5_103_1) 2004 |
References_xml | – volume: 105 start-page: 18041 year: 2008 end-page: 18046 article-title: Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs publication-title: Proc Natl Acad Sci U S A – volume: 27 start-page: 8166 year: 2007 end-page: 8169 article-title: What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross‐species studies publication-title: J Neurosci – volume: 87 start-page: 95 year: 1998 end-page: 108 article-title: An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat publication-title: Neuroscience – volume: 89 start-page: 383 year: 2009 end-page: 389 article-title: The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway publication-title: Prog Neurobiol – volume: 23 start-page: 8771 year: 2003 end-page: 8780 article-title: Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex publication-title: J Neurosci – volume: 289 start-page: 11 year: 1989 end-page: 35 article-title: CNS connections with the median raphe nucleus: retrograde tracing with WGA‐apoHRP‐Gold complex in the rat publication-title: J Comp Neurol – volume: 3 start-page: 641 year: 1991 end-page: 647 article-title: Innervation of entorhinal principal cells by neurons of the nucleus reuniens thalami. Anterograde PHA‐L tracing combined with retrograde fluorescent tracing and intracellular injection with lucifer yellow in the rat publication-title: Eur J Neurosci – volume: 432 start-page: 307 year: 2001 end-page: 328 article-title: Orbitomedial prefrontal cortical projections to hypothalamus in the rat publication-title: J Comp Neurol – volume: 1121 start-page: 193 year: 2007 end-page: 215 article-title: Neural encoding in the orbitofrontal cortex related to goal‐directed behavior publication-title: Ann N Y Acad Sci – volume: 92 start-page: 3898 year: 1995 end-page: 3902 article-title: Evidence for a hypothalamothalamocortical circuit mediating pheromonal influences on eye and head movements publication-title: Proc Natl Acad Sci U S A – volume: 30 start-page: 1941 year: 2009 end-page: 1946 article-title: Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues publication-title: Eur J Neurosci – volume: 55 start-page: 104 year: 2004 end-page: 115 article-title: Plasticity and functions of the orbital frontal cortex publication-title: Brain Cogn – volume: 177 start-page: 589 year: 1978 end-page: 609 article-title: Connections of nucleus reuniens thalami: evidence for a direct thalamo‐hippocampal pathway in rat publication-title: J Comp Neurol – volume: 24 start-page: 379 year: 1988 end-page: 431 article-title: Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal‐prefrontal topography publication-title: Neuroscience – volume: 253 start-page: 277 year: 1986 end-page: 302 article-title: Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections publication-title: J Comp Neurol – volume: 422 start-page: 556 year: 2000 end-page: 578 article-title: Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat publication-title: J Comp Neurol – volume: 12 start-page: 321 year: 1969 end-page: 343 article-title: The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections publication-title: Brain Res – volume: 213 start-page: 159 year: 2008 end-page: 175 article-title: Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors publication-title: Brain Struct Funct – volume: 324 start-page: 115 year: 1992 end-page: 133 article-title: The afferent and efferent connections of the nucleus submedius in the rat publication-title: J Comp Neurol – volume: 841 start-page: 43 year: 1999 end-page: 52 article-title: Topographic organization of the striatal and thalamic connections of rat medial agranular cortex publication-title: Brain Res – volume: 85 start-page: 31 year: 1990 end-page: 62 article-title: Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans publication-title: Prog Brain Res – volume: 438 start-page: 86 year: 2001 end-page: 122 article-title: Connections of the nucleus incertus publication-title: J Comp Neurol – volume: 71 start-page: 371 year: 1996 end-page: 382 article-title: Prefrontal cortex inputs of the nucleus accumbens‐nigro‐thalamic circuit publication-title: Neuroscience – volume: 353 start-page: 1841 year: 1998 end-page: 1849 article-title: The neuronal basis for consciousness publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 16 start-page: 1227 year: 2002 end-page: 1239 article-title: Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat publication-title: Eur J Neurosci – volume: 17 start-page: 321 year: 1986 end-page: 333 article-title: Topography of projections from the medial prefrontal cortex to the amygdala in the rat publication-title: Brain Res Bull – volume: 566 start-page: 26 year: 1991 end-page: 39 article-title: Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA‐L study publication-title: Brain Res – volume: 16 start-page: 167 year: 1999 end-page: 185 article-title: Integration and segregation of limbic cortico‐striatal loops at the thalamic level: an experimental tracing study in rats publication-title: J Chem Neuroanat – volume: 71 start-page: 601 year: 2007 end-page: 609 article-title: Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus publication-title: Brain Res Bull – volume: 296 start-page: 179 year: 1990 end-page: 203 article-title: Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer ‐leucoagglutinin publication-title: J Comp Neurol – volume: 290 start-page: 213 year: 1989 end-page: 242 article-title: Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract‐tracing study with leucoagglutinin publication-title: J Comp Neurol – volume: 44 start-page: 247 year: 1984 end-page: 252 article-title: Afferent connections of medial precentral cortex in the rat publication-title: Neurosci Lett – volume: 100 start-page: 67 year: 1994 end-page: 84 article-title: Rat posterior parietal cortex: topography of corticocortical and thalamic connections publication-title: Exp Brain Res – volume: 1036 start-page: 90 year: 2005 end-page: 100 article-title: Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat publication-title: Brain Res – volume: 303 start-page: 563 year: 1991 end-page: 583 article-title: Prefrontal cortical projections to the cholinergic neurons in the basal forebrain publication-title: J Comp Neurol – volume: 171 start-page: 157 year: 1977 end-page: 191 article-title: The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat publication-title: J Comp Neurol – volume: 7 start-page: 133 year: 1982 end-page: 159 article-title: The organization of afferent projections to the midbrain periaqueductal gray of the rat publication-title: Neuroscience – volume: 27 start-page: 4819 year: 2007a end-page: 4825 article-title: Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning publication-title: J Neurosci – volume: 10 start-page: 885 year: 2009 end-page: 892 article-title: A new perspective on the role of the orbitofrontal cortex in adaptive behaviour publication-title: Nat Rev Neurosci – volume: 210 start-page: 163 year: 1982 end-page: 173 article-title: Convergence of autonomic and limbic connections in the insular cortex of the rat publication-title: J Comp Neurol – volume: 100 start-page: 469 year: 1994 end-page: 483 article-title: Efferent connections of the medial prefrontal cortex in the rabbit publication-title: Exp Brain Res – volume: 442 start-page: 163 year: 2002 end-page: 187 article-title: Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens publication-title: J Comp Neurol – volume: 34 start-page: 245 year: 1999 end-page: 255 article-title: Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst‐patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses publication-title: Synapse – volume: 1121 start-page: 174 year: 2007b end-page: 192 article-title: The contribution of orbitofrontal cortex to action selection publication-title: Ann N Y Acad Sci – volume: 320 start-page: 145 year: 1992 end-page: 160 article-title: Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area publication-title: J Comp Neurol – volume: 508 start-page: 212 year: 2008 end-page: 237 article-title: Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat publication-title: J Comp Neurol – volume: 71 start-page: 55 year: 1996 end-page: 75 article-title: Projections of the medial and lateral prefrontal cortices to the amygdala: a leucoagglutinin study in the rat publication-title: Neuroscience – volume: 66 start-page: 449 year: 2010 end-page: 460 article-title: Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making publication-title: Neuron – volume: 338 start-page: 255 year: 1993 end-page: 278 article-title: The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported Fluoro‐Gold publication-title: J Comp Neurol – volume: 352 start-page: 567 year: 1995 end-page: 593 article-title: Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents publication-title: J Comp Neurol – volume: 42 start-page: 73 year: 1991 end-page: 102 article-title: Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat publication-title: Neuroscience – volume: 10 start-page: 206 year: 2000 end-page: 219 article-title: The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans publication-title: Cereb Cortex – volume: 91 start-page: 104 year: 2009 end-page: 113 article-title: Posterior parietal cortex as part of a neural network for directed attention in rats publication-title: Neurobiol Learn Mem – year: 1985 – volume: 206 start-page: 28 year: 1982 end-page: 48 article-title: The thalamo‐cortical projection of the nucleus submedius in the cat publication-title: J Comp Neurol – volume: 364 start-page: 637 year: 1996 end-page: 650 article-title: Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons publication-title: J Comp Neurol – volume: 467 start-page: 271 year: 2003 end-page: 292 article-title: The associative striatum: organization of cortical projections to the dorsocentral striatum in rats publication-title: J Comp Neurol – volume: 10 start-page: 438 year: 2000 end-page: 446 article-title: Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation publication-title: Hippocampus – volume: 26 start-page: 87 year: 1998 end-page: 102 article-title: Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention publication-title: Psychobiology – volume: 55 start-page: 257 year: 1998 end-page: 332 article-title: Cortical pathways to the mammalian amygdala publication-title: Prog Neurobiol – volume: 492 start-page: 145 year: 2005 end-page: 177 article-title: Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers publication-title: J Comp Neurol – volume: 1121 start-page: 54 year: 2007 end-page: 71 article-title: Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions publication-title: Ann N Y Acad Sci – start-page: 417 year: 1991 end-page: 448 – volume: 212 start-page: 387 year: 2008 end-page: 401 article-title: The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study publication-title: Brain Struct Funct – volume: 7 start-page: 1265 year: 1982 end-page: 1288 article-title: Afferent connections of dorsal and ventral agranular insular cortex in the hamster publication-title: Neuroscience – volume: 468 start-page: 425 year: 2004 end-page: 440 article-title: Rostral agranular insular cortex and pain areas of the central nervous system: a tract‐tracing study in the rat publication-title: J Comp Neurol – volume: 142 start-page: 1 year: 2006 end-page: 20 article-title: Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat publication-title: Neuroscience – volume: 63 start-page: 159 year: 1986 end-page: 164 article-title: Projections to the midbrain from the medial versus lateral prefrontal cortices of the rat publication-title: Neurosci Lett – volume: 522 start-page: 1 year: 1990 end-page: 6 article-title: Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of Fluoro‐Gold publication-title: Brain Res – volume: 78 start-page: 240 year: 2009 end-page: 247 article-title: Prefrontal afferents to the dorsal raphe nucleus in the rat publication-title: Brain Res Bull – volume: 321 start-page: 488 year: 1992 end-page: 499 article-title: Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat publication-title: J Comp Neurol – volume: 113 start-page: 32 year: 1999 end-page: 41 article-title: Involvement of rodent prefrontal cortex subregions in strategy switching publication-title: Behav Neurosci – volume: 27 start-page: 5730 year: 2007 end-page: 5743 article-title: Glutamatergic afferents of the ventral tegmental area in the rat publication-title: J Neurosci – volume: 28 start-page: 11124 year: 2008 end-page: 11130 article-title: Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice publication-title: J Neurosci – volume: 279 start-page: 235 year: 1989 end-page: 248 article-title: Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices publication-title: J Comp Neurol – volume: 195 start-page: 435 year: 2007 end-page: 449 article-title: Medial prefrontal serotonin in the rat is involved in goal‐directed behaviour when affect guides decision making publication-title: Psychopharmacology – volume: 963 start-page: 57 year: 2003 end-page: 71 article-title: Glutamatergic afferent projections to the dorsal raphe nucleus of the rat publication-title: Brain Res – volume: 85 start-page: 95 year: 1990 end-page: 116 article-title: The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization publication-title: Prog Brain Res – volume: 20 start-page: 3864 year: 2000 end-page: 3873 article-title: Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons publication-title: J Neurosci – volume: 82 start-page: 443 year: 1998 end-page: 468 article-title: Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods publication-title: Neuroscience – year: 2004 – volume: 377 start-page: 561 year: 1986 end-page: 570 article-title: The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus publication-title: Brain Res – volume: 117 start-page: 1054 year: 2003 end-page: 1065 article-title: The contribution of the rat prelimbic‐infralimbic areas to different forms of task switching publication-title: Behav Neurosci – volume: 83 start-page: 125 year: 2005 end-page: 133 article-title: The involvement of the orbitofrontal cortex in learning under changing task contingencies publication-title: Neurobiol Learn Mem – volume: 37 start-page: 77 year: 1990 end-page: 100 article-title: Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective D‐[ H]aspartate labelling of possible excitatory amino acid inputs publication-title: Neuroscience – volume: 24 start-page: 197 year: 1997 end-page: 254 article-title: The structural organization of connections between hypothalamus and cerebral cortex publication-title: Brain Res Brain Res Rev – volume: 490 start-page: 270 year: 2005 end-page: 294 article-title: Afferents of the ventral tegmental area in the rat‐anatomical substratum for integrative functions publication-title: J Comp Neurol – volume: 111 start-page: 215 year: 1996 end-page: 232 article-title: Neuronal connections of orbital cortex in rats: topography of cortical and thalamic afferents publication-title: Exp Brain Res – volume: 432 start-page: 40 year: 2008 end-page: 45 article-title: The orbital cortex in rats topographically projects to central parts of the caudate‐putamen complex publication-title: Neurosci Lett – start-page: 69 year: 2008 end-page: 102 – volume: 28 start-page: 771 year: 2004 end-page: 784 article-title: Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates publication-title: Neurosci Biobehav Rev – volume: 28 start-page: 5127 year: 2008 end-page: 5138 article-title: Rat orbitofrontal cortex separately encodes response and outcome information during performance of goal‐directed behavior publication-title: J Neurosci – volume: 93 start-page: 479 year: 2010 end-page: 486 article-title: Evidence for the thalamic targets of the medial hypothalamic defensive system mediating emotional memory to predatory threats publication-title: Neurobiol Learn Mem – volume: 212 start-page: 149 year: 2007 end-page: 179 article-title: Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat publication-title: Brain Struct Funct – volume: 499 start-page: 768 year: 2006 end-page: 796 article-title: Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat publication-title: J Comp Neurol – volume: 20 start-page: 205 year: 2010 end-page: 211 article-title: How do you (estimate you will) like them apples? Integration as a defining trait of orbitofrontal function publication-title: Curr Opin Neurobiol – volume: 39 start-page: 107 year: 2002 end-page: 140 article-title: The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness publication-title: Brain Res Brain Res Rev – volume: 316 start-page: 314 year: 1992 end-page: 347 article-title: Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat publication-title: J Comp Neurol – volume: 506 start-page: 30 year: 2008 end-page: 45 article-title: Organization of anterior cingulate and frontal cortical projections to the retrosplenial cortex in the rat publication-title: J Comp Neurol – volume: 21 start-page: 3674 year: 2001 end-page: 3687 article-title: Susceptibility to kindling and neuronal connections of the anterior claustrum publication-title: J Neurosci – volume: 9 start-page: 95 year: 1983 end-page: 106 article-title: Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study publication-title: Neuroscience – volume: 29 start-page: 1461 year: 2009 end-page: 1476 article-title: Differential representation of Pavlovian‐instrumental transfer by prefrontal cortex subregions and striatum publication-title: Eur J Neurosci – volume: 146 start-page: 97 year: 2003 end-page: 103 article-title: Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat publication-title: Behav Brain Res – volume: 25 start-page: 7763 year: 2005 end-page: 7770 article-title: Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal‐directed learning publication-title: J Neurosci – volume: 468 start-page: 518 year: 2004 end-page: 529 article-title: Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma‐aminobutyric acid neurons publication-title: J Comp Neurol – volume: 1121 start-page: 320 year: 2007 end-page: 335 article-title: Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies publication-title: Ann N Y Acad Sci – volume: 187 start-page: 117 year: 1979 end-page: 143 article-title: Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat publication-title: J Comp Neurol – volume: 62 start-page: 269 year: 2009 end-page: 280 article-title: The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes publication-title: Neuron – volume: 146 start-page: 145 year: 2003 end-page: 157 article-title: The role of prelimbic cortex in instrumental conditioning publication-title: Behav Brain Res – volume: 25 start-page: 11757 year: 2005 end-page: 11767 article-title: Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala publication-title: J Neurosci – volume: 323 start-page: 167 year: 1992 end-page: 197 article-title: The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain‐prefrontal cortex topography publication-title: J Comp Neurol – volume: 20 start-page: 4320 year: 2000 end-page: 4324 article-title: Medial frontal cortex mediates perceptual attentional set shifting in the rat publication-title: J Neurosci – volume: 61 start-page: 79 year: 1994 end-page: 86 article-title: Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats publication-title: Behav Brain Res – volume: 308 start-page: 249 year: 1991 end-page: 276 article-title: Efferent projections of the infralimbic cortex of the rat publication-title: J Comp Neurol – volume: 294 start-page: 262 year: 1990 end-page: 280 article-title: Topographic organization in the corticocortical connections of medial agranular cortex in rats publication-title: J Comp Neurol – volume: 47 start-page: 633 year: 2005 end-page: 636 article-title: Orbitofrontal cortex, associative learning, and expectancies publication-title: Neuron – volume: 24 start-page: 341 year: 1990 end-page: 354 article-title: Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents publication-title: Brain Res Bull – volume: 480 start-page: 115 year: 2004 end-page: 142 article-title: Afferent projections to nucleus reuniens of the thalamus publication-title: J Comp Neurol – volume: 51 start-page: 32 year: 2004 end-page: 58 article-title: Differential projections of the infralimbic and prelimbic cortex in the rat publication-title: Synapse – volume: 19 start-page: 75 year: 2009 end-page: 83 article-title: General mechanisms for making decisions? publication-title: Curr Opin Neurobiol – ident: e_1_2_5_53_1 doi: 10.1016/S0278-2626(03)00278-1 – ident: e_1_2_5_80_1 doi: 10.1016/j.nlm.2008.08.010 – ident: e_1_2_5_19_1 doi: 10.1523/JNEUROSCI.23-25-08771.2003 – ident: e_1_2_5_35_1 doi: 10.1002/cne.20668 – ident: e_1_2_5_91_1 doi: 10.1002/cne.902100207 – ident: e_1_2_5_84_1 doi: 10.1007/BF00227280 – ident: e_1_2_5_117_1 doi: 10.1016/j.brainresbull.2006.12.002 – ident: e_1_2_5_2_1 doi: 10.1002/(SICI)1098-2396(19991215)34:4<245::AID-SYN1>3.0.CO;2-D – ident: e_1_2_5_47_1 doi: 10.1007/s00429-007-0150-4 – ident: e_1_2_5_12_1 doi: 10.1111/j.1460-9568.2009.06992.x – ident: e_1_2_5_44_1 doi: 10.1002/cne.901770405 – ident: e_1_2_5_67_1 doi: 10.1016/0006-8993(86)90867-X – ident: e_1_2_5_99_1 doi: 10.1002/cne.902900205 – ident: e_1_2_5_118_1 doi: 10.1111/j.1460-9568.1991.tb00850.x – ident: e_1_2_5_73_1 doi: 10.1002/cne.901870108 – ident: e_1_2_5_50_1 doi: 10.1002/cne.10978 – ident: e_1_2_5_66_1 doi: 10.1523/JNEUROSCI.1556-07.2007 – ident: e_1_2_5_43_1 doi: 10.1016/0304-3940(86)90054-6 – ident: e_1_2_5_40_1 doi: 10.1016/S0079-6123(08)62677-1 – ident: e_1_2_5_13_1 doi: 10.1523/JNEUROSCI.20-10-03864.2000 – ident: e_1_2_5_77_1 doi: 10.1037/0735-7044.117.5.1054 – ident: e_1_2_5_92_1 doi: 10.1002/cne.902530302 – ident: e_1_2_5_17_1 doi: 10.1016/j.brainres.2004.12.049 – ident: e_1_2_5_83_1 doi: 10.1002/cne.902940210 – ident: e_1_2_5_101_1 doi: 10.1007/978-1-4615-3302-3_22 – ident: e_1_2_5_116_1 doi: 10.1002/cne.21135 – ident: e_1_2_5_89_1 doi: 10.1016/S0165-0173(97)00007-6 – ident: e_1_2_5_59_1 doi: 10.1016/0306-4522(83)90049-0 – ident: e_1_2_5_22_1 doi: 10.1002/cne.903520407 – ident: e_1_2_5_110_1 doi: 10.1016/S0165-0173(02)00181-9 – ident: e_1_2_5_25_1 doi: 10.1016/0166-4328(94)90010-8 – ident: e_1_2_5_64_1 doi: 10.1002/cne.20342 – ident: e_1_2_5_36_1 doi: 10.1523/JNEUROSCI.0012-07.2007 – ident: e_1_2_5_42_1 doi: 10.1016/S0306-4522(98)00157-2 – ident: e_1_2_5_63_1 doi: 10.1016/0306-4522(95)00417-3 – ident: e_1_2_5_30_1 doi: 10.1002/cne.1105 – ident: e_1_2_5_69_1 doi: 10.1523/JNEUROSCI.1921-05.2005 – ident: e_1_2_5_115_1 doi: 10.1007/978-3-7643-8561-3_3 – ident: e_1_2_5_72_1 doi: 10.1016/S0306-4522(97)00268-6 – ident: e_1_2_5_68_1 doi: 10.1093/cercor/10.3.206 – ident: e_1_2_5_10_1 doi: 10.1002/cne.903380209 – ident: e_1_2_5_9_1 doi: 10.1046/j.1460-9568.2002.02189.x – ident: e_1_2_5_45_1 doi: 10.1073/pnas.0806669105 – ident: e_1_2_5_85_1 doi: 10.1007/BF00227299 – ident: e_1_2_5_7_1 doi: 10.1523/JNEUROSCI.20-11-04320.2000 – ident: e_1_2_5_52_1 doi: 10.1016/j.nlm.2004.10.003 – ident: e_1_2_5_79_1 doi: 10.1016/S0006-8993(99)01779-5 – ident: e_1_2_5_105_1 doi: 10.1016/j.neuron.2009.03.005 – ident: e_1_2_5_109_1 doi: 10.1007/s00429-007-0164-y – ident: e_1_2_5_111_1 doi: 10.1002/cne.10083 – ident: e_1_2_5_48_1 doi: 10.1002/cne.903080210 – ident: e_1_2_5_60_1 doi: 10.1002/cne.902890103 – ident: e_1_2_5_16_1 doi: 10.1002/cne.902790207 – ident: e_1_2_5_20_1 doi: 10.1002/cne.903210314 – ident: e_1_2_5_81_1 doi: 10.1016/0306-4522(82)91133-2 – ident: e_1_2_5_57_1 doi: 10.1016/0006-8993(69)90003-1 – ident: e_1_2_5_8_1 doi: 10.1523/JNEUROSCI.2820-08.2008 – ident: e_1_2_5_86_1 doi: 10.1002/cne.10868 – ident: e_1_2_5_51_1 doi: 10.1007/978-1-4615-1749-8 – ident: e_1_2_5_5_1 doi: 10.1016/0306-4522(91)90151-D – ident: e_1_2_5_31_1 doi: 10.1196/annals.1401.037 – ident: e_1_2_5_49_1 doi: 10.1002/cne.10976 – ident: e_1_2_5_121_1 doi: 10.1523/JNEUROSCI.21-10-03674.2001 – ident: e_1_2_5_87_1 doi: 10.1523/JNEUROSCI.3432-05.2005 – ident: e_1_2_5_76_1 doi: 10.1037/0735-7044.113.1.32 – ident: e_1_2_5_119_1 doi: 10.1002/cne.902960202 – ident: e_1_2_5_106_1 doi: 10.1016/j.pneurobio.2009.10.002 – ident: e_1_2_5_104_1 doi: 10.1016/0006-8993(91)91677-S – ident: e_1_2_5_41_1 doi: 10.1016/S0891-0618(99)00009-5 – ident: e_1_2_5_39_1 doi: 10.1016/0306-4522(88)90339-9 – ident: e_1_2_5_97_1 doi: 10.1038/nrn2753 – ident: e_1_2_5_71_1 doi: 10.1196/annals.1401.033 – ident: e_1_2_5_74_1 doi: 10.1007/s00429-008-0180-6 – ident: e_1_2_5_27_1 doi: 10.1016/j.neubiorev.2004.09.006 – ident: e_1_2_5_96_1 doi: 10.1196/annals.1401.001 – ident: e_1_2_5_93_1 doi: 10.1016/j.neulet.2007.12.024 – ident: e_1_2_5_100_1 doi: 10.1002/cne.21523 – volume-title: Brain maps: structure of the rat brain year: 2004 ident: e_1_2_5_103_1 contributor: fullname: Swanson LW – ident: e_1_2_5_58_1 doi: 10.1098/rstb.1998.0336 – ident: e_1_2_5_62_1 doi: 10.1016/S0301-0082(98)00003-3 – ident: e_1_2_5_28_1 doi: 10.1002/(SICI)1096-9861(19960122)364:4<637::AID-CNE3>3.0.CO;2-4 – ident: e_1_2_5_29_1 doi: 10.1002/1096-9861(20000710)422:4<556::AID-CNE6>3.0.CO;2-U – ident: e_1_2_5_61_1 doi: 10.1016/j.bbr.2003.09.019 – ident: e_1_2_5_33_1 doi: 10.1002/cne.20738 – ident: e_1_2_5_15_1 doi: 10.1016/0361-9230(86)90237-6 – ident: e_1_2_5_108_1 doi: 10.1007/s00213-007-0917-6 – ident: e_1_2_5_37_1 doi: 10.1016/j.brainresbull.2008.11.012 – ident: e_1_2_5_98_1 doi: 10.1002/cne.903200202 – ident: e_1_2_5_112_1 doi: 10.1002/syn.10279 – ident: e_1_2_5_56_1 doi: 10.1016/S0006-8993(02)03841-6 – ident: e_1_2_5_88_1 doi: 10.1073/pnas.92.9.3898 – ident: e_1_2_5_82_1 doi: 10.1016/0304-3940(84)90030-2 – ident: e_1_2_5_4_1 doi: 10.1016/0306-4522(82)90157-9 – ident: e_1_2_5_120_1 doi: 10.1002/cne.903240109 – ident: e_1_2_5_32_1 doi: 10.1523/JNEUROSCI.0319-08.2008 – ident: e_1_2_5_34_1 doi: 10.1002/cne.903030405 – ident: e_1_2_5_102_1 doi: 10.1016/j.neuron.2010.03.033 – ident: e_1_2_5_3_1 doi: 10.1016/0306-4522(90)90194-9 – ident: e_1_2_5_107_1 doi: 10.1016/S0079-6123(08)62675-8 – ident: e_1_2_5_26_1 doi: 10.1002/cne.902060105 – ident: e_1_2_5_94_1 doi: 10.1016/j.conb.2010.01.009 – ident: e_1_2_5_21_1 doi: 10.1016/0361-9230(90)90088-H – ident: e_1_2_5_14_1 doi: 10.1016/j.nlm.2010.01.005 – ident: e_1_2_5_18_1 doi: 10.1016/0006-8993(90)91570-7 – volume: 26 start-page: 87 year: 1998 ident: e_1_2_5_24_1 article-title: Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention publication-title: Psychobiology doi: 10.3758/BF03330596 contributor: fullname: Corwin JV – ident: e_1_2_5_54_1 doi: 10.1002/cne.901710204 – ident: e_1_2_5_113_1 doi: 10.1016/j.neuroscience.2006.06.027 – ident: e_1_2_5_90_1 doi: 10.1016/j.conb.2009.02.005 – ident: e_1_2_5_95_1 doi: 10.1016/j.neuron.2005.07.018 – ident: e_1_2_5_23_1 doi: 10.1016/j.bbr.2003.09.023 – ident: e_1_2_5_70_1 doi: 10.1523/JNEUROSCI.5443-06.2007 – ident: e_1_2_5_78_1 doi: 10.1002/cne.903230204 – ident: e_1_2_5_46_1 doi: 10.1111/j.1460-9568.2009.06679.x – ident: e_1_2_5_11_1 doi: 10.1007/BF02738406 – ident: e_1_2_5_6_1 doi: 10.1002/cne.903160305 – ident: e_1_2_5_55_1 doi: 10.1002/1098-1063(2000)10:4<438::AID-HIPO10>3.0.CO;2-3 – ident: e_1_2_5_38_1 doi: 10.1002/cne.1303 – ident: e_1_2_5_65_1 doi: 10.1016/0306-4522(95)00455-6 – ident: e_1_2_5_75_1 doi: 10.1196/annals.1401.008 – ident: e_1_2_5_114_1 doi: 10.1002/cne.21679 |
SSID | ssj0009938 |
Score | 2.510919 |
Snippet | The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report... Abstract The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3766 |
SubjectTerms | agranular insular cortex Amygdala Animals Basal ganglia Brain stem Cortex (cingulate) Cortex (frontal) Cortex (parietal) Cortex (prefrontal) Cortex (temporal) Forebrain (basal) Frontal Lobe - anatomy & histology instrumental learning Male medial prefrontal cortex mediodorsal nucleus Neostriatum Neural Pathways - cytology Neuroanatomical Tract-Tracing Techniques Nucleus accumbens nucleus reuniens Olfactory bulb paratenial nucleus Pavlovian conditioning Periaqueductal gray area Phaseolus vulgaris Preoptic area raphe nuclei Rats Rats, Sprague-Dawley retrosplenial cortex sensorimotor system striatum Substantia innominata Substantia nigra Thalamus Tracers |
Title | Projections of the medial orbital and ventral orbital cortex in the rat |
URI | https://api.istex.fr/ark:/67375/WNG-CBDJGDW3-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.22733 https://www.ncbi.nlm.nih.gov/pubmed/21800317 https://www.proquest.com/docview/1545001465 https://search.proquest.com/docview/1017962220 https://search.proquest.com/docview/899130003 |
Volume | 519 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UiuCLWm8d20oUEV9mO5OZJLv4pLvtloKLiqVFhJBJMiCFGdlLKf31PSfZmVKxIL4NMwmTy7l8OTn5AvDW1NJ5X9vU4kotLR2vUoM4NrWuMD6X3opwS8TnmTw6KY_PxNkGfOjOwkR-iD7gRpoR7DUpuKkW-zekobbxA47Ol5g-80JROtfk2w11FPrdaIUpBWEkVccqlPH9vuYtX3SPhvXyb0DzNm4NjufwEfzsmhzzTc4Hq2U1sFd_sDn-Z58ew8M1IGUfowRtwYZvnsD9H20Itz-F6ZcYqiHpZG3NEC-yeNqEtfOKbhxhpnHsIgaJ-3eWcngv2a8mVEApewYnhwffx0fp-vKF1BIfTapyZ623pairrM6zwgijKj8UXplyKFDLS0Pkd66S5bCurSMgUmSGK4RgtK4pnsNm0zZ-G5hSTo24pEOyvERAaLjntijFqKjl0HGRwJtuGvTvyLGhI5sy1zgiOoxIAu_CBPUlzPycktKU0KezqR5_mhxPJ6eF_prAbjeDeq2PC01AkVaDEn_2uv-MmkTbI6bx7Wqhg3GSiJeyBNgdZXB1Svt_GTbnRRSOvj2IlchCqgTehym-uyt6PDsIDy__vegOPAjR7JynudiFzeV85fcQDi2rV0HurwGt7wKQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH-YG-K--O7snBpFxC-9tUmT3IFf9G67c26HysbGQEKapCCDVm53Y_jXmye5dkwciN9Km9Akz0t-z5PkF4A3uhLWucqkxkdqaWFpmWqPY1NjmXa5cIaHWyIOpmJyVOyd8JMVeN-ehYn8EF3CDS0j-Gs0cExIb1-xhpra9aiffdktWPPmzvDihtG3K_IoP_NGP4ybEAZCtrxCGd3uql6bjdZwYC__BjWvI9cw9ezeg-9to-OOk7PeYl72zK8_-Bz_t1f34e4Sk5IPUYkewIqrH8Lt0yZk3B_B-EvM1qCCkqYiHjKSeOCENLMSLx0hurbkIuaJu3cGt_Fekh91qOAV7TEc7e4cDifp8v6F1CAlTSpza4wzBa_KrMozprmWpetzJ3XR597QC438d7YURb-qjEUswjJNpUdhGNqwJ7BaN7V7CkRKKwdU4DlZWnhMqKmjhhV8wCrRt5Qn8LqVg_oZaTZUJFSmyo-ICiOSwNsgoa6Enp3hvjTJ1fF0rIYfR3vj0TFTXxPYakWoliZ5rhArYkAo_M9edZ-9MeEKia5dszhXwT8JD5myBMgNZXyAikuAmW_ORtSOrj0eLqGTlAm8CzK-uStqON0JD5v_XvQl3JkcHuyr_U_Tz89gPSS3c5rmfAtW57OFe-7R0bx8EYzgN88lBqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFqUv1ms7WjWKiC-znclMkl180t3u1qpLFUuLFEImF5DCTNnuSvHXNyfZmVKxIL4NMwmTy7l8OTn5AvBaOW6sdTrVfqWWloZWqfI4NtWmUDbnVrNwS8SXKd87LPeP2fEKvGvPwkR-iC7ghpoR7DUq-JlxO1ekobq2Peqdb3EL1krukS8iom9X3FHe8UYzjDkIAy5aWqGM7nRVrzmjNRzXi78hzevANXie8QactG2OCSenvcW86unff9A5_men7sHdJSIl76MI3YcVWz-A2z-aEG9_CJODGKtB8SSNIx4wknjchDSzCq8cIao25FeMEnfvNCbxXpCfdajgxewRHI53vw_30uXtC6lGQppU5EZrq0vmqszlWaGYEpXtMytU2WdezUuF7Hem4mXfOW0QiRSZosJjMFzYFI9htW5quwVECCMGlOMpWVp6RKiopboo2aBwvG8oS-BVOw3yLJJsyEinTKUfERlGJIE3YYK6Emp2illpgsmj6UQOP4z2J6OjQn5NYLudQblUyHOJSBGXg9z_7GX32asS7o-o2jaLcxmsE_eAKUuA3FDGL09xAzDzzdmMwtG1x4MlNJEigbdhim_uihxOd8PDk38v-gLuHIzG8vPH6aensB4i2zlNc7YNq_PZwj7z0GhePQ8qcAmw1AVX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projections+of+the+medial+orbital+and+ventral+orbital+cortex+in+the+rat&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Hoover%2C+Walter+B.&rft.au=Vertes%2C+Robert+P.&rft.date=2011-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=519&rft.issue=18&rft.spage=3766&rft.epage=3801&rft_id=info:doi/10.1002%2Fcne.22733&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CBDJGDW3_Q |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |