Projections of the medial orbital and ventral orbital cortex in the rat

The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and...

Full description

Saved in:
Bibliographic Details
Published inJournal of comparative neurology (1911) Vol. 519; no. 18; pp. 3766 - 3801
Main Authors Hoover, Walter B., Vertes, Robert P.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.12.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro‐Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal‐directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766–3801, 2011. © 2011 Wiley‐Liss, Inc.
AbstractList The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766-3801, 2011. © 2011 Wiley-Liss, Inc. [PUBLICATION ABSTRACT]
Abstract The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro‐Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal‐directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766–3801, 2011. © 2011 Wiley‐Liss, Inc.
The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices.
The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro-Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal-directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766-3801, 2011. ? 2011 Wiley-Liss, Inc.
The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report in the rat has comprehensively described the projections of MO and VO. By using the anterograde tracer Phaseolus vulgaris leucoagglutinin and the retrograde tracer Fluoro‐Gold, we examined the efferent projections of MO and VO in the rat. Although MO and VO projections overlap, MO distributes more widely throughout the brain, particularly to limbic structures, than does VO. The main cortical targets of MO were the orbital, ventral medial prefrontal (mPFC), agranular insular, piriform, retrosplenial, and parahippocampal cortices. The main subcortical targets of MO were the medial striatum, olfactory tubercle, claustrum, nucleus accumbens, septum, substantia innominata, lateral preoptic area, and diagonal band nuclei of the basal forebrain; central, medial, cortical, and basal nuclei of amygdala; paratenial, mediodorsal, and reuniens nuclei of the thalamus; posterior, supramammillary, and lateral nuclei of the hypothalamus; and periaqueductal gray, ventral tegmental area, substantia nigra, dorsal and median raphe, laterodorsal tegmental, and incertus nuclei of the brainstem. By comparison, VO distributes to some of these same sites, notably to the striatum, but lacks projections to parts of limbic cortex, to nucleus accumbens, and to the amygdala. VO distributes much more strongly, however, than MO to the medial (frontal) agranular, anterior cingulate, sensorimotor, posterior parietal, lateral agranular retrosplenial, and temporal association cortices. The patterns of MO projections are similar to those of the mPFC, whereas the projections of VO overlap with those of the ventrolateral orbital cortex (VLO). This suggests that MO serves functions comparable to those of the mPFC, such as goal‐directed behavior, and VO performs functions similar to VLO such as directed attention. MO/VO may also serve as a link between lateral orbital and medial prefrontal cortices. J. Comp. Neurol. 519:3766–3801, 2011. © 2011 Wiley‐Liss, Inc.
Author Hoover, Walter B.
Vertes, Robert P.
Author_xml – sequence: 1
  givenname: Walter B.
  surname: Hoover
  fullname: Hoover, Walter B.
  organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431
– sequence: 2
  givenname: Robert P.
  surname: Vertes
  fullname: Vertes, Robert P.
  email: vertes@ccs.fau.edu
  organization: Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21800317$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1L9DAUhYMoOn4s3j8gBRfqonqTNE2y1FFHRfwAxWVI0xQ7dhJNOn78e6OjIi_o6sLNcw655yyjeeedRegfhh0MQHaNszuEcErn0ACDLHMpSjyPBukN51KWfAktxzgGACmpWERLBAsAivkAjS6DH1vTt97FzDdZf2ezia1b3WU-VG2fpnZ19mRdH37sjA-9fcla9yEIul9FC43uol37nCvo5ujwenicn12MToZ7Z7kphKQ5x7Ux1hSsqaDBQDXTvLKCWa4LwQSHQgsiWF2VhWgaUxfpkxQ04YxhIBToCtqc-T4E_zi1sVeTNhrbddpZP41KSIlpOpQmcutPEgPmsiSEvJtu_IeO_TS4dIfCrGAAuChZorZnlAk-xmAb9RDaiQ6vyUq996BSD-qjh8SufzpOqxTnN_kVfAJ2Z8Bz29nX353U8PzwyzKfKdqYov9W6HCvSk45U7fnIzXcPzgdHdxSdUXfADgSn6g
CitedBy_id crossref_primary_10_1007_s12144_023_04475_7
crossref_primary_10_1016_j_addicn_2022_100031
crossref_primary_10_3389_fnbeh_2022_981041
crossref_primary_10_1002_cne_23064
crossref_primary_10_1016_j_neulet_2014_04_050
crossref_primary_10_1016_j_bbr_2015_04_018
crossref_primary_10_1016_j_pbb_2017_05_009
crossref_primary_10_1093_cercor_bhx293
crossref_primary_10_1016_j_neuron_2015_10_044
crossref_primary_10_7554_eLife_49511
crossref_primary_10_1002_cne_25525
crossref_primary_10_1016_j_neuron_2012_09_039
crossref_primary_10_3389_fnsys_2017_00046
crossref_primary_10_1007_s00213_022_06265_8
crossref_primary_10_1016_j_ejphar_2015_04_002
crossref_primary_10_1016_j_neuropharm_2018_10_013
crossref_primary_10_1016_j_pharep_2017_12_010
crossref_primary_10_1016_j_brainres_2024_149044
crossref_primary_10_1016_j_biopsych_2012_08_009
crossref_primary_10_1134_S0022093024010289
crossref_primary_10_1016_j_nlm_2020_107170
crossref_primary_10_1371_journal_pcbi_1010410
crossref_primary_10_1038_s41593_019_0408_1
crossref_primary_10_1016_j_bbr_2021_113412
crossref_primary_10_1073_pnas_1200782109
crossref_primary_10_1038_s41598_024_58648_w
crossref_primary_10_1152_physrev_00028_2020
crossref_primary_10_1016_j_celrep_2022_111334
crossref_primary_10_1002_cne_23592
crossref_primary_10_1093_cercor_bhac182
crossref_primary_10_1002_cne_25256
crossref_primary_10_1016_j_nlm_2017_01_006
crossref_primary_10_1523_JNEUROSCI_1678_17_2017
crossref_primary_10_3389_fnsys_2014_00177
crossref_primary_10_3389_fnbeh_2016_00250
crossref_primary_10_1002_cne_25419
crossref_primary_10_1002_cne_24729
crossref_primary_10_3389_fnbeh_2021_655029
crossref_primary_10_1371_journal_pone_0094657
crossref_primary_10_1016_j_nbd_2016_02_021
crossref_primary_10_1111_ejn_14150
crossref_primary_10_1038_npp_2017_139
crossref_primary_10_1016_j_tins_2021_11_007
crossref_primary_10_1080_21622965_2015_1005486
crossref_primary_10_1016_j_neubiorev_2015_01_014
crossref_primary_10_1016_j_neuropharm_2022_109041
crossref_primary_10_1016_j_ejphar_2017_09_048
crossref_primary_10_1093_ijnp_pyac062
crossref_primary_10_1002_cne_24373
crossref_primary_10_1016_j_pneurobio_2019_02_001
crossref_primary_10_3389_fnana_2015_00133
crossref_primary_10_1002_cne_23442
crossref_primary_10_1007_s00429_017_1585_x
crossref_primary_10_1016_j_isci_2024_109205
crossref_primary_10_3389_fnsys_2015_00080
crossref_primary_10_1186_s40035_021_00241_6
crossref_primary_10_1007_s12565_022_00669_4
crossref_primary_10_1016_j_brainres_2014_11_028
crossref_primary_10_1016_j_neuroscience_2012_07_040
crossref_primary_10_1016_j_nlm_2015_11_008
crossref_primary_10_1038_s41398_020_0837_3
crossref_primary_10_1007_s12264_024_01229_8
crossref_primary_10_1523_JNEUROSCI_4253_15_2016
crossref_primary_10_1038_s41386_022_01273_w
crossref_primary_10_3389_fnana_2023_1131167
crossref_primary_10_1007_s00429_016_1290_1
crossref_primary_10_1016_j_jchemneu_2019_01_002
crossref_primary_10_1038_s41583_019_0180_y
crossref_primary_10_1016_j_neuron_2016_04_043
crossref_primary_10_3389_fnsys_2016_00099
crossref_primary_10_1016_j_neures_2014_11_009
crossref_primary_10_1016_j_nlm_2020_107369
crossref_primary_10_1002_cne_24424
crossref_primary_10_1093_cercor_bhs297
crossref_primary_10_1002_hipo_22831
crossref_primary_10_1111_ejn_13521
crossref_primary_10_1111_ejn_14215
crossref_primary_10_1523_ENEURO_0017_21_2021
crossref_primary_10_1002_cne_24306
crossref_primary_10_1093_cercor_bhu112
crossref_primary_10_1016_j_pnpbp_2024_111032
crossref_primary_10_1002_jnr_24567
crossref_primary_10_1016_j_cub_2016_12_052
crossref_primary_10_1016_j_bbr_2017_02_032
crossref_primary_10_1093_texcom_tgaa086
crossref_primary_10_1038_s41597_023_02527_y
crossref_primary_10_1002_hipo_22701
crossref_primary_10_1016_j_neubiorev_2019_11_009
crossref_primary_10_1016_j_neuroscience_2012_08_067
crossref_primary_10_1016_j_conb_2012_04_001
crossref_primary_10_1007_s12264_020_00616_1
crossref_primary_10_1093_cercor_bhad212
crossref_primary_10_1523_JNEUROSCI_2098_13_2014
crossref_primary_10_1002_jnr_23960
crossref_primary_10_1152_jn_00127_2022
crossref_primary_10_1016_j_nlm_2018_09_008
crossref_primary_10_1016_j_cub_2017_01_010
crossref_primary_10_1111_ejn_14068
crossref_primary_10_1093_cercor_bhx132
crossref_primary_10_1016_j_bbr_2022_114146
crossref_primary_10_1523_JNEUROSCI_2278_12_2012
crossref_primary_10_1523_JNEUROSCI_3366_15_2016
crossref_primary_10_1016_j_neuron_2012_12_002
crossref_primary_10_1038_npp_2015_92
crossref_primary_10_1016_j_neuroscience_2020_05_041
crossref_primary_10_1038_s41593_019_0429_9
crossref_primary_10_1016_j_neuroscience_2015_05_029
crossref_primary_10_1016_j_pbb_2013_08_007
crossref_primary_10_1523_JNEUROSCI_0796_16_2016
crossref_primary_10_3389_fnsys_2019_00038
crossref_primary_10_1016_j_neubiorev_2023_105475
crossref_primary_10_1523_JNEUROSCI_3860_16_2017
crossref_primary_10_7554_eLife_80926
crossref_primary_10_1093_cercor_bhy173
crossref_primary_10_1002_jnr_23578
crossref_primary_10_1016_j_neuron_2014_05_046
crossref_primary_10_1093_cercor_bhz144
crossref_primary_10_1523_JNEUROSCI_3328_15_2016
crossref_primary_10_1016_j_jneumeth_2014_07_021
crossref_primary_10_1038_nature13186
crossref_primary_10_1038_npp_2013_83
crossref_primary_10_1038_npp_2015_20
crossref_primary_10_1111_jnp_12154
crossref_primary_10_1016_j_bbr_2017_07_032
crossref_primary_10_1111_adb_12442
crossref_primary_10_1016_j_neuropharm_2023_109463
crossref_primary_10_1016_j_neures_2018_08_017
crossref_primary_10_1016_j_pneurobio_2022_102399
crossref_primary_10_1016_j_pnpbp_2018_01_010
crossref_primary_10_1016_j_neuroscience_2019_01_066
crossref_primary_10_1016_j_bbr_2012_10_021
crossref_primary_10_1016_j_nlm_2012_12_004
crossref_primary_10_1038_s41593_023_01409_1
crossref_primary_10_1523_ENEURO_0238_21_2023
crossref_primary_10_1007_s11682_019_00190_9
crossref_primary_10_1134_S0362119721050029
crossref_primary_10_3389_fnbeh_2022_964644
crossref_primary_10_1523_JNEUROSCI_2097_21_2022
crossref_primary_10_7554_eLife_16088
crossref_primary_10_1038_ncomms3264
crossref_primary_10_1016_j_nlm_2023_107800
crossref_primary_10_1038_s41386_020_00931_1
crossref_primary_10_1016_j_bpsgos_2023_11_004
crossref_primary_10_1093_texcom_tgaa039
crossref_primary_10_1016_j_biopsych_2016_05_012
crossref_primary_10_1016_j_conb_2023_102803
crossref_primary_10_1007_s00429_016_1304_z
crossref_primary_10_1007_s00429_015_1081_0
crossref_primary_10_1093_oons_kvad005
crossref_primary_10_1038_s41380_019_0422_4
crossref_primary_10_1093_cercor_bhab231
crossref_primary_10_1016_j_neuroscience_2021_02_017
crossref_primary_10_7554_eLife_57268
crossref_primary_10_1111_ejn_12751
crossref_primary_10_1093_cercor_bht189
crossref_primary_10_3389_fnsys_2015_00171
crossref_primary_10_1016_j_neuropharm_2020_108007
crossref_primary_10_1016_j_isci_2023_107718
crossref_primary_10_1007_s00429_013_0630_7
crossref_primary_10_1007_s11064_014_1440_x
crossref_primary_10_1016_j_nlm_2013_11_003
crossref_primary_10_1016_j_bbr_2024_115066
crossref_primary_10_1073_pnas_2003181117
crossref_primary_10_1016_j_neuroscience_2021_07_028
crossref_primary_10_1038_npp_2016_284
crossref_primary_10_1016_j_neuint_2016_08_007
Cites_doi 10.1016/S0278-2626(03)00278-1
10.1016/j.nlm.2008.08.010
10.1523/JNEUROSCI.23-25-08771.2003
10.1002/cne.20668
10.1002/cne.902100207
10.1007/BF00227280
10.1016/j.brainresbull.2006.12.002
10.1002/(SICI)1098-2396(19991215)34:4<245::AID-SYN1>3.0.CO;2-D
10.1007/s00429-007-0150-4
10.1111/j.1460-9568.2009.06992.x
10.1002/cne.901770405
10.1016/0006-8993(86)90867-X
10.1002/cne.902900205
10.1111/j.1460-9568.1991.tb00850.x
10.1002/cne.901870108
10.1002/cne.10978
10.1523/JNEUROSCI.1556-07.2007
10.1016/0304-3940(86)90054-6
10.1016/S0079-6123(08)62677-1
10.1523/JNEUROSCI.20-10-03864.2000
10.1037/0735-7044.117.5.1054
10.1002/cne.902530302
10.1016/j.brainres.2004.12.049
10.1002/cne.902940210
10.1007/978-1-4615-3302-3_22
10.1002/cne.21135
10.1016/S0165-0173(97)00007-6
10.1016/0306-4522(83)90049-0
10.1002/cne.903520407
10.1016/S0165-0173(02)00181-9
10.1016/0166-4328(94)90010-8
10.1002/cne.20342
10.1523/JNEUROSCI.0012-07.2007
10.1016/S0306-4522(98)00157-2
10.1016/0306-4522(95)00417-3
10.1002/cne.1105
10.1523/JNEUROSCI.1921-05.2005
10.1007/978-3-7643-8561-3_3
10.1016/S0306-4522(97)00268-6
10.1093/cercor/10.3.206
10.1002/cne.903380209
10.1046/j.1460-9568.2002.02189.x
10.1073/pnas.0806669105
10.1007/BF00227299
10.1523/JNEUROSCI.20-11-04320.2000
10.1016/j.nlm.2004.10.003
10.1016/S0006-8993(99)01779-5
10.1016/j.neuron.2009.03.005
10.1007/s00429-007-0164-y
10.1002/cne.10083
10.1002/cne.903080210
10.1002/cne.902890103
10.1002/cne.902790207
10.1002/cne.903210314
10.1016/0306-4522(82)91133-2
10.1016/0006-8993(69)90003-1
10.1523/JNEUROSCI.2820-08.2008
10.1002/cne.10868
10.1007/978-1-4615-1749-8
10.1016/0306-4522(91)90151-D
10.1196/annals.1401.037
10.1002/cne.10976
10.1523/JNEUROSCI.21-10-03674.2001
10.1523/JNEUROSCI.3432-05.2005
10.1037/0735-7044.113.1.32
10.1002/cne.902960202
10.1016/j.pneurobio.2009.10.002
10.1016/0006-8993(91)91677-S
10.1016/S0891-0618(99)00009-5
10.1016/0306-4522(88)90339-9
10.1038/nrn2753
10.1196/annals.1401.033
10.1007/s00429-008-0180-6
10.1016/j.neubiorev.2004.09.006
10.1196/annals.1401.001
10.1016/j.neulet.2007.12.024
10.1002/cne.21523
10.1098/rstb.1998.0336
10.1016/S0301-0082(98)00003-3
10.1002/(SICI)1096-9861(19960122)364:4<637::AID-CNE3>3.0.CO;2-4
10.1002/1096-9861(20000710)422:4<556::AID-CNE6>3.0.CO;2-U
10.1016/j.bbr.2003.09.019
10.1002/cne.20738
10.1016/0361-9230(86)90237-6
10.1007/s00213-007-0917-6
10.1016/j.brainresbull.2008.11.012
10.1002/cne.903200202
10.1002/syn.10279
10.1016/S0006-8993(02)03841-6
10.1073/pnas.92.9.3898
10.1016/0304-3940(84)90030-2
10.1016/0306-4522(82)90157-9
10.1002/cne.903240109
10.1523/JNEUROSCI.0319-08.2008
10.1002/cne.903030405
10.1016/j.neuron.2010.03.033
10.1016/0306-4522(90)90194-9
10.1016/S0079-6123(08)62675-8
10.1002/cne.902060105
10.1016/j.conb.2010.01.009
10.1016/0361-9230(90)90088-H
10.1016/j.nlm.2010.01.005
10.1016/0006-8993(90)91570-7
10.3758/BF03330596
10.1002/cne.901710204
10.1016/j.neuroscience.2006.06.027
10.1016/j.conb.2009.02.005
10.1016/j.neuron.2005.07.018
10.1016/j.bbr.2003.09.023
10.1523/JNEUROSCI.5443-06.2007
10.1002/cne.903230204
10.1111/j.1460-9568.2009.06679.x
10.1007/BF02738406
10.1002/cne.903160305
10.1002/1098-1063(2000)10:4<438::AID-HIPO10>3.0.CO;2-3
10.1002/cne.1303
10.1016/0306-4522(95)00455-6
10.1196/annals.1401.008
10.1002/cne.21679
ContentType Journal Article
Copyright Copyright © 2011 Wiley‐Liss, Inc.
Copyright © 2011 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2011 Wiley‐Liss, Inc.
– notice: Copyright © 2011 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/cne.22733
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
CrossRef
MEDLINE - Academic
Neurosciences Abstracts

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 3801
ExternalDocumentID 3372456491
10_1002_cne_22733
21800317
CNE22733
ark_67375_WNG_CBDJGDW3_Q
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: IOS 0820639
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XV2
YQT
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4893-71dccec45fb0f103a5a7be85e7a4858704a8285db648ffcd431730a2755102303
IEDL.DBID DR2
ISSN 0021-9967
1096-9861
IngestDate Sat Aug 17 01:45:29 EDT 2024
Fri Aug 16 05:14:48 EDT 2024
Thu Oct 10 20:01:11 EDT 2024
Fri Aug 23 03:41:19 EDT 2024
Sat Sep 28 07:48:40 EDT 2024
Sat Aug 24 00:57:55 EDT 2024
Wed Oct 30 09:49:36 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License Copyright © 2011 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4893-71dccec45fb0f103a5a7be85e7a4858704a8285db648ffcd431730a2755102303
Notes istex:5822767301FB238B74CAA5E87627E9BAF2792CD0
ArticleID:CNE22733
National Science Foundation - No. IOS 0820639
ark:/67375/WNG-CBDJGDW3-Q
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 21800317
PQID 1545001465
PQPubID 1006438
PageCount 36
ParticipantIDs proquest_miscellaneous_899130003
proquest_miscellaneous_1017962220
proquest_journals_1545001465
crossref_primary_10_1002_cne_22733
pubmed_primary_21800317
wiley_primary_10_1002_cne_22733_CNE22733
istex_primary_ark_67375_WNG_CBDJGDW3_Q
PublicationCentury 2000
PublicationDate 15 December 2011
PublicationDateYYYYMMDD 2011-12-15
PublicationDate_xml – month: 12
  year: 2011
  text: 15 December 2011
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
– name: New York
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Berendse HW, Groenewegen HJ. 1991. Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42: 73-102.
Furuyashiki T, Holland PC, Gallagher M. 2008. Rat orbitofrontal cortex separately encodes response and outcome information during performance of goal-directed behavior. J Neurosci 28: 5127-5138.
Llinas R, Ribary U, Contreras D, Pedroarena C. 1998. The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353: 1841-1849.
Corbit LH, Balleine BW. 2003. The role of prelimbic cortex in instrumental conditioning. Behav Brain Res 146: 145-157.
Chudasama Y, Robbins TW. 2003. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J Neurosci 23: 8771-8780.
Craig AD Jr, Wiegand SJ, Price JL. 1982. The thalamo-cortical projection of the nucleus submedius in the cat. J Comp Neurol 206: 28-48.
Takagishi M, Chiba T. 1991. Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study. Brain Res 566: 26-39.
Berendse HW, Galis-de Graaf Y, Groenewegen HJ. 1992. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316: 314-347.
van der Plasse G, La Fors SS, Meerkerk DT, Joosten RN, Uylings HB, Feenstra MG. 2007. Medial prefrontal serotonin in the rat is involved in goal-directed behaviour when affect guides decision making. Psychopharmacology 195: 435-449.
Behzadi G, Kalen P, Parvopassu F, Wiklund L. 1990. Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective D-[3H]aspartate labelling of possible excitatory amino acid inputs. Neuroscience 37: 77-100.
Takahashi YK, Roesch MR, Stalnaker TA, Haney RZ, Calu DJ, Taylor AR, Burke KA, Schoenbaum G. 2009. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62: 269-280.
Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH. 1998. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82: 443-468.
Shibata H, Naito J. 2008. Organization of anterior cingulate and frontal cortical projections to the retrosplenial cortex in the rat. J Comp Neurol 506: 30-45.
Wouterlood FG. 1991. Innervation of entorhinal principal cells by neurons of the nucleus reuniens thalami. Anterograde PHA-L tracing combined with retrograde fluorescent tracing and intracellular injection with lucifer yellow in the rat. Eur J Neurosci 3: 641-647.
Geisler S, Zahm DS. 2005. Afferents of the ventral tegmental area in the rat-anatomical substratum for integrative functions. J Comp Neurol 490: 270-294.
Schilman EA, Uylings HB, Galis-de Graaf Y, Joel D, Groenewegen HJ. 2008. The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci Lett 432: 40-45.
Kim J, Ragozzino ME. 2005. The involvement of the orbitofrontal cortex in learning under changing task contingencies. Neurobiol Learn Mem 83: 125-133.
Ongur D, Price JL. 2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10: 206-219.
Brog JS, Salyapongse A, Deutch AY, Zahm DS. 1993. The patterns of afferent innervation of the core and shell in the "accumbens" part of the rat ventral striatum: immunohistochemical detection of retrogradely transported Fluoro-Gold. J Comp Neurol 338: 255-278.
Neafsey EJ, Hurley-Gius KM, Arvanitis D. 1986. The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus. Brain Res 377: 561-570.
Schoenbaum G, Roesch M. 2005. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47: 633-636.
Floyd NS, Price JL, Ferry AT, Keay KA, Bandler R. 2000. Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. J Comp Neurol 422: 556-578.
Marchand JE, Hagino N. 1983. Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study. Neuroscience 9: 95-106.
Schoenbaum G, Saddoris MP, Stalnaker TA. 2007. Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies. Ann N Y Acad Sci 1121: 320-335.
Sesack SR, Deutch AY, Roth RH, Bunney BS. 1989. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290: 213-242.
Cassell MD, Chittick CA, Siegel MA, Wright DJ. 1989. Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices. J Comp Neurol 279: 235-248.
Goto M, Swanson LW, Canteras NS. 2001. Connections of the nucleus incertus. J Comp Neurol 438: 86-122.
Krettek JE, Price JL. 1977. The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171: 157-191.
Vertes RP, Hoover WB, Do Valle AC, Sherman A, Rodriguez JJ. 2006. Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat. J Comp Neurol 499: 768-796.
McKenna JT, Vertes RP. 2004. Afferent projections to nucleus reuniens of the thalamus. J Comp Neurol 480: 115-142.
Vertes RP, Hoover WB. 2008. Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat. J Comp Neurol 508: 212-237.
Jasmin L, Burkey AR, Granato A, Ohara PT. 2004. Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468: 425-440.
Carr DB, Sesack SR. 2000. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20: 3864-3873.
Vertes RP. 2004. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51: 32-58.
Reep RL, Winans SS. 1982. Afferent connections of dorsal and ventral agranular insular cortex in the hamster Mesocricetus auratus. Neuroscience 7: 1265-1288.
Goncalves L, Nogueira MI, Shammah-Lagnado SJ, Metzger M. 2009. Prefrontal afferents to the dorsal raphe nucleus in the rat. Brain Res Bull 78: 240-247.
Marcinkiewicz M, Morcos R, Chretien M. 1989. CNS connections with the median raphe nucleus: retrograde tracing with WGA-apoHRP-Gold complex in the rat. J Comp Neurol 289: 11-35.
Dolleman-Van Der Weel MJ, Witter MP. 1996. Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons. J Comp Neurol 364: 637-650.
Reep RL, Corwin JV. 2009. Posterior parietal cortex as part of a neural network for directed attention in rats. Neurobiol Learn Mem 91: 104-113.
Hoover WB, Vertes RP. 2007. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct Funct 212: 149-179.
Tang JS, Qu CL, Huo FQ. 2009. The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway. Prog Neurobiol 89: 383-389.
Ray JP, Price JL. 1992. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323: 167-197.
Swanson LW. 2004. Brain maps: structure of the rat brain. San Diego: Academic Press.
Cassell MD, Wright DJ. 1986. Topography of projections from the medial prefrontal cortex to the amygdala in the rat. Brain Res Bull 17: 321-333.
Uylings HB, van Eden CG. 1990. Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. Prog Brain Res 85: 31-62.
Homayoun H, Moghaddam B. 2009. Differential representation of Pavlovian-instrumental transfer by prefrontal cortex subregions and striatum. Eur J Neurosci 29: 1461-1476.
McAlonan K, Brown VJ. 2003. Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav Brain Res 146: 97-103.
Reep RL, Cheatwood JL, Corwin JV. 2003. The associative striatum: organization of cortical projections to the dorsocentral striatum in rats. J Comp Neurol 467: 271-292.
Conde F, Maire-Lepoivre E, Audinat E, Crepel F. 1995. Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. J Comp Neurol 352: 567-593.
Sesack SR, Pickel VM. 1992. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol 320: 145-160.
Hajos M, Richards CD, Szekely AD, Sharp T. 1998. An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87: 95-108.
McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog Neurobiol 55: 257-332.
Vertes RP, Hoover WB, Szigeti-Buck K, Leranth C. 2007. Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus. Brain Res Bull 71: 601-609.
Ostlund SB, Balleine BW. 2007a. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J Neurosci 27: 4819-4825.
Laroche S, Davis S, Jay TM. 2000. Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation. Hippocampus 10: 438-446.
Reep RL, Chandler HC, King V, Corwin JV. 1994. Rat posterior parietal cortex: topography of corticocortical and thalamic connections. Exp Brain Res 100: 67-84.
Leonard CM. 1969. The prefrontal cortex of the rat. I. Cortical projection of t
2002; 16
2009; 89
2004; 28
2008; 508
2008; 506
1996; 71
1983; 9
2008; 105
2007; 71
1998; 82
1994; 61
1998; 87
1999; 841
2007; 212
2010; 20
2009; 10
2003; 963
2009; 91
2000; 10
2008; 28
1985
2009; 19
1990; 296
1990; 294
2009; 62
1990; 522
1990; 37
2007; 1121
1982; 206
1984; 44
1997; 24
1969; 12
1986; 17
1996; 364
2005; 83
1991
2001; 21
2009; 78
2004; 55
2001; 432
2004; 51
1990; 24
1999; 34
1988; 24
1999; 113
1996; 111
2001; 438
2003; 467
1991; 566
2003; 23
1977; 171
2005; 490
1979; 187
2005; 492
1986; 377
2003; 117
1986; 253
1989; 279
2007a; 27
1992; 320
1992; 321
2004; 480
1992; 323
1992; 324
1978; 177
1998; 353
2005; 1036
2006; 499
2005; 25
1990; 85
2010; 66
1994; 100
1993; 338
1991; 42
1999; 16
1982; 210
1982; 7
1992; 316
2008; 432
1991; 303
1991; 308
1998; 55
2007; 27
1998; 26
2002; 39
1991; 3
2004; 468
1995; 92
2000; 20
2008
2004
1995; 352
2009; 29
2005; 47
2009; 30
1986; 63
2000; 422
1989; 289
2007; 195
2002; 442
2007b; 1121
2006; 142
2008; 213
1989; 290
2008; 212
2003; 146
2010; 93
e_1_2_5_27_1
e_1_2_5_120_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_101_1
e_1_2_5_65_1
e_1_2_5_88_1
e_1_2_5_105_1
e_1_2_5_69_1
e_1_2_5_109_1
Corwin JV (e_1_2_5_24_1) 1998; 26
e_1_2_5_80_1
e_1_2_5_61_1
e_1_2_5_84_1
e_1_2_5_42_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_113_1
e_1_2_5_7_1
e_1_2_5_76_1
e_1_2_5_99_1
e_1_2_5_117_1
e_1_2_5_3_1
e_1_2_5_19_1
e_1_2_5_91_1
e_1_2_5_72_1
e_1_2_5_95_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_45_1
e_1_2_5_100_1
e_1_2_5_22_1
e_1_2_5_87_1
e_1_2_5_104_1
e_1_2_5_68_1
e_1_2_5_108_1
e_1_2_5_60_1
e_1_2_5_83_1
e_1_2_5_64_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_56_1
e_1_2_5_33_1
e_1_2_5_112_1
e_1_2_5_4_1
e_1_2_5_98_1
e_1_2_5_79_1
e_1_2_5_116_1
e_1_2_5_18_1
e_1_2_5_90_1
e_1_2_5_71_1
e_1_2_5_94_1
e_1_2_5_75_1
e_1_2_5_52_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_107_1
e_1_2_5_67_1
e_1_2_5_29_1
e_1_2_5_82_1
e_1_2_5_63_1
e_1_2_5_86_1
e_1_2_5_40_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_111_1
e_1_2_5_5_1
e_1_2_5_78_1
e_1_2_5_115_1
e_1_2_5_119_1
e_1_2_5_70_1
e_1_2_5_93_1
e_1_2_5_74_1
e_1_2_5_97_1
e_1_2_5_51_1
e_1_2_5_121_1
e_1_2_5_28_1
e_1_2_5_47_1
e_1_2_5_102_1
e_1_2_5_43_1
e_1_2_5_106_1
e_1_2_5_66_1
e_1_2_5_89_1
e_1_2_5_81_1
e_1_2_5_62_1
e_1_2_5_85_1
e_1_2_5_20_1
e_1_2_5_39_1
e_1_2_5_110_1
e_1_2_5_16_1
e_1_2_5_58_1
e_1_2_5_35_1
e_1_2_5_114_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_54_1
e_1_2_5_77_1
e_1_2_5_118_1
e_1_2_5_2_1
e_1_2_5_92_1
e_1_2_5_73_1
e_1_2_5_96_1
e_1_2_5_31_1
e_1_2_5_50_1
Swanson LW (e_1_2_5_103_1) 2004
References_xml – volume: 105
  start-page: 18041
  year: 2008
  end-page: 18046
  article-title: Orbitofrontal cortex neurons as a common target for classic and glutamatergic antipsychotic drugs
  publication-title: Proc Natl Acad Sci U S A
– volume: 27
  start-page: 8166
  year: 2007
  end-page: 8169
  article-title: What we know and do not know about the functions of the orbitofrontal cortex after 20 years of cross‐species studies
  publication-title: J Neurosci
– volume: 87
  start-page: 95
  year: 1998
  end-page: 108
  article-title: An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat
  publication-title: Neuroscience
– volume: 89
  start-page: 383
  year: 2009
  end-page: 389
  article-title: The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway
  publication-title: Prog Neurobiol
– volume: 23
  start-page: 8771
  year: 2003
  end-page: 8780
  article-title: Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex
  publication-title: J Neurosci
– volume: 289
  start-page: 11
  year: 1989
  end-page: 35
  article-title: CNS connections with the median raphe nucleus: retrograde tracing with WGA‐apoHRP‐Gold complex in the rat
  publication-title: J Comp Neurol
– volume: 3
  start-page: 641
  year: 1991
  end-page: 647
  article-title: Innervation of entorhinal principal cells by neurons of the nucleus reuniens thalami. Anterograde PHA‐L tracing combined with retrograde fluorescent tracing and intracellular injection with lucifer yellow in the rat
  publication-title: Eur J Neurosci
– volume: 432
  start-page: 307
  year: 2001
  end-page: 328
  article-title: Orbitomedial prefrontal cortical projections to hypothalamus in the rat
  publication-title: J Comp Neurol
– volume: 1121
  start-page: 193
  year: 2007
  end-page: 215
  article-title: Neural encoding in the orbitofrontal cortex related to goal‐directed behavior
  publication-title: Ann N Y Acad Sci
– volume: 92
  start-page: 3898
  year: 1995
  end-page: 3902
  article-title: Evidence for a hypothalamothalamocortical circuit mediating pheromonal influences on eye and head movements
  publication-title: Proc Natl Acad Sci U S A
– volume: 30
  start-page: 1941
  year: 2009
  end-page: 1946
  article-title: Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with 'disinhibition' of responding for previously unrewarded cues
  publication-title: Eur J Neurosci
– volume: 55
  start-page: 104
  year: 2004
  end-page: 115
  article-title: Plasticity and functions of the orbital frontal cortex
  publication-title: Brain Cogn
– volume: 177
  start-page: 589
  year: 1978
  end-page: 609
  article-title: Connections of nucleus reuniens thalami: evidence for a direct thalamo‐hippocampal pathway in rat
  publication-title: J Comp Neurol
– volume: 24
  start-page: 379
  year: 1988
  end-page: 431
  article-title: Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal‐prefrontal topography
  publication-title: Neuroscience
– volume: 253
  start-page: 277
  year: 1986
  end-page: 302
  article-title: Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections
  publication-title: J Comp Neurol
– volume: 422
  start-page: 556
  year: 2000
  end-page: 578
  article-title: Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat
  publication-title: J Comp Neurol
– volume: 12
  start-page: 321
  year: 1969
  end-page: 343
  article-title: The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections
  publication-title: Brain Res
– volume: 213
  start-page: 159
  year: 2008
  end-page: 175
  article-title: Ultrastructural analysis of prefrontal cortical inputs to the rat amygdala: spatial relationships to presumed dopamine axons and D1 and D2 receptors
  publication-title: Brain Struct Funct
– volume: 324
  start-page: 115
  year: 1992
  end-page: 133
  article-title: The afferent and efferent connections of the nucleus submedius in the rat
  publication-title: J Comp Neurol
– volume: 841
  start-page: 43
  year: 1999
  end-page: 52
  article-title: Topographic organization of the striatal and thalamic connections of rat medial agranular cortex
  publication-title: Brain Res
– volume: 85
  start-page: 31
  year: 1990
  end-page: 62
  article-title: Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans
  publication-title: Prog Brain Res
– volume: 438
  start-page: 86
  year: 2001
  end-page: 122
  article-title: Connections of the nucleus incertus
  publication-title: J Comp Neurol
– volume: 71
  start-page: 371
  year: 1996
  end-page: 382
  article-title: Prefrontal cortex inputs of the nucleus accumbens‐nigro‐thalamic circuit
  publication-title: Neuroscience
– volume: 353
  start-page: 1841
  year: 1998
  end-page: 1849
  article-title: The neuronal basis for consciousness
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 16
  start-page: 1227
  year: 2002
  end-page: 1239
  article-title: Cellular architecture of the nucleus reuniens thalami and its putative aspartatergic/glutamatergic projection to the hippocampus and medial septum in the rat
  publication-title: Eur J Neurosci
– volume: 17
  start-page: 321
  year: 1986
  end-page: 333
  article-title: Topography of projections from the medial prefrontal cortex to the amygdala in the rat
  publication-title: Brain Res Bull
– volume: 566
  start-page: 26
  year: 1991
  end-page: 39
  article-title: Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA‐L study
  publication-title: Brain Res
– volume: 16
  start-page: 167
  year: 1999
  end-page: 185
  article-title: Integration and segregation of limbic cortico‐striatal loops at the thalamic level: an experimental tracing study in rats
  publication-title: J Chem Neuroanat
– volume: 71
  start-page: 601
  year: 2007
  end-page: 609
  article-title: Nucleus reuniens of the midline thalamus: link between the medial prefrontal cortex and the hippocampus
  publication-title: Brain Res Bull
– volume: 296
  start-page: 179
  year: 1990
  end-page: 203
  article-title: Projection from the nucleus reuniens thalami to the hippocampal region: light and electron microscopic tracing study in the rat with the anterograde tracer ‐leucoagglutinin
  publication-title: J Comp Neurol
– volume: 290
  start-page: 213
  year: 1989
  end-page: 242
  article-title: Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract‐tracing study with leucoagglutinin
  publication-title: J Comp Neurol
– volume: 44
  start-page: 247
  year: 1984
  end-page: 252
  article-title: Afferent connections of medial precentral cortex in the rat
  publication-title: Neurosci Lett
– volume: 100
  start-page: 67
  year: 1994
  end-page: 84
  article-title: Rat posterior parietal cortex: topography of corticocortical and thalamic connections
  publication-title: Exp Brain Res
– volume: 1036
  start-page: 90
  year: 2005
  end-page: 100
  article-title: Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat
  publication-title: Brain Res
– volume: 303
  start-page: 563
  year: 1991
  end-page: 583
  article-title: Prefrontal cortical projections to the cholinergic neurons in the basal forebrain
  publication-title: J Comp Neurol
– volume: 171
  start-page: 157
  year: 1977
  end-page: 191
  article-title: The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat
  publication-title: J Comp Neurol
– volume: 7
  start-page: 133
  year: 1982
  end-page: 159
  article-title: The organization of afferent projections to the midbrain periaqueductal gray of the rat
  publication-title: Neuroscience
– volume: 27
  start-page: 4819
  year: 2007a
  end-page: 4825
  article-title: Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning
  publication-title: J Neurosci
– volume: 10
  start-page: 885
  year: 2009
  end-page: 892
  article-title: A new perspective on the role of the orbitofrontal cortex in adaptive behaviour
  publication-title: Nat Rev Neurosci
– volume: 210
  start-page: 163
  year: 1982
  end-page: 173
  article-title: Convergence of autonomic and limbic connections in the insular cortex of the rat
  publication-title: J Comp Neurol
– volume: 100
  start-page: 469
  year: 1994
  end-page: 483
  article-title: Efferent connections of the medial prefrontal cortex in the rabbit
  publication-title: Exp Brain Res
– volume: 442
  start-page: 163
  year: 2002
  end-page: 187
  article-title: Analysis of projections from the medial prefrontal cortex to the thalamus in the rat, with emphasis on nucleus reuniens
  publication-title: J Comp Neurol
– volume: 34
  start-page: 245
  year: 1999
  end-page: 255
  article-title: Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst‐patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses
  publication-title: Synapse
– volume: 1121
  start-page: 174
  year: 2007b
  end-page: 192
  article-title: The contribution of orbitofrontal cortex to action selection
  publication-title: Ann N Y Acad Sci
– volume: 320
  start-page: 145
  year: 1992
  end-page: 160
  article-title: Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area
  publication-title: J Comp Neurol
– volume: 508
  start-page: 212
  year: 2008
  end-page: 237
  article-title: Projections of the paraventricular and paratenial nuclei of the dorsal midline thalamus in the rat
  publication-title: J Comp Neurol
– volume: 71
  start-page: 55
  year: 1996
  end-page: 75
  article-title: Projections of the medial and lateral prefrontal cortices to the amygdala: a leucoagglutinin study in the rat
  publication-title: Neuroscience
– volume: 66
  start-page: 449
  year: 2010
  end-page: 460
  article-title: Distinct roles of rodent orbitofrontal and medial prefrontal cortex in decision making
  publication-title: Neuron
– volume: 338
  start-page: 255
  year: 1993
  end-page: 278
  article-title: The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: immunohistochemical detection of retrogradely transported Fluoro‐Gold
  publication-title: J Comp Neurol
– volume: 352
  start-page: 567
  year: 1995
  end-page: 593
  article-title: Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents
  publication-title: J Comp Neurol
– volume: 42
  start-page: 73
  year: 1991
  end-page: 102
  article-title: Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat
  publication-title: Neuroscience
– volume: 10
  start-page: 206
  year: 2000
  end-page: 219
  article-title: The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans
  publication-title: Cereb Cortex
– volume: 91
  start-page: 104
  year: 2009
  end-page: 113
  article-title: Posterior parietal cortex as part of a neural network for directed attention in rats
  publication-title: Neurobiol Learn Mem
– year: 1985
– volume: 206
  start-page: 28
  year: 1982
  end-page: 48
  article-title: The thalamo‐cortical projection of the nucleus submedius in the cat
  publication-title: J Comp Neurol
– volume: 364
  start-page: 637
  year: 1996
  end-page: 650
  article-title: Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons
  publication-title: J Comp Neurol
– volume: 467
  start-page: 271
  year: 2003
  end-page: 292
  article-title: The associative striatum: organization of cortical projections to the dorsocentral striatum in rats
  publication-title: J Comp Neurol
– volume: 10
  start-page: 438
  year: 2000
  end-page: 446
  article-title: Plasticity at hippocampal to prefrontal cortex synapses: dual roles in working memory and consolidation
  publication-title: Hippocampus
– volume: 26
  start-page: 87
  year: 1998
  end-page: 102
  article-title: Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention
  publication-title: Psychobiology
– volume: 55
  start-page: 257
  year: 1998
  end-page: 332
  article-title: Cortical pathways to the mammalian amygdala
  publication-title: Prog Neurobiol
– volume: 492
  start-page: 145
  year: 2005
  end-page: 177
  article-title: Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers
  publication-title: J Comp Neurol
– volume: 1121
  start-page: 54
  year: 2007
  end-page: 71
  article-title: Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions
  publication-title: Ann N Y Acad Sci
– start-page: 417
  year: 1991
  end-page: 448
– volume: 212
  start-page: 387
  year: 2008
  end-page: 401
  article-title: The rat orbital and agranular insular prefrontal cortical areas: a cytoarchitectonic and chemoarchitectonic study
  publication-title: Brain Struct Funct
– volume: 7
  start-page: 1265
  year: 1982
  end-page: 1288
  article-title: Afferent connections of dorsal and ventral agranular insular cortex in the hamster
  publication-title: Neuroscience
– volume: 468
  start-page: 425
  year: 2004
  end-page: 440
  article-title: Rostral agranular insular cortex and pain areas of the central nervous system: a tract‐tracing study in the rat
  publication-title: J Comp Neurol
– volume: 142
  start-page: 1
  year: 2006
  end-page: 20
  article-title: Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat
  publication-title: Neuroscience
– volume: 63
  start-page: 159
  year: 1986
  end-page: 164
  article-title: Projections to the midbrain from the medial versus lateral prefrontal cortices of the rat
  publication-title: Neurosci Lett
– volume: 522
  start-page: 1
  year: 1990
  end-page: 6
  article-title: Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of Fluoro‐Gold
  publication-title: Brain Res
– volume: 78
  start-page: 240
  year: 2009
  end-page: 247
  article-title: Prefrontal afferents to the dorsal raphe nucleus in the rat
  publication-title: Brain Res Bull
– volume: 321
  start-page: 488
  year: 1992
  end-page: 499
  article-title: Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat
  publication-title: J Comp Neurol
– volume: 113
  start-page: 32
  year: 1999
  end-page: 41
  article-title: Involvement of rodent prefrontal cortex subregions in strategy switching
  publication-title: Behav Neurosci
– volume: 27
  start-page: 5730
  year: 2007
  end-page: 5743
  article-title: Glutamatergic afferents of the ventral tegmental area in the rat
  publication-title: J Neurosci
– volume: 28
  start-page: 11124
  year: 2008
  end-page: 11130
  article-title: Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice
  publication-title: J Neurosci
– volume: 279
  start-page: 235
  year: 1989
  end-page: 248
  article-title: Collateralization of the amygdaloid projections of the rat prelimbic and infralimbic cortices
  publication-title: J Comp Neurol
– volume: 195
  start-page: 435
  year: 2007
  end-page: 449
  article-title: Medial prefrontal serotonin in the rat is involved in goal‐directed behaviour when affect guides decision making
  publication-title: Psychopharmacology
– volume: 963
  start-page: 57
  year: 2003
  end-page: 71
  article-title: Glutamatergic afferent projections to the dorsal raphe nucleus of the rat
  publication-title: Brain Res
– volume: 85
  start-page: 95
  year: 1990
  end-page: 116
  article-title: The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization
  publication-title: Prog Brain Res
– volume: 20
  start-page: 3864
  year: 2000
  end-page: 3873
  article-title: Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons
  publication-title: J Neurosci
– volume: 82
  start-page: 443
  year: 1998
  end-page: 468
  article-title: Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods
  publication-title: Neuroscience
– year: 2004
– volume: 377
  start-page: 561
  year: 1986
  end-page: 570
  article-title: The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus
  publication-title: Brain Res
– volume: 117
  start-page: 1054
  year: 2003
  end-page: 1065
  article-title: The contribution of the rat prelimbic‐infralimbic areas to different forms of task switching
  publication-title: Behav Neurosci
– volume: 83
  start-page: 125
  year: 2005
  end-page: 133
  article-title: The involvement of the orbitofrontal cortex in learning under changing task contingencies
  publication-title: Neurobiol Learn Mem
– volume: 37
  start-page: 77
  year: 1990
  end-page: 100
  article-title: Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective D‐[ H]aspartate labelling of possible excitatory amino acid inputs
  publication-title: Neuroscience
– volume: 24
  start-page: 197
  year: 1997
  end-page: 254
  article-title: The structural organization of connections between hypothalamus and cerebral cortex
  publication-title: Brain Res Brain Res Rev
– volume: 490
  start-page: 270
  year: 2005
  end-page: 294
  article-title: Afferents of the ventral tegmental area in the rat‐anatomical substratum for integrative functions
  publication-title: J Comp Neurol
– volume: 111
  start-page: 215
  year: 1996
  end-page: 232
  article-title: Neuronal connections of orbital cortex in rats: topography of cortical and thalamic afferents
  publication-title: Exp Brain Res
– volume: 432
  start-page: 40
  year: 2008
  end-page: 45
  article-title: The orbital cortex in rats topographically projects to central parts of the caudate‐putamen complex
  publication-title: Neurosci Lett
– start-page: 69
  year: 2008
  end-page: 102
– volume: 28
  start-page: 771
  year: 2004
  end-page: 784
  article-title: Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates
  publication-title: Neurosci Biobehav Rev
– volume: 28
  start-page: 5127
  year: 2008
  end-page: 5138
  article-title: Rat orbitofrontal cortex separately encodes response and outcome information during performance of goal‐directed behavior
  publication-title: J Neurosci
– volume: 93
  start-page: 479
  year: 2010
  end-page: 486
  article-title: Evidence for the thalamic targets of the medial hypothalamic defensive system mediating emotional memory to predatory threats
  publication-title: Neurobiol Learn Mem
– volume: 212
  start-page: 149
  year: 2007
  end-page: 179
  article-title: Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat
  publication-title: Brain Struct Funct
– volume: 499
  start-page: 768
  year: 2006
  end-page: 796
  article-title: Efferent projections of reuniens and rhomboid nuclei of the thalamus in the rat
  publication-title: J Comp Neurol
– volume: 20
  start-page: 205
  year: 2010
  end-page: 211
  article-title: How do you (estimate you will) like them apples? Integration as a defining trait of orbitofrontal function
  publication-title: Curr Opin Neurobiol
– volume: 39
  start-page: 107
  year: 2002
  end-page: 140
  article-title: The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness
  publication-title: Brain Res Brain Res Rev
– volume: 316
  start-page: 314
  year: 1992
  end-page: 347
  article-title: Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat
  publication-title: J Comp Neurol
– volume: 506
  start-page: 30
  year: 2008
  end-page: 45
  article-title: Organization of anterior cingulate and frontal cortical projections to the retrosplenial cortex in the rat
  publication-title: J Comp Neurol
– volume: 21
  start-page: 3674
  year: 2001
  end-page: 3687
  article-title: Susceptibility to kindling and neuronal connections of the anterior claustrum
  publication-title: J Neurosci
– volume: 9
  start-page: 95
  year: 1983
  end-page: 106
  article-title: Afferents to the periaqueductal gray in the rat. A horseradish peroxidase study
  publication-title: Neuroscience
– volume: 29
  start-page: 1461
  year: 2009
  end-page: 1476
  article-title: Differential representation of Pavlovian‐instrumental transfer by prefrontal cortex subregions and striatum
  publication-title: Eur J Neurosci
– volume: 146
  start-page: 97
  year: 2003
  end-page: 103
  article-title: Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat
  publication-title: Behav Brain Res
– volume: 25
  start-page: 7763
  year: 2005
  end-page: 7770
  article-title: Lesions of medial prefrontal cortex disrupt the acquisition but not the expression of goal‐directed learning
  publication-title: J Neurosci
– volume: 468
  start-page: 518
  year: 2004
  end-page: 529
  article-title: Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma‐aminobutyric acid neurons
  publication-title: J Comp Neurol
– volume: 1121
  start-page: 320
  year: 2007
  end-page: 335
  article-title: Reconciling the roles of orbitofrontal cortex in reversal learning and the encoding of outcome expectancies
  publication-title: Ann N Y Acad Sci
– volume: 187
  start-page: 117
  year: 1979
  end-page: 143
  article-title: Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat
  publication-title: J Comp Neurol
– volume: 62
  start-page: 269
  year: 2009
  end-page: 280
  article-title: The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes
  publication-title: Neuron
– volume: 146
  start-page: 145
  year: 2003
  end-page: 157
  article-title: The role of prelimbic cortex in instrumental conditioning
  publication-title: Behav Brain Res
– volume: 25
  start-page: 11757
  year: 2005
  end-page: 11767
  article-title: Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala
  publication-title: J Neurosci
– volume: 323
  start-page: 167
  year: 1992
  end-page: 197
  article-title: The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain‐prefrontal cortex topography
  publication-title: J Comp Neurol
– volume: 20
  start-page: 4320
  year: 2000
  end-page: 4324
  article-title: Medial frontal cortex mediates perceptual attentional set shifting in the rat
  publication-title: J Neurosci
– volume: 61
  start-page: 79
  year: 1994
  end-page: 86
  article-title: Bilateral destruction of the ventrolateral orbital cortex produces allocentric but not egocentric spatial deficits in rats
  publication-title: Behav Brain Res
– volume: 308
  start-page: 249
  year: 1991
  end-page: 276
  article-title: Efferent projections of the infralimbic cortex of the rat
  publication-title: J Comp Neurol
– volume: 294
  start-page: 262
  year: 1990
  end-page: 280
  article-title: Topographic organization in the corticocortical connections of medial agranular cortex in rats
  publication-title: J Comp Neurol
– volume: 47
  start-page: 633
  year: 2005
  end-page: 636
  article-title: Orbitofrontal cortex, associative learning, and expectancies
  publication-title: Neuron
– volume: 24
  start-page: 341
  year: 1990
  end-page: 354
  article-title: Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents
  publication-title: Brain Res Bull
– volume: 480
  start-page: 115
  year: 2004
  end-page: 142
  article-title: Afferent projections to nucleus reuniens of the thalamus
  publication-title: J Comp Neurol
– volume: 51
  start-page: 32
  year: 2004
  end-page: 58
  article-title: Differential projections of the infralimbic and prelimbic cortex in the rat
  publication-title: Synapse
– volume: 19
  start-page: 75
  year: 2009
  end-page: 83
  article-title: General mechanisms for making decisions?
  publication-title: Curr Opin Neurobiol
– ident: e_1_2_5_53_1
  doi: 10.1016/S0278-2626(03)00278-1
– ident: e_1_2_5_80_1
  doi: 10.1016/j.nlm.2008.08.010
– ident: e_1_2_5_19_1
  doi: 10.1523/JNEUROSCI.23-25-08771.2003
– ident: e_1_2_5_35_1
  doi: 10.1002/cne.20668
– ident: e_1_2_5_91_1
  doi: 10.1002/cne.902100207
– ident: e_1_2_5_84_1
  doi: 10.1007/BF00227280
– ident: e_1_2_5_117_1
  doi: 10.1016/j.brainresbull.2006.12.002
– ident: e_1_2_5_2_1
  doi: 10.1002/(SICI)1098-2396(19991215)34:4<245::AID-SYN1>3.0.CO;2-D
– ident: e_1_2_5_47_1
  doi: 10.1007/s00429-007-0150-4
– ident: e_1_2_5_12_1
  doi: 10.1111/j.1460-9568.2009.06992.x
– ident: e_1_2_5_44_1
  doi: 10.1002/cne.901770405
– ident: e_1_2_5_67_1
  doi: 10.1016/0006-8993(86)90867-X
– ident: e_1_2_5_99_1
  doi: 10.1002/cne.902900205
– ident: e_1_2_5_118_1
  doi: 10.1111/j.1460-9568.1991.tb00850.x
– ident: e_1_2_5_73_1
  doi: 10.1002/cne.901870108
– ident: e_1_2_5_50_1
  doi: 10.1002/cne.10978
– ident: e_1_2_5_66_1
  doi: 10.1523/JNEUROSCI.1556-07.2007
– ident: e_1_2_5_43_1
  doi: 10.1016/0304-3940(86)90054-6
– ident: e_1_2_5_40_1
  doi: 10.1016/S0079-6123(08)62677-1
– ident: e_1_2_5_13_1
  doi: 10.1523/JNEUROSCI.20-10-03864.2000
– ident: e_1_2_5_77_1
  doi: 10.1037/0735-7044.117.5.1054
– ident: e_1_2_5_92_1
  doi: 10.1002/cne.902530302
– ident: e_1_2_5_17_1
  doi: 10.1016/j.brainres.2004.12.049
– ident: e_1_2_5_83_1
  doi: 10.1002/cne.902940210
– ident: e_1_2_5_101_1
  doi: 10.1007/978-1-4615-3302-3_22
– ident: e_1_2_5_116_1
  doi: 10.1002/cne.21135
– ident: e_1_2_5_89_1
  doi: 10.1016/S0165-0173(97)00007-6
– ident: e_1_2_5_59_1
  doi: 10.1016/0306-4522(83)90049-0
– ident: e_1_2_5_22_1
  doi: 10.1002/cne.903520407
– ident: e_1_2_5_110_1
  doi: 10.1016/S0165-0173(02)00181-9
– ident: e_1_2_5_25_1
  doi: 10.1016/0166-4328(94)90010-8
– ident: e_1_2_5_64_1
  doi: 10.1002/cne.20342
– ident: e_1_2_5_36_1
  doi: 10.1523/JNEUROSCI.0012-07.2007
– ident: e_1_2_5_42_1
  doi: 10.1016/S0306-4522(98)00157-2
– ident: e_1_2_5_63_1
  doi: 10.1016/0306-4522(95)00417-3
– ident: e_1_2_5_30_1
  doi: 10.1002/cne.1105
– ident: e_1_2_5_69_1
  doi: 10.1523/JNEUROSCI.1921-05.2005
– ident: e_1_2_5_115_1
  doi: 10.1007/978-3-7643-8561-3_3
– ident: e_1_2_5_72_1
  doi: 10.1016/S0306-4522(97)00268-6
– ident: e_1_2_5_68_1
  doi: 10.1093/cercor/10.3.206
– ident: e_1_2_5_10_1
  doi: 10.1002/cne.903380209
– ident: e_1_2_5_9_1
  doi: 10.1046/j.1460-9568.2002.02189.x
– ident: e_1_2_5_45_1
  doi: 10.1073/pnas.0806669105
– ident: e_1_2_5_85_1
  doi: 10.1007/BF00227299
– ident: e_1_2_5_7_1
  doi: 10.1523/JNEUROSCI.20-11-04320.2000
– ident: e_1_2_5_52_1
  doi: 10.1016/j.nlm.2004.10.003
– ident: e_1_2_5_79_1
  doi: 10.1016/S0006-8993(99)01779-5
– ident: e_1_2_5_105_1
  doi: 10.1016/j.neuron.2009.03.005
– ident: e_1_2_5_109_1
  doi: 10.1007/s00429-007-0164-y
– ident: e_1_2_5_111_1
  doi: 10.1002/cne.10083
– ident: e_1_2_5_48_1
  doi: 10.1002/cne.903080210
– ident: e_1_2_5_60_1
  doi: 10.1002/cne.902890103
– ident: e_1_2_5_16_1
  doi: 10.1002/cne.902790207
– ident: e_1_2_5_20_1
  doi: 10.1002/cne.903210314
– ident: e_1_2_5_81_1
  doi: 10.1016/0306-4522(82)91133-2
– ident: e_1_2_5_57_1
  doi: 10.1016/0006-8993(69)90003-1
– ident: e_1_2_5_8_1
  doi: 10.1523/JNEUROSCI.2820-08.2008
– ident: e_1_2_5_86_1
  doi: 10.1002/cne.10868
– ident: e_1_2_5_51_1
  doi: 10.1007/978-1-4615-1749-8
– ident: e_1_2_5_5_1
  doi: 10.1016/0306-4522(91)90151-D
– ident: e_1_2_5_31_1
  doi: 10.1196/annals.1401.037
– ident: e_1_2_5_49_1
  doi: 10.1002/cne.10976
– ident: e_1_2_5_121_1
  doi: 10.1523/JNEUROSCI.21-10-03674.2001
– ident: e_1_2_5_87_1
  doi: 10.1523/JNEUROSCI.3432-05.2005
– ident: e_1_2_5_76_1
  doi: 10.1037/0735-7044.113.1.32
– ident: e_1_2_5_119_1
  doi: 10.1002/cne.902960202
– ident: e_1_2_5_106_1
  doi: 10.1016/j.pneurobio.2009.10.002
– ident: e_1_2_5_104_1
  doi: 10.1016/0006-8993(91)91677-S
– ident: e_1_2_5_41_1
  doi: 10.1016/S0891-0618(99)00009-5
– ident: e_1_2_5_39_1
  doi: 10.1016/0306-4522(88)90339-9
– ident: e_1_2_5_97_1
  doi: 10.1038/nrn2753
– ident: e_1_2_5_71_1
  doi: 10.1196/annals.1401.033
– ident: e_1_2_5_74_1
  doi: 10.1007/s00429-008-0180-6
– ident: e_1_2_5_27_1
  doi: 10.1016/j.neubiorev.2004.09.006
– ident: e_1_2_5_96_1
  doi: 10.1196/annals.1401.001
– ident: e_1_2_5_93_1
  doi: 10.1016/j.neulet.2007.12.024
– ident: e_1_2_5_100_1
  doi: 10.1002/cne.21523
– volume-title: Brain maps: structure of the rat brain
  year: 2004
  ident: e_1_2_5_103_1
  contributor:
    fullname: Swanson LW
– ident: e_1_2_5_58_1
  doi: 10.1098/rstb.1998.0336
– ident: e_1_2_5_62_1
  doi: 10.1016/S0301-0082(98)00003-3
– ident: e_1_2_5_28_1
  doi: 10.1002/(SICI)1096-9861(19960122)364:4<637::AID-CNE3>3.0.CO;2-4
– ident: e_1_2_5_29_1
  doi: 10.1002/1096-9861(20000710)422:4<556::AID-CNE6>3.0.CO;2-U
– ident: e_1_2_5_61_1
  doi: 10.1016/j.bbr.2003.09.019
– ident: e_1_2_5_33_1
  doi: 10.1002/cne.20738
– ident: e_1_2_5_15_1
  doi: 10.1016/0361-9230(86)90237-6
– ident: e_1_2_5_108_1
  doi: 10.1007/s00213-007-0917-6
– ident: e_1_2_5_37_1
  doi: 10.1016/j.brainresbull.2008.11.012
– ident: e_1_2_5_98_1
  doi: 10.1002/cne.903200202
– ident: e_1_2_5_112_1
  doi: 10.1002/syn.10279
– ident: e_1_2_5_56_1
  doi: 10.1016/S0006-8993(02)03841-6
– ident: e_1_2_5_88_1
  doi: 10.1073/pnas.92.9.3898
– ident: e_1_2_5_82_1
  doi: 10.1016/0304-3940(84)90030-2
– ident: e_1_2_5_4_1
  doi: 10.1016/0306-4522(82)90157-9
– ident: e_1_2_5_120_1
  doi: 10.1002/cne.903240109
– ident: e_1_2_5_32_1
  doi: 10.1523/JNEUROSCI.0319-08.2008
– ident: e_1_2_5_34_1
  doi: 10.1002/cne.903030405
– ident: e_1_2_5_102_1
  doi: 10.1016/j.neuron.2010.03.033
– ident: e_1_2_5_3_1
  doi: 10.1016/0306-4522(90)90194-9
– ident: e_1_2_5_107_1
  doi: 10.1016/S0079-6123(08)62675-8
– ident: e_1_2_5_26_1
  doi: 10.1002/cne.902060105
– ident: e_1_2_5_94_1
  doi: 10.1016/j.conb.2010.01.009
– ident: e_1_2_5_21_1
  doi: 10.1016/0361-9230(90)90088-H
– ident: e_1_2_5_14_1
  doi: 10.1016/j.nlm.2010.01.005
– ident: e_1_2_5_18_1
  doi: 10.1016/0006-8993(90)91570-7
– volume: 26
  start-page: 87
  year: 1998
  ident: e_1_2_5_24_1
  article-title: Rodent posterior parietal cortex as a component of a cortical network mediating directed spatial attention
  publication-title: Psychobiology
  doi: 10.3758/BF03330596
  contributor:
    fullname: Corwin JV
– ident: e_1_2_5_54_1
  doi: 10.1002/cne.901710204
– ident: e_1_2_5_113_1
  doi: 10.1016/j.neuroscience.2006.06.027
– ident: e_1_2_5_90_1
  doi: 10.1016/j.conb.2009.02.005
– ident: e_1_2_5_95_1
  doi: 10.1016/j.neuron.2005.07.018
– ident: e_1_2_5_23_1
  doi: 10.1016/j.bbr.2003.09.023
– ident: e_1_2_5_70_1
  doi: 10.1523/JNEUROSCI.5443-06.2007
– ident: e_1_2_5_78_1
  doi: 10.1002/cne.903230204
– ident: e_1_2_5_46_1
  doi: 10.1111/j.1460-9568.2009.06679.x
– ident: e_1_2_5_11_1
  doi: 10.1007/BF02738406
– ident: e_1_2_5_6_1
  doi: 10.1002/cne.903160305
– ident: e_1_2_5_55_1
  doi: 10.1002/1098-1063(2000)10:4<438::AID-HIPO10>3.0.CO;2-3
– ident: e_1_2_5_38_1
  doi: 10.1002/cne.1303
– ident: e_1_2_5_65_1
  doi: 10.1016/0306-4522(95)00455-6
– ident: e_1_2_5_75_1
  doi: 10.1196/annals.1401.008
– ident: e_1_2_5_114_1
  doi: 10.1002/cne.21679
SSID ssj0009938
Score 2.510919
Snippet The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous report...
Abstract The medial orbital (MO) and ventral orbital (VO) cortices are prominent divisions of the orbitomedial prefrontal cortex. To our knowledge, no previous...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 3766
SubjectTerms agranular insular cortex
Amygdala
Animals
Basal ganglia
Brain stem
Cortex (cingulate)
Cortex (frontal)
Cortex (parietal)
Cortex (prefrontal)
Cortex (temporal)
Forebrain (basal)
Frontal Lobe - anatomy & histology
instrumental learning
Male
medial prefrontal cortex
mediodorsal nucleus
Neostriatum
Neural Pathways - cytology
Neuroanatomical Tract-Tracing Techniques
Nucleus accumbens
nucleus reuniens
Olfactory bulb
paratenial nucleus
Pavlovian conditioning
Periaqueductal gray area
Phaseolus vulgaris
Preoptic area
raphe nuclei
Rats
Rats, Sprague-Dawley
retrosplenial cortex
sensorimotor system
striatum
Substantia innominata
Substantia nigra
Thalamus
Tracers
Title Projections of the medial orbital and ventral orbital cortex in the rat
URI https://api.istex.fr/ark:/67375/WNG-CBDJGDW3-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.22733
https://www.ncbi.nlm.nih.gov/pubmed/21800317
https://www.proquest.com/docview/1545001465
https://search.proquest.com/docview/1017962220
https://search.proquest.com/docview/899130003
Volume 519
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD6UiuCLWm8d20oUEV9mO5OZJLv4pLvtloKLiqVFhJBJMiCFGdlLKf31PSfZmVKxIL4NMwmTy7l8OTn5AvDW1NJ5X9vU4kotLR2vUoM4NrWuMD6X3opwS8TnmTw6KY_PxNkGfOjOwkR-iD7gRpoR7DUpuKkW-zekobbxA47Ol5g-80JROtfk2w11FPrdaIUpBWEkVccqlPH9vuYtX3SPhvXyb0DzNm4NjufwEfzsmhzzTc4Hq2U1sFd_sDn-Z58ew8M1IGUfowRtwYZvnsD9H20Itz-F6ZcYqiHpZG3NEC-yeNqEtfOKbhxhpnHsIgaJ-3eWcngv2a8mVEApewYnhwffx0fp-vKF1BIfTapyZ623pairrM6zwgijKj8UXplyKFDLS0Pkd66S5bCurSMgUmSGK4RgtK4pnsNm0zZ-G5hSTo24pEOyvERAaLjntijFqKjl0HGRwJtuGvTvyLGhI5sy1zgiOoxIAu_CBPUlzPycktKU0KezqR5_mhxPJ6eF_prAbjeDeq2PC01AkVaDEn_2uv-MmkTbI6bx7Wqhg3GSiJeyBNgdZXB1Svt_GTbnRRSOvj2IlchCqgTehym-uyt6PDsIDy__vegOPAjR7JynudiFzeV85fcQDi2rV0HurwGt7wKQ
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ta9QwGH-YG-K--O7snBpFxC-9tUmT3IFf9G67c26HysbGQEKapCCDVm53Y_jXmye5dkwciN9Km9Akz0t-z5PkF4A3uhLWucqkxkdqaWFpmWqPY1NjmXa5cIaHWyIOpmJyVOyd8JMVeN-ehYn8EF3CDS0j-Gs0cExIb1-xhpra9aiffdktWPPmzvDihtG3K_IoP_NGP4ybEAZCtrxCGd3uql6bjdZwYC__BjWvI9cw9ezeg-9to-OOk7PeYl72zK8_-Bz_t1f34e4Sk5IPUYkewIqrH8Lt0yZk3B_B-EvM1qCCkqYiHjKSeOCENLMSLx0hurbkIuaJu3cGt_Fekh91qOAV7TEc7e4cDifp8v6F1CAlTSpza4wzBa_KrMozprmWpetzJ3XR597QC438d7YURb-qjEUswjJNpUdhGNqwJ7BaN7V7CkRKKwdU4DlZWnhMqKmjhhV8wCrRt5Qn8LqVg_oZaTZUJFSmyo-ICiOSwNsgoa6Enp3hvjTJ1fF0rIYfR3vj0TFTXxPYakWoliZ5rhArYkAo_M9edZ-9MeEKia5dszhXwT8JD5myBMgNZXyAikuAmW_ORtSOrj0eLqGTlAm8CzK-uStqON0JD5v_XvQl3JkcHuyr_U_Tz89gPSS3c5rmfAtW57OFe-7R0bx8EYzgN88lBqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFqUv1ms7WjWKiC-znclMkl180t3u1qpLFUuLFEImF5DCTNnuSvHXNyfZmVKxIL4NMwmTy7l8OTn5AvBaOW6sdTrVfqWWloZWqfI4NtWmUDbnVrNwS8SXKd87LPeP2fEKvGvPwkR-iC7ghpoR7DUq-JlxO1ekobq2Peqdb3EL1krukS8iom9X3FHe8UYzjDkIAy5aWqGM7nRVrzmjNRzXi78hzevANXie8QactG2OCSenvcW86unff9A5_men7sHdJSIl76MI3YcVWz-A2z-aEG9_CJODGKtB8SSNIx4wknjchDSzCq8cIao25FeMEnfvNCbxXpCfdajgxewRHI53vw_30uXtC6lGQppU5EZrq0vmqszlWaGYEpXtMytU2WdezUuF7Hem4mXfOW0QiRSZosJjMFzYFI9htW5quwVECCMGlOMpWVp6RKiopboo2aBwvG8oS-BVOw3yLJJsyEinTKUfERlGJIE3YYK6Emp2illpgsmj6UQOP4z2J6OjQn5NYLudQblUyHOJSBGXg9z_7GX32asS7o-o2jaLcxmsE_eAKUuA3FDGL09xAzDzzdmMwtG1x4MlNJEigbdhim_uihxOd8PDk38v-gLuHIzG8vPH6aensB4i2zlNc7YNq_PZwj7z0GhePQ8qcAmw1AVX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Projections+of+the+medial+orbital+and+ventral+orbital+cortex+in+the+rat&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Hoover%2C+Walter+B.&rft.au=Vertes%2C+Robert+P.&rft.date=2011-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=519&rft.issue=18&rft.spage=3766&rft.epage=3801&rft_id=info:doi/10.1002%2Fcne.22733&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_CBDJGDW3_Q
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon